
Crash course on fields

Matthew Hase-Liu

Recall that a field K is a commutative ring such that every non-zero element has an inverse.
Some examples: Z/pZ for p a prime, R, C(t) (rational functions in one variable—fractions of
polynomials in one variable). Note, for instance, that Z/10Z is not a field because 2 is a zero-
divisor (2 ⋅ 5 = 10 = 0). Also, Z is not a field (despite having no zero-divisors) because 123 has
no inverse (only 1 and −1 have multiplicative inverses, in fact). Today, we will do a review of
algebraic extensions of a field.

1 Characteristic of a field

For any field K (and generally any ring), there is a unique ring homomorphism φ∶Z → K given
by sending n to n ⋅ 1. By the first isomorphism theorem for rings, we get Z/kerφ ↪ K . Since
K is a field, Z/kerφ is an integral domain (has no zero-divisors). Thus kerφ is a prime ideal. It
follows that kerφ is of the form pZ, where p is either 0 or a prime number.

Definition 1. For a fieldK , the number p above is called the characteristic ofK , and is denoted
by char(K).
Example 2. Q,R,C all have characteristic 0 because Z injects into each of these. Z/pZ has
characteristic p because the kernel of Z→ Z/pZ is pZ.

Lemma 3. If K is a field of characteristic p, then K has a subfield isomorphic to Q if p = 0 and
Z/pZ (and also conversely).

2 Finite and algebraic extensions

Definition 4. SupposeK,L are fields such thatK ⊂ L. We say L is a field extension ofK , and
denote this by L/K .

Note that L is a vector space overK , where the scalar action is given by includingK into L and
then simply multiplying elements in L, i.e. if a ∈ K and x ∈ L, then ax is defined as multiplying
a (viewed in L) with x.

Definition 5. Let L/K be a field extension. Then [L∶K] ∶= dimK L is called the degree of L
over K . This is said to be finite/infinite depending on whether the degree is finite/infinite.

Proposition 6. LetM/L/K be a chain of field extensions. Then [M ∶K] = [M ∶L][L∶K].
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Proof. Suppose [M ∶L] and [L∶K] are finite and are equal to m,n. Then, pick a basis x1, . . . , xm

of L overK and a basis y1, . . . , yn ofM over L. Then, it suffices to show that {xiyj} (this hasmn

elements) is a basis ofM over K (exercise!). ,

Definition 7. Let L/K be a field extension. An element α ∈ L is algebraic over K if there is
some monic polynomial p(x) = xn+ cn−1xn−1+⋯+ c0 ∈K[x] (coefficients are inK) s.t. p(α) = 0.
Otherwise, α is transcendental overK . If every element of L is algebraic overK , we say L/K
is an algebraic extension.

Example 8.
√
2 ∈ R is algebraic over Q because it satisfies (

√
2)2 − 2 = 0. Of course, it also

satisfies (
√
2)4 − 4 = 0, so you might wonder if there is a “minimal” polynomial that works.

Proposition 9. Let L/K be a field extension and α ∈ L algebraic over K . Then, there is a
unique monic polynomial f ∈ K[X] of smallest degree s.t. f(α) = 0. We call f the minimal
polynomial of α (over K).

Proof. Consider the ring homomorphism φ∶K[x] → L, given by sending a polynomial g to g(α).
Since K[x] is a PID (integral domain such that every ideal is generated by a single element), it
follows that kerφ = (f) for some unique f (up to a unit). Then, f is precisely the unique monic
polynomial of smallest degree s.t. f(α) = 0. ,

Proposition 10. Let α ∈ L be algebraic over K . Then, write K[α] to denote the subring of L
generated by α and K , i.e. the image of K[x] → L that sends x to α. Then, K[α] is a field and
[K[α] ∶K] = deg f , where f is the minimal polynomial of α.

Proof. We have an isomorphism K[x]/kerφ ≅ imφ = K[α]. Note that f is irreducible (else
K[x]/(f) would have a zero divisor), which implies that (f) is a maximal ideal. Then K[α] =
K[x]/(f) is a field. To compute the degree, note thatK[x]/(f) has a basis given by 1, x, . . . , xdeg f−1

(if they are not linearly independent, it would contradict the minimality of f ). so [K[α] ∶ K] =
dimK K[x]/(f) = deg f . ,

Remark 11. In general, we writeK(α) to denote the subfield generated byK and α (where α ∈ L
for instance). These extensions are called simple. The above proposition says that forα algebraic,
we have K(α) =K[α].
Example 12. Q [ 30

√
2] has degree 30 over Q. Indeed, 30

√
2 satisfies x30 − 2 = 0, which by Eisen-

stein’s criterion is irreducible as a polynomial in Q[x] (use the prime 2).

