
1 04/17 (Matthew): Convolution and applications to Evans and
Rudnick sums

Intro to Gauss, Evans, and Rudnick sums

Let k be the finite field Fq, ψ∶k → Qℓ
× a non-trivial additive character, and χ∶k× → Qℓ

× a multi-
plicative character. Consider the following sums:

• (Gauss sums)
g(ψ,χ) = − 1

√
q
∑
t∈k×

χ(t)ψ(t).

• (Evans sums)
E(χ) = − 1

√
q
∑
t∈k×

χ(t)ψ (t − 1

t
) .

• (Rudnick sums)
R(χ) = − 1

√
q
∑

t∈k×,≠1
χ(t)ψ (t + 1

t − 1
) .

As χ varies over all multiplicative characters of k, numerical data suggests that these sums are
approximately equidistributed according to the “Sato–Tate” measure. We’ll see how new equidis-
tribution results proved by Katz allows us to prove statements like these.

Let us first recall some notation and observe how the sums above can be viewed cohomologically.
Let Lψ be the Artin–Schreier sheaf on A1/k, which is a lisse sheaf of rank one of pure weight
zero (i.e. the eigenvalues of Frobenius all have absolute value one). We also have the Kummer
sheaf Lχ on Gm/k, which is also a lisse sheaf of rank one of pure weight zero.

Example 1 (Gauss sums). Let j0∶Gm ↪ A1 be the inclusion and consider M = j∗0Lψ. Then,
observe that

g(ψ,χ) = − 1
√
q

∑
t∈Gm(k)=k×

Tr (Frt∶ Lχ ⊗M)

by definition (Frt acts on Lχ by χ(t) and on M by ψ(t), and the ⊗ means we multiply). If we
replaceM withM(1/2)[1], then we obtain

g(ψ,χ) = ∑
t∈Gm(k)=k×

Tr (Frt∶ Lχ ⊗M(1/2)[1]) .

Example 2 (Evans sums). We can view x−1/x as a morphism fromGm toA1, and writeLψ(x−1/x)
to mean the pullback of Lψ (which is on A1) to Gm along the map x − 1/x. Let M = Lψ(x−1/x).
Then, we have

E(χ) = − 1
√
q

∑
t∈Gm(k)=k×

Tr (Frt∶ Lχ ⊗M) = ∑
t∈Gm(k)=k×

Tr (Frt∶ Lχ ⊗M(1/2)[1]) .

Example 3 (Rudnick sums). We can view (x + 1)/(x − 1) as a function from Gm/{1} to A1.
Similarly define Lψ((x+1)/(x−1)), which is a sheaf on Gm/{1}, and extend it by zero to Gm. Call
this sheaf on Gm M . Then, we have
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R(χ) = − 1
√
q

∑
t∈Gm(k)=k×

Tr (Frt∶ Lχ ⊗M) = ∑
t∈Gm(k)=k×

Tr (Frt∶ Lχ ⊗M(1/2)[1]) .

In all three cases,M(1/2)[1] is a perverse sheaf on Gm of pure weight zero!

A quick interlude on the derived category of ℓ-adic sheaves and perverse sheaves

Let X be a variety over k, where k is either a finite field or its algebraic closure. Grothendieck
defined the bounded constructible derived category Db

c (X,Qℓ) of bounded complexes of Qℓ-
sheaves onX with constructible cohomology and endowed it with the six functor formalism:

• For any f ∶X → Y , there are derived pushforward and derived proper pushforward functors
Rf∗,Rf!∶Db

c (X,Qℓ) →Db
c (Y,Qℓ) and derived pullback and derived upper shriek functors

f∗, f !∶Db
c (X,Qℓ) →Db

c (Y,Qℓ).
• In particular, if π∶X → Speck is the structure map, then for anyM ∈ Db

c (X,Qℓ), the de-
rived global sectionsRΓ (X,M) and derived compactly supported global sectionsRΓc (X,M)
are defined as Rπ∗M and Rπ!M .

• In fact, cohomology H i (X,M) is defined as H iRΓ (X,M) and H i
c (X,M) is defined as

H iRΓc (X,M).
• There is a tensor product − ⊗ −∶Db

c (X,Qℓ) × Db
c (X,Qℓ) → Db

c (X,Qℓ) and an internal
Hom RHom (−,−) ∶Db

c (X,Qℓ)
op ×Db

c (X,Qℓ) →Db
c (X,Qℓ).

