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We begin with a motivating example. Consider continuous functions f (valued in R) on some
open subset U ⊂ R, i.e. f ∶U → R). For any open subset V of U , we can restrict f to get a
continuous function on V , i.e. f ∣V ∶V → R, given by the composition V ⊂ U → R. If U = U1 ∪U2

(cover by two open subsets), then if two continuous functions f, g on U agree on both U1 and
U2, then f = g (if this seems straightforward then you’re not overthinking it). For any open
subsets U1 and U2 and continuous functions f1∶U1 → R and f2∶U2 → R that agree on the overlap
U1∩U2, we can “glue” f1 and f2 to get a continuous function f on U1∪U2. Indeed, for any x ∈ U1,
we let f(x) = f1(x) and for any y ∈ U2, we let f(y) = f2(y). This is well-defined because for
x ∈ U1∩U2, we have f(x) = f1(x) = f2(x) by assumption. As an exercise, check this indeed gives
a continuous function!

This example encodes the data of the “sheaf of continuous functions onR,” which, more precisely,
is a collection of continuous functions for each open subset U ⊂ R that satisfies 1. restriction (i.e.
that you can another continuous function by restricting to a smaller open subset V ), 2. locality
(i.e. if two functions agree on restrictions that cover the domain, then they are the same), and 3.
glueing (i.e. that you can can construct a new continuous function from two that agree on the
overlap of their domains).

Definition 1. Let X be a topological space. A presheaf of sets F on X is an assignment that
associates to each open subset U ⊂ X a set F (U) along with maps ρUV ∶F (U) → F (V ) (we will
also write ρUV (s) = s∣V as motivated by the example above) for any V ⊂ U s.t. ρUU ∶F (U) →
F (U) is the identity and for any chain W ⊂ V ⊂ U , we have ρUW = ρVW ○ ρUV . Elements of
F (U) are called sections of F over U . Alternatively, one can think of F as a functor from the
opposite category of open subsets (the morphisms given by inclusion) to the category Set (the
conditions on ρUV are just what you need to make this a functor).

A presheaf F is moreover a sheaf if

(i) (Locality) Given U and a covering ⋃i∈I Ui = U by open subsets, if s, t ∈ F (U) satisfy s∣Ui
=

t∣Ui
for all i ∈ I , then s = t.

(ii) (Glueing) Given U and a covering ⋃i∈I Ui = U by open subsets, along with si ∈ F (Ui) s.t.
si∣Ui∩Uj

= sj ∣Ui∩Uj
for all i, j, then there exists (and is unique by locality!) s ∈ F (U) s.t.

s∣Ui
= si for all i ∈ I .

Example 2. Let S be a discrete topological space. Then we can define a sheaf F on a topological
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space X by letting F (U) be the set of continuous functions U → S, which we call the constant
sheaf. This name comes from the fact that for any connected open subset U , we have that F (U)
is just the constant functions, i.e. F (U) = S.

Example 3. If F is a sheaf onX and U is an open subset, then we can define the restriction of
F to U , denoted F ∣U , as the presheaf such that for any open subset V ⊂ U (which is necessarily
an open subset ofX as well) we have F ∣U(V ) = F (U) (along with the same ρmaps). Check that
this is moreover a sheaf!

Combining the two examples above, we say that a sheaf F on X is locally constant if there
exists an open cover ⋃i∈I Ui =X s.t. F ∣Ui

is constant.

We’ll now try to relate this back to the earlier talks on covering spaces:

Definition 4. Let p∶Y → X be a continuous map of spaces and U ⊂ X an open subset. Then, a
section of p over U is a continuous map s∶U → Y s.t. p ○ s is the identity on U .

Given a p∶Y →X , we can define the sheaf of local sectionsFY (which a priori is just a presheaf):
for any U ⊂X an open subset, let FY (U) be the set of sections of p over U and let the restriction
maps ρ be given by restriction of domains of functions (i.e. if f ∈ FY (U) is a map f ∶U → Y , then
by restricting to V , i.e. the composition f ∣V ∶V ⊂ U → Y , we get f ∣V ∈ FY (V )).

Proposition 5. FY is actually a sheaf. If p∶Y → X is moreover a covering space, then FY is
locally constant. If p∶Y →X is the trivial covering space, then FY is the constant sheaf.

Proof. The basic idea for the second statement is to take a trivializing cover of the base so that
locally we have V × p−1(x) → V (recall that was the definition of a covering space, namely that
locally on the base it is the trivial cover), where p−1(x) is the fiber over some point x ∈ V ⊂ X .
Any section maps homeomorphically onto one of the connected components of V × p−1(x), and
so the sections over V are in bijection with the points of the fiber p−1(x). It follows that FY is
locally constant (c.f. the examples above on locally constant and constant sheaves). It’s also clear
that if we start with a trivial covering space, then we already have a constant sheaf (can take V
to be all of X). ,

Now, we can define a functor (p∶Y →X)↦ FY from covering spaces overX to locally constant
sheaves on X . For a morphism Y → Z of covers over X , we get a map FY → FZ by sending a
local section U → Y of Y →X to the local section U → Y → Z of Z →X by post-composition (I
haven’t defined what a map of sheaves is, but if you accept the definition as a functor, then it is
just a natural transformation).

