On the Guyon-Lekeufack Volatility Model*

Marcel Nutz ${ }^{\dagger} \quad$ Andrés Riveros Valdevenito ${ }^{\ddagger}$

July 3, 2023

Abstract

Guyon and Lekeufack recently proposed a path-dependent volatility model and documented its excellent performance in fitting market data and capturing stylized facts. The instantaneous volatility is modeled as a linear combination of two processes, one is an integral of weighted past price returns and the other is the square-root of an integral of weighted past squared volatility. Each of the weightings is built using two exponential kernels reflecting long and short memory. Mathematically, the model is a coupled system of four stochastic differential equations. Our main result is the wellposedness of this system: the model has a unique strong (non-explosive) solution for realistic parameter values. We also study the positivity of the resulting volatility process.

Keywords Path-dependent volatility model, SDE, wellposedness, explosion
AMS 2010 Subject Classification 60H10; 91G20

1 Introduction

Path-dependent volatility models (PDV) are stochastic models for security prices where the instantaneous volatility is a function of the price path. Starting with [5, 2, 9, 1, 3], such models emphasize that prices have a feedback on volatility (e.g., the leverage effect) rather than the volatility being an exogenous factor driving the price. In their recent paper [4], Guyon and Lekeufack empirically study the volatility of the S\&P 500 index (and other indexes) and conclude that the majority of the variation can be explained by past index returns. Indeed, the relevant statistics are 1 . weighted sum of past daily returns and 2 . square-root of weighted sum of past daily squared returns (i.e., squared volatility). More specifically, long and short memory are both found to be important, hence the authors recommend using two decay kernels with different time scales. This leads to four processes feeding into the volatility: weighted sum of past returns at two timescales (indexed as $(1,0)$ and $(1,1)$ below) and weighted sum of past squared returns at two (different) timescales (indexed as $(2,0)$ and $(2,1)$ below).

For practical purposes, [4] finds that exponential kernels provide a tractable model with good fit. This leads the authors to propose a Markovian model with nine parameters, called the Markovian 4 -factor PDV model. They convincingly argue that this model captures the important stylized facts of volatility, produces realistic price and volatility paths, and can

[^0]jointly fit S\&P 500 and VIX smiles. Specifically, the volatility process of the 4 -factor PDV model is given as
$$
\sigma_{t}=\beta_{0}+\beta_{1} R_{1, t}+\beta_{2} \sqrt{R_{2, t}} .
$$

Here $R_{1, t}$ is the convex combination $\left(1-\theta_{1}\right) R_{1,0, t}+\theta_{1} R_{1,1, t}$ of the past returns weighted with different decay rates $\lambda_{1, j}$; i.e., $R_{1, j, t}$ is an Ornstein-Uhlenbeck process $d R_{1, j, t}=\lambda_{1, j} \sigma_{t} d W_{t}-$ $\lambda_{1, j} R_{1, j, t} d t$ for $j \in\{0,1\}$. Moreover, $R_{2, t}$ is a convex combination $\left(1-\theta_{2}\right) R_{2,0, t}+\theta_{2} R_{2,1, t}$ of the past squared volatility weighted with different decay rates $\lambda_{2, j}$; i.e., $R_{2, j, t}$ is an exponential moving average $d R_{2, j, t}=\lambda_{2, j}\left(\sigma_{t}^{2}-R_{2, j, t}\right) d t$ for $j \in\{0,1\}$.

Altogether, this leads to a coupled SDE system for the four processes $\left(R_{i, j, t}\right)$, stated as (4-PDV) below. Due to the square and square-root terms in the dynamics, its wellposedness is not obvious. Most importantly, it is not clear if the system explodes in finite time (the numerical simulations in [4] truncate the volatility at a fixed upper bound). The purpose of this paper is to provide existence and uniqueness for (4-PDV) under conditions compatible with the parameter values required in practice.

The main results are summarized in the subsequent section. There, we first discuss a simpler model which uses only one timescale for each process $R_{i, t}$, corresponding to the special case $\theta_{i} \in\{0,1\}$. While [4] details that this 2 -factor model does not provide a good fit in practice, the authors find it useful to gain intuition about the more complicated 4factor model. Following their didactic lead, we first prove our results for the 2 -factor model in Section 2. In this case, the equations are simpler and the algebraic expressions clearly motivate our strategy of proof. Guided by those insights, the 4 -factor model can be treated using a similar strategy (detailed in Section 3), though the expressions are more convoluted.

1.1 Main Results

The 2-factor model of [4] is specified by an SDE driven by a standard Brownian motion W,

$$
\begin{align*}
\sigma_{t} & =\beta_{0}+\beta_{1} R_{1, t}+\beta_{2} \sqrt{R_{2, t}} \\
d R_{1, t} & =\lambda_{1} \sigma_{t} d W_{t}-\lambda_{1} R_{1, t} d t \tag{2-PDV}\\
d R_{2, t} & =\left(\lambda_{2} \sigma_{t}^{2}-\lambda_{2} R_{2, t}\right) d t
\end{align*}
$$

with parameters

$$
\beta_{0}, \beta_{2}, \lambda_{1}, \lambda_{2} \geq 0 \quad \text { and } \quad \beta_{1} \leq 0
$$

and initial values $R_{1,0} \in \mathbb{R}$ and $R_{2,0} \in(0, \infty)$. The above is an autonomous SDE for the processes ($R_{1, t}, R_{2, t}$), with σ_{t} merely acting as an abbreviation. On the other hand, if σ_{t} is given, the equations for $R_{1, t}$ and $R_{2, t}$ in (2-PDV) are straightforward: $R_{1, t}$ is an OrnsteinUhlenbeck process driven by the log-returns $\sigma_{t} d W_{t}$,

$$
R_{1, t}=R_{1,0} e^{-\lambda_{1} t}+\lambda_{1} \int_{0}^{t} e^{-\lambda_{2}(t-s)} \sigma_{s} d W_{s}
$$

and $R_{2, t}$ is an exponential moving average of σ_{t}^{2},

$$
\begin{equation*}
R_{2, t}=R_{2,0} e^{-\lambda_{2} t}+\lambda_{2} \int_{0}^{t} \sigma_{s}^{2} e^{-\lambda_{2}(t-s)} d s>0 \tag{1}
\end{equation*}
$$

In particular, the expression $\sqrt{R_{2, t}}$ in (2-PDV) is well-defined.

Theorem 1. Suppose that $\beta_{2}<1$ and $\lambda_{1} \beta_{1}^{2}<2$. Then the 2-factor model (2-PDV) has a unique strong solution.

The proof is detailed in Section 2. There, we observe that strong existence and uniqueness always hold up to a possible explosion time; the parameter restrictions in Theorem 1 are used to prove absence of explosions in finite time. Table 1 reports the parameters used in [4]. We see that the parameter restrictions in Theorem 1 are easily satisfied for those values. In Theorem 7 of Section 2, we also report the condition $\lambda_{2}<2 \lambda_{1}$ ensuring $\sigma_{t}>0$; that condition is also satisfied by the values in Table 1 .