• The dualizing complex is defined asωX = π!Qℓ, and the Verdier duality functorD∶Db
c (X,Qℓ)

op →
Db
c (X,Qℓ) is defined as D(M) = RHom (M,π!Qℓ). This interchanges Rf∗ and Rf!, i.e.

Rf∗ ○D = D ○Rf!, and similarly for f∗ and f !.
• If X is smooth and of pure dimension d, then ωX = Qℓ(d)[2d]. By taking cohomology of
the equation Rf∗ ○D = D ○Rf! applied to Qℓ, we recover Poincare duality:

H i (X,Qℓ) =H2d−i
c (X,Qℓ)

∨ (−d).

Definition 4. M ∈ Db
c (X,Qℓ) is semiperverse if all of its cohomology sheaves Hi(M) sat-

isfy the condition dimSuppHi(M) ≤ −i. If moreover D(M) is semiperverse, then we call M
perverse.

Fact 5. The full subcategory of perverse sheaves Perv(X,Qℓ) ⊂Db
c (X,Qℓ) is an abelian category

that is Noetherian andArtinian! If we are working over an algebraically closed field, then the category
is even semisimple.

Example 6. If X is smooth of dimension d and L is a locally constant sheaf on X , then L[d] is
a perverse sheaf on X . This is why we need to shiftM by 1 earlier.

Stating Katz’s equidistribution theorem

In previous talks, we typically had a local system (aka lisse sheaf), which is equivalent to a rep-
resentation of the fundamental group of some variety, and we defined the associated (arithmetic
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or geometric) monodromy group to be the closure of the image of the fundamental group (in its
representation).

In the above examples, we now have a perverse sheaf instead, and we’ll next explain what the
notion of monodromy group should be in this setting.

Consider the subcategoryNeg(Gm) ⊂ Perv (Gm,Qℓ) to be the “negligible” objects, i.e. those such
that the Euler characteristic is zero. It is possible to take the quotient Perv (Gm,Qℓ) /Neg(Gm)
to obtain another abelian category.

Fact 7. There is a subcategoryP (Gm) ⊂ Perv (Gm/k,Qℓ) that is equivalent toPerv (Gm,Qℓ) /Neg(Gm).
In fact, this subcategory is given by perverse sheaves that have no subobjects or quotients that are
given by Lχ[1].

Let Parith(Gm) be the perverse sheavesM onGm/k such thatM⊗kk onGm/k is in P (Gm).

Fact 8.

• P (Gm) and Parith(Gm) can be endowed with the structure of a neutral Tannakian category
such that the “dimension” of an objectM is its Euler characteristic.

• Let j0∶Gm/k ↪ A1/k and ρ be any multiplicative character from E× to Qℓ
×
, where E/k is a

finite extension. Then, ωρ∶M ↦H0 (A1/k, j0! (M ⊗Lρ)) is a fiber functor.
• The point is that both P (Gm) and Parith(Gm) can be understood to be equivalent to the cate-
gory of finite-dimensional Qℓ-representations of some algebraic group.

SupposeN is a perverse sheaf of pure weight zero inParith(Gm). Denote by ⟨N⟩arith the Tannakian
subcategory generated by N , i.e. subquotients of tensor products of copies of N and N∨ (which
is defined as some pullback of DN ). With respect to a choice of fiber functor ω, we have that
⟨N⟩arith is equivalent to the finite-dimensional representations of a group we denote by

Garith,N,ω ⊂ GL (ω(N)) .

Concretely, these linear automorphisms are those that stabilize the image of subquotients of
M⊗r ⊗M∨⊗s (although here I haven’t said what ⊗ for this Tannakian category is—it’s “mid-
dle convolution”). We similarly define Ggeom,N,ω, which is contained in Garith,N,ω since there may
be more subquotients to stabilize for the former.

Fact 9. FrE is an automorphism of the fiber functor ωρ, which defines an element FrE,ρ ∈ Garith,N,ω.
Since differentGarith,N,ω are known to all be pairwise isomorphic, unique up to conjugation, i.e. if we
fix one fiber functor to get some Garith,N , we may view FrE,ρ as a conjugacy class in Garith,N .

