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Abstract

Guyon and Lekeufack recently proposed a path-dependent volatility model and doc-
umented its excellent performance in fitting market data and capturing stylized facts.
The instantaneous volatility is modeled as a linear combination of two processes, one is
an integral of weighted past price returns and the other is the square-root of an integral
of weighted past squared volatility. Each of the weightings is built using two exponential
kernels reflecting long and short memory. Mathematically, the model is a coupled sys-
tem of four stochastic differential equations. Our main result is the wellposedness of this
system: the model has a unique strong (non-explosive) solution for realistic parameter
values. We also study the positivity of the resulting volatility process.
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1 Introduction

Path-dependent volatility models (PDV) are stochastic models for security prices where the
instantaneous volatility is a function of the price path. Starting with [5, 2, 9, 1, 3], such models
emphasize that prices have a feedback on volatility (e.g., the leverage effect) rather than the
volatility being an exogenous factor driving the price. In their recent paper [4], Guyon
and Lekeufack empirically study the volatility of the S&P 500 index (and other indexes)
and conclude that the majority of the variation can be explained by past index returns.
Indeed, the relevant statistics are 1. weighted sum of past daily returns and 2. square-root
of weighted sum of past daily squared returns (i.e., squared volatility). More specifically,
long and short memory are both found to be important, hence the authors recommend using
two decay kernels with different time scales. This leads to four processes feeding into the
volatility: weighted sum of past returns at two timescales (indexed as (1,0) and (1,1) below)
and weighted sum of past squared returns at two (different) timescales (indexed as (2,0) and
(2,1) below).

For practical purposes, [4] finds that exponential kernels provide a tractable model with
good fit. This leads the authors to propose a Markovian model with nine parameters, called
the Markovian 4-factor PDV model. They convincingly argue that this model captures the
important stylized facts of volatility, produces realistic price and volatility paths, and can
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jointly fit S&P 500 and VIX smiles. Specifically, the volatility process of the 4-factor PDV
model is given as

σt = β0 + β1R1,t + β2
√

R2,t .

Here R1,t is the convex combination (1−θ1)R1,0,t+θ1R1,1,t of the past returns weighted with
different decay rates λ1,j ; i.e., R1,j,t is an Ornstein–Uhlenbeck process dR1,j,t = λ1,jσtdWt −
λ1,jR1,j,tdt for j ∈ {0, 1}. Moreover, R2,t is a convex combination (1− θ2)R2,0,t + θ2R2,1,t of
the past squared volatility weighted with different decay rates λ2,j ; i.e., R2,j,t is an exponential
moving average dR2,j,t = λ2,j

(
σ2
t −R2,j,t

)
dt for j ∈ {0, 1}.

Altogether, this leads to a coupled SDE system for the four processes (Ri,j,t), stated
as (4-PDV) below. Due to the square and square-root terms in the dynamics, its wellposed-
ness is not obvious. Most importantly, it is not clear if the system explodes in finite time (the
numerical simulations in [4] truncate the volatility at a fixed upper bound). The purpose of
this paper is to provide existence and uniqueness for (4-PDV) under conditions compatible
with the parameter values required in practice.

The main results are summarized in the subsequent section. There, we first discuss a
simpler model which uses only one timescale for each process Ri,t, corresponding to the
special case θi ∈ {0, 1}. While [4] details that this 2-factor model does not provide a good
fit in practice, the authors find it useful to gain intuition about the more complicated 4-
factor model. Following their didactic lead, we first prove our results for the 2-factor model
in Section 2. In this case, the equations are simpler and the algebraic expressions clearly
motivate our strategy of proof. Guided by those insights, the 4-factor model can be treated
using a similar strategy (detailed in Section 3), though the expressions are more convoluted.

