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Abstract
In the theory of lossy compression, the rate-
distortion function R(D) of a given data source
characterizes the fundamental limit of compres-
sion performance by any algorithm. We propose
a method to estimate R(D) in the continuous set-
ting based on Wasserstein gradient descent. While
the classic Blahut–Arimoto algorithm only opti-
mizes probability weights over the support points
of its initialization, our method leverages optimal
transport theory and learns the support of the opti-
mal reproduction distribution by moving particles.
This makes it more suitable for high dimensional
continuous problems. Our method complements
state-of-the-art neural network-based methods in
rate-distortion estimation, achieving comparable
or improved results with less tuning and computa-
tion effort. In addition, we can derive its conver-
gence and finite-sample properties analytically.

Our study also applies to maximum likelihood de-
convolution and regularized Kantorovich estima-
tion, as those tasks boil down to mathematically
equivalent minimization problems.

1. Introduction
Given source and reproduction alphabets X ,Y and a dis-
tortion function ρ : (X ,Y) → [0,∞), the rate-distortion
(R-D) function of a source X ∼ PX is defined by

R(D) = inf
QY |X :EPXQY |X [ρ(X,Y )]≤D

I(X;Y ), (1)

where QY |X is any transition kernel from X to Y , which
conceptually corresponds to a (possibly) stochastic compres-
sion algorithm. For a given source, R(D) describes the best
achievable compression cost by any algorithm subject to
a distortion constraint (Shannon, 1959). Thus establishing
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R(D) helps evaluate the (sub)optimality of compression
algorithms on a given source and guide their development.

Unfortunately, R(D) is defined by an optimization problem
requiring perfect knowledge of the source. In practice, we
only have indirect access to the source via samples. This
has prompted research that aims to estimate R(D) from
data samples (Harrison and Kontoyiannis, 2008; Gibson,
2017), with recent methods (Yang and Mandt, 2022; Lei
et al., 2023) inspired by deep learning. However, a draw-
back with deep learning-based methods is that they involve
customizing neural network architectures to the data source
of interest; otherwise the resulting bounds can be quite loose
(Yang and Mandt, 2022). They can also require extensive
hyperparameter tuning and computation resources.

In this work, we focus on upper-bounding R(D) in the
continuous-alphabet setting and take a different approach.
Our algorithm minimizes a suitable functional over the
Wasserstein space of probability measures, implemented
via moving particles. Leveraging a connection between
the R-D problem and optimal transport, we also develop
bounds on the quality of our estimator in terms of the num-
ber of source samples and particles chosen. In practice we
find our algorithm to converge quickly to a near optimum,
and obtain comparable or improved results against neural
network-based methods with hand-tuned architectures. Our
study also applies to maximum likelihood deconvolution
and regularized Kantorovich estimation, as those tasks boil
down to mathematically equivalent minimization problems.

2. Lossy compression, entropic optimal
transport, and MLE

2.1. Setup

For ease of presentation, we now switch to a more abstract
notation without reference to random variables. We provide
the precise definitions in the Supplementary Material. Let
X and Y be standard Borel spaces; let µ ∈ P(X ) be a
probability measure on X , which should be thought of as
the source distribution PX . For a measure π on the product
space X × Y , the notation π1 (or π2) denotes the first (or
second) marginal of π. For any ν ∈ P(Y), we denote by
Π(µ, ν) the set of couplings between µ and ν (i.e., π1 = µ
and π2 = ν). Similarly, Π(µ, ·) denotes the set of measures



π with π1 = µ. Throughout the paper, K denotes a tran-
sition kernel (conditional distribution) from X to Y , and
µ ⊗ K denotes the product measure formed by µ and K.
Then R(D) is equivalent to

R(D) = inf
K:

∫
ρd(µ⊗K)≤D

H(µ⊗K|µ⊗ (µ⊗K)2) (2)

where H denotes relative entropy, i.e., for two measures
α, β defined on a common measurable space, H(α|β) :=∫
log(dαdβ )dα when α≪ β and infinite otherwise.

To make the problem more tractable, we follow the approach
of the classic Blahut–Arimoto algorithm (Blahut, 1972; Ari-
moto, 1972) and work with an equivalent unconstrained
Lagrangian problem as follows. For a fixed λ ≥ 0, we aim
to solve the following optimization problem,

Fλ(µ) := inf
ν∈P(Y)

inf
π∈Π(µ,·)

λ

∫
ρdπ +H(π|µ⊗ ν). (3)

Geometrically, Fλ(µ) ∈ R is the y-axis intercept of a tan-
gent line to the R(D) with slope −λ, and R(D) is deter-
mined by the convex envelope of all such tangent lines
(Gray, 2011). To simplify notation, we often drop the de-
pendence on λ (e.g., we write F (µ) = Fλ(µ)) whenever it
is harmless.

To prepare for later discussions, we write the unconstrained
R-D problem as

Fλ(µ) = inf
ν∈P(Y)

LBA(µ, ν), (4)

LBA(µ, ν) := inf
π∈Π(µ,·)

λ

∫
ρdπ +H(π|µ⊗ ν) (5)

= inf
K
λ

∫
ρd(µ⊗K) +H(µ⊗K|µ⊗ ν),

(6)

where we refer to LBA as the rate function (Harrison
and Kontoyiannis, 2008). We abuse the notation to write
LBA(µ, ν) = LBA(ν) when it is viewed as a function of ν
only, and refer to it as the rate functional. The rate function
characterizes a generalized Asymptotic Equipartition Prop-
erty, where LBA(µ, ν) is the asymptotically optimal cost
of lossy compression of data X ∼ µ using a random code-
book constructed from samples of ν (Dembo and Kontoyian-
nis, 2002). Notably, LBA can be simplified analytically as
(Csiszár, 1974)

LBA(µ, ν) =

∫
X
− log

(∫
Y
e−λρ(x,y)ν(dy)

)
µ(dx).

(7)

In practice, the source µ is only accessible via independent
samples, on the basis of which we propose to estimate its
R(D), or equivalently F (µ). Let µm denote an m-sample

empirical measure of µ, i.e., µm =
∑m

i=1 δxi
with x1,...,n

being independent samples from µ, which should be thought
of as the “training data”. Following Harrison and Kontoyian-
nis (2008), we consider two kinds of (plug-in) estimators
for F (µ): (1) the non-parametric estimator F (µm), and (2)
the parametric estimator FH(µm) := infν∈H LBA(µ

m, ν),
whereH is a family of probability measures on Y . Harrison
and Kontoyiannis (2008) showed that under rather broad
conditions, both kinds of estimators are strongly consistent,
i.e., F (µm) converges to F (µ) (and respectively, FH(µm)
to FH(µ)) with probability one as m→∞.

2.2. Optimal transport perspective

The R-D problem turns out to be closely related to entropic
optimal transport, which we will exploit in Sec. 4.2 to obtain
sample complexity results under our approach. For ϵ > 0,
the entropic optimal transport problem is defined by (Peyré
and Cuturi, 2019)

LEOT (µ, ν) := inf
π∈Π(µ,ν)

∫
ρdπ + ϵH(π|µ⊗ ν). (8)

Interpreting LEOT loosely as a distance between probability
measures, we consider the “projection“ of µ onto P(Y):

inf
ν∈P(Y)

LEOT (ν). (9)

In the OT literature this is known as the (regularized) Kan-
torovich estimator (Bassetti et al., 2006) for µ, and can also
be viewed as a Wasserstein barycenter problem (Agueh and
Carlier, 2011).

With the identification ϵ = λ−1, the above problem turns out
equivalent to the R-D problem (4): compared to LBA (5),
the extra constraint on the second marginal of π in LEOT

(8) is redundant at the optimal ν. More precisely, we have

argmin
ν

LEOT (ν) = argmin
ν

LBA(ν) and

inf
ν
LEOT (ν) = inf

ν
λ−1LBA(ν).

The proof follows from a basic property of relative entropy
(Csiszár, 1974, Lemma 1.3); see Appendix.

2.3. Statistical interpretations

The R-D problem (4), and its equivalent EOT “projection”
problem (9), also admit a statistical interpretation as maxi-
mum likelihood estimation (MLE). The connection between
R-D and model estimation has been observed in the informa-
tion theory and compression literature (Harrison and Kon-
toyiannis, 2008; Ballé et al., 2017; Theis et al., 2017; Yang
and Mandt, 2022), and Rigollet and Weed (2018) noted the
connection between the EOT problem (9) and maximum-
likelihood deconvolution (Carroll and Hall, 1988). We give
a unifying account in Sec. 8 of the Supplementary Material.