Proposition 13. Any finite field extension L/K is algebraic.

Proof. Let [L∶K] = n and let α ∈ L. Then, 1, α, . . . , αn are linearly dependent, so some nontrivial
linear combination gives 0, i.e. cnαn +⋯ + c1α + c0 = 0. So α is algebraic. ,

Corollary 14. Let L/K be a field extension. Then, TFAE:

(i) L/K is finite.

(ii) L/K is generated by finitely many elements that are algebraic over K .
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(iii) L/K is a finitely generated algebraic field extension.

Remark 15. Not all algebraic extensions are finite. Let Q be the subfield of C defined as {α ∈ C ∶
α is algebraic over Q}. Then, Q is clearly algebraic over Q. However, Q contains Q( n

√
2) for all

n, each of which has degree n over Q. So Q must be infinite.

3 Algebraic closure

For any field K , we want to construct a (minimal) algebraic extension K such that any non-
constant polynomial in K[x] has a root in K .

Proposition 16. LetK be a field and f ∈K[X] a polynomial of degree at least 1. Then, there is
a finite algebraic field extension K ⊂ L such that f admits a zero in L.

Proof. The basic idea is to simply adjoin a root of f to K to get a new field. Suppose f is irre-
ducible. Then, let L = K[x]/(f), which is indeed a field. Then, K ⊂ K[x]/(f), which is indeed
an injection (any ring map between fields is an injection!). Now, f(x) = 0 in L by construction,
so x is a root of f . ,

Definition 17. A field K is algebraically closed if every non-constant polynomial f of K[x]
admits a zero in K , i.e. f splits into linear factors.

Theorem 18. Every field K admits an extension field L that is algebraically closed and algebraic
over K . We sayK is the algebraic closure of K .

Proof. This isn’t quite correct for set-theoretic reasons, but whatever. Let A be the set of all
algebraic extensions of K and give it the usual partial order given by inclusion. Zorn’s lemma
applies, so let K be a maximal element. It must be algebraically closed since otherwise we can
construct a bigger extension using the Kronecker construction (the proposition) above. ,

Example 19. We gave an example earlier: Q is an algebraic closure of Q. Last class, we showed
that C is an algebraic closure of R. However, C is not an algebraic closure of Q, since elements
like e and π are not algebraic over Q.

Lemma 20. Let K be a field with α algebraic over K and f ∈ K[x] the minimal polynomial of
α. Let σ∶K → L be a field homomorphism.

(i) If σ′∶K(α) → L is a field homomorphism extending σ (i.e. K → K(α) σ′→ L is the same as
σ), then σ′(α) is a zero of fσ (the image of f under the map K[x] → L[x] induced by σ).

(ii) Conversely, for any root β ∈ L of fσ ∈ L[x], there is exactly one extension σ′∶K(α) → L
s.t. σ′(α) = β.

In particular, there are at most deg f different extensions.

Proof. Exercise! Note that f(α) = 0 implies fσ(σ′(α)) = σ′(f(α)) = 0 for the first one. For the
second one, consider the homomorphisms K[x] → K[α] and K[x] → L, the former sending g
to g(α) and the latter sending g to gσ(β), where β is some root in L of fσ. Then, define σ′ as
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K[α] ≅ K[x]/(f) → L, where the first map is induced by the former and the second is induced
by the latter. ,

Using the above and Zorn’s lemma, one can show the following:

Corollary 21. LetK ⊂K ′ be any algebraic extension and σ∶K → L be a field homomorphism with
image in an algebraically closed field L. Then, σ has an extension K ′ → L.

In particular, if K ′ is algebraically closed and L is algebraic over K , then σ′ is an isomorphism.

Corollary 22. Let L and L′ be two algebraic closures ofK . Then there is some isomorphism L ≅ L′
that extends the identity map on K .

4 Splitting fields

Now, let us begin some preparation for Galois theory. Hopefully the next speaker will say more
about this. We care about when polynomials decompose completely into linear factors.

Definition 23. Let f be a non-constant polynomial inK[x]. A splitting field (overK) of f is
a field extension L/K s.t.