β_{0}	β_{1}	β_{2}	λ_{1}	λ_{2}
0.08	-0.08	0.5	62	40

Table 1: Example parameters for the 2-factor model from [4, Table 7]
Next, we move on to the 4 -factor model of [4]. It is specified by the SDE

$$
\begin{align*}
\sigma_{t} & =\beta_{0}+\beta_{1} R_{1, t}+\beta_{2} \sqrt{R_{2, t}} \\
R_{1, t} & =\left(1-\theta_{1}\right) R_{1,0, t}+\theta_{1} R_{1,1, t} \\
R_{2, t} & =\left(1-\theta_{2}\right) R_{2,0, t}+\theta_{2} R_{2,1, t} \tag{4-PDV}\\
d R_{1, j, t} & =\lambda_{1, j} \sigma_{t} d W_{t}-\lambda_{1, j} R_{1, j, t} d t, \quad j \in\{0,1\} \\
d R_{2, j, t} & =\lambda_{2, j}\left(\sigma_{t}^{2}-R_{2, j, t}\right) d t, \quad j \in\{0,1\}
\end{align*}
$$

with parameters

$$
\beta_{0}, \beta_{2}, \lambda_{1, j}, \lambda_{2, j} \geq 0, \quad \beta_{1} \leq 0, \quad \theta_{1}, \theta_{2} \in[0,1]
$$

and initial values $R_{1, j, 0} \in \mathbb{R}$ and $R_{2, j, 0}>0, j \in\{0,1\}$. The above is an autonomous SDE for the four processes $\left(R_{1, j, t}, R_{2, j, t}\right)_{j \in\{0,1\}}$. We note that (4-PDV) generalizes the 2 -factor model (2-PDV); the latter is recovered when $\theta_{1}, \theta_{2} \in\{0,1\}$. Whereas for $\theta_{1}, \theta_{2} \in(0,1)$, the difference with (2-PDV) is that $R_{1, t}, R_{2, t}$ are proper convex combinations of processes with different time scales. Once again, $R_{1, j, t}$ and $R_{2, j, t}$ have straightforward expression once σ_{t} is given, and $R_{2, j, t}>0$ as in (1). Our main result reads as follows.

Theorem 2. Suppose that

$$
\beta_{2}^{2} \theta_{2}<1, \quad \beta_{2}^{2}\left(1-\theta_{2}\right)<1, \quad \lambda_{1,0} \beta_{1}^{2}\left(1-\theta_{1}\right)^{2}<2, \quad \lambda_{1,1} \beta_{1}^{2} \theta_{1}^{2}<2
$$

Then the 4 -factor model (4-PDV) has a unique strong solution.
The proof is stated in Section 3. Again, strong existence and uniqueness always hold up to a possible explosion time. On the other hand, the example parameters determined in [4], reproduced in Table 2, comfortably satisfy the parameter restrictions in Theorem 2. In conclusion, explosions do not happen for realistic parameters. Finally, we observe that the restrictions in Theorem 2 reduce to the ones in Theorem 1 when $\theta_{1}, \theta_{2} \in\{0,1\}$, so that Theorem 2 fully contains Theorem 1.

β_{0}	β_{1}	β_{2}	$\lambda_{1,0}$	$\lambda_{1,1}$	$\lambda_{2,0}$	$\lambda_{2,1}$	θ_{1}	θ_{2}
0.04	-0.13	0.65	55	10	20	3	0.25	0.5

Table 2: Example parameters for the 4 -factor model from [4, Table 8]

2 Analysis of the 2-Factor Model (2-PDV)

We first show, using fairly standard arguments, that (2-PDV) has a unique strong solution up to a possible explosion time. In the second part of this section, we prove the absence of explosions under the parameter restrictions stated in Theorem 1. In the final part, we study the positivity of σ_{t}.

To detail the aforementioned arguments, we introduce a more concise notation for (2-PDV): writing $R_{t}:=\left(R_{1, t}, R_{2, t}\right)$, we can rewrite (2-PDV) as

$$
\begin{gathered}
d R_{t}=b\left(R_{t}\right) d t+\nu\left(R_{t}\right) d W_{t}, \quad R_{0}=\left(R_{1,0}, R_{2,0}\right) \\
\nu(x, y)=\binom{\lambda_{1}\left(\beta_{0}+\beta_{1} x+\beta_{2} \sqrt{y}\right)}{0} \\
b(x, y)=\binom{-\lambda_{1} x}{\lambda_{2}\left(\beta_{0}^{2}+\beta_{1}^{2} x^{2}+\left(\beta_{2}^{2}-1\right) y+2 \beta_{0} \beta_{1} x+2 \beta_{0} \beta_{2} \sqrt{y}+2 \beta_{1} \beta_{2} x \sqrt{y}\right)} .
\end{gathered}
$$

As the coefficients $\nu(x, y)$ and $b(x, y)$ are continuous in their domains and the initial condition is deterministic, the general existence result of [6, Theorem IV.2.3] shows the following.

Lemma 3. The SDE (2-PDV) has a weak solution up to a possible explosion time.
Next, we establish pathwise uniqueness. The usual local Lipschitz condition (e.g., [6, Theorem IV.3.1]) fails because of the term \sqrt{y} in the coefficients. However, as this failure only occurs at the boundary of the relevant domain, a modification of the usual proof applies.

Lemma 4. The SDE (2-PDV) satisfies pathwise uniqueness.
Proof. Following the proof of [6, Theorem IV.3.1], we consider two solutions (R, W) and (R^{\prime}, W) of (2-PDV) on the same probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with Brownian motion W, and with the same initial values $R_{0}=R_{0}^{\prime}=\left(R_{1,0}, R_{2,0}\right)$.

Given $N, \varepsilon>0$, there exists $K_{\varepsilon, N}>0$ such that

$$
\left\|\nu(x, y)-\nu\left(x^{\prime}, y^{\prime}\right)\right\|^{2}+\left\|b(x, y)-b\left(x^{\prime}, y^{\prime}\right)\right\|^{2} \leq K_{\varepsilon, N}\left\|(x, y)-\left(x^{\prime}, y^{\prime}\right)\right\|^{2}
$$

for all $(x, y),\left(x^{\prime}, y^{\prime}\right) \in \mathbb{R}^{2}$ with $\|(x, y)\|,\left\|\left(x^{\prime}, y^{\prime}\right)\right\| \leq N$ and $y, y^{\prime} \geq \varepsilon$. Define

$$
S_{N}:=\inf \left\{t \geq 0:\left\|R_{t}\right\| \geq N\right\}, \quad T_{\varepsilon}:=\inf \left\{t \geq 0:\left|R_{2, t}\right| \leq \varepsilon\right\}
$$

and similarly $S_{N}^{\prime}, T_{\varepsilon}^{\prime}$ for R^{\prime} instead of R. Set $S_{\varepsilon, N}:=S_{N} \wedge S_{N}^{\prime} \wedge T_{\varepsilon} \wedge T_{\varepsilon}^{\prime}$ and note that

$$
R_{t \wedge S_{\varepsilon, N}}-R_{t \wedge S_{\varepsilon, N}}^{\prime}=\int_{0}^{t \wedge S_{\varepsilon, N}}\left(\nu\left(R_{s}\right)-\nu\left(R_{s}^{\prime}\right)\right) d W_{s}+\int_{0}^{t \wedge S_{\varepsilon, N}}\left(b\left(R_{s}\right)-b\left(R_{s}^{\prime}\right)\right) d s
$$