3. Related work
The BA algorithm (Blahut, 1972; Arimoto, 1972) is the
default method for computing R(D) in the finite-alphabet
case. It solves the optimization problem (3) by coordinate
ascent w.r.t. K and ν, which can be done in matrix/vector
operations. When the alphabets are not finite, the algorithm
no longer applies, as it is unclear how to tractably represent
the measure ν and kernel K and to perform the required
integrals. The common workaround is to do a discretization
step and then apply BA on the resulting discrete problem
(Gray and Neuhoff, 1998). Grid-based discretization quickly
becomes infeasible in higher dimensions (Yang and Mandt,
2022; Lei et al., 2023), we therefore consider randomly
discretize the alphabets to consist of samples of µ (Harrison
and Kontoyiannis, 2008; Lei et al., 2023) in our experiments.

To overcome the limitations of the BA algorithm, Yang and
Mandt (2022) proposed to parameterize the transition ker-
nel K and reproduction distribution ν of the BA algorithm
by neural networks, and optimize the same objective (3)
by (stochastic) gradient descent. The resulting method es-
sentially trains a VAE (Kingma and Welling, 2013), which
we dub the RD-VAE. Closely related, Lei et al. (Lei
et al., 2023) proposed Neural Estimator of the R-D function
(NERD), which instead optimizes the form of the rate func-
tional in (7), via gradient descent on the parameters of ν
parameterized by a neural network. The inner integral of (7)
w.r.t. ν is non-trivial to compute exactly, and is estimated in
practice with a plugin estimator using n samples from ν.

Concurrent work by Yan et al. (2023) proposes to estimate
Gaussian mixtures by gradient descent in the Fisher-Rao-
Wasserstein (FRW) geometry (Chizat et al., 2018). Their
problem is equivalent to an R-D estimation problem (see
Sec. 2.3), and our algorithm is closely related to theirs. Es-
sentially, the BA algorithm is equivalent to gradient descent
in the Fisher-Rao geometry with a unit step size, and our
hybrid algorithm (Sec. 4.3) corresponds to gradient descent
in the FRW geometry with a different interpolation factor
(Chizat et al., 2018). Yan et al. (2023) prove that, in an ide-
alized setting with infinite particles, FRW gradient descent
does not get stuck at local minima, whereas our convergence
and sample-complexity results (Prop. 10.2, 10.4) hold for
any finite number of particles. We additionally consider
larger-scale problems and the stochastic optimization set-
ting.

Lei et al. (2022) also noted the connection between the R-
D problem (4) and EOT projection (9), and optimized the
latter similarly to Genevay et al. (2018). Wu et al. (2022)
proposed to solve the dual of the R-D problem (4) in the
finite-alphabet case using Sinkhorn’s algorithm

4. Proposed method
Let X = Y = Rd and ρ be continuously differentiable. In
this section, we introduce the gradient descent algorithm in
Wasserstein space to solve the problems (4) and (9).

4.1. Wasserstein gradient descent (WGD)

Abstractly, Wasserstein gradient descent updates the vari-
ational measure ν to its pushforward ν̃ under the map
(id− γΨ), for a function Ψ : Rd → Rd called the Wasser-
stein gradient of L at ν (see below) and a step size γ. To
implement this scheme, we represent ν as a convex com-
bination of Dirac measures, ν =

∑n
i=1 wiδxi

with loca-
tions x1,...,n and weights w1,...,n. The algorithm moves
each particle xi in the direction of −Ψ(xi), more precisely,
ν̃ =

∑n
i=1 wiδxi−γΨ(xi).

Since the objectives (4) and (9) appear as integrals w.r.t. the
data distribution µ, we can also apply stochastic optimiza-
tion and perform stochastic gradient descent on mini-batches
with size m. This allows us to handle a very large or infinite
amount of data samples, or when the source is continuous.
We formalize the procedure in Algorithm 2.

Algorithm 1 Wasserstein gradient descent
Inputs: Loss function L ∈ {LBA,LEOT }; data distri-
bution µ ∈ P(Rd); initial measure ν(0) ∈ P(Rd); total
number of iterations N ; step sizes γ1, . . . , γN ; batch size
m ∈ N.
for t = 1, . . . , N do

if support of µ contains more than m points then
µm ← 1

m

∑m
i=1 δxi

for x1, . . . , xm independent
samples from µ
Ψt ← Wasserstein gradient of L(µm, ·) at ν(t−1)

{see Definition 10.1}
else
Ψt ←Wasserstein gradient of L(µ, ·) at ν(t−1) {see
Definition 10.1}

end if
ν(t) ← (id− γtΨt)# ν

(t−1) {“#” denotes pushfor-
ward}

end for
Return: ν(N)

In essence, our algorithm simulates the gradient flow of the
BA functional LBA (alternatively, LEOT ) in the Wasser-
stein space over Y (Ambrosio et al., 2008). The key step is
computing the Wasserstein gradient, defined below.

Definition 4.1. For a functional L : P(Y) → R and ν ∈
P(Y), we say that VL(ν) : Rd → R is a first variation of L
at ν if

lim
ε→0

L((1− ε)ν + εν̃)− L(ν)
ε

=

∫
VL(ν) d(ν̃ − ν),



for all ν̃ ∈ P(Y). We call its (Euclidean) gradient∇VL(ν) :
Rd → Rd, if it exists, the Wasserstein gradient of L at ν.

As we discuss in the Appendix, for L = LBA the first varia-
tion can be evaluated in closed form, whereas Sinkhorn’s al-
gorithm is required for L = LEOT . An auto-differentiation
package can then be used to evaluate the gradient of the
first variation, and thus the Wasserstein gradient. Further,
we prove that WGD on L ∈ {LBA,LEOT } converges to at
least a local optimum under mild conditions, in Prop. 10.2.

4.2. Finite-sample properties

In the case X = Y = Rd and ρ(x, y) = ∥x − y∥2, we
also leverage the equivalence between the R-D and EOT
projection problem (see Sec. 2.2) and the result from (Mena
and Niles-Weed, 2019) to derive finite-sample properties of
our estimator, detailed in Appendix Prop. 10.4. Informally,
for loss functional L ∈ {LBA,LEOT } and a sub-Gaussian
source, we show the optimized population loss converges to
the global optimum (4) at a rate of 1√

n
where n is the number

of particles, and the optimized empirical loss converges at a
rate of 1√

m
where m is the number of source samples. This

strengthens existing asymptotic results for the empirical
R-D estimators of Harrison and Kontoyiannis (2008).

4.3. Hybrid algorithm

In the BA algorithm, the support of the sequence of ν(t) is
restricted to that of the (possibly bad) initialization ν(0). On
the other hand, Wasserstein gradient descent (Algorithm 2)
only evolves the particle locations of ν, but not its weights.
We therefore consider a hybrid algorithm where we alternate
between Wasserstein gradient descent and the BA update
steps, allowing us to optimize the particle weights as well.
In Sec. 5.1, we observe accelerated convergence compared
to the plain WGD algorithm, but note that the hybrid algo-
rithm (like the BA algorithm) does not directly apply in the
stochastic optimization setting, as performing BA updates
on random mini-batches can lead to divergence.

5. Experiments
We study the empirical performance of the proposed Wasser-
stein gradient descent algorithm (WGD) and its hybrid vari-
ant, and compare with BA (Blahut, 1972; Arimoto, 1972),
and neural network-based methods RD-VAE (Yang and
Mandt, 2022) and NERD (Lei et al., 2023). We experi-
mented with WGD for both LBA and LEOT . Empirically
we found them to give similar results, while the former to be
10 to 100 times faster computationally; we therefore focus
on WGD for LBA in the discussions below. More details
are given in the Appendix.
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Figure 1. Top: Training losses shaded by one standard deviation
over random seeds. The proposed WGD algorithms converge
quickly to the theoretically optimal value OPT . Bottom: The
final ν returned by the algorithms. The WGD algorithms recover
the true ν∗ (cyan) whereas the alternative methods fail to.

5.1. Deconvolution

We experiment with various methods on the maximum-
likelihood deconvolution problem ( Sec. 2.3), where the true
ν∗ is the uniform measure on the unit circle. The problem
admits an analytical solution, and we numerically compute
the optimal objective value OPT = F (ν∗). To ensure
roughly comparable computation complexity per iteration,
we use the same n for BA, NERD, and the proposed WGD
method. We set a relatively small n = 20 to mimic the
high-dimensional scenario. We run the various methods and
plot their training losses averaged over 5 random seeds in
Fig. 1; the test losses are similar and given in the Appendix.
We observe that the proposed WGD algorithms converge
significantly faster than the alternative methods, and to the
optimal valueOPT . Furthermore, the hybrid algorithm con-
verges even faster than the plain WGD algorithm. The other
algorithms reach sub-optimal solutions, and we visualize
their various failure modes in Fig. 1.