Since perverse sheaves are geometrically semisimple, viewing N as a faithful representation of
Ggeom,N , it follows that Ggeom,N is a reductive group.

Let us suppose that N is moreover arithmetically semisimple, i.e. semisimple as an object of
Parith(Gm). Then similarly Garith,N is a reductive group. Let K be a maximal compact subgroup.
For certain ρ and E, we may construct conjugacy classes θE,ρ in K .

Definition 10. ρ∶E× → Qℓ
× is good forN if the canonical “forget supports” mapRj! (N ⊗Lρ) →

Rj∗ (N ⊗Lρ) is an isomorphism.
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Fact 11. For good ρ, FrE,ρ has unitary (magnitude one) eigenvalues acting on ωρ(N).

Let FrssE,ρ be the semisimplification in the sense of the Jordan decomposition, which by the fact
above has unitary eigenvalues, hence lives in a compact subgroup of Garith,N , hence lives in a
maximal compact subgroup, which is necessarily conjugate toK . Thand uswe obtain a conjugacy
class θE,ρ in K , which is well-defined by Peter–Weyl and Weyl’s unitarian trick.

We can now finally state the main theorem.

Theorem 12. Let N be an arithmetically semisimple perverse sheaf on Gm/k that is pure of
weight zero and is in Parith(Gm). Fix a maximal compact subgroup K of Garith,N . Suppose we
have an equality of groups Garith,N = Ggeom,N . Then, as E/k runs over larger and larger finite
extension fields, the conjugacy classes {θE,ρ}good ρ become equidistributed in the space K# of
conjugacy classes in K .

Proof. I won’t do it here, but it’s the same strategy as the proof of Deligne’s equidistribution
theorem. ,

Corollary 13. As E/k runs over larger and larger finite extensions, the exponential sums

{S(N,E, ρ) = ∑
t∈E×

Tr (FrE,t∶ Lρ ⊗N)}
ρ good

become equidistributed in C for the measure given by the direct image of the trace map Tr∶K → C.

Applications

Example 14 (Gauss sums). Recall that

g(ψ,χ) = ∑
t∈Gm(k)=k×s

Tr (Frt∶ Lχ ⊗M(1/2)[1])

forM = j∗0Lψ and j0∶Gm ↪ A1. One can check that N = M(1/2)[1] satisfies the conditions of
the theorem and its “dimension” is

χ (Gm,M(1/2)[1]) = −χ (Gm, j
∗
0Lψ) = Sw∞ (Lψ) = 1.

In this case, it turns out that Ggeom,M = Garith,M = GL(1), which has maximal compact subgroup
S1. The good characters χ are those for which ωχ (j∗0Lψ(1/2)[1]) is pure of weight zero, which
is the case whenH0 (A1/k, j0! (j∗0Lψ(1/2)[1] ⊗ Lχ)) =H0

c (Gm,Lχ) is. This is precisely when χ
is non-trivial.

We then see that the normalized Gauss sums (ranging over non-trivial χ) are equidistributed in
the unit circle S1 with respect to the Haar measure.

Example 15 (Evans and Rudnick sums). Recall that

E(χ) = ∑
t∈Gm(k)=k×

Tr (Frt∶ Lχ ⊗M(1/2)[1])
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and
R(χ) = ∑

t∈Gm(k)=k×
Tr (Frt∶ Lχ ⊗M ′(1/2)[1]) ,

whereM = Lψ(x−1/x) andM ′ = j!Lψ((x+1)/(x−1)), where j∶Gm/{1} ↪ Gm. One can check again
that M(1/2)[1] and M ′(1/2)[1] satisfy the conditions of the theorem and its “dimension” by
Grothendieck–Ogg–Shafarevich is 2.

Katz computes that Ggeom = Garith = SL(2) in both cases, with corresponding maximal compact
subgroup SU(2). The trace map sends this to [−2,2].

One can check thatM is totally wildly ramified at 0 and∞, which turns out to imply that every χ
is good. M ′ has trivial monodromy at 0 and∞, and this turns out to imply every non-trivial χ is
good forM ′. Applying Katz’s theorem then gives the corresponding equidistribution statements.
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