1.1 Main Results

The 2-factor model of [4] is specified by an SDE driven by a standard Brownian motion W ,

σt = β0 + β1R1,t + β2
√

R2,t

dR1,t = λ1σtdWt − λ1R1,tdt (2-PDV)

dR2,t =
(
λ2σ

2
t − λ2R2,t

)
dt

with parameters

β0, β2, λ1, λ2 ≥ 0 and β1 ≤ 0

and initial values R1,0 ∈ R and R2,0 ∈ (0,∞). The above is an autonomous SDE for the
processes (R1,t, R2,t), with σt merely acting as an abbreviation. On the other hand, if σt is
given, the equations for R1,t and R2,t in (2-PDV) are straightforward: R1,t is an Ornstein–
Uhlenbeck process driven by the log-returns σtdWt,

R1,t = R1,0e
−λ1t + λ1

∫ t

0
e−λ2(t−s)σsdWs,

and R2,t is an exponential moving average of σ2
t ,

R2,t = R2,0e
−λ2t + λ2

∫ t

0
σ2
se

−λ2(t−s)ds > 0. (1)

In particular, the expression
√

R2,t in (2-PDV) is well-defined.
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Theorem 1. Suppose that β2 < 1 and λ1β
2
1 < 2. Then the 2-factor model (2-PDV) has a

unique strong solution.

The proof is detailed in Section 2. There, we observe that strong existence and uniqueness
always hold up to a possible explosion time; the parameter restrictions in Theorem 1 are
used to prove absence of explosions in finite time. Table 1 reports the parameters used in [4].
We see that the parameter restrictions in Theorem 1 are easily satisfied for those values. In
Theorem 7 of Section 2, we also report the condition λ2 < 2λ1 ensuring σt > 0; that condition
is also satisfied by the values in Table 1.

β0 β1 β2 λ1 λ2

0.08 -0.08 0.5 62 40

Table 1: Example parameters for the 2-factor model from [4, Table 7]

Next, we move on to the 4-factor model of [4]. It is specified by the SDE

σt = β0 + β1R1,t + β2
√

R2,t

R1,t = (1− θ1)R1,0,t + θ1R1,1,t

R2,t = (1− θ2)R2,0,t + θ2R2,1,t (4-PDV)
dR1,j,t = λ1,jσtdWt − λ1,jR1,j,tdt, j ∈ {0, 1}
dR2,j,t = λ2,j

(
σ2
t −R2,j,t

)
dt, j ∈ {0, 1}

with parameters

β0, β2, λ1,j , λ2,j ≥ 0, β1 ≤ 0, θ1, θ2 ∈ [0, 1]

and initial values R1,j,0 ∈ R and R2,j,0 > 0, j ∈ {0, 1}. The above is an autonomous SDE
for the four processes (R1,j,t, R2,j,t)j∈{0,1}. We note that (4-PDV) generalizes the 2-factor
model (2-PDV); the latter is recovered when θ1, θ2 ∈ {0, 1}. Whereas for θ1, θ2 ∈ (0, 1), the
difference with (2-PDV) is that R1,t, R2,t are proper convex combinations of processes with
different time scales. Once again, R1,j,t and R2,j,t have straightforward expression once σt is
given, and R2,j,t > 0 as in (1). Our main result reads as follows.

Theorem 2. Suppose that

β2
2θ2 < 1, β2

2(1− θ2) < 1, λ1,0β
2
1(1− θ1)

2 < 2, λ1,1β
2
1θ

2
1 < 2.

Then the 4-factor model (4-PDV) has a unique strong solution.

The proof is stated in Section 3. Again, strong existence and uniqueness always hold
up to a possible explosion time. On the other hand, the example parameters determined
in [4], reproduced in Table 2, comfortably satisfy the parameter restrictions in Theorem 2.
In conclusion, explosions do not happen for realistic parameters. Finally, we observe that
the restrictions in Theorem 2 reduce to the ones in Theorem 1 when θ1, θ2 ∈ {0, 1}, so that
Theorem 2 fully contains Theorem 1.
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β0 β1 β2 λ1,0 λ1,1 λ2,0 λ2,1 θ1 θ2
0.04 -0.13 0.65 55 10 20 3 0.25 0.5

Table 2: Example parameters for the 4-factor model from [4, Table 8]

2 Analysis of the 2-Factor Model (2-PDV)

We first show, using fairly standard arguments, that (2-PDV) has a unique strong solution
up to a possible explosion time. In the second part of this section, we prove the absence of
explosions under the parameter restrictions stated in Theorem 1. In the final part, we study
the positivity of σt.

To detail the aforementioned arguments, we introduce a more concise notation for (2-PDV):
writing Rt := (R1,t, R2,t), we can rewrite (2-PDV) as

dRt = b(Rt)dt+ ν(Rt)dWt, R0 = (R1,0, R2,0)

ν(x, y) =

(
λ1(β0 + β1x+ β2

√
y)

0

)
b(x, y) =

(
−λ1x

λ2

(
β2
0 + β2

1x
2 + (β2

2 − 1)y + 2β0β1x+ 2β0β2
√
y + 2β1β2x

√
y
)) .