5.2. Higher-dimensional data

To demonstrate the scalability of our method, we also exper-
iment on the physics and speech data from (Yang and Mandt,
2022). As the source distribution in each problem contains
too many data points to be computed on directly, we focus
on WGD and NERD (Lei et al., 2023) using mini-batch



SGD. As shown in Appendix Fig. 6, we obtain comparable
or tighter R-D upper bounds than NERD, while using a
significantly smaller number of particles n.
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Appendix

We review probability theory background and explain our notation from the main text in Section 6, elaborate on the
connections between the R-D estimation problem and variational inference/learning in Section 9, give proofs of formal
results for Wasserstein gradient descent in Section 10, provide an example implementation in Section 11, and finally provide
additional experimental results and details in Section 12.

6. Notions from probability theory
In this section we collect notions of probability theory used in the main text. See, e.g., (Çinlar, 2011) or (Folland, 1999) for
more background.

Marginal and conditional distributions. The source and reproduction spaces X ,Y are equipped with sigma-algebras
AX and AY , respectively. Let X × Y denote the product space equipped with the product sigma algebra AX ⊗AY . For
any probability measure π on X × Y , its first marginal is

π1(A) := π(A× Y), A ∈ AX ,

which is a probability measure on X . When π is the distribution of a random vector (X,Y ), then π1 is the distribution of X .
The second marginal of π is defined analogously as

π2(B) := π(X ×B), B ∈ AY .

For two measures α, β defined on a common measurable space, the notation α≪ β denotes that α is absolutely continuous
with respect to β, i.e., β(A) = 0 =⇒ α(A) = 0 for every measurable set A.

A Markov kernel or conditional distribution K(x, dy) is a map X ×AY → [0, 1] such that

1. K(x, ·) is a probability measure on Y for each x ∈ X ;

2. the function x 7→ K(x,B) is measurable for each set B ∈ AY .

When speaking of the conditional distribution of a random variable Y given another random variable X , we occasionally
also use the notation QY |X from information theory (Polyanskiy and Wu, 2022). Then, QY |X=x(B) = K(x,B) is the
conditional probability of the event {Y ∈ B} given X = x.

Suppose that a probability measure µ on X is given, in addition to a kernel K(x, dy). Together they define a unique measure
µ⊗K on the product space X × Y . For a rectangle set A×B ∈ AX ⊗AY ,

µ⊗K(A×B) =

∫
A

µ(dx)K(x,B), A ∈ AX , B ∈ AY .

The measure π := µ⊗K has first marginal π1 = µ.

The classic product measure is a special case of this construction. Namely, when a measure ν on Y is given, using the
constant kernel K(x, dy) := ν(dy) (which does not depend on x) gives rise to the product measure µ⊗ ν,

µ⊗ ν(A×B) = µ(A)ν(B), A ∈ AX , B ∈ AY .

Under mild conditions (for instance when X ,Y are Polish spaces equipped with their Borel sigma algebras, as in the main
text), any probability measure π on X × Y is of the above form. Namely, the disintegration theorem asserts that π can be
written as π = π1 ⊗K for some kernel K. When π is the joint distribution of a random vector (X,Y ), this says that there
is a measurable version of the conditional distribution QY |X .



Table 1. Guide to notation and their interpretations in various problem domains. “LVM” stands for latent variable modeling, “NPMLE”
stands for non-parametric MLE. The R-D problem (3) is equivalent to a “projection” problem in entropic optimal transport (discussed in
Sec. 2.2) and statistical problems involving maximum-likelihood estimation (see discussion in Sec. 2.3 and below).

Context µ = PX ρ(x, y) K = QY |X ν = QY

OT source distribution transport cost “transport plan” target distribution
R-D data distribution distortion criterion compression algorithm codebook distribution

LVM/NPMLE data distribution “− log p(x|y)” variational posterior prior distribution
deconvolution noisy measurements “noise kernel” — noiseless model

Optimal transport. Given a measure µ on X and a measurable function T : X → Y , the pushforward (or image
measure) of µ under T is a measure on Y , given by

T#µ(B) = µ(T−1(B)), B ∈ AY .

If T is seen as a random variable and µ as the baseline probability measure, then T#µ is simply the distribution of T .

Suppose that µ and ν are probability measures on X = Y = Rd with finite second moment. As introduced in the main
text, Π(µ, ν) denotes the set of couplings, i.e., measures π on X × Y with π1 = µ and π2 = ν. The 2-Wasserstein distance
W2(µ, ν) between µ and ν is defined as

W2(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
∥y − x∥2π(dx, dy)

)1/2

.

This indeed defines a metric on the space of probability measures with finite second moment.

7. Relation between the R-D estimation and EOT “projection” problems
Here we show that the R-D problem and EOT “projection” problems share the same optimizer and optimal objective values
up to rescaling. Recall the definitions of the BA and EOT functionals:

LEOT (µ, ν) := inf
π∈Π(µ,ν)

∫
ρdπ + ϵH(π|µ⊗ ν). (10)

LBA(µ, ν) := inf
π∈Π(µ,·)

λ

∫
ρdπ +H(π|µ⊗ ν) (11)

= inf
K
λ

∫
ρd(µ⊗K) +H(µ⊗K|µ⊗ ν). (12)

We first relate the optimal values of the two functionals, with ϵ = 1
λ :

inf
ν∈P(Y)

LEOT (ν) = inf
ν∈P(Y)

inf
π∈Π(µ,ν)

∫
ρdπ + ϵH(π|µ⊗ ν) (13)

= inf
π∈Π(µ,·)

∫
ρdπ + ϵH(π|µ⊗ π2) (14)

= inf
π∈Π(µ,·)

∫
ρdπ + ϵ inf

ν̃∈P(Y)
H(π|µ⊗ ν̃) (15)

= inf
ν̃∈P(Y)

inf
π∈Π(µ,·)

∫
ρdπ + ϵH(π|µ⊗ ν̃) (16)

=
1

λ
inf

ν̃∈P(Y)
LBA(ν̃), (17)

where the third line makes use of a well-known upper bound on mutual information (Polyanskiy and Wu, 2022, Theorem
4.1, “golden formula”).



For either problem, the uniqueness of a minimizer follows by strict convexity of relative entropyH . Existence of a minimizer
holds under mild conditions, for instance if X = Y = Rd and ρ(x, y) is a coercive lower semicontinuous function of y − x
(Csiszár, 1974, p. 66).

Finally, the minimizers for both problems clearly coincide when they exist: if ν∗ = argminν∈P(Y) LBA(ν), then
LEOT (ν

∗) = 1
λLBA(ν

∗) = 1
λ minν∈P(Y) LBA(ν) = minν∈P(Y) LEOT (ν); the same argument applies to ν∗ =

argminν∈P(Y) LEOT (ν).

8. Statistical interpretations of the R-D problem
The R-D problem (4), and its equivalent EOT “projection” problem (9), admit a statistical interpretation as solving a
particular maximum likelihood estimation (MLE) problem. The connection between R-D and model estimation has been
observed in the information theory and compression literature (Harrison and Kontoyiannis, 2008; Ballé et al., 2017; Theis
et al., 2017; Yang and Mandt, 2022), and Rigollet and Weed (2018) noted the connection between the EOT problem (9) and
maximum-likelihood deconvolution (Carroll and Hall, 1988). Here we provide a unifying account.

Putting on our hats as statisticians, the goal is to fit a density model pν to the true distribution µ based on samples. To
specify the model, we start with a “prior” distribution ν belonging to some family H ⊂ P(Y) and a conditional density
p(x|y) on X , and define the model by a marginal likelihood,

pν(x) :=

∫
Y
p(x|y)ν(dy). (18)

To fit pν to the data distribution, we ideally maximize the population log likelihood,

max
ν∈H

∫
log pν(x)µ(dx), (19)

or in practice, maximize the sample log-likelihood by replacing µ with its empirical measure µm.

To connect the MLE problem to R-D estimation, suppose p(x|y) arises from a distortion ρ such that p(x|y) ∝ e−λρ(x,y),
where the normalization constant does not depend on y. A common example is a Gaussian density with a fixed variance
σ2 = 1

λ , corresponding to a squared error distortion ρ(x, y) = 1
2∥x−y∥

2. Then the negative of the population log likelihood
equals the rate function (7), up to a constant. The setting whereH = P(Y), also known as non-parametric MLE (Kiefer and
Wolfowitz, 1956), is equivalent to the R-D problem (4), and the best achievable population log-likelihood corresponds to an
intercept to the R-D curve of µ. More generally, given any parametric familyH, the best achievable population (or, sample)
log-likelihood (19) corresponds to the parametric R-D estimator FH(µ) (or, FH(µm)) introduced in Sec. 2.1.