(i) f decomposes into a product of linear factors over L.

(ii) L/K is generated by the roots of f .

Remark 24. We can be pretty explicit about this. LetK be an algebraic closure ofK , and say f has
roots a1, . . . , an (say with multiplicity for convenience). Then, L = K(a1, . . . , an) is a splitting
field of f overK (sinceL is generated by the roots and clearly f decomposes as (x−a1)⋯(x−an)).
Proposition 25. Let L1, L2 be two splitting fields of a polynomial f ∈ K[x] of non-constant
polynomials, and let L2 be an algebraic closure of L2. Then, anyK-homomorphism (i.e. restricts
to the identity on K) σ∶L1 → L2 restricts to a K-isomorphism σ∶L1

≅→ L2.

In particular, by the section on algebraic closed fields, we knowK ↪ L2 extends to aK-homomorphism
L1 → L2, so any two splitting fields areK-isomorphic.

Proof. Suppose f is monic and f has roots a1, . . . , an in L1 and b1, . . . , bn in L2. Let fσ = ∏(x −
σ(ai)) = ∏(x − bi), which means σ maps the set of ai bijectively onto the set of bi. Since L1 =
K(a1, . . . , an) and L2 =K(b1, . . . , bn), we get that L2 = σ(L1), i.e. L1 and L2 areK-isomorphic.

,

Everything said above can be extended to f replaced with a (possibly infinite) family of polyno-
mials (fi).
Theorem 26. Let L/K be an algebraic extension. Then, TFAE:

(i) EveryK-homomorphism L→ L restricts to an automorphism of L.

(ii) L is a splitting field of a family of polynomials (in K[x]).
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(iii) Every irreducible polynomial in K[x] that has a root in L decomposes over L into linear
factors.

If these conditions are satisfied, we say L/K is normal.

Proof. For (i) implies (iii), let f be an irreducible polynomial with a root a ∈ L. Then, if b ∈ L is
any other root, then there is aK-homomorphism σ∶K(a) → L such that σ(a) = b. Then, we can
extend this to σ′∶L→ L. The assumption of (i) then says that the image of σ′ isL, so b = σ′(a) ∈ L,
so every root of f is in L.

For (iii) implies (ii), let L/K be generated by elements (ai) and take the family (fj) of minimal
polynomials of the ai. Then, every root of fj is in L by the assumption of (iii), so L is the splitting
field of (fj).
For (ii) implies (i), let σ∶L → L be a K-homomorphism. Then, if L is a splitting field, so is σ(L),
which implies that σ(L) = L since they are both subfields of L. ,

Remark 27. If K ⊂ L ⊂ M is a chain of algebraic extensions, then M/K being normal implies
M/L is. Indeed, use the characterization ofM as a splitting field.

However, normality is not transitive in a chain: Consider the extensions Q ⊂ Q(
√
2) ⊂ Q ( 4

√
2).

We have Q ⊂ Q(
√
2) and Q(

√
2) ⊂ Q ( 4

√
2) are both normal (use the polynomials x2 − 2 and

x2 −
√
2), but Q ⊂ Q ( 4

√
2) is not! Indeed, x4 − 2 is the minimal polynomial of 4

√
2, but it has

complex roots (say i 4
√
2) that are not in Q ( 4

√
2), i.e. x4 − 2 does not split into linear factors.

5 Separable extensions

Hopefully the next speaker will also say something about this! We also care about when roots
appear without multiplicity.

Definition 28. Let L/K be a field extension. Then α ∈ L is called separable over K if the
minimal polynomial ofα, when factored overL, has no repeated roots. If everyα ∈ L is separable,
we say L/K is a separable extension.

Moreover, if every algebraic extension of K is separable, we say K is perfect.

There is an easy criterion to check if f has multiple roots:

Lemma 29. The multiple roots of a polynomial f ∈K[x] (in someK) coincide with the common
roots of f and f ′ (the derivative).

In particular, if f is irreducible, it has multiple roots iff f ′ is identically zero.

Proof. Exercise! ,

Remark 30. Using the criterion above, every algebraic field extension in characteristic 0 is sepa-
rable. In particular, all fields of characteristic 0 are perfect! This means the only examples we’ll
find are over characteristic p.
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Example 31. Let p be prime. Then, xp − t ∈ Fp(t)[x] is irreducible but not separable (i.e. a
polynomial with only simple roots). Indeed, the derivative is pxp−1 = 0, which is identically zero.
In other words, the extension Fp(t)[x]/(xp − t) is not separable over Fp(t).
Let us now give a characterization of separable extensions.