As the coefficients ν(x, y) and b(x, y) are continuous in their domains and the initial condition
is deterministic, the general existence result of [6, Theorem IV.2.3] shows the following.

Lemma 3. The SDE (2-PDV) has a weak solution up to a possible explosion time.

Next, we establish pathwise uniqueness. The usual local Lipschitz condition (e.g., [6,
Theorem IV.3.1]) fails because of the term √

y in the coefficients. However, as this failure
only occurs at the boundary of the relevant domain, a modification of the usual proof applies.

Lemma 4. The SDE (2-PDV) satisfies pathwise uniqueness.

Proof. Following the proof of [6, Theorem IV.3.1], we consider two solutions (R,W ) and
(R′,W ) of (2-PDV) on the same probability space (Ω,F ,P) with Brownian motion W , and
with the same initial values R0 = R′

0 = (R1,0, R2,0).
Given N, ε > 0, there exists Kε,N > 0 such that∥∥ν(x, y)− ν(x′, y′)

∥∥2 + ∥∥b(x, y)− b(x′, y′)
∥∥2 ≤ Kε,N

∥∥(x, y)− (x′, y′)
∥∥2

for all (x, y), (x′, y′) ∈ R2 with ∥(x, y)∥, ∥(x′, y′)∥ ≤ N and y, y′ ≥ ε. Define

SN := inf {t ≥ 0 : ∥Rt∥ ≥ N} , Tε := inf {t ≥ 0 : |R2,t| ≤ ε}

and similarly S′
N , T ′

ε for R′ instead of R. Set Sε,N := SN ∧ S′
N ∧ Tε ∧ T ′

ε and note that

Rt∧Sε,N
−R′

t∧Sε,N
=

∫ t∧Sε,N

0

(
ν(Rs)− ν(R′

s)
)
dWs +

∫ t∧Sε,N

0

(
b(Rs)− b(R′

s)
)
ds.
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Fix T ∈ (0,∞). For t ≤ T , Itô’s isometry and Hölder’s inequality yield

E
(
∥Rt∧Sε,N

−R′
t∧Sε,N

∥2
)

≤ 2E

(∣∣∣∣∫ t∧Sε,N

0

(
ν(Rs)− ν(R′

s)
)
dWs

∣∣∣∣2
)

+ 2E

(∣∣∣∣∫ t∧Sε,N

0

(
b(Rs)− b(R′

s)
)
ds

∣∣∣∣2
)

≤ 2E
(∫ t

0

∥∥∥ν(Rs∧Sε,N
)− ν(R′

s∧Sε,N
)
∥∥∥2 ds)+ 2TE

(∫ t

0

∥∥∥b(Rs∧Sε,N
)− b(R′

s∧Sε,N
)
∥∥∥2 ds)

≤ 2(1 + T )Kε,NE
(∫ t

0

∥∥∥Rs∧Sε,N
−R′

s∧Sε,N

∥∥∥2 ds) ,

and then Grönwall’s inequality shows

E
(
∥Rt∧Sε,N

−R′
t∧Sε,N

∥2
)
= 0.

As T > 0 was arbitrary, this holds for all t ≥ 0.
Next, we let ε → 0. In view of the positivity (1), we have Tε, T

′
ε → ∞ and conclude that

Rt∧SN∧S′
N
= R′

t∧SN∧S′
N

∀t ≥ 0.

Together with the continuity of the paths, it follows that SN = S′
N , and since this holds for

all N > 0, we have shown that R = R′ up to a possible (common) time of explosion.

As weak existence together with pathwise uniqueness implies strong existence [6, Theo-
rem IV.1.1], the results so far establish the strong wellposedness of (2-PDV) up to explosion.

Corollary 5. The SDE (2-PDV) satisfies strong existence and uniqueness up to a possible
explosion time.

Turning to the main contribution of this section, we now show the absence of explosions.

Lemma 6. If β2 < 1 and λ1β
2
1 < 2, a solution (R1,t, R2,t) of (2-PDV) cannot explode in

finite time. Moreover, supt≤T E(R2
1,t +R2,t) < ∞ for any T ∈ [0,∞).