Sometimes the data is known to originate from a “clean” distribution ν†, and the conditional density p(x|y) corresponds to
observation or measurement noise with known characteristics. In this case the estimation problem aims to recover ν† from
the noisy measurements µ, and is known as maximum-likelihood deconvolution (Carroll and Hall, 1988). Alternatively,
(18) may be seen as a modeling choice corresponding to a latent variable model, and ν is a prior distribution over an
unobserved latent variable. As a simple example, a Gaussian mixture model with weights w1,...,k and component locations
µ1,...,k can be specified by a discrete latent variable with distribution ν =

∑K
k=1 wkδµk

, and a conditional Gaussian density
p(x|y) = N (y, σ2). Latent variable models have gained prominence in deep generative modeling with examples including
VAEs (Kingma and Welling, 2013) and diffusion probablistic models (Sohl-Dickstein et al., 2015). These models are often
trained by maximizing the evidence lower bound (Blei et al., 2017), which shares the variational formulation of the rate
function (6) in R-D estimation, and even the BA algorithm itself has an interesting correspondence to the EM algorithm,
which we explain below.

9. R-D estimation and variational inference/learning
In this section, we give a more detailed explanation of how the the R-D problem (3) relates to variational inference and
learning in latent variable models.

To facilitate the discussion and make clearer the connections, we adopt notation more common in statistics and information
theory. Table 1 summarizes the notation and the correspondence to the measure-theoretic notation used in the main text.



In statistical modeling, the goal is to fit a density p̂(x) to the true (unknown) data distribution PX . Consider specifying p̂(x)
as a latent variable model, where Y takes on the role of a latent space, and QY = ν is the distribution of a latent variable Y
(which may encapsulate the model parameters). As we shall see, the optimization objective defining the rate functional
(6) corresponds to an aggregate Evidence LOwer Bound (ELBO) (Blei et al., 2017). Thus, computing the rate functional
corresponds to variational inference (Blei et al., 2017) in a given model (see Sec. 9.2), and the parametric R-D estimation
problem, i.e.,

inf
ν∈H
LBA(ν),

is equivalent to estimating a model using the variational EM algorithm (Beal and Ghahramani, 2003) (see Sec. 9.3). The
variational EM algorithm can be seen as a restricted version of the BA algorithm (see Sec. 9.3), whereas the EM algorithm
(Dempster et al., 1977) shares its E-step with the BA algorithm but can differ in its M-step (see Sec. 9.4).

9.1. Setup

For concreteness, fix a reference measure ζ on Y , and suppose QY has density q(y) w.r.t. ζ. Often the latent space Y is a
Euclidean space, and q(y) is the usual probability density function w.r.t. the Lebesgue measure ζ; or when the latent space is
discrete/countable, ζ is the counting measure and q(y) is the usual probability mass function. We will consider the typical
parametric estimation problem and choose a particular parametric form for QY indexed by a parameter vector θ. This
defines a parametric family H = {Qθ

Y : θ ∈ Θ} for some parameter space Θ. Finally, suppose the distortion function ρ
induces a conditional likelihood density, p(x|y) ∝ e−λρ(x,y), with a normalization constant that has no y-dependence.

A latent variable model is then specified by the joint density q(y)p(x|y). We use it to posit a density for the data by

p̂(x) =

∫
Y
p(x|y)dQY (y) =

∫
Y
p(x|y)q(y)ζ(dy). (20)

As a simple example, a Gaussian mixture model with isotropic component variances can be specified as follows. Let QY

be a mixing distribution on X = Y = Rd parameterized by component weights w1,...,k and locations µ1,...,k, such that
QY =

∑K
k=1 wkδµk

. Let p(x|y) = N (y, σ2) be a conditional Gaussian density with mean y and variance σ2. Now formula
(20) gives the usual Gaussian mixture density on Rd.

Maximum-likelihood estimation then ideally maximizes the population log (marginal) likelihood,

Ex∼PX
[log p̂(x)] =

∫
log p̂(x)PX(dx) =

∫
log

(∫
Y
p(x|y)dQY (y)

)
PX(dx). (21)

To deal with the often intractable marginal likelihood in the inner integral, we turn to variational inference and learning
(Jordan et al., 1999; Wainwright et al., 2008).

9.2. Connection to variational inference

Given a latent variable model and any data observation x, a central task in Bayesian statistics is to infer the Bayesian
posterior (Jordan, 1999), which we formally view as a conditional distribution Q∗

Y |X=x. It is given by

dQ∗
Y |X=x(y)

dQY (y)
=
p(x|y)
p̂(x)

,

or, using the density q(y) of QY , given by the following conditional density via the familiar Bayes’ rule,

q∗(y|x) = p(x|y)q(y)
p̂(x)

=
p(x|y)q(y)∫

Y p(x|y)q(y)ζ(dy)
.

Unfortunately, the true Bayesian posterior is typically intractable, as the (marginal) data likelihood in the denominator
involves an often high-dimensional integral. Variational inference (Jordan et al., 1999; Wainwright et al., 2008) therefore
aims to approximate the true posterior by a variational distribution QY |X=x ∈ P(Y) by minimizing their relative divergence



H(QY |X=x|Q∗
Y |X=x). The problem is equivalent to maximizing the following lower bound on the marginal log-likelihood,

known as the Evidence Lower BOund (ELBO) (Blei et al., 2017):

argmin
QY |X=x

H(QY |X=x|Q∗
Y |X=x) = argmax

QY |X=x

ELBO(QY , x,QY |X=x),

ELBO(QY , x,QY |X=x) = Ey∼QY |X=x
[log p(x|y)]−H(QY |X=x|QY )

= log p̂(x)−H(QY |X=x|Q∗
Y |X=x). (22)

Translating the definition of the rate functional (6) into the present scenario,

LBA(QY ) = inf
QY |X

Ex∼PX ,y∼QY |X=x
[− log p(x|y)] + Ex∼PX

[H(QY |X=x|QY )] + const

= inf
QY |X

Ex∼PX
[−ELBO(QY , x,QY |X=x)] + const, (23)

we recognize that the rate functional optimizes the population ELBO, and this optimization problem decouples over x and
can be solved by the variational inference problem (22) involving QY |X=x. At optimality, QY |X = Q∗

Y |X , the ELBO (22)
is tight and recovers log p̂(x), and the rate functional takes on the form of a (negated) population marginal log likelihood
(21), as given earlier by (7) in Sec. 2.1.

9.3. Connection to variational EM

The discussion so far concerns probabilistic inference, where a latent variable model (QY , p(x|y)) has been given and we
saw that computing the rate functional amounts to variational inference. Suppose now we wish to learn a model from data.
The R-D problem (4) then corresponds to model estimation using the variational EM algorithm (Beal and Ghahramani,
2003).

To estimate a latent variable model by (approximate) maximum-likelihood, the variational EM algorithm maximizes the
population ELBO

Ex∼PX
[ELBO(QY , x,QY |X=x)] = Ex∼PX ,y∼QY |X=x

[log p(x|y)]− Ex∼PX
[H(QY |X=x|QY )], (24)

w.r.t. QY and QY |X . This precisely corresponds to the R-D problem infQY ∈H LBA(QY ), using the form of LBA(QY )
from (23).

In popular implementations of variational EM such as the VAE (Kingma and Welling, 2013), QY and QY |X are restricted to
parametric families. When they are allowed to range over all of P(Y) and all conditional distributions, variational EM then
becomes equivalent to the BA algorithm.

9.4. The Blahut–Arimoto and EM algorithms

The BA and EM algorithms share the same objective function, namely the negative of the population ELBO from (24).
Both also perform coordinate descent / alternating projection, but they define the coordinates slightly differently — the BA
algorithm uses (QY |X , QY ) with QY ∈ P(Y), whereas the EM algorithm uses (QY |X , θ) with θ indexing a parametric
familyH = {Qθ

Y : θ ∈ Θ}. Thus the coordinate update w.r.t. QY |X (the “E-step”) is the same in both algorithms, but the
subseuquent “M-step” potentially differs depending on the role of θ.

