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1 A motivating question and a few results
Let X ⊂ PnC be a smooth hypersurface of degree d defined by
F (x0, . . . , xn) = 0.

The “naive” moduli space of rational curves of degree e on X , denoted
by More (P1,X), can be thought of as tuples (f0(u, v), . . . , fn(u, v))
of homogeneous polynomials up to scaling with no common roots, with
each fi of degree e, and such that F (f0, . . . , fn) vanishes identically.

Its expected dimension is given by

µ̄ = (n + 1) (e + 1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
coefficients for fi

− (de + 1)
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

vanishing of coefficients of F (f0,...,fn)

− 1®
scaling

.

Related spaces: M0,0(X,e) (morphisms up to automorphisms of P1)
and M0,0(X,e) (Kontsevich compactification), which have expected
dimension µ − 3.

Question 1. What can we say about the geometry of these moduli spaces
and how can we use this to better understand X?

1.1 Irreducibility and expected dimension
Conjecture 2 (Coşkun–Harris–Starr). If X is general, d ≥ 3, and
n ≥ d + 1, thenM0,0(X,e) is irreducible of the expected dimension.

Some known results about irreducibility and expected dimension ([9, 4,
3, 1]):

• Riedl–Yang: Proved forM0,0(X,e) with X general and n ≥ d + 2.
• Coşkun–Starr: Proved for M0,0(X,e) with X any smooth cubic

hypersurface and n ≥ 5.
• Browning–Vishe/Browning–Bilu: Proved for M0,0(X,e) with X

any smooth hypersurface and n ≥ 2d(d − 1).

We prove the following generalization to higher genus curves ([7]):

Theorem 3 (HL). Let C be a smooth projective curve of genus g and
X ⊂ PnC a smooth hypersurface of degree d ≥ 2. If n ≥ 2d(d−1)+1 and
e ≫g,d 1, then More(C,X) is irreducible of the expected dimension
(n + 1)(e − g + 1) − (de − g + 1) − 1 + g.

1.2 Singularities
Some known results about singularities ([6, 2, 10]):

• Harris–Roth–Starr: M0,0(X,e) is generically smooth for X general
and n ≥ 2d.

• Browning–Sawin: Lower bound on the codimension of the singular lo-
cus ofM0,0(X,e) forX any smooth hypersurface and n ≥ 3(d−1)2d.

• Starr: M0,0(X,e) has at worst canonical singularities for X general
and n ≥ d + e.

We prove that these moduli spaces have mild singularities for n suffi-
ciently large compared to d ([5]):

Theorem 4 (Glas–HL). Let C be a smooth projective curve of genus
g and X ⊂ PnC a smooth hypersurface of degree d ≥ 2. If n ≥
(d − 1)(4d2 − 4d + 3)2d−2 (resp. n ≥ (d − 1)(d2 − d + 1)2d−1) and
e ≫g,d 1, then More (C,X) has at worst terminal (resp. canonical)
singularities.

Remark 5. One reason to care about mild singularities is that
More (P1,X) (andM0,0(X,e)) is of general type when n is close to d
if it is irreducible of the expected dimension and has at worst canonical
singularities.

1.3 Applications to hypersurfaces

The geometry of More(C,X) for higher genus curves C can be used to
extract information about X . Recall the Fujita invariant:

Definition 6. Let X be a complex projective variety, X → X a resolu-
tion of singularities, and L a big and nef Q-divisor on X . Then,

a(X,L) ∶= min{t ∈ R∶ t[L] + [KX] is pseudo-effective} .

For instance, if X is a smooth Fano variety, then a(X,−KX) = 1.

Definition 7. If X is a smooth Fano variety, an accumulating map
f ∶Y → X is a morphism f that is generically finite, non-birational,
and satisfies a(Y,−f∗KX) ≥ 1.

We show the following ([7, 8]):

Theorem 8 (HL). If X ⊂ PnC is either
• a smooth hypersurface of degree d ≥ 2 with n ≥ 2d(d − 1) + 1, or
• a general or Fermat hypersurface of degree d ≥ 5 with n ≥ 4d − 6,
then there are no accumulating maps to X .

Remark 9. This can be thought of as a kind of converse to geometric
Manin’s conjecture, which predicts that poorly-behaved components of
moduli spaces of curves on X are controlled by the Fujita invariant.

2 Ideas behind Theorem 8
Theorem 8 follows from our dimension results on moduli spaces of
curves on hypersurfaces. For simplicity, we only consider accumulating
maps given by inclusions of proper subvarieties.

The key point is to assume the existence of a proper subvariety V with
large Fujita invariant. This produces a curve C such that the space of
maps C → V is larger than the space of maps C →X , which is impos-
sible. To control the dimensions of these moduli spaces, we use lower
bounds from deformation theory and upper bounds from Theorem 3.

Proof outline:
1. Assume for contradiction that there exists a proper subvariety V ⊂X

for which a(V,−KX ∣V ) ≥ 1.
2. Pass to a resolution of singularities Y → V and find a curve C on Y

so that (KY − m−1m KX ∣Y ) ⋅C < 0 for some large m.
3. Observe that dim Mor[h](C,V ) − dim Mor[h](C,X) is at least
(−KY +KX ∣Y ) ⋅C + (g(C) − 1)(dimX − dimV ) for suitable h.