Proof. Fix M > 0 and define the stopping times

T 1
M := inf

{
t ≥ 0 : R2

1,t ≥ M2
}

T 2
M := inf

{
t ≥ 0 : R2,t ≥ M2

}
TM := T 1

M ∧ T 2
M .

Fix also t ≥ 0, and note that

M2P(TM ≤ t) = E(M21TM≤t) ≤ E(max(R2
1,TM∧t, R2,TM∧t)) ≤ E(R2

1,TM∧t +R2,TM∧t).

In the main part of the proof below, we show that

E(R2
1,TM∧t +R2,TM∧t) ≤ c(t) (2)

with c(t) < ∞ independent of M . It will then follow that limM→∞ P(TM ≤ t) = 0, showing
that R1 and R2 have bounded paths on any compact time interval and hence completing the
proof.
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To show (2), we first apply Itô’s formula to obtain

R2
1,t∧TM

= R2
1,0 +

∫ t∧TM

0
2λ1σsR1,sdWs +

∫ t∧TM

0
(λ2

1σ
2
s − 2λ1R

2
1,s)ds.

As σsR1,s is uniformly bounded up to the stopping time t ∧ TM , it follows that

E(R2
1,TM∧t) = R2

1,0 + E
(∫ t∧TM

0
(λ2

1σ
2
s − 2λ1R

2
1,s)ds

)
and thus, by Fubini’s theorem,

E(R2
1,TM∧t) = R2

1,0 +

∫ t

0
E
(
(λ2

1σ
2
s − 2λ1R

2
1,s)1s≤t∧TM

)
ds. (3)

Next, we insert the definition of σ2
s to get

E(R2
1,TM∧t) = R2

1,0 +

∫ t

0
E
({

λ2
1(β0 + β2

√
R2,s)

2

+ 2λ2
1β1(β0 + β2

√
R2,s)R1,s + (λ2

1β
2
1 − 2λ1)R

2
1,s

}
1s≤t∧TM

)
ds.

We may see the expression inside the curly brackets is a quadratic polynomial C+Bx+Ax2

evaluated at x = R1,s. Our assumption that λ1β
2
1 < 2 is equivalent to A < 0, so that the

polynomial has finite maximum value

C − B2

4A
= λ2

1(β0 + β2
√
R2,s)

2 +
λ4
1β

2
1(β0 + β2

√
R2,s)

2

2λ1 − λ2
1β

2
1

=
2λ2

1

2− λ1β2
1

(β0 + β2
√

R2,s)
2 ≤ 4λ2

1β
2
0

2− λ1β2
1

+
4λ2

1β
2
2

2− λ1β2
1

R2,s .

Using this as an upper bound for the expression in the curly brackets, we conclude that

E(R2
1,TM∧t) ≤ R2

1,0 +

∫ t

0
E
((

4λ2
1β

2
0

2− λ1β2
1

+
4λ2

1β
2
2

2− λ1β2
1

R2,s

)
1s≤t∧TM

)
ds

≤ R2
1,0 +

4λ2
1β

2
0

2− λ1β2
1

t+
4λ2

1β
2
2

2− λ1β2
1

∫ t

0
E (R2,s∧TM

) ds

=: c1,1 + c1,2t+ c1,3

∫ t

0
E (R2,s∧TM

) ds (4)

where the constants c1,1, c1,2, c1,3 > 0 are independent of M and t.
Our next goal is a similar bound for R2 instead of R2

1. From the SDE for R2,

E(R2,TM∧t)

= R2,0 + λ2E
(∫ t∧TM

0

(
σ2
s −R2,s

)
ds

)
= R2,0 + λ2

∫ t

0
E
(
(σ2

s −R2,s)1s≤t∧TM

)
ds

= R2,0 + λ2

∫ t

0
E
({

(β0 + β1R1,s)
2 + 2 (β0 + β1R1,s)β2

√
R2,s + (β2

2 − 1)R2,s

}
1s≤t∧TM

)
ds.
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Here we observe a quadratic polynomial of
√
R2,s inside the curly brackets, and as we have

assumed that β2
2 − 1 < 0, the polynomial has maximum value

(β0 + β1R1,s)
2 +

(β0 + β1R1,s)
2 β2

2

1− β2
2

=
1

1− β2
2

(β0 + β1R1,s)
2 ≤ 2β2

0

1− β2
2

+
2β2

1

1− β2
2

R2
1,s .