Given the optimization objective, which is simply the negative of (24),

Ex∼PX ,y∼QY |X=x
[− log p(x|y)] +H(PXQY |X |PX ⊗QY ), (25)

both the BA and EM algorithms optimize the transition kernel QY |X the same way in the E-step, as

dQ∗
Y |X=x

dQY
(y) =

p(x|y)
p̂(x)

. (26)

For the M-step, the BA algorithm only minimizes the relative entropy term of the objective (25),

min
QY ∈P(Y)

H(PXQ
∗
Y |X ;PX ⊗QY ),



(with the optimal QY given by the second marginal of PXQ
∗
Y |X ) whereas the EM algorithm minimizes the full objective

w.r.t. the parameters θ of QY ,

min
θ∈Θ

E(x,y)∼PXQ∗
Y |X

[− log p(x|y)] +H(PXQ
∗
Y |X ;PX ⊗QY ). (27)

The difference comes from the fact that when we parameterize QY by θ in the parameter estimation problem, Q∗
Y |X — and

consequently both terms in the objective of (27) — will have functional dependence on θ through the E-step optimality
condition (26).

In the Gaussian mixture example, QY =
∑K

k=1 wkδµk
, and its parameters θ consist of the components weights

(w1, ..., wK) ∈ ∆d−1 and location vectors {µ1, ..., µK} ⊂ Rd. The E-step computes Q∗
Y |X=x =

∑
k wk

p(x|µk)
p(x) δµk

.
For the M-step, if we regard the locations as known so that θ = (w1, ..., wK) only consists of the weights, then the
two algorithms perform the same update; however if θ also includes the locations, then the M-step of the EM al-
gorithm will not only update the weights as in the BA algorithm, but also the locations, due to the distortion term
E(x,y)∼PXQ∗

Y |X
[− log p(x|y)] = −

∫ ∑
k wk

p(x|µk)
p(x) log p(x|µk)PX(dx).

10. Wasserstein gradient descent
10.1. Proposed algorithm

Algorithm 2 Wasserstein gradient descent
Inputs: Loss function L ∈ {LBA,LEOT }; data distribution µ ∈ P(Rd); initial measure ν0 ∈ P(Rd); total number of
iterations N ; step sizes γ1, . . . , γN ; batch size m ∈ N.
for t = 1, . . . , N do

if support of µ contains more than m points then
µm ← 1

m

∑m
i=1 δxi

for x1, . . . , xm independent samples from µ
Ψt ←Wasserstein gradient of L(µm, ·) at νt−1 {see Definition 10.1}

else
Ψt ←Wasserstein gradient of L(µ, ·) at νt−1 {see Definition 10.1}

end if
νt ← (id− γtΨt)# ν

t−1 {“#” denotes pushforward}
end for
Return: νN

There are two equivalent ways to introduce the Wasserstein gradient (Ambrosio et al., 2008). We start with the constructive
one, which forms the computational basis of our algorithm.

Definition 10.1. For a functional L : P(Y)→ R and ν ∈ P(Y), we say that VL(ν) : Rd → R is a first variation of L at ν
if

lim
ε→0

L((1− ε)ν + εν̃)− L(ν)
ε

=

∫
VL(ν) d(ν̃ − ν) for all ν̃ ∈ P(Y).

We call its (Euclidean) gradient∇VL(ν) : Rd → Rd, if it exists, the Wasserstein gradient of L at ν.

For L = LEOT , the first variation is given by the Kantorovich potential, which is the solution of the convex dual of LEOT

and commonly computed by Sinkhorn’s algorithm (Peyré and Cuturi, 2019; Nutz, 2021). Specifically, let (φν , ψν) be
potentials for LEOT (µ, ν). Then VL(ν) = ψν is the first variation w.r.t. ν, and hence∇ψν is the Wasserstein gradient. This
gradient is known to exist whenever ρ is differentiable and the marginals are sufficiently light-tailed. For L = LBA, the first
variation can be computed explicitly. As we show below, the first variation at ν is

ψν(y) =

∫
− exp(−λρ(x, y))∫

exp(−λρ(x, ỹ))ν(dỹ)
µ(dx)

and then the Wasserstein gradient is ∇LBA(ν) = ∇ψν . We observe that ψν(y) is computationally cheap; it corresponds to
running a single iteration of Sinkhorn’s algorithm. By contract, finding the potential for LEOT requires running Sinkhorn’s
algorithm to convergence.



The second, more abstract possibility is to postulate the linearization property of the gradient, which will allow us to prove
convergence of our gradient descent scheme (Prop. 10.2). Following (Carlier et al., 2022), we state this as follows: for any
ν̃ ∈ P(Y) and π ∈ Π(ν, ν̃),

L(ν̃)− L(ν) =
∫
(y − x)⊤∇VL(ν)(x)π(dx, dy) + o

(∫
∥y − x∥2 π(dx, dy)

)
,∣∣∣∣∫ ∥∇VL(ν)∥2 − ∥∇VL(ν̃)∥2 dν∣∣∣∣ ≤ CW2(ν, ν̃).

(28)

The first line of (28) is proved in (Carlier et al., 2022, Proposition 4.2) in case that X and Y are compact and ρ is twice
continuously differentiable. The second line of (28) follows using a2−b2 = (a+b)(a−b) and a combination of boundedness
and Lipschitz continuity of∇VL, see (Carlier et al., 2022, Proposition 2.2 and Corollary 2.4).

Under suitable regularity conditions, (28) is in fact equivalent to the Wasserstein gradient definition 10.1. Moreover, it
allows us to show that Wasserstein gradient descent for LEOT and LBA converges to a stationary point in Proposition 10.2.

10.2. Wasserstein gradient for the rate functional

Below we calculate the Wasserstein gradient of LBA(ν) =
∫
− log

∫
exp(−λρ(x, y))ν(dy)µ(dx). Under sufficient

integrability on µ and ν to exchange the order of limit and integral, we can calculate the first variation as

lim
ε→0

L((1− ε)ν + εν̃)− L(ν)
ε

= −
∫

lim
ε→0

1

ε
log

[∫
exp(−λρ(x, y))(ν + ε(ν̃ − ν))(dy)∫

exp(−λρ(x, y))ν(dy)

]
µ(dx)

= −
∫

lim
ε→0

1

ε
log

[
1 +

∫
exp(−λρ(x, y))ε(ν̃ − ν)(dy)∫

exp(−λρ(x, y))ν(dy)

]
µ(dx)

=

∫∫
− exp(−λρ(x, y))∫

exp(−λρ(x, ỹ))ν(dỹ)
µ(dx) (ν̃ − ν)(dy),

where the last equality uses limε→0
1
ε log(1 + εx) = x and Fubini’s theorem. Thus the first variation ψν of LBA at ν is

ψν(y) =

∫
− exp(−λρ(x, y))∫

exp(−λρ(x, ỹ))ν(dỹ)
µ(dx). (29)

To find the desired Wasserstein gradient of LBA, it remains to take the Euclidean gradient of ψν , i.e., ∇LBA(ν) = ∇ψν .

10.3. Convergence of Wasserstein gradient descent

Here we show that Wasserstein gradient descent for LEOT and LBA converges to a stationary point under mild conditions.

Proposition 10.2 (Convergence of Wasserstein gradient descent). Let γ1 ≥ γ2 ≥ · · · ≥ 0 satisfy
∑∞

k=1 γk = ∞ and∑∞
k=1 γ

2
k <∞. Let L : P(Rd)→ R be Wasserstein differentiable in the sense that (28) holds. Denoting by νt the steps in

Algorithm 2, assume that L(ν0) is finite and
∫
∥∇VL(νt)∥2 dνt is bounded. Then

lim
t→∞

∫
∥∇VL(νt)∥2 dνt = 0.

Before proving this proposition, we first provide an auxiliary result.

Lemma 10.3. Let γ1 ≥ γ2 ≥ · · · ≥ 0 and at ≥ 0, t ∈ N, C > 0 satisfy
∑∞

t=1 γt =∞,
∑∞

t=1 γ
2
t <∞,

∑∞
t=1 atγt <∞

and |at − at+1| ≤ Cγt for all t ∈ N. Then limt→∞ at = 0.

Proof. The conclusion remains unchanged when rescaling at by the constant C, and thus without loss of generality C = 1.

Clearly γt → 0 as
∑∞

t=1 γ
2
t < ∞. Moreover, there exists a subsequence of (at)t∈N which converges to zero (otherwise

there exists δ > 0 such that at ≥ δ > 0 for all but finitely many t, contradicting
∑∞

t=1 γtat <∞).

Arguing by contradiction, suppose that the conclusion fails, i.e., that there exists a subsequence of (at)t∈N which is uniformly
bounded away from zero, say at ≥ δ > 0 along that subsequence. Using this subsequence and the convergent subsequence



mentioned above, we can construct a subsequence ai1 , ai2 , ai3 , . . . where ain ≈ 0 for n odd and ain ≥ δ for n even. We
will show that

i2n∑
t=i2n−1

atγt ≳ δ2/2 for all n ∈ N,

contradicting the finiteness of
∑

t γtat. (The notation ≈ (≳) indicates (in)equality up to additive terms converging to zero
for n→∞.)