Fix $T \in(0, \infty)$. For $t \leq T$, Itô's isometry and Hölder's inequality yield

$$
\begin{aligned}
& \mathbb{E}\left(\left\|R_{t \wedge S_{\varepsilon, N}}-R_{t \wedge S_{\varepsilon, N}}^{\prime}\right\|^{2}\right) \\
& \leq 2 \mathbb{E}\left(\left|\int_{0}^{t \wedge S_{\varepsilon, N}}\left(\nu\left(R_{s}\right)-\nu\left(R_{s}^{\prime}\right)\right) d W_{s}\right|^{2}\right)+2 \mathbb{E}\left(\left|\int_{0}^{t \wedge S_{\varepsilon, N}}\left(b\left(R_{s}\right)-b\left(R_{s}^{\prime}\right)\right) d s\right|^{2}\right) \\
& \leq 2 \mathbb{E}\left(\int_{0}^{t}\left\|\nu\left(R_{s \wedge S_{\varepsilon, N}}\right)-\nu\left(R_{s \wedge S_{\varepsilon, N}}^{\prime}\right)\right\|^{2} d s\right)+2 T \mathbb{E}\left(\int_{0}^{t}\left\|b\left(R_{s \wedge S_{\varepsilon, N}}\right)-b\left(R_{s \wedge S_{\varepsilon, N}}^{\prime}\right)\right\|^{2} d s\right) \\
& \leq 2(1+T) K_{\varepsilon, N} \mathbb{E}\left(\int_{0}^{t}\left\|R_{s \wedge S_{\varepsilon, N}}-R_{s \wedge S_{\varepsilon, N}}^{\prime}\right\|^{2} d s\right)
\end{aligned}
$$

and then Grönwall's inequality shows

$$
\mathbb{E}\left(\left\|R_{t \wedge S_{\varepsilon, N}}-R_{t \wedge S_{\varepsilon, N}}^{\prime}\right\|^{2}\right)=0
$$

As $T>0$ was arbitrary, this holds for all $t \geq 0$.
Next, we let $\varepsilon \rightarrow 0$. In view of the positivity (1), we have $T_{\varepsilon}, T_{\varepsilon}^{\prime} \rightarrow \infty$ and conclude that

$$
R_{t \wedge S_{N} \wedge S_{N}^{\prime}}=R_{t \wedge S_{N} \wedge S_{N}^{\prime}}^{\prime} \quad \forall t \geq 0
$$

Together with the continuity of the paths, it follows that $S_{N}=S_{N}^{\prime}$, and since this holds for all $N>0$, we have shown that $R=R^{\prime}$ up to a possible (common) time of explosion.

As weak existence together with pathwise uniqueness implies strong existence [6, Theorem IV.1.1], the results so far establish the strong wellposedness of (2-PDV) up to explosion.

Corollary 5. The SDE (2-PDV) satisfies strong existence and uniqueness up to a possible explosion time.

Turning to the main contribution of this section, we now show the absence of explosions.
Lemma 6. If $\beta_{2}<1$ and $\lambda_{1} \beta_{1}^{2}<2$, a solution $\left(R_{1, t}, R_{2, t}\right)$ of (2-PDV) cannot explode in finite time. Moreover, $\sup _{t \leq T} \mathbb{E}\left(R_{1, t}^{2}+R_{2, t}\right)<\infty$ for any $T \in[0, \infty)$.

Proof. Fix $M>0$ and define the stopping times

$$
\begin{gathered}
T_{M}^{1}:=\inf \left\{t \geq 0: R_{1, t}^{2} \geq M^{2}\right\} \quad T_{M}^{2}:=\inf \left\{t \geq 0: R_{2, t} \geq M^{2}\right\} \\
T_{M}:=T_{M}^{1} \wedge T_{M}^{2}
\end{gathered}
$$

Fix also $t \geq 0$, and note that

$$
M^{2} \mathbb{P}\left(T_{M} \leq t\right)=\mathbb{E}\left(M^{2} \mathbf{1}_{T_{M} \leq t}\right) \leq \mathbb{E}\left(\max \left(R_{1, T_{M} \wedge t}^{2}, R_{2, T_{M} \wedge t}\right)\right) \leq \mathbb{E}\left(R_{1, T_{M} \wedge t}^{2}+R_{2, T_{M} \wedge t}\right)
$$

In the main part of the proof below, we show that

$$
\begin{equation*}
\mathbb{E}\left(R_{1, T_{M} \wedge t}^{2}+R_{2, T_{M} \wedge t}\right) \leq c(t) \tag{2}
\end{equation*}
$$

with $c(t)<\infty$ independent of M. It will then follow that $\lim _{M \rightarrow \infty} \mathbb{P}\left(T_{M} \leq t\right)=0$, showing that R_{1} and R_{2} have bounded paths on any compact time interval and hence completing the proof.

To show (2), we first apply Itô's formula to obtain

$$
R_{1, t \wedge T_{M}}^{2}=R_{1,0}^{2}+\int_{0}^{t \wedge T_{M}} 2 \lambda_{1} \sigma_{s} R_{1, s} d W_{s}+\int_{0}^{t \wedge T_{M}}\left(\lambda_{1}^{2} \sigma_{s}^{2}-2 \lambda_{1} R_{1, s}^{2}\right) d s
$$

As $\sigma_{s} R_{1, s}$ is uniformly bounded up to the stopping time $t \wedge T_{M}$, it follows that

$$
\mathbb{E}\left(R_{1, T_{M} \wedge t}^{2}\right)=R_{1,0}^{2}+\mathbb{E}\left(\int_{0}^{t \wedge T_{M}}\left(\lambda_{1}^{2} \sigma_{s}^{2}-2 \lambda_{1} R_{1, s}^{2}\right) d s\right)
$$

and thus, by Fubini's theorem,

$$
\begin{equation*}
\mathbb{E}\left(R_{1, T_{M} \wedge t}^{2}\right)=R_{1,0}^{2}+\int_{0}^{t} \mathbb{E}\left(\left(\lambda_{1}^{2} \sigma_{s}^{2}-2 \lambda_{1} R_{1, s}^{2}\right) \mathbf{1}_{s \leq t \wedge T_{M}}\right) d s . \tag{3}
\end{equation*}
$$

Next, we insert the definition of σ_{s}^{2} to get

$$
\begin{aligned}
\mathbb{E}\left(R_{1, T_{M} \wedge t}^{2}\right)=R_{1,0}^{2}+\int_{0}^{t} \mathbb{E}(& \left\{\lambda_{1}^{2}\left(\beta_{0}+\beta_{2} \sqrt{R_{2, s}}\right)^{2}\right. \\
& \left.\left.+2 \lambda_{1}^{2} \beta_{1}\left(\beta_{0}+\beta_{2} \sqrt{R_{2, s}}\right) R_{1, s}+\left(\lambda_{1}^{2} \beta_{1}^{2}-2 \lambda_{1}\right) R_{1, s}^{2}\right\} \mathbf{1}_{s \leq t \wedge T_{M}}\right) d s .
\end{aligned}
$$