We conclude that

E(R2,TM∧t) ≤ R2,0 + λ2

∫ t

0
E
((

2β2
0

1− β2
2

+
2β2

1

1− β2
2

R2
1,s

)
1s≤t∧TM

)
ds

≤ R2,0 +
2β2

0λ2

1− β2
2

t+
2β2

1λ2

1− β2
2

∫ t

0
E
(
R2

1,s∧TM

)
ds

=: c2,1 + c2,2t+ c2,3

∫ t

0
E
(
R2

1,s∧TM

)
ds, (5)

where again the constants do not depend on M and t.
Writing ci = c1,i + c2,i, combining (4) and (5) yields

E(R2
1,TM∧t +R2,TM∧t) ≤ c1 + c2t+ c3

∫ t

0
E
(
R2

1,s∧TM
+R2,s∧TM

)
ds,

and now Grönwall’s inequality shows

E(R2
1,TM∧t +R2,TM∧t) ≤ (c1 + c2t) e

c3t.

This establishes (2) and hence completes the proof.

2.1 Positivity of σt

In this section we show that σt > 0 under certain conditions. More precisely, we exhibit a
lower bound σt ≥ Yt > 0 which also shows, e.g., that 1/σt has finite moments of all orders.
This strengthens the result in [4, Section 4.1.5] where it is observed that σt ≥ 0 since the
drift of σt would be positive whenever σt reaches 0.

Theorem 7. Consider the solution (R1,t, R2,t) of (2-PDV) up to a possible time τ of explo-
sion. If the initial values (R1,0, R2,0) are such that σ0 = β0 + β1R1,0 + β2

√
R2,0 > 0, and if

moreover λ2 < 2λ1, then σt > 0 for all t < τ . More precisely, we have σt ≥ Yt, where Yt is
the stochastic exponential (9).

Proof. By Itô’s formula, σt satisfies the SDE

dσt =

(
−β1λ1R1,t +

λ2β2
2

σ2
t −R2,t√

R2,t

)
dt+ β1λ1σtdWt . (6)

Using the assumption that λ2 < 2λ1, we can bound the drift of σt from below:

−β1λ1R1,t +
λ2β2
2

σ2
t −R2,t√

R2,t

= −λ1(σt − β0 − β2
√

R2,t)−
λ2β2
2

√
R2,t +

λ2β2
2

σ2
t√
R2,t

≥ −λ1σt + β0λ1 + β2

(
λ1 −

λ2

2

)√
R2,t +

λ2β2
2

σ2
t√
R2,t

≥ −λ1σt (7)
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because all the other terms are nonnegative. Inspired by (7), we define a process Y via

dYt = −λ1Ytdt+ β1λ1YtdWt , Y0 = σ0. (8)

Note that Y is simply the stochastic exponential

Yt = σ0 exp

(
β1λ1Wt − λ1t−

1

2
β2
1λ

2
1t

)
(9)

and, in particular, Yt > 0 for all t ≥ 0.
The SDEs (6) and (8) have the same initial condition σ0, the same volatility function

v(x) = β1λ1x and their drift functions are ordered according to (7). Moreover, both drift
and volatility functions are continuous on the relevant domains, the drift function of Y is
Lipschitz, and ∫ ε

0
v(x)−2dx = ∞

for every ε > 0. In view of these conditions, the comparison result for SDEs1 [7, Theo-
rem 5.2.18] yields that σt ≥ Yt for all t < τ .

3 Analysis of the 4-Factor Model (4-PDV)

The general wellposedness of (4-PDV) is shown using the same arguments as in the 2-factor
model; we therefore omit the proof.

Proposition 8. The SDE (4-PDV) satisfies strong existence and uniqueness up to a possible
explosion time.

The next result contains our main contribution.

Lemma 9. Suppose that

β2
2θ2 < 1, β2

2(1− θ2) < 1, λ1,0β
2
1(1− θ1)

2 < 2, λ1,1β
2
1θ

2
1 < 2.

Then a solution (R1,j,t, R2,j,t)j∈{0,1} of (4-PDV) cannot explode in finite time. Moreover,
supt≤T E(R2

1,0,t +R2
1,1,t +R2,0,t +R2,1,t) < ∞ for any T ∈ [0,∞).