To ease notation, fix n and set m = i2n−1 and M = i2n. We show that
∑M

t=m atγt ≳ δ2/2. To this end, using
|at − at+1| ≤ γt we find

at ≥ aM −
M−1∑
j=k

γj ≥ δ −
M−1∑
j=k

γj .

Since am ≈ 0, there exists a largest n0 ∈ N, n0 ≥ m, such that
∑M−1

j=n0
γj ≳ δ (and thus

∑M−1
j=n0

γj ≲ δ− γn0
≈ δ as well).

We conclude

M∑
t=m

γtat ≥
M∑

t=n0

γtat ≥
M∑

t=n0

γt

δ −M−1∑
j=k

γj

 ≳ δ2 −
M∑

t=n0

M∑
j=n0

γtγj1{j≥k}

= δ2 − 1

2

(
M∑

t=n0

γt

)2

− 1

2

M∑
t=n0

γ2t ≈ δ2/2,

where we used that
∑M

t=n0
γ2t ≈ 0. This completes the proof.

Proof of Proposition 10.2. Using the linear approximation property in (28), we calculate

L(ν(n))− L(ν(0)) =
n−1∑
t=0

L(ν(t+1))− L(ν(t))

=

n−1∑
t=0

−γt
∫
∥∇VL(ν(t))∥2 dν(t) + γ2t o

(∫
∥∇VL(ν(t))∥2 dν(t)

)
.

As L(ν0) is finite and L(ν(n)) is bounded from below, it follows that

∞∑
t=0

γt

∫
∥∇VL(ν(t))∥2 dν(t) <∞.

The claim now follow by applying Lemma 10.3 with at =
∫
∥∇ψν(t)∥2 dν(t); note that the assumption in the lemma is

satisfied due to the second inequality in (28).

10.4. Sample complexity

Let X = Y = Rd and ρ(x, y) = ∥x− y∥2. Using the fact that the R-D problem (4) and EOT projection problem (9) share
the same optimizers (see Sec. 2.2), we leverage a result from the OT literature (Mena and Niles-Weed, 2019) to prove
finite-sample bounds on the optimal solution quality of WGD. This also sharpens known asymptotic consistency results on
the empirical R-D estimators (Harrison and Kontoyiannis, 2008), and quantifies their finite-sample behavior.

Denote by Pn(Rd) the set of probability measures on Rd which are supported on at most n points.

Proposition 10.4. Let µ be σ2-subgaussian. Then every optimizer ν∗ of (4) and (9) is also σ2-subgaussian. Consider



L := LEOT . For a constant Cd only depending on d, we have∣∣∣∣ min
ν∈P(Rd)

L(µ, ν)− min
νn∈Pn(Rd)

L(µ, νn)
∣∣∣∣ ≤ Cd ϵ

(
1 +

σ⌈5d/2⌉+6

ϵ⌈5d/4⌉+3

)
1√
n
,

E
[∣∣∣∣ min

ν∈P(Rd)
L(µ, ν)− min

ν∈P(Rd)
L(µm, ν)

∣∣∣∣] ≤ Cd ϵ

(
1 +

σ⌈5d/2⌉+6

ϵ⌈5d/4⌉+3

)
1√
m
,

E
[∣∣∣∣ min

ν∈P(Rd)
L(µ, ν)− min

νn∈Pn(Rd)
L(µm, νn)

∣∣∣∣] ≤ Cd ϵ

(
1 +

σ⌈5d/2⌉+6

ϵ⌈5d/4⌉+3

) (
1√
m

+
1√
n

)
,

for all n,m ∈ N, where µm is the empirical measure of µ with m independent samples and the expectation E[·] is over
these samples. The same inequalities hold for L := λ−1LBA, with the identification ϵ = λ−1.

For the proof, we will need the following lemma which is of independent interest. We write ν ≤c µ if ν is dominated by µ
in convex order, i.e.,

∫
f dν ≤

∫
f dµ for all convex functions f : Rd → R.

Lemma 10.5. Let µ have finite second moment. Given ν ∈ P(Rd), there exists ν̃ ∈ P(Rd) with ν̃ ≤c µ and

LEOT (µ, ν̃) ≤ LEOT (µ, ν).

This inequality is strict if ν ̸≤cµ. In particular, any optimizer ν∗ of (9) satisfies ν∗ ≤c µ.

Proof. Because this proof uses disintegration over Y , it is convenient to reverse the order of the spaces in the notation and
write a generic point as (x, y) ∈ Y × X . Consider π ∈ Π(ν, µ) and its disintegration π = ν(dx)⊗K(x, dy) over x ∈ Y .
Define T : Rd → Rd by

T (x) :=

∫
y K(x, dy).

Define also π̃ := (T, id)#π and ν̃ := π̃1. From the definition of T , we see that π̃ is a martingale, thus ν̃ ≤c µ. Moreover,
ν̃ ⊗ µ = (T, id)#ν ⊗ µ. The data-processing inequality now shows that

H(π̃|ν̃ ⊗ µ) ≤ H(π|ν ⊗ µ).

On the other hand,
∫
∥
∫
ỹ K(x, dỹ)− y∥2K(x, dy) ≤

∫
∥x− y∥2K(x, dy) since the barycenter minimizes the squared

distance, and this inequality is strict whenever x ̸=
∫
ỹK(x, dỹ). Thus∫

∥x− y∥2 π̃(dx, dy) ≤
∫
∥x− y∥2 π(dx, dy),

and the inequality is strict unless T (x) = x for ν-a.e. x, which in turn is equivalent to π being a martingale. The claims
follow.

Proof of Proposition 10.4. Subgaussianity of the optimizer follows directly from Lemma 10.5.

Recalling that infν LEOT (ν) and infν λ
−1LBA(ν) have the same values and minimizers, it suffices to show the claim for

L = LEOT . Let ν∗ be an optimizer of (9) (i.e., an optimal reproduction distribution) and νn its empirical measure from n
samples, then clearly∣∣∣∣ min

νn∈Pn(Rd)
LEOT (µ, νn)− min

ν∈P(Rd)
LEOT (µ, ν)

∣∣∣∣ = min
νn∈Pn(Rd)

LEOT (µ, νn)− min
ν∈P(Rd)

LEOT (µ, ν)

≤ E [|LEOT (µ, ν
n)− LEOT (µ, ν

∗)|]

where the expectation is taken over samples for νn. The first inequality of Proposition 10.4 now follows from the sample
complexity result for entropic optimal transport in (Mena and Niles-Weed, 2019, Theorem 2).

Denote by ν∗m the optimizer for the problem (9) with µ replaced by µm. Similarly to the above, we obtain

E
[∣∣∣∣ min

ν∈P(Rd)
LEOT (µ, ν)− min

ν∈P(Rd)
LEOT (µ

m, ν)

∣∣∣∣]
≤ E

[
max

ν∈{ν∗,ν∗
m}
|LEOT (µ, ν)− LEOT (µ

m, ν)|
]
,



where the expectation is taken over samples from µm. In this situation, we cannot directly apply (Mena and Niles-Weed,
2019, Theorem 2). However, the bound given by (Mena and Niles-Weed, 2019, Proposition 2) still applies, and the only
dependence on ν ∈ {ν∗, ν∗m} is through their subgaussianity constants. By Lemma 10.5, these constants are bounded by the
corresponding constants of µ and µm. Thus, the arguments in the proof of (Mena and Niles-Weed, 2019, Theorem 2) can be
applied, yielding the second inequality of Proposition 10.4.

The final inequality of Proposition 10.4 follows from the first two inequalities (the first one being applied with µm) and the
triangle inequality, where we again use the arguments in the proof of (Mena and Niles-Weed, 2019, Theorem 2) to bound
the expectation over the subgaussianity constants of µm.

10.5. Estimation of rate and distortion

Here, we describe our estimator for an upper bound (R,D) of R(D), after solving the Lagrangian problem (3).

For any given pair of ν and K, we always have that D :=
∫
ρd(µ⊗K) andR := H(µ⊗K|µ⊗ ν) yield an upper bound

of R(D) (Berger, 1971). The two quantities can be estimated by simple Monte Carlo, provided we can sample from µ⊗K
and evaluate the density dµ⊗K

dµ⊗ν (x, y) =
dK(x,·)

dν (y).

When only ν is given, e.g., obtained from optimizing (4), we estimate an R-D upper bound as follows. Taking a hint from
the BA algorithm, we define a kernel Kν similarly as in an update step of the BA algorithm, dKν(x,·)

dν (y) = e−λρ(x,y)∫
e−λρ(x,ỹ)ν(dỹ)

;
then we estimate (R,D) using the pair (ν,Kν) as described earlier.