We may see the expression inside the curly brackets is a quadratic polynomial $C+B x+A x^{2}$ evaluated at $x=R_{1, s}$. Our assumption that $\lambda_{1} \beta_{1}^{2}<2$ is equivalent to $A<0$, so that the polynomial has finite maximum value

$$
\begin{aligned}
C-\frac{B^{2}}{4 A} & =\lambda_{1}^{2}\left(\beta_{0}+\beta_{2} \sqrt{R_{2, s}}\right)^{2}+\frac{\lambda_{1}^{4} \beta_{1}^{2}\left(\beta_{0}+\beta_{2} \sqrt{R_{2, s}}\right)^{2}}{2 \lambda_{1}-\lambda_{1}^{2} \beta_{1}^{2}} \\
& =\frac{2 \lambda_{1}^{2}}{2-\lambda_{1} \beta_{1}^{2}}\left(\beta_{0}+\beta_{2} \sqrt{R_{2, s}}\right)^{2} \leq \frac{4 \lambda_{1}^{2} \beta_{0}^{2}}{2-\lambda_{1} \beta_{1}^{2}}+\frac{4 \lambda_{1}^{2} \beta_{2}^{2}}{2-\lambda_{1} \beta_{1}^{2}} R_{2, s} .
\end{aligned}
$$

Using this as an upper bound for the expression in the curly brackets, we conclude that

$$
\begin{align*}
\mathbb{E}\left(R_{1, T_{M} \wedge t}^{2}\right) & \leq R_{1,0}^{2}+\int_{0}^{t} \mathbb{E}\left(\left(\frac{4 \lambda_{1}^{2} \beta_{0}^{2}}{2-\lambda_{1} \beta_{1}^{2}}+\frac{4 \lambda_{1}^{2} \beta_{2}^{2}}{2-\lambda_{1} \beta_{1}^{2}} R_{2, s}\right) \mathbf{1}_{s \leq t \wedge T_{M}}\right) d s \\
& \leq R_{1,0}^{2}+\frac{4 \lambda_{1}^{2} \beta_{0}^{2}}{2-\lambda_{1} \beta_{1}^{2}} t+\frac{4 \lambda_{1}^{2} \beta_{2}^{2}}{2-\lambda_{1} \beta_{1}^{2}} \int_{0}^{t} \mathbb{E}\left(R_{2, s \wedge T_{M}}\right) d s \\
& =: c_{1,1}+c_{1,2} t+c_{1,3} \int_{0}^{t} \mathbb{E}\left(R_{2, s \wedge T_{M}}\right) d s \tag{4}
\end{align*}
$$

where the constants $c_{1,1}, c_{1,2}, c_{1,3}>0$ are independent of M and t.
Our next goal is a similar bound for R_{2} instead of R_{1}^{2}. From the SDE for R_{2},

$$
\begin{aligned}
& \mathbb{E}\left(R_{2, T_{M} \wedge t}\right) \\
& =R_{2,0}+\lambda_{2} \mathbb{E}\left(\int_{0}^{t \wedge T_{M}}\left(\sigma_{s}^{2}-R_{2, s}\right) d s\right) \\
& =R_{2,0}+\lambda_{2} \int_{0}^{t} \mathbb{E}\left(\left(\sigma_{s}^{2}-R_{2, s}\right) \mathbf{1}_{s \leq t \wedge T_{M}}\right) d s \\
& =R_{2,0}+\lambda_{2} \int_{0}^{t} \mathbb{E}\left(\left\{\left(\beta_{0}+\beta_{1} R_{1, s}\right)^{2}+2\left(\beta_{0}+\beta_{1} R_{1, s}\right) \beta_{2} \sqrt{R_{2, s}}+\left(\beta_{2}^{2}-1\right) R_{2, s}\right\} \mathbf{1}_{s \leq t \wedge T_{M}}\right) d s .
\end{aligned}
$$

Here we observe a quadratic polynomial of $\sqrt{R_{2, s}}$ inside the curly brackets, and as we have assumed that $\beta_{2}^{2}-1<0$, the polynomial has maximum value

$$
\left(\beta_{0}+\beta_{1} R_{1, s}\right)^{2}+\frac{\left(\beta_{0}+\beta_{1} R_{1, s}\right)^{2} \beta_{2}^{2}}{1-\beta_{2}^{2}}=\frac{1}{1-\beta_{2}^{2}}\left(\beta_{0}+\beta_{1} R_{1, s}\right)^{2} \leq \frac{2 \beta_{0}^{2}}{1-\beta_{2}^{2}}+\frac{2 \beta_{1}^{2}}{1-\beta_{2}^{2}} R_{1, s}^{2} .
$$

We conclude that

$$
\begin{align*}
\mathbb{E}\left(R_{2, T_{M} \wedge t}\right) & \leq R_{2,0}+\lambda_{2} \int_{0}^{t} \mathbb{E}\left(\left(\frac{2 \beta_{0}^{2}}{1-\beta_{2}^{2}}+\frac{2 \beta_{1}^{2}}{1-\beta_{2}^{2}} R_{1, s}^{2}\right) \mathbf{1}_{s \leq t \wedge T_{M}}\right) d s \\
& \leq R_{2,0}+\frac{2 \beta_{0}^{2} \lambda_{2}}{1-\beta_{2}^{2}} t+\frac{2 \beta_{1}^{2} \lambda_{2}}{1-\beta_{2}^{2}} \int_{0}^{t} \mathbb{E}\left(R_{1, s \wedge T_{M}}^{2}\right) d s \\
& =c_{2,1}+c_{2,2} t+c_{2,3} \int_{0}^{t} \mathbb{E}\left(R_{1, s \wedge T_{M}}^{2}\right) d s, \tag{5}
\end{align*}
$$

where again the constants do not depend on M and t.
Writing $c_{i}=c_{1, i}+c_{2, i}$, combining (4) and (5) yields

$$
\mathbb{E}\left(R_{1, T_{M} \wedge t}^{2}+R_{2, T_{M} \wedge t}\right) \leq c_{1}+c_{2} t+c_{3} \int_{0}^{t} \mathbb{E}\left(R_{1, s \wedge T_{M}}^{2}+R_{2, s \wedge T_{M}}\right) d s
$$

and now Grönwall's inequality shows

$$
\mathbb{E}\left(R_{1, T_{M} \wedge t}^{2}+R_{2, T_{M} \wedge t}\right) \leq\left(c_{1}+c_{2} t\right) e^{c_{3} t} .
$$

This establishes (2) and hence completes the proof.

2.1 Positivity of σ_{t}

In this section we show that $\sigma_{t}>0$ under certain conditions. More precisely, we exhibit a lower bound $\sigma_{t} \geq Y_{t}>0$ which also shows, e.g., that $1 / \sigma_{t}$ has finite moments of all orders. This strengthens the result in [4, Section 4.1.5] where it is observed that $\sigma_{t} \geq 0$ since the drift of σ_{t} would be positive whenever σ_{t} reaches 0 .

Theorem 7. Consider the solution $\left(R_{1, t}, R_{2, t}\right)$ of (2-PDV) up to a possible time τ of explosion. If the initial values $\left(R_{1,0}, R_{2,0}\right)$ are such that $\sigma_{0}=\beta_{0}+\beta_{1} R_{1,0}+\beta_{2} \sqrt{R_{2,0}}>0$, and if moreover $\lambda_{2}<2 \lambda_{1}$, then $\sigma_{t}>0$ for all $t<\tau$. More precisely, we have $\sigma_{t} \geq Y_{t}$, where Y_{t} is the stochastic exponential (9).