Theorem 6. The functor above induces an equivalence of categories between covering spaces
over X and locally constant sheaves on X .

Using the Galois correspondence from earlier, we have the following corollary:

Corollary 7. Fix x ∈ X . The category of locally constant sheaves on X is equivalent to the
category of sets with a left action of π1(X,x).

More precisely, this equivalence is obtained by sending a sheaf F to its stalk Fx at a point x,
which is defined as the limÐ→x∈U⊂X open subset

F (U). Since I haven’t defined what a colimit is, I won’t
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say too much about this in general, but in our case, for connected U , we know that F (U) is some
fixed set, so we we can just take Fx to be this fixed set.

From this point onwards, I will be even more imprecise and vague.

The story above works verbatim if we replace sheaf of sets with sheaf of abelian groups or sheaf
of vector spaces. We will also say complex local systems onX instead of locally constant sheaf
on X of finite-dimensional complex vector spaces. Then, the corollary above can be restated as
follows:

Theorem 8. Let X be a connected and locally simply connected space and x ∈X . The category
of complex local systems on X is equivalent to the category of finite-dimensional left represen-
tations of π1(X,x).

In other words, a local system on X is the same data as a representation π1(X,x) → GLn(C),
which is called themonodromy representation.

Finally, we’ll touch a bit on a very simple case of the Riemann-Hilbert correspondence, which
relates monodromy representations to solutions of differential equations.

Fix an open connected subset D ⊂ C.

First, note that the sheaf O of holomorphic functions on D is actually valued in rings (we can
multiply functions together). We can sheafify the notion of a module: a sheaf of O-modules
F is a sheaf of abelian groups on D s.t. for any open subset U ⊂ D, the group F (U) has an
O(U)-module structure, i.e. O(U) × F (U) → F (U) that is natural (i.e. the canonical maps to
O(V ) × F (V )→ F (V ) commute for any inclusion V ⊂ U ).

We say that F is locally free if we can find an open cover ofD = ⋃i Vi s.t. F ∣Vi
≅ On∣Vi

for some
fixed n > 0, which we call the rank of F .

Recall that a holomorphic 1-form on an open subset V ⊂ C is an expression of the form ω =
f(z)dz, where f is holomorphic on V . We can define a sheaf of holomorphic 1-forms on D,
denoted by Ω1

D by letting Ω1
D(U) be the holomorphic 1-forms on U ⊂D.

Definition 9. A holomorphic connection onD is a pair (E,∇), whereE is a locally free sheaf
on D and ∇∶E → E ⊗O Ω1

D is a morphism of sheaves of C-vector spaces s.t.

∇(fs) = df ⊗ s + f∇(s)

(this is also called the Leibnitz rule). ∇ is called the connection map.

Remark 10. We haven’t defined what a tensor product of sheaves is, but roughly on sections you
take the tensor product (you have to be careful because this doesn’t necessarily give you a sheaf,
so you have to “sheafify” this).

Example 11. Let E = On. Then, we can define a connection map d∶On → (Ω1
D)

n by sending
(f1, . . . , fn) to (df1, . . . , dfn).

For any other connection map ∇, we can check that (∇ − d)(fs) = f(∇ − d)(s) for any f ∈
O(D) and s ∈ E(D). So it follows that ∇ − d is given by some matrix of holomorphic 1-forms,
which we call the connection matrix of ∇. Writing each entry as fijdz, it follows that setting
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f = (f1, . . . , fn) and Aij = −fij (A is a matrix) means that ∇f = 0 iff f satisfies the differential
equation y′ = Ay (this is where differential equations come in!).

Definition 12. s ∈ E(U) is called horizontal if ∇(s) = 0. The subsheaf of horizontal sections
is denoted by E∇ (check this!).

Lemma 13. E∇ is a local system of the same dimension as E.

The following proposition is one of the simplest ways of expressing the Riemann-Hilbert corre-
spondence:

Proposition 14. The functor (E,∇) ↦ E∇ induces an equivalence between holomorphic con-
nections on D and complex local systems on D.

Now, combining these proposition with the earlier equivalence of categories related to repre-
sentations of π1, it follows that every finite-dimensional representation of π1(D,x) is the mon-
odromy representation corresponding to some system of holomorphic differential equations.

Exercise 15. For a sanity check, convince yourself this isn’t interesting (i.e. is trivial) for the
case where D is just some open ball around the origin.

In general, we can extend this to higher-dimensional complex manifolds, but we need to fur-
thermore impose the condition that the connections are integrable, namely that composition
E → E ⊗Ω1 → E ⊗∧2Ω1, given by the connection map followed by s⊗ω ↦ ∇(s)∧ω + s⊗ dω is
0.

4