Proof. We follow the guidance provided by the 2-factor model. Fix M > 0 and define

T 1,0
M := inf

{
t ≥ 0 : R2

1,0,t ≥ M2
}

T 1,1
M := inf

{
t ≥ 0 : R2

1,1,t ≥ M2
}

T 2,0
M := inf {t ≥ 0 : R2,0,t ≥ M2

}
T 2,1
M := inf

{
t ≥ 0 : R2,1,t ≥ M2

}
TM := T 1,0

M ∧ T 1,1
M ∧ T 2,0

M ∧ T 2,1
M .

1To be precise, the cited theorem is stated for SDEs where the drift and volatility functions depend only
on time and the solution process. Here, they are random as they depend on (R1,t, R2,t). The proof holds
without change.
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Fix also t > 0, then

M2P(TM ≤ t) = E(M21TM≤t)

≤ E
(
max

(
R2

1,0,t∧TM
, R2

1,1,t∧TM
, R2,0,t∧TM

, R2,1,t∧TM

))
≤ E

(
R2

1,0,t∧TM
+R2

1,1,t∧TM
+R2,0,t∧TM

+R2,1,t∧TM

)
= E(Ut∧TM

)

where

Ut := R2
1,0,t +R2

1,1,t +R2,0,t +R2,1,t .

We shall prove that
E(Ut∧TM

) ≤ C(t) (10)

for a continuous C(t) independent of M , and that will imply the claim.
To prove (10), we note as in (3) that

E
(
R2

1,j,t∧TM

)
= R2

1,j,0 +

∫ t

0
E
(
{λ2

1,jσ
2
s − 2λ1,jR

2
1,j,s}1s≤t∧TM

)
ds. (11)

We first focus on j = 0. Inserting the definition of σ2
s and then the one of R2

1,s, we have

λ2
1,0σ

2
s−2λ1,0R

2
1,0,s

= λ2
1,0(β0 + β2

√
R2,s)

2 + 2λ2
1,0β1(β0 + β2

√
R2,s)R1,s + λ2

1,0β
2
1R

2
1,s − 2λ1,0R

2
1,0,s

= C +BR1,0,s +AR2
1,0,s

where

C = λ2
1,0(β0 + β2

√
R2,s)

2 + 2λ2
1,0β1θ1(β0 + β2

√
R2,s)R1,1,s + λ2

1,0β
2
1θ

2
1R

2
1,1,s

B = 2λ2
1,0β1(1− θ1)(β0 + β2

√
R2,s) + 2λ2

1,0β
2
1θ1(1− θ1)R1,1,s

A = λ2
1,0β

2
1(1− θ1)

2 − 2λ1,0 .

Our assumption that λ1,0β
2
1(1− θ1)

2 < 2 means that A < 0, hence the quadratic polynomial
C +Bx+Ax2 has a maximum. By an elementary if tedious calculation, that value is

C − B2

4A
=

2λ2
1,0

2− λ1,0β2
1(1− θ1)2

(
β0 + β2

√
R2,s + β1θ1R1,1,s

)2
.

Applying the elementary bound (a+ b)2 ≤ 2a2 + 2b2 twice, we conclude

λ2
1,0σ

2
s − 2λ1,0R

2
1,0,s ≤

4λ2
1,0

2− λ1,0β2
1(1− θ1)2

(
2β2

0 + 2β2
2R2,s + β2

1θ
2
1R

2
1,1,s

)
.

Using this inequality in (11) yields

E
(
R2

1,0,t∧TM

)
≤ R2

1,0,0 +

∫ t

0
E

(
4λ2

1,0

2− λ1,0β2
1(1− θ1)2

(
2β2

0 + 2β2
2R2,s∧TM

+ β2
1θ

2
1R

2
1,1,s∧TM

))
ds

=: c1,0,0(t) + c1,0,1

∫ t

0
E(R2,s∧TM

)ds+ c1,0,2

∫ t

0
E(R2

1,1,s∧TM
)ds
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where c1,0,0(t) is affine in t.
Symmetrically, we have for j = 1 that

λ2
1,1σ

2
s − 2λ1,1R

2
1,1,s ≤

4λ2
1,1

2− λ1,1β2
1θ

2
1

(
2β2

0 + 2β2
2R2,s + β2

1(1− θ1)
2R2

1,0,s

)
and then

E
(
R2

1,1,t∧TM

)
≤ R2

1,1,0 +

∫ t

0
E

(
4λ2

1,1

2− λ1,1β2
1θ

2
1

(
2β2

0 + 2β2
2R2,s∧TM

+ β2
1(1− θ1)

2R2
1,0,s∧TM

))
ds

:= c1,1,0(t) + c1,1,1

∫ t

0
E(R2,s∧TM

)ds+ c1,1,2

∫ t

0
E(R2

1,0,s∧TM
)ds.