Proof. By Itô's formula, σ_{t} satisfies the SDE

$$
\begin{equation*}
d \sigma_{t}=\left(-\beta_{1} \lambda_{1} R_{1, t}+\frac{\lambda_{2} \beta_{2}}{2} \frac{\sigma_{t}^{2}-R_{2, t}}{\sqrt{R_{2, t}}}\right) d t+\beta_{1} \lambda_{1} \sigma_{t} d W_{t} \tag{6}
\end{equation*}
$$

Using the assumption that $\lambda_{2}<2 \lambda_{1}$, we can bound the drift of σ_{t} from below:

$$
\begin{align*}
-\beta_{1} \lambda_{1} R_{1, t}+\frac{\lambda_{2} \beta_{2}}{2} \frac{\sigma_{t}^{2}-R_{2, t}}{\sqrt{R_{2, t}}} & =-\lambda_{1}\left(\sigma_{t}-\beta_{0}-\beta_{2} \sqrt{R_{2, t}}\right)-\frac{\lambda_{2} \beta_{2}}{2} \sqrt{R_{2, t}}+\frac{\lambda_{2} \beta_{2}}{2} \frac{\sigma_{t}^{2}}{\sqrt{R_{2, t}}} \\
& \geq-\lambda_{1} \sigma_{t}+\beta_{0} \lambda_{1}+\beta_{2}\left(\lambda_{1}-\frac{\lambda_{2}}{2}\right) \sqrt{R_{2, t}}+\frac{\lambda_{2} \beta_{2}}{2} \frac{\sigma_{t}^{2}}{\sqrt{R_{2, t}}} \\
& \geq-\lambda_{1} \sigma_{t} \tag{7}
\end{align*}
$$

because all the other terms are nonnegative. Inspired by (7), we define a process Y via

$$
\begin{equation*}
d Y_{t}=-\lambda_{1} Y_{t} d t+\beta_{1} \lambda_{1} Y_{t} d W_{t}, \quad Y_{0}=\sigma_{0} \tag{8}
\end{equation*}
$$

Note that Y is simply the stochastic exponential

$$
\begin{equation*}
Y_{t}=\sigma_{0} \exp \left(\beta_{1} \lambda_{1} W_{t}-\lambda_{1} t-\frac{1}{2} \beta_{1}^{2} \lambda_{1}^{2} t\right) \tag{9}
\end{equation*}
$$

and, in particular, $Y_{t}>0$ for all $t \geq 0$.
The SDEs (6) and (8) have the same initial condition σ_{0}, the same volatility function $v(x)=\beta_{1} \lambda_{1} x$ and their drift functions are ordered according to (7). Moreover, both drift and volatility functions are continuous on the relevant domains, the drift function of Y is Lipschitz, and

$$
\int_{0}^{\varepsilon} v(x)^{-2} d x=\infty
$$

for every $\varepsilon>0$. In view of these conditions, the comparison result for SDEs 1 [7, Theorem 5.2.18] yields that $\sigma_{t} \geq Y_{t}$ for all $t<\tau$.

3 Analysis of the 4-Factor Model (4-PDV)

The general wellposedness of (4-PDV) is shown using the same arguments as in the 2-factor model; we therefore omit the proof.

Proposition 8. The SDE (4-PDV) satisfies strong existence and uniqueness up to a possible explosion time.

The next result contains our main contribution.
Lemma 9. Suppose that

$$
\beta_{2}^{2} \theta_{2}<1, \quad \beta_{2}^{2}\left(1-\theta_{2}\right)<1, \quad \lambda_{1,0} \beta_{1}^{2}\left(1-\theta_{1}\right)^{2}<2, \quad \lambda_{1,1} \beta_{1}^{2} \theta_{1}^{2}<2
$$

Then a solution $\left(R_{1, j, t}, R_{2, j, t}\right)_{j \in\{0,1\}}$ of (4-PDV) cannot explode in finite time. Moreover, $\sup _{t \leq T} \mathbb{E}\left(R_{1,0, t}^{2}+R_{1,1, t}^{2}+R_{2,0, t}+R_{2,1, t}\right)<\infty$ for any $T \in[0, \infty)$.
Proof. We follow the guidance provided by the 2-factor model. Fix $M>0$ and define

$$
\begin{array}{cc}
T_{M}^{1,0}:=\inf \left\{t \geq 0: R_{1,0, t}^{2} \geq M^{2}\right\} & T_{M}^{1,1}:=\inf \left\{t \geq 0: R_{1,1, t}^{2} \geq M^{2}\right\} \\
T_{M}^{2,0}:=\inf \left\{t \geq 0: R_{2,0, t} \geq M^{2}\right\} & T_{M}^{2,1}:=\inf \left\{t \geq 0: R_{2,1, t} \geq M^{2}\right\} \\
T_{M}:=T_{M}^{1,0} \wedge T_{M}^{1,1} \wedge T_{M}^{2,0} \wedge T_{M}^{2,1}
\end{array}
$$

[^1]Fix also $t>0$, then

$$
\begin{aligned}
M^{2} \mathbb{P}\left(T_{M} \leq t\right) & =\mathbb{E}\left(M^{2} \mathbf{1}_{T_{M} \leq t}\right) \\
& \leq \mathbb{E}\left(\max \left(R_{1,0, t \wedge T_{M}}^{2}, R_{1,1, t \wedge T_{M}}^{2}, R_{2,0, t \wedge T_{M}}, R_{2,1, t \wedge T_{M}}\right)\right) \\
& \leq \mathbb{E}\left(R_{1,0, t \wedge T_{M}}^{2}+R_{1,1, t \wedge T_{M}}^{2}+R_{2,0, t \wedge T_{M}}+R_{2,1, t \wedge T_{M}}\right)=\mathbb{E}\left(U_{t \wedge T_{M}}\right)
\end{aligned}
$$

where

$$
U_{t}:=R_{1,0, t}^{2}+R_{1,1, t}^{2}+R_{2,0, t}+R_{2,1, t} .
$$

We shall prove that

$$
\begin{equation*}
\mathbb{E}\left(U_{t \wedge T_{M}}\right) \leq C(t) \tag{10}
\end{equation*}
$$

for a continuous $C(t)$ independent of M, and that will imply the claim.
To prove (10), we note as in (3) that

$$
\begin{equation*}
\mathbb{E}\left(R_{1, j, t \wedge T_{M}}^{2}\right)=R_{1, j, 0}^{2}+\int_{0}^{t} \mathbb{E}\left(\left\{\lambda_{1, j}^{2} \sigma_{s}^{2}-2 \lambda_{1, j} R_{1, j, s}^{2}\right\} \mathbf{1}_{s \leq t \wedge T_{M}}\right) d s \tag{11}
\end{equation*}
$$