For NERD, which uses a continuous ν, we follow (Lei et al., 2023) and use an n-sample empirical measure of ν to estimate
(R,D). A limitation of NERD and our particle method is that they tend to converge to a rate estimate of at most log(n),
where n is the support size of ν. This is because as the algorithms approach an n-point minimizer ν∗n of the R-D problem,
the rate estimateR approaches the mutual information of µ⊗Kν∗

n
, which is upper-bounded by log(n) (Eckstein and Nutz,

2022).

11. Example implementation of WGD
We provide a self-contained minimal implementation of Wasserstein gradient descent on LBA, using the Jax library
(Bradbury et al., 2018). To compute the Wasserstein gradient, we evaluate the first variation of the rate functional in
compute_psi_sum according to (29), yielding

∑n
i=1 ψ

ν(xi), then simply take its gradient w.r.t. the particle locations
x1,...n using Jax’s autodiff tool on line 51.

The implementation of WGD on LEOT is similar, except the first variation is computed using Sinkhorn’s algorithm. Both
versions can be easily just-in-time compiled and enjoy GPU acceleration.

1 # Wasserstein GD on the rate functional L_{BA}.
2 import jax.numpy as jnp
3 import jax
4 from jax.scipy.special import logsumexp
5

6 # Define the distortion function \rho.
7 squared_diff = lambda x, y: jnp.sum((x - y) ** 2)
8 pairwise_distortion_fn = jax.vmap(jax.vmap(squared_diff, (None, 0)), (0, None))
9

10

11 def wgrad(mu_x, mu_w, nu_x, nu_w, rd_lambda):
12 """
13 Compute the Wasserstein gradient of the rate functional, which we will use
14 to move the \nu particles.
15 :param mu_x: locations of \mu atoms.
16 :param mu_w: weights of \mu atoms.
17 :param nu_x: locations of \nu atoms.
18 :param nu_w: weights of \nu atoms.



19 :param rd_lambda: R-D tradeoff hyperparameter.
20 :return:
21 """
22

23 def compute_psi_sum(nu_x):
24 """
25 Here we compute a surrogate loss based on the first variation \psi, which
26 allows jax autodiff to compute the desired Wasserstein gradient.
27 :param nu_x:
28 :return: psi_sum = \sum_i \psi(nu_x[i])
29 """
30 C = pairwise_distortion_fn(mu_x, nu_x)
31 scaled_C = rd_lambda * C # [m, n]
32 log_nu_w = jnp.log(nu_w) # [1, n]
33

34 # Solve BA inner problem with a fixed nu.
35 phi = - logsumexp(-scaled_C + log_nu_w, axis=1, keepdims=True) # [m, 1]
36 loss = jnp.sum(mu_w * phi) # Evaluate the rate functional. Eq (6) in paper.
37

38 # Let's also report rate and distortion estimates (discussed in Sec. 4.4 of the paper).
39 # Find \pi^* via \phi
40 pi = jnp.exp(phi - scaled_C) * jnp.outer(mu_w, nu_w) # [m, n]
41 distortion = jnp.sum(pi * C)
42 rate = loss - rd_lambda * distortion
43

44 # Now evaluate \psi on the atoms of \nu.
45 phi = jax.lax.stop_gradient(phi)
46 psi = - jnp.sum(jnp.exp(jax.lax.stop_gradient(phi) - scaled_C) * mu_w, axis=0)
47 psi_sum = jnp.sum(psi) # For computing gradient w.r.t. each nu_x atom.
48 return psi_sum, (loss, rate, distortion)
49

50 # Evaluate the Wasserstein gradient, i.e., \nabla \psi, on nu_x.
51 psi_prime, loss = jax.grad(compute_psi_sum, has_aux=True)(nu_x)
52 return psi_prime, loss
53

54

55 def wgd(X, n, rd_lambda, num_steps, lr, rng):
56 """
57 A basic demo of Wasserstein gradient descent on a discrete distribution.
58 :param X: a 2D array [N, d] of data points defining the source \mu.
59 :param n: the number of particles to use for \nu.
60 :param rd_lambda: R-D tradeoff hyperparameter.
61 :param num_steps: total number of gradient updates.
62 :param lr: step size.
63 :param rng: jax random key.
64 :return: (nu_x, nu_w), the locations and weights of the final \nu.
65 """
66 # Set up the source measure \mu.
67 m = jnp.size(X, 0)
68 mu_x = X
69 mu_w = 1 / m * jnp.ones((m, 1))
70 # Initialize \nu atoms using random training samples.
71 rand_idx = jax.random.permutation(rng, m)[:n]
72 nu_x = X[rand_idx] # Locations of \nu atoms.



73 nu_w = 1 / n * jnp.ones((1, n)) # Uniform weights.
74 for step in range(num_steps):
75 psi_prime, (loss, rate, distortion) = wgrad(mu_x, mu_w, nu_x, nu_w, rd_lambda)
76 nu_x -= lr * psi_prime
77 print(f'step={step}, loss={loss:.4g}, rate={rate:.4g}, distortion={distortion:.4g}')
78

79 return nu_x, nu_w
80

81

82 if __name__ == '__main__':
83 # Run a toy example on 2D Gaussian samples.
84 rng = jax.random.PRNGKey(0)
85 X = jax.random.normal(rng, [10, 2])
86 nu_x, nu_w = wgd(X, n=4, rd_lambda=2., num_steps=100, lr=0.1, rng=rng)

12. Further experimental results
12.1. Implementation

We implemented our algorithm and NERD in Jax, and borrowed the code for RD-VAE from (Yang and Mandt, 2022). We
experimented with WGD for both LBA and LEOT . Empirically we found them to give similar results, while the former to
be 10 to 100 times faster computationally; we therefore focus on WGD for LBA in the discussions below.

For the RD-VAE, we used a similar architecture as the one used on the banana-shaped source in (Yang and Mandt, 2022),
consisting of two-layer MLPs for the encoder and decoder networks, and Masked Autoregressive Flow (Papamakarios et al.,
2017) for the variational prior. For NERD, we follow similar architecture settings as (Lei et al., 2023), using a two-layer
MLP for the decoder network.

In most experiments, we use the Adam (Kingma and Ba, 2015) optimizer for updating the ν particle locations in WGD and
for updating the variational parameters in other methods. For our hybrid WGD algorithm, which adjusts the particle weights
in addition to their locations, we found that applying momentum to the particle locations can in fact slow down convergence,
and therefore use plain gradient descent with a decaying step size.

Our deconvolution experiments were run on Intel(R) Xeon(R) CPUs, while the rest of the experiments were run on Titan
RTX GPUs.

12.2. Deconvolution

Setup To understand the behavior and limitations of the various methods, we experiment with a setting where the
sample size is very large. We consider the maximum-likelihood deconvolution problem described in Sec. 2.3. Here, the
source distribution is the convolution of the uniform measure S on the unit circle and a Gaussian noise N (0, σ2I) with
variance σ2 = 0.1. Under a scaled squared distortion ρ(x, y) = 1

2∥x − y∥
2, the R-D problem (3) becomes analytically

tractable, and we find that ν∗ = S ∗ N (0, σ2 − 1
λ ) whenever λ ≥ 1

σ2 . We set λ = σ−2 = 10 for the MLE deconvolution
problem, so ν∗ = S is the uniform measure on the circle. We use m = 100000 training samples, so that µm ≈ µ and
F (µm) ≈ F (µ) =: OPT , the latter of which we compute numerically. We can then assess the solution quality of an
algorithm by how well its estimate of F (µm) agrees with the true OPT .

Loss curves and solutions from various methods. In Figure 2 we plot both the training and test losses for the various
methods. The test losses are evaluated on freshly drawn samples from the source distribution, and provide estimates of the
true population losses. As expected, the train losses appear similar to the test losses since we use a large sample size for
training.

In Figure 3, we visualize the fitted ν measure after performing the optimization illustrated in Figure 2. We plot the location
of the n = 20 particles from the BA, WGD, and hybrid algorithms, additionally coloring the particles from BA and the
hybrid algorithm by their weights. To visualize the (continuous) ν learned by RD-VAE and NERD, we plot a scatter of 300
random samples drawn from each.
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Figure 2. Left: The objective functions of the various methods across training iterations. Right: The same objective functions evaluated
on random empirical measures of the source. The curve for each method is averaged over 5 reruns with different random seeds, with the
shading corresponding to one standard deviation. The proposed WGD algorithms (orange, green) converge quickly to the theoretically
optimal value OPT (cyan). BA (Blahut, 1972; Arimoto, 1972) (blue) converges quickly to a highly suboptimal solution, while the
RD-VAE (Yang and Mandt, 2022) (red) converges more slowly, also to an inferior solution. NERD (Lei et al., 2023) (purple) fails to
converge due to inaccuracy of its Monte-Carlo estimator when n is relatively small (see discussion in Sec. ??), leading to oscillating
objective values.