Combining the results for j = 0 and j = 1 yields

E
(
R2

1,0,t∧TM
+ R2

1,1,t∧TM

)
≤ c1,0(t) + c1,1

∫ t

0
E(R2,s∧TM

)ds+ c1,2

∫ t

0
E
(
R2

1,0,s∧TM
+R2

1,1,s∧TM

)
ds (12)

where the constants have the obvious definitions.
Next, we derive a similar bound for R2,j instead of R2

1,j . From the SDE for R2,j ,

E (R2,j,t∧TM
) = R2,j,0 + λ2,j

∫ t

0
E
(
(σ2

s −R2,j,s)1s≤t∧TM

)
ds. (13)

Focusing again on j = 0 first, we insert the definitions of σ2
s and R2,s and estimate

σ2
s −R2,0,s

= (β0 + β1R1,s)
2 + 2β2(β0 + β1R1,s)

√
R2,s + β2

2θ2R2,1,s + (β2
2(1− θ2)− 1)R2,0,s

≤ (β0 + |β1||R1,s|)2 + 2β2(β0 + |β1||R1,s|)
√
R2,s + β2

2θ2R2,1,s + (β2
2(1− θ2)− 1)R2,0,s

≤ (β0 + |β1||R1,s|)2 + 2β2(β0 + |β1||R1,s|)(
√
θ2
√
R2,1,s +

√
1− θ2

√
R2,0,s)

+ β2
2θ2R2,1,s + (β2

2(1− θ2)− 1)R2,0,s

= C +B
√

R2,0,s +AR2,0,s

where

A = β2
2(1− θ2)− 1

B = 2β2
√

1− θ2(β0 + |β1||R1,s|)

C = (β0 + |β1||R1,s|)2 + β2
2θ2R2,1,s + 2β2

√
θ2(β0 + |β1||R1,s|)

√
R2,1,s .

The polynomial C + Bx + Ax2 has a maximum as A < 0 due to β2
2(1 − θ2) < 1, and the

maximum value is

C − B2

4A
=

1

1− β2
2(1− θ2)

(β0 + |β1||R1,s|)2 + β2
2θ2R2,1,s + 2β2

√
θ2(β0 + |β1||R1,s|)

√
R2,1,s .
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It follows that

σ2
s −R2,0,s ≤

1

1− β2
2(1− θ2)

(β0 + |β1||R1,s|)2 + β2
2θ2R2,1,s + 2β2

√
θ2(β0 + |β1||R1,s|)

√
R2,1,s

≤ 1

1− β2
2(1− θ2)

(β0 + |β1||R1,s|)2 + β2
2θ2R2,1,s + β2

2θ2R2,1,s + (β0 + |β1||R1,s|)2

=
2− β2

2(1− θ2)

1− β2
2(1− θ2)

(β0 + |β1||R1,s|)2 + 2β2
2θ2R2,1,s

≤ 2− β2
2(1− θ2)

1− β2
2(1− θ2)

(2β2
0 + 2β2

1R
2
1,s) + 2β2

2θ2R2,1,s .

Applying this in (13), we conclude that

E (R2,0,t∧TM
) ≤ R2,0,0 + λ2,0

∫ t

0
E
(
2− β2

2(1− θ2)

1− β2
2(1− θ2)

(2β2
0 + 2β2

1R
2
1,s∧TM

) + 2β2
2θ2R2,1,s∧TM

)
ds

=: c2,0,0(t) + c2,0,1

∫ t

0
E
(
R2

1,s∧TM

)
ds+ c2,0,2

∫ t

0
E (R2,1,s∧TM

) ds.