We first focus on $j=0$. Inserting the definition of σ_{s}^{2} and then the one of $R_{1, s}^{2}$, we have

$$
\begin{aligned}
\lambda_{1,0}^{2} \sigma_{s}^{2}- & 2 \lambda_{1,0} R_{1,0, s}^{2} \\
& =\lambda_{1,0}^{2}\left(\beta_{0}+\beta_{2} \sqrt{R_{2, s}}\right)^{2}+2 \lambda_{1,0}^{2} \beta_{1}\left(\beta_{0}+\beta_{2} \sqrt{R_{2, s}}\right) R_{1, s}+\lambda_{1,0}^{2} \beta_{1}^{2} R_{1, s}^{2}-2 \lambda_{1,0} R_{1,0, s}^{2} \\
& =C+B R_{1,0, s}+A R_{1,0, s}^{2}
\end{aligned}
$$

where

$$
\begin{aligned}
& C=\lambda_{1,0}^{2}\left(\beta_{0}+\beta_{2} \sqrt{R_{2, s}}\right)^{2}+2 \lambda_{1,0}^{2} \beta_{1} \theta_{1}\left(\beta_{0}+\beta_{2} \sqrt{R_{2, s}}\right) R_{1,1, s}+\lambda_{1,0}^{2} \beta_{1}^{2} \theta_{1}^{2} R_{1,1, s}^{2} \\
& B=2 \lambda_{1,0}^{2} \beta_{1}\left(1-\theta_{1}\right)\left(\beta_{0}+\beta_{2} \sqrt{R_{2, s}}\right)+2 \lambda_{1,0}^{2} \beta_{1}^{2} \theta_{1}\left(1-\theta_{1}\right) R_{1,1, s} \\
& A=\lambda_{1,0}^{2} \beta_{1}^{2}\left(1-\theta_{1}\right)^{2}-2 \lambda_{1,0} .
\end{aligned}
$$

Our assumption that $\lambda_{1,0} \beta_{1}^{2}\left(1-\theta_{1}\right)^{2}<2$ means that $A<0$, hence the quadratic polynomial $C+B x+A x^{2}$ has a maximum. By an elementary if tedious calculation, that value is

$$
C-\frac{B^{2}}{4 A}=\frac{2 \lambda_{1,0}^{2}}{2-\lambda_{1,0} \beta_{1}^{2}\left(1-\theta_{1}\right)^{2}}\left(\beta_{0}+\beta_{2} \sqrt{R_{2, s}}+\beta_{1} \theta_{1} R_{1,1, s}\right)^{2} .
$$

Applying the elementary bound $(a+b)^{2} \leq 2 a^{2}+2 b^{2}$ twice, we conclude

$$
\lambda_{1,0}^{2} \sigma_{s}^{2}-2 \lambda_{1,0} R_{1,0, s}^{2} \leq \frac{4 \lambda_{1,0}^{2}}{2-\lambda_{1,0} \beta_{1}^{2}\left(1-\theta_{1}\right)^{2}}\left(2 \beta_{0}^{2}+2 \beta_{2}^{2} R_{2, s}+\beta_{1}^{2} \theta_{1}^{2} R_{1,1, s}^{2}\right)
$$

Using this inequality in (11) yields

$$
\begin{aligned}
\mathbb{E}\left(R_{1,0, t \wedge T_{M}}^{2}\right) & \leq R_{1,0,0}^{2}+\int_{0}^{t} \mathbb{E}\left(\frac{4 \lambda_{1,0}^{2}}{2-\lambda_{1,0} \beta_{1}^{2}\left(1-\theta_{1}\right)^{2}}\left(2 \beta_{0}^{2}+2 \beta_{2}^{2} R_{2, s \wedge T_{M}}+\beta_{1}^{2} \theta_{1}^{2} R_{1,1, s \wedge T_{M}}^{2}\right)\right) d s \\
& =: c_{1,0,0}(t)+c_{1,0,1} \int_{0}^{t} \mathbb{E}\left(R_{2, s \wedge T_{M}}\right) d s+c_{1,0,2} \int_{0}^{t} \mathbb{E}\left(R_{1,1, s \wedge T_{M}}^{2}\right) d s
\end{aligned}
$$

where $c_{1,0,0}(t)$ is affine in t.
Symmetrically, we have for $j=1$ that

$$
\lambda_{1,1}^{2} \sigma_{s}^{2}-2 \lambda_{1,1} R_{1,1, s}^{2} \leq \frac{4 \lambda_{1,1}^{2}}{2-\lambda_{1,1} \beta_{1}^{2} \theta_{1}^{2}}\left(2 \beta_{0}^{2}+2 \beta_{2}^{2} R_{2, s}+\beta_{1}^{2}\left(1-\theta_{1}\right)^{2} R_{1,0, s}^{2}\right)
$$

and then

$$
\begin{aligned}
\mathbb{E}\left(R_{1,1, t \wedge T_{M}}^{2}\right) & \leq R_{1,1,0}^{2}+\int_{0}^{t} \mathbb{E}\left(\frac{4 \lambda_{1,1}^{2}}{2-\lambda_{1,1} \beta_{1}^{2} \theta_{1}^{2}}\left(2 \beta_{0}^{2}+2 \beta_{2}^{2} R_{2, s \wedge T_{M}}+\beta_{1}^{2}\left(1-\theta_{1}\right)^{2} R_{1,0, s \wedge T_{M}}^{2}\right)\right) d s \\
& :=c_{1,1,0}(t)+c_{1,1,1} \int_{0}^{t} \mathbb{E}\left(R_{2, s \wedge T_{M}}\right) d s+c_{1,1,2} \int_{0}^{t} \mathbb{E}\left(R_{1,0, s \wedge T_{M}}^{2}\right) d s .
\end{aligned}
$$

Combining the results for $j=0$ and $j=1$ yields

$$
\begin{align*}
\mathbb{E}\left(R_{1,0, t \wedge T_{M}}^{2}\right. & \left.+R_{1,1, t \wedge T_{M}}^{2}\right) \\
& \leq c_{1,0}(t)+c_{1,1} \int_{0}^{t} \mathbb{E}\left(R_{2, s \wedge T_{M}}\right) d s+c_{1,2} \int_{0}^{t} \mathbb{E}\left(R_{1,0, s \wedge T_{M}}^{2}+R_{1,1, s \wedge T_{M}}^{2}\right) d s \tag{12}
\end{align*}
$$

where the constants have the obvious definitions.
Next, we derive a similar bound for $R_{2, j}$ instead of $R_{1, j}^{2}$. From the SDE for $R_{2, j}$,

$$
\begin{equation*}
\mathbb{E}\left(R_{2, j, t \wedge T_{M}}\right)=R_{2, j, 0}+\lambda_{2, j} \int_{0}^{t} \mathbb{E}\left(\left(\sigma_{s}^{2}-R_{2, j, s}\right) \mathbf{1}_{s \leq t \wedge T_{M}}\right) d s \tag{13}
\end{equation*}
$$