Definition 32. For an algebraic field extension L/K , denote by HomK(L,K) the set of K-
homomorphisms from L into an algebraic closure K . Then, define

[L ∶K]s ∶=#HomK(L,K).

As usual, this is easy to understand in the case of a simple extension:

Lemma 33. Let K ⊂K(α) = L with f the minimal polynomial of α.

(i) [L ∶K]s is the number of distinct roots of f (in K).

(ii) α is separable over K iff [L ∶K] = [L ∶K]s.

Proof. This is clear from what we’ve done earlier. Indeed, note that [L ∶K] = deg f , which is the
number of roots (with multiplicity). ,

Lemma 34. Let K ⊂ L ⊂M . Then, [M ∶K]s = [M ∶ L]s[L ∶K]s.

Proof. Exercise! ,

Theorem 35. For a finite field extension K ⊂ L, TFAE:
(i) L/K is separable.

(ii) There elements a1, . . . , an ∈ L separable over K and L =K(a1, . . . , an).
(iii) [L ∶K]s = [L ∶K].

Proof. (i) implies (ii) is by definition, (ii) implies (iii) follows from the previous two lemmas iter-
atively. For (iii) implies (i), take a ∈ L and one can show that [K(a) ∶ K] = pr[K(a) ∶ K]s for
some r (you can assume K has characteristic p, otherwise there’s nothing to show). Then, there
is an estimate

[L ∶K] = [L ∶K(a)][K(a) ∶K] ≥ [L ∶K(a)]spr[K(a) ∶K]s = pr[L ∶K]s,

which forces r = 0. ,

Remark 36. This can be extended to all algebraic extensions easily.

One of the most useful properties of separable extensions is the following. We won’t prove it, but
it is a clever application of pigeonhole:

Theorem 37. Every finite separable field extensionL/K admits a primitive element, i.e. an element
a ∈ L s.t. L =K(a).
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Remark 38. There is also a notion of purely inseparable extensions, but we’ll talk about that
another time. Instead of [L ∶ K]s being maximal, we want it to be minimal, i.e. equal to 1, for
these extensions. In general, one can factor any extension L/K as L/Ks/K , where Ks/K is
separable and L/Ks is purely inseparable.

Remark 39. A finite separable extension will eventually be the right notion of an “algebraic”
covering space over a point. More precisely, if L/K is such an extension, SpecL → SpecK is a
map of “schemes” that is “finite etale” (i.e. an algebraic covering space).

The reason for this is that L/K being finite separable is equivalent to the “cotangent bundle” of
SpecL → SpecK being trivial, i.e. ΩL/K = 0. But geometrically this is saying that the maps on
tangent spaces are isomorphisms, which is what it means to be a local homeomorphism. So it’s
all very consistent!

6 Finite fields

This final section is mainly an extended example. We already know that Fp = Z/pZ is a field, but
what about larger finite fields (of size a power of a prime)?

Theorem 40. Let p be a prime. For every integer n, there is an extension Fq/Fp consisting of q = pn
elements. Moreover, Fq is uniquely characterized as the splitting field of xq − x over Fp, i.e. the
elements of Fq are the q distinct roots of xq − x.
Every finite field of characteristic p is isomorphic to some Fq.

Proof. Let f = xq − x. Since f ′ = −1, it follows that f is separable, i.e. has exactly q roots in an
algebraic closureFp. By using the binomial formula, one can check that a+b satisfies (a+b)q = a+b
and also that (ab−1)q = ab−1, which implies that that the q roots form a subfield of q elements.

To get uniqueness, suppose F contains Fp and has q elements. We know the multiplicative group
F× is of order q−1, so by Lagrange’s theorem every non-zero element satisfies xq−1−1 = 0. Then,
every element satisfies xq −x = 0 (including 0). So we conclude F is a splitting field of xq −x over
Fp. ,

Corollary 41. Finite fields are perfect.

Proof. Any finite extension of Fq looks like Fqn for size reasons. But Fqn is a splitting field, so it
is normal and separable over Fq. For any algebraic extension, we can write it as a union of its
finite subextensions. ,

Proposition 42. Fq looks like ⋃n≥1 Fqn . Exercise!
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