4. Spread out to work over characteristic p and replace C with Artin–
Schreier covers and Frobenius twists to increase both genus and de-
gree to make the right-hand side positive to achieve contradiction.

3 Ideas behind Theorems 3 and 4
We prove Theorems 3 and 4 by generalizing Browning–Vishe’s work
using the circle method from analytic number theory. For simplicity,
we only consider C = P1.

Proof outline:
1. Use Mustaţă’s criterion to relate More(P1,X) having mild singu-

larities to another variety (encoding information about singularities)
being irreducible of the expected dimension.

2. Pass to positive characteristic and point-counting via spreading out
and the Lang–Weil bounds.

3. Express point-counts in terms of exponential sums and apply a
function-field version of the circle method.

3.1 Mustaţă’s criterion and jet schemes
Definition 10. The mth jet scheme Jm(Y ) of a variety Y is a variety
whose A-points are the A[t]/tm+1-points of Y , for any algebra A.

The following criterion relates the quality of singularities of a variety
to simpler geometric properties of its jet schemes.

Theorem 11 (Mustaţă). Let Y be a local complete intersection vari-
ety. For all m ≥ 0, if Jm(Y ) is irreducible of the expected dimension
(m + 1)dimY , then Y has at worst canonical singularities. Moreover,
if J1(Jm(Y )) is irreducible of the expected dimension 2(m+1)dimY ,
then Y has at worst terminal singularities.

Goal: It suffices to show Jm (More (P1,X)) and
J1 (Jm (More (P1,X))) are irreducible of the expected dimension.

3.2 Passing to positive characteristic and point-counting

For further simplicity, we only considerm = 0, i.e. J0 (More (P1,X)) =
More (P1,X).

Spreading out procedure: More (P1,X) can be expressed as the base
change of the generic fiber of a family M → Spec Λ, where Λ is a
finitely-generated Z-algebra obtained by adjoining coefficients of X .
Closed points of Spec Λ are dense and have finite residue field, and
one can show it suffices to prove most fibers above a closed point are
irreducible of the expected dimension.

Moreover, the Lang–Weil bounds give an asymptotic expression for the
number of Fq-points of a variety in terms of the number of its compo-
nents and its dimension.

New (simplified) goal: Let X ⊂ PnFq be a smooth hypersurface with
char(Fq) > d. It suffices to show

lim
q→∞ q

−µ# More(P1,X)(Fq) ≤ 1.

3.3 Points-counts in terms of exponential sums
Let Polye denote the vector space of homogeneous polynomials in
Fq[u, v] of degree e.

The circle is defined as the space of linear functionals Poly∨de (linear
maps Polyde → Fq).

For α ∈ Poly∨de, we define the exponential sum associated to α as fol-
lows:

S(α) ∶= ∑
x⃗∈Polyn+1e

ψ (α (F (x⃗))) ,

where ψ is a non-trivial additive character Fq → C×.

Then the “igniting spark” of the circle method is the observation that

∑
α∈Poly∨de

S(α) = ∑
x⃗∈Polyn+1e

∑
α∈Poly∨de

ψ (α (F (x⃗)))

= ∑
x⃗∈Polyn+1e

⎧⎪⎪⎨⎪⎪⎩

0 if F (x⃗) ≠ 0,
# Poly∨de else

= # Poly∨de´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
qde+1

#{(x0, . . . , xn) ∈ Polyn+1e ∶ F (x0, . . . , xn) = 0}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

almost More(P1,X)

.

“Almost More (P1,X)” is basically More (P1,X), except we forget the
condition that x0, . . . , xn don’t have a common root.

New goal: Show

∑
α∈Poly∨de

S(α) ∼ q(n+1)(e+1) as q →∞.

3.4 Analysis of ∑α∈Poly∨deS(α)
Observe that for α = 0, we have

S(0) = ∑
x⃗∈Polyn+1e

ψ (0) = # Polyn+1e = q(n+1)(e+1),

so we need ∑α≠0S(α) to be small! To make this work, we stratify the
circle by degree. Say α factors through a closed subscheme Z ⊂ P1 if
α is determined by its restriction to Z, and define deg(α) to be the
minimum over all degrees of Z that α factors through.

Idea of stratification:
• For deg(α) ≤ e + 1, ∑α≠0,deg(α)≤e+1S(α) = o (q(n+1)(e+1)) . This

is proved by a direct point-counting argument using the principle of
inclusion-exclusion.

• For deg(α) > e+1, each individual S(α) is sufficiently small. This is
proved by relating S(α) to a more linearized quantity N(α) (Weyl
differencing), which is deformed to a slightly different counting ex-
pression Ns(α) (Davenport shrinking), which is finally bounded by
an easier point-counting problem.

Remark 12. This strategy from analytic number theory can be inter-
preted geometrically. In particular, there is a vector bundle E on P1

constructed from Beauville–Laszlo glueing such that N(α) can be ex-
pressed in terms of h0(E) and Ns(α) in terms of h0(E(−s)). Daven-
port shrinking then amounts to observing how E and E(−s) split into
line bundles. For higher genus curves, a natural generalization is to use
the slopes coming from the Harder–Narasimhan filtration.
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