Focusing again on $j=0$ first, we insert the definitions of σ_{s}^{2} and $R_{2, s}$ and estimate

$$
\begin{aligned}
\sigma_{s}^{2}- & R_{2,0, s} \\
= & \left(\beta_{0}+\beta_{1} R_{1, s}\right)^{2}+2 \beta_{2}\left(\beta_{0}+\beta_{1} R_{1, s}\right) \sqrt{R_{2, s}}+\beta_{2}^{2} \theta_{2} R_{2,1, s}+\left(\beta_{2}^{2}\left(1-\theta_{2}\right)-1\right) R_{2,0, s} \\
\leq & \left(\beta_{0}+\left|\beta_{1}\right|\left|R_{1, s}\right|\right)^{2}+2 \beta_{2}\left(\beta_{0}+\left|\beta_{1}\right|\left|R_{1, s}\right|\right) \sqrt{R_{2, s}}+\beta_{2}^{2} \theta_{2} R_{2,1, s}+\left(\beta_{2}^{2}\left(1-\theta_{2}\right)-1\right) R_{2,0, s} \\
\leq & \left(\beta_{0}+\left|\beta_{1}\right|\left|R_{1, s}\right|\right)^{2}+2 \beta_{2}\left(\beta_{0}+\left|\beta_{1}\right|\left|R_{1, s}\right|\right)\left(\sqrt{\theta_{2}} \sqrt{R_{2,1, s}}+\sqrt{1-\theta_{2}} \sqrt{R_{2,0, s}}\right) \\
& +\beta_{2}^{2} \theta_{2} R_{2,1, s}+\left(\beta_{2}^{2}\left(1-\theta_{2}\right)-1\right) R_{2,0, s} \\
= & C+B \sqrt{R_{2,0, s}}+A R_{2,0, s}
\end{aligned}
$$

where

$$
\begin{aligned}
& A=\beta_{2}^{2}\left(1-\theta_{2}\right)-1 \\
& B=2 \beta_{2} \sqrt{1-\theta_{2}}\left(\beta_{0}+\left|\beta_{1}\right|\left|R_{1, s}\right|\right) \\
& C=\left(\beta_{0}+\left|\beta_{1}\right|\left|R_{1, s}\right|\right)^{2}+\beta_{2}^{2} \theta_{2} R_{2,1, s}+2 \beta_{2} \sqrt{\theta_{2}}\left(\beta_{0}+\left|\beta_{1}\right|\left|R_{1, s}\right|\right) \sqrt{R_{2,1, s}} .
\end{aligned}
$$

The polynomial $C+B x+A x^{2}$ has a maximum as $A<0$ due to $\beta_{2}^{2}\left(1-\theta_{2}\right)<1$, and the maximum value is

$$
C-\frac{B^{2}}{4 A}=\frac{1}{1-\beta_{2}^{2}\left(1-\theta_{2}\right)}\left(\beta_{0}+\left|\beta_{1}\right|\left|R_{1, s}\right|\right)^{2}+\beta_{2}^{2} \theta_{2} R_{2,1, s}+2 \beta_{2} \sqrt{\theta_{2}}\left(\beta_{0}+\left|\beta_{1}\right|\left|R_{1, s}\right|\right) \sqrt{R_{2,1, s}}
$$

It follows that

$$
\begin{aligned}
\sigma_{s}^{2}-R_{2,0, s} & \leq \frac{1}{1-\beta_{2}^{2}\left(1-\theta_{2}\right)}\left(\beta_{0}+\left|\beta_{1}\right|\left|R_{1, s}\right|\right)^{2}+\beta_{2}^{2} \theta_{2} R_{2,1, s}+2 \beta_{2} \sqrt{\theta_{2}}\left(\beta_{0}+\left|\beta_{1}\right|\left|R_{1, s}\right|\right) \sqrt{R_{2,1, s}} \\
& \leq \frac{1}{1-\beta_{2}^{2}\left(1-\theta_{2}\right)}\left(\beta_{0}+\left|\beta_{1}\right|\left|R_{1, s}\right|\right)^{2}+\beta_{2}^{2} \theta_{2} R_{2,1, s}+\beta_{2}^{2} \theta_{2} R_{2,1, s}+\left(\beta_{0}+\left|\beta_{1}\right|\left|R_{1, s}\right|\right)^{2} \\
& =\frac{2-\beta_{2}^{2}\left(1-\theta_{2}\right)}{1-\beta_{2}^{2}\left(1-\theta_{2}\right)}\left(\beta_{0}+\left|\beta_{1}\right|\left|R_{1, s}\right|\right)^{2}+2 \beta_{2}^{2} \theta_{2} R_{2,1, s} \\
& \leq \frac{2-\beta_{2}^{2}\left(1-\theta_{2}\right)}{1-\beta_{2}^{2}\left(1-\theta_{2}\right)}\left(2 \beta_{0}^{2}+2 \beta_{1}^{2} R_{1, s}^{2}\right)+2 \beta_{2}^{2} \theta_{2} R_{2,1, s}
\end{aligned}
$$

Applying this in (13), we conclude that

$$
\begin{aligned}
\mathbb{E}\left(R_{2,0, t \wedge T_{M}}\right) & \leq R_{2,0,0}+\lambda_{2,0} \int_{0}^{t} \mathbb{E}\left(\frac{2-\beta_{2}^{2}\left(1-\theta_{2}\right)}{1-\beta_{2}^{2}\left(1-\theta_{2}\right)}\left(2 \beta_{0}^{2}+2 \beta_{1}^{2} R_{1, s \wedge T_{M}}^{2}\right)+2 \beta_{2}^{2} \theta_{2} R_{2,1, s \wedge T_{M}}\right) d s \\
& =: c_{2,0,0}(t)+c_{2,0,1} \int_{0}^{t} \mathbb{E}\left(R_{1, s \wedge T_{M}}^{2}\right) d s+c_{2,0,2} \int_{0}^{t} \mathbb{E}\left(R_{2,1, s \wedge T_{M}}\right) d s .
\end{aligned}
$$

Symmetrically, we obtain for $j=1$ that

$$
\sigma_{s}^{2}-R_{2,1, s} \leq \frac{2-\beta_{2}^{2} \theta_{2}}{1-\beta_{2}^{2} \theta_{2}}\left(2 \beta_{0}^{2}+2 \beta_{1}^{2} R_{1, s}^{2}\right)+2 \beta_{2}^{2}\left(1-\theta_{2}\right) R_{2,0, s}
$$

and then

$$
\begin{aligned}
\mathbb{E}\left(R_{2,1, t \wedge T_{M}}\right) & \leq R_{2,1,0}+\lambda_{2,0} \int_{0}^{t} \mathbb{E}\left(\frac{2-\beta_{2}^{2} \theta_{2}}{1-\beta_{2}^{2} \theta_{2}}\left(2 \beta_{0}^{2}+2 \beta_{1}^{2} R_{1, s \wedge T_{M}}^{2}\right)+2 \beta_{2}^{2}\left(1-\theta_{2}\right) R_{2,0, s \wedge T_{M}}\right) d s \\
& :=c_{2,1,0}(t)+c_{2,1,1} \int_{0}^{t} \mathbb{E}\left(R_{1, s \wedge T_{M}}^{2}\right) d s+c_{2,1,2} \int_{0}^{t} \mathbb{E}\left(R_{2,0, s \wedge T_{M}}\right) d s .
\end{aligned}
$$