Symmetrically, we obtain for j = 1 that

σ2
s −R2,1,s ≤

2− β2
2θ2

1− β2
2θ2

(2β2
0 + 2β2

1R
2
1,s) + 2β2

2(1− θ2)R2,0,s

and then

E (R2,1,t∧TM
) ≤ R2,1,0 + λ2,0

∫ t

0
E
(
2− β2

2θ2
1− β2

2θ2
(2β2

0 + 2β2
1R

2
1,s∧TM

) + 2β2
2(1− θ2)R2,0,s∧TM

)
ds

:= c2,1,0(t) + c2,1,1

∫ t

0
E
(
R2

1,s∧TM

)
ds+ c2,1,2

∫ t

0
E (R2,0,s∧TM

) ds.

Adding the two inequalities, we deduce

E (R2,0,t∧TM
+R2,1,t∧TM

)

≤ c2,0(t) + c2,1

∫ t

0
E(R2

1,s∧TM
)ds+ c2,2

∫ t

0
E (R2,0,s∧TM

+R2,1,s∧TM
) ds

≤ c2,0(t) + c2,1

∫ t

0
E(R2

1,0,s∧TM
+R2

1,1,s∧TM
)ds+ c2,2

∫ t

0
E (R2,0,s∧TM

+R2,1,s∧TM
) ds

(14)

where we used the elementary convexity inequality

R2
1,s = ((1− θ1)R1,0,s + θ1R1,1,s)

2 ≤ (1− θ1)R
2
1,0,s + θ1R

2
1,1,s ≤ R2

1,0,s +R2
1,1,s .

We can now add (12) and (14) to obtain

E(Ut∧TM
) ≤ c0(t) + c1

∫ t

0
E(Us∧TM

)ds

where c0(t) is affine and nondecreasing in t and c0(t), c1 do not depend on M . Grönwall’s
inequality then yields

E(Ut∧TM
) ≤ c0(t)e

c1t

which is the desired bound (10).
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3.1 Failure of Positivity of σt in (4-PDV)

In [4] it is reported that for realistic parameter values, the volatility σt remained positive in
simulations of the 4-factor model. Nevertheless, existence of a reasonable sufficient condition
for σt > 0 (or even just σt ≥ 0) in (4-PDV) remains open. Below, we explain that a direct
generalization of Theorem 7 fails. Indeed, in the 4-factor model, σt follows the SDE

dσt =

(
−β1λ̄1R̄1,t +

λ̄2β2
2

σ2
t − R̄2,t√

R2,t

)
dt+ β1λ̄1σtdWt (15)

where

λ̄i := (1− θi)λi,0 + θiλi,1 , R̄i,t :=
(1− θi)λi,0Ri,0,t + θiλi,1Ri,1,t

λ̄i

as seen in [4]. The analogue of the condition in Theorem 7 is λ̄2 < 2λ̄1.

Proposition 10. Under the conditions of Theorem 2 for wellposedness, and even if λ̄2 < 2λ̄1,
it may happen that σ0 > 0 but P(σt < 0) > 0 for some t > 0.

Proof. We choose initial conditions R1,0,0 < 0 and R1,1,0 > 0, and coefficients θ1, λ1,0, λ1,1,
such that R1,0 > 0 and R̄1,0 < 0. Next, choose β1 = −1 (say), and β2 > 0 small enough such
that β1R1,0 + β2

√
R2,0 = 0. Consider for the moment β0 := 0, then the preceding identity

means that σ0 = 0. Inspecting (15), we see that at t = 0, the volatility vanishes while the
drift rate is

−β1λ̄1R̄1,t −
λ̄2β2
2

R̄2,t√
R2,t

< 0.

By continuity of the paths, it follows that P(σt < 0) > 0 for all t > 0 sufficiently small.
Next, we modify the above by choosing β0 strictly positive, so that σ0 = β0 > 0. We

may see β0 as a parameter of the SDE determining σt. If the solution is continuous with
respect to β0, it follows that P(σt < 0) > 0 for β0 > 0 and t sufficiently small. Continuity is
a standard result for SDEs with Lipschitz coefficients (e.g., [8, Section 4.5]). To see that the
Lipschitz result is sufficient, note that for the present purpose of showing that P(σt < 0) > 0
for some small t > 0, we may truncate the non-Lipschitz coefficients in (4-PDV); that is, we
replace

√
R2,t by

√
R2,t ∨ δ and σ2

t by σ2
t ∧ δ−1 for a small constant δ > 0.
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