Characterizing the optimal solution. In the deconvolution problem, µ = S ∗ N (0, σ2I), and whenever λ ≥ 1
σ2 the

optimal solution to the R-D problem (3) is given by ν∗ = S ∗ N (0, σ2 − 1
λ ) and K∗(x, dy) = N (x, 1

λ ). This follows from
a basic property of the Gaussian distribution and an argument based on characteristic functions.

Knowing the optimal ν∗, we can therefore numerically compute the optimal loss,

OPT := LBA(ν
∗) =

∫
X
− log

(∫
Y
e−λρ(x,y)ν∗(dy)

)
µ(dx), (30)

using the plug-in Monte Carlo estimator

1

m

m∑
i=1

− log

 1

n

n∑
j=1

e−λρ(xi,yj)

 , (31)

where x1,...,m are drawn from µ and y1,...,n from ν∗. To reduce the bias of this estimator (also discussed in the context of
NERD in Sec. 3), we use m = 10000 and the very large n = 106 in our Monte-Carlo estimation above.

Similarly, we can sample {(xi, yi)}mi=1 from ν∗ ⊗K∗ to compute the ground truth distortion and rate with high accuracy as
follows,

D =
1

m

m∑
i=1

ρ(xi, yi),

R = OPT − λD.

We can thus obtain the segment of the ground truth R(D) where λ ≥ 1
σ2 .

Scaling behavior of WGD. We rerun the various algorithms for λ ∈ {10, 30, 100}, and vary n for BA, WGD, and NERD,
which determines their computational complexity. In Fig. 4 Left, we plot the relative difference between the estimated
Fλ(µ

m) and the true optimum in each case, and also include the R-D VAE result for reference. We observe that as λ
increases (corresponding to lower entropic regularization), the problem becomes more difficult and an increasingly accurate
placement of the articles is required to achieve relatively low loss, demanding an increasingly large n. Notably, the proposed
WGD methods consistently dominate BA and NERD in its solution quality, translating to significantly fewer particles
required for a given solution accuracy, especially in the more difficult regime.



−1 0 1 2

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

λ = 10.0

Blahut–Arimoto

WGD (proposed)

Hybrid WGD (proposed)

Yang & Mandt (2022)

Lei et al. (2023)

−1 0 1 2

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

λ = 2.0

Blahut–Arimoto

WGD (proposed)

Hybrid WGD (proposed)

Yang & Mandt (2022)

Lei et al. (2023)

Figure 3. Visualizing the optimized ν measures from various algorithms. Left: λ = 10 = 1
σ2 , the same as in Fig. 2. Here ν∗ is precisely

the uniform distribution on the unit circle, colored in cyan. The proposed WGD algorithm places almost all its ν atoms (green crosses)
exactly on the circle. The proposed hybrid algorithm occasionally places atoms off the circle, and assigns them lower weights (orange
stars) than the ones on the circle (red stars). This extra flexibility explains its faster convergence compared to the plain WGD algorithm
seen in Fig. 2, while achieving the same optimized loss close to OPT . The BA algorithm is stuck with the randomly initialized set of ν
atoms (blue) and can only manage to assign higher weights to atoms closer to the unit circle. RD-VAE and NERD have difficulty learning
the true ν∗, as seen from the misplaced samples of ν from the two methods (faint red dots for RD-VAE and purple squares for NERD,
respectively). Right: We repeat the experiment but with λ = 2. ν∗ is now uniform on a circle with a smaller radius. The algorithms
maintain their respective behavior from the λ = 10 case, with the BA, RD-VAE, and NERD algorithms failing to recover the support
of ν∗. As λ → 0, ν∗ shrinks towards the mean of µ (the origin in this case), making it exceedingly difficult for the BA algorithm with a
randomly discretized Y-space to locate the true support of ν∗.
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Figure 4. Left: Relative error of the converged losses of various methods, compared to the ground truth (the lower the better; the curve for
WGD coincides with that of the hybrid algorithm). The solution quality of the proposed WGD methods scales much more favorably than
alternative methods in the number of particles n, especially in the more difficult regime of large λ. Right: Empirically validating the
agreement between the scaling behavior of the optimality gap for WGD in the number of particles n, and our theoretical prediction.

Finally, we illustrate the scaling of the suboptimality gap for WGD as a function of n, as compared to our theoretical
prediction of O( 1√

n
) in Proposition 10.4. We observe that the suboptimality gap appears to decrease at an even faster rate

than O( 1√
n
), suggesting a conservative theoretical bound.

R-D upper bounds. We rerun the various algorithms with λ ∈ {1, 3, 10, 30, 100, 300} to produce upper bounds on R(D),
and plot the results in Figure 5-Right. We observe that WGD gives the tightest upper bound out of all the methods (the
hybrid WGD algorithm produces overlapping curves and is omitted for clarity). As we increase n to 50 and 1000 (Figure
5-Middle, Left), the various methods increase linearly in their computational complexity (except for RD-VAE, which used
a fixed architecture and didn’t benefit noticeably from further increase in its neural network sizes), and eventually give
qualitatively similar R-D upper bounds that generally agree with the true R(D). Note that in large scale problems (e.g.,
those considered in Sec. 5.2), we are much more likely to operate in the “small n” regime due to computational constraints.

12.3. Higher-dimensional data

To demonstrate the scalability and accuracy of our proposed algorithm, we estimate the R-D functions of higher dimensional
physics and speech sources considered in (Yang and Mandt, 2022).

For comparison, we obtained the results for the RD-VAE baseline, a neural compression method (Ballé et al., 2021), and a
neural network-based R-D lower bound from (Yang and Mandt, 2022). As the datasets contain 105 ∼ 106 data points, it
becomes computationally impractical to work with the full data, so we focus on WGD and NERD (Lei et al., 2023) using
mini-batch stochastic gradient descent. The BA and hybrid WGD algorithms do not directly apply in the stochastic setting,
since performing the BA updates on randomly drawn samples tends to cause divergence (also discussed in Sec. 4.3).

We plot the resulting R-D bounds on the two datasets in Fig. 6, and observe that WGD yields similar or improved upper
bounds compared to existing methods. For NERD, we set n to the default 40000 in the code provided by (Lei et al., 2023),
on both datasets. On the physics data, we use only n = 4000 particles for WGD and outperform NERD on the physics
dataset. The speech dataset appears more information dense than the physics dataset, and both NERD and WGD encounter
the issue of a log(n) upper bound on the rate estimate as described in Sec. 10.5. Therefore, we increased n to 200000 for
WGD while this is no longer feasible for NERD, and as a result WGD provides better R-D estimates than NERD particularly
in the low-distortion regime. The RD-VAE upper bound (Yang and Mandt, 2022) does not face this issue, and performs
more favorably in this regime.

Finally, in the rightmost panel of Fig. 6 we plot the R-D bound estimates for WGD and NERD with increasing n on the
physics dataset. We again observe a tighter bound from WGD across the R-D curve, and observe similar results on the
speech dataset.
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Figure 5. Final R-D upper bounds for the source µ = S ∗ N (0, 0.1I) in the maximum-likelihood deconvolution problem (Sec. 5.1), with
different settings of n for BA (Blahut, 1972; Arimoto, 1972), NERD (Lei et al., 2023), and the WGD algorithm. The result using the
hybrid WGD algorithm (Sec. 4.3) overlaps with that of WGD, hence is omitted for better readability. The ground truth R(D) is known
analytically for λ ≥ 1

σ2 and computed numerically (see discussion in the text), and is drawn in cyan. The RD-VAE upper bound (orange;
the same in each subplot) agrees fairly well with the true R(D) except for some looseness when the distortion is between 0.1 and 0.25.
Left: when the number of particles is large (n = 1000), BA, WGD, and NERD give similarly R-D upper bound estimates close to the
true R(D). Middle: as we allow ourselves to use fewer particles, e.g., n = 50, the bounds from BA, WGD, and NERD start to deviate
from the true R(D), with WGD appearing the least affected out of the three. Right: as we decrease n further to 20, WGD still mostly
preserves the true R(D), while BA and NERD shows much larger deviation.



Figure 6. Top Left: R-D bounds estimated on physics dataset, and Top Right: speech dataset. The proposed WGD method obtains
comparable or tighter R-D upper bounds than existing methods. Bottom: Comparing the scalaing behavior of WGD and NERD with
increasing n, on the physics dataset. WGD yields a tighter R-D upper bound for each n.