Adding the two inequalities, we deduce

$$
\begin{align*}
\mathbb{E} & \left(R_{2,0, t \wedge T_{M}}+R_{2,1, t \wedge T_{M}}\right) \\
& \leq c_{2,0}(t)+c_{2,1} \int_{0}^{t} \mathbb{E}\left(R_{1, s \wedge T_{M}}^{2}\right) d s+c_{2,2} \int_{0}^{t} \mathbb{E}\left(R_{2,0, s \wedge T_{M}}+R_{2,1, s \wedge T_{M}}\right) d s \\
& \leq c_{2,0}(t)+c_{2,1} \int_{0}^{t} \mathbb{E}\left(R_{1,0, s \wedge T_{M}}^{2}+R_{1,1, s \wedge T_{M}}^{2}\right) d s+c_{2,2} \int_{0}^{t} \mathbb{E}\left(R_{2,0, s \wedge T_{M}}+R_{2,1, s \wedge T_{M}}\right) d s \tag{14}
\end{align*}
$$

where we used the elementary convexity inequality

$$
R_{1, s}^{2}=\left(\left(1-\theta_{1}\right) R_{1,0, s}+\theta_{1} R_{1,1, s}\right)^{2} \leq\left(1-\theta_{1}\right) R_{1,0, s}^{2}+\theta_{1} R_{1,1, s}^{2} \leq R_{1,0, s}^{2}+R_{1,1, s}^{2} .
$$

We can now add (12) and (14) to obtain

$$
\mathbb{E}\left(U_{t \wedge T_{M}}\right) \leq c_{0}(t)+c_{1} \int_{0}^{t} \mathbb{E}\left(U_{s \wedge T_{M}}\right) d s
$$

where $c_{0}(t)$ is affine and nondecreasing in t and $c_{0}(t), c_{1}$ do not depend on M. Grönwall's inequality then yields

$$
\mathbb{E}\left(U_{t \wedge T_{M}}\right) \leq c_{0}(t) e^{c_{1} t}
$$

which is the desired bound (10).

3.1 Failure of Positivity of σ_{t} in (4-PDV)

In [4] it is reported that for realistic parameter values, the volatility σ_{t} remained positive in simulations of the 4 -factor model. Nevertheless, existence of a reasonable sufficient condition for $\sigma_{t}>0$ (or even just $\sigma_{t} \geq 0$) in (4-PDV) remains open. Below, we explain that a direct generalization of Theorem 7 fails. Indeed, in the 4 -factor model, σ_{t} follows the SDE

$$
\begin{equation*}
d \sigma_{t}=\left(-\beta_{1} \bar{\lambda}_{1} \bar{R}_{1, t}+\frac{\bar{\lambda}_{2} \beta_{2}}{2} \frac{\sigma_{t}^{2}-\bar{R}_{2, t}}{\sqrt{R_{2, t}}}\right) d t+\beta_{1} \bar{\lambda}_{1} \sigma_{t} d W_{t} \tag{15}
\end{equation*}
$$

where

$$
\bar{\lambda}_{i}:=\left(1-\theta_{i}\right) \lambda_{i, 0}+\theta_{i} \lambda_{i, 1}, \quad \bar{R}_{i, t}:=\frac{\left(1-\theta_{i}\right) \lambda_{i, 0} R_{i, 0, t}+\theta_{i} \lambda_{i, 1} R_{i, 1, t}}{\bar{\lambda}_{i}}
$$

as seen in [4]. The analogue of the condition in Theorem 7 is $\bar{\lambda}_{2}<2 \bar{\lambda}_{1}$.
Proposition 10. Under the conditions of Theorem 2 for wellposedness, and even if $\bar{\lambda}_{2}<2 \bar{\lambda}_{1}$, it may happen that $\sigma_{0}>0$ but $\mathbb{P}\left(\sigma_{t}<0\right)>0$ for some $t>0$.

Proof. We choose initial conditions $R_{1,0,0}<0$ and $R_{1,1,0}>0$, and coefficients $\theta_{1}, \lambda_{1,0}, \lambda_{1,1}$, such that $R_{1,0}>0$ and $\bar{R}_{1,0}<0$. Next, choose $\beta_{1}=-1$ (say), and $\beta_{2}>0$ small enough such that $\beta_{1} R_{1,0}+\beta_{2} \sqrt{R_{2,0}}=0$. Consider for the moment $\beta_{0}:=0$, then the preceding identity means that $\sigma_{0}=0$. Inspecting (15), we see that at $t=0$, the volatility vanishes while the drift rate is

$$
-\beta_{1} \bar{\lambda}_{1} \bar{R}_{1, t}-\frac{\bar{\lambda}_{2} \beta_{2}}{2} \frac{\bar{R}_{2, t}}{\sqrt{R_{2, t}}}<0
$$

By continuity of the paths, it follows that $\mathbb{P}\left(\sigma_{t}<0\right)>0$ for all $t>0$ sufficiently small.
Next, we modify the above by choosing β_{0} strictly positive, so that $\sigma_{0}=\beta_{0}>0$. We may see β_{0} as a parameter of the SDE determining σ_{t}. If the solution is continuous with respect to β_{0}, it follows that $\mathbb{P}\left(\sigma_{t}<0\right)>0$ for $\beta_{0}>0$ and t sufficiently small. Continuity is a standard result for SDEs with Lipschitz coefficients (e.g., [8, Section 4.5]). To see that the Lipschitz result is sufficient, note that for the present purpose of showing that $\mathbb{P}\left(\sigma_{t}<0\right)>0$ for some small $t>0$, we may truncate the non-Lipschitz coefficients in (4-PDV); that is, we replace $\sqrt{R_{2, t}}$ by $\sqrt{R_{2, t} \vee \delta}$ and σ_{t}^{2} by $\sigma_{t}^{2} \wedge \delta^{-1}$ for a small constant $\delta>0$.

References

[1] R. Chicheportiche and J.-P. Bouchaud. The fine-structure of volatility feedback I: multiscale self-reflexivity. Phys. A, 410:174-195, 2014.
[2] P. Foschi and A. Pascucci. Path dependent volatility. Decis. Econ. Finance, 31(1):13-32, 2008.
[3] J. Guyon. Path-dependent volatility. Risk, October 2014.
[4] J. Guyon and J. Lekeufack. Volatility is (mostly) path-dependent. Preprint SSRN, 2022. Available at https://ssrn.com/abstract $=4174589$.
[5] D. G. Hobson and L. C. G. Rogers. Complete models with stochastic volatility. Math. Finance, 8(1):27-48, 1998.
[6] N. Ikeda and S. Watanabe. Stochastic differential equations and diffusion processes, volume 24 of North-Holland Mathematical Library. North-Holland, 2nd edition, 1989.
[7] I. Karatzas and S. E. Shreve. Brownian Motion and Stochastic Calculus. Springer, New York, 2nd edition, 1991.
[8] H. Kunita. Stochastic flows and stochastic differential equations, volume 24 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1990.
[9] G. Zumbach. Volatility conditional on price trends. Quant. Finance, 10(4):431-442, 2010.

[^0]: *We thank Julien Guyon for suggesting to us the question answered in this paper.
 ${ }^{\dagger}$ Depts. of Statistics and Mathematics, Columbia University, mnutz@columbia.edu. Research supported by NSF Grant DMS-2106056.
 ${ }^{\ddagger}$ Department of Statistics, Columbia University, ar4151@columbia.edu.

[^1]: ${ }^{1}$ To be precise, the cited theorem is stated for SDEs where the drift and volatility functions depend only on time and the solution process. Here, they are random as they depend on $\left(R_{1, t}, R_{2, t}\right)$. The proof holds without change.

