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1 Introduction

In the late sixties, John Tate and Georges Poitou proved an important duality theorem for Galois
cohomology groups of modules over global �elds and local �elds. In addition to being interesting
in its own right, Poitou-Tate duality is an indispensable tool with numerous applications, such as
in Tate’s work on the Birch and Swinnerton-Dyer conjecture.

The goal of this paper is present an exposition of a variant of a more general version of Poitou-
Tate duality, known as Artin-Verdier duality, which suggests that the ring of integers in a number
�eld acts like a 3-manifold.

More precisely, Artin and Verdier showed that for a constructible sheaf F on the étale site of
X = Spec(OK) for some K a totally imaginary number �eld, there is a canonical trace isomor-
phism

H3(X,Gm) ∼→ Q/Z,
and a non-degenerate Yoneda pairing of �nite groups

H i(X,F ) ×Ext3−iX (F,Gm)→H3(X,Gm) ∼→ Q/Z

for all i.

In this expository paper, we will discuss Deninger’s variant of Artin-Verdier duality for function
�elds, i.e for X replaced with a smooth proper curve over a �nite �eld with characteristic p. The
duality theorem for function �elds is of particular interest (at least to us) because of the similarity
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to the usual Poincaré duality in étale cohomology. It turns out that (by a sort of descent argument)
the case of constructible sheaves with torsion prime to p is essentially Poincaré duality, but the
case of constructible sheaves with p-torsion genuinely requires some arithmetic input.

We mostly follow a combination of Deninger’s paper on Artin-Verdier duality for function �elds
([1]), Mazur’s paper on the étale cohomology of number �elds ([2]), and Milne’s book on arith-
metic duality theorems ([3]).

We adopt the following conventions (unless otherwise speci�ed):

(i) p is a prime and q is a power of p.

(ii) k = Fq and k is some algebraic closure.

(iii) G = Gal(k/k) is the absolute Galois group of k.

(iv) A curve (over k) is a geometrically integral one-dimensional scheme of �nite type over k.

(v) Ab(Xét) is the category of abelian sheaves on the étale site of X .

(vi) X denotes the base change of X to k and F is the restriction of a sheaf F to X .

Remark 1. Unfortunately, we will need to assume that the reader is familiar with étale cohomol-
ogy (and even the language of schemes) to fully understand the proofs; in particular, Artin-Verdier
duality is fundamentally a statement about étale cohomology. On the other hand, if one is willing
to blackbox étale cohomology as some cohomology theory for schemes with nice properties (e.g.
Poincaré duality and vanishing in high degree), then the broad strokes of the argument will hope-
fully be clear—perhaps it is worth noting that étale cohomology should be viewed (very roughly,
because we really want to consider `-adic cohomology) as a sort of analogue to singular coho-
mology. Indeed, the primary motivation for the invention of étale cohomology was to develop a
more topological cohomology theory for varieties in Weil’s suggested approach (via the Lefschetz
�xed point formula) to the Weil conjectures.

At the same time, étale cohomology can also be viewed as a generalization of Galois cohomology
in the following sense. Let us take for granted the notion of a site (which is a structure on a
category that makes its objects behave like open subsets of a topological space). Then, the étale
site of a point (i.e. say Speck for some �eld k) is equivalent to the category of Gal(k/k)-sets
(endowed with the canonical topology), given by sendingX in the étale site to the set of k-points
X(k), which evidentally has a natural (continuous) Gal(k/k)-action. Under this equivalence,
one can show that the categories of abelian sheaves on these sites are also equivalent, and the
latter (quite remarkably) also with the category of Gal(k/k)-modules. As a consequence, étale
cohomology of Speck is the same as the Galois cohomology.

We have tried to make the second section of this paper especially detailed, which is mainly con-
cerned with a few necessary computations for Artin-Verdier duality. To this end, we have also
added precise references to facts that we blackbox.
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2 Precise statement of the main result and a few computations

For the rest of the paper, let us �x X to be a smooth proper curve over k and i∶Y ↪ X be a
closed immersion with non-trivial complement j∶U ⊂ X (i.e. Z is a �nite collection of closed
points).

Lemma 2. H i(X,Gm) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k× i = 0

Pic(X) i = 1

0 i = 2

Q/Z i = 3

0 i > 3

Proof. First, note that H0(X,Gm) = k× (because X is integral, proper, and complete) and hence
H0(X,Gm) = (k×)

G
= k×.

Next, H1(X,Gm) = Pic(X) is a standard result from descent theory (proposition 5.7.7 in [4]).

Recall the Hochschild spectral sequence (also called the Artin spectral sequence, theorem III.2.20
in [5]):

H i(G,Hj(X,Gm))⇒H i+j(X,Gm)

Since H i(X,Gm) = 0 for i ≥ 2 (theorem 7.2.7 in [4]), the strict cohomological dimension of G
is 2 (proof of theorem 4.5.5 in [4]), and the Brauer group of �nite �eld is trivial (Wedderburn’s
theorem), the spectral sequence induces an isomorphism

H i(X,Gm)Ð̃→H i−1(G,Pic(X)),

for i ≥ 2.

Moreover, we have an exact sequence 0 → Pic0(X) → Pic(X) → Z → 0 and Lang’s lemma
(theorem 6.1 in [6]), which states that H i(G,Pic0(X)) = 0 for i ≥ 1. The induced long exact
sequence is then as follows:

⋯ H0(G,Pic0(X)) H0(G,Pic(X)) H0(G,Z)

H1(G,Pic0(X)) = 0 H1(G,Pic(X)) H1(G,Z)

H2(G,Pic0(X)) = 0 H2(G,Pic(X)) H2(G,Z) ⋯

We then have H i(X,Gm) = 0 for i = 2 (since H1(G,Z) = Hom(G,Z) = 0) and an isomorphism
(from the degree map)

H2(G,Pic(X))Ð̃→H2(G,Z).
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The latter is Q/Z, so we obtain a canonical trace isomorphism

Tr∶H3(X,Gm)Ð̃→Q/Z.

For i > 3, the result follows from the strict cohomological dimension of G and the long exact
sequence. ,

Lemma 3. There is a natural trace isomorphism Tr∶H3
c (U,Gm)Ð̃→Q/Z.

Proof. We use the canonical trace isomorphism constructed in the proof of the previous lemma.
Consider the composition

Tr∶H3
c (U,Gm) ∶=H3(X, j!Gm)→H3(X,Gm)Ð̃→Q/Z,

which is an isomorphism by considering the exact sequence 0 → j!Gm → Gm → i∗Gm → 0 (note
that Y is a �nite collection of closed points). ,

Lemma 4. ExtiX(Z/p,Gm) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 i = 0

Pic(X)[p] i = 1

Pic(X)/pPic(X) i = 2

Z/pZ i = 3

0 i > 3

Proof. Consider the short exact sequence 0 → Z ⋅p→ Z → Z/pZ → 0. Applying Ext, taking the
long exact sequence, and using the �rst lemma gives

⋯ Ext0X(Z/pZ,Gm) Ext0X(Z,Gm) = k∗ Ext0X(Z,Gm) = k∗

Ext1X(Z/pZ,Gm) Ext1X(Z,Gm) = Pic(X) Ext1X(Z,Gm) = Pic(X)

Ext2X(Z/pZ,Gm) Ext2X(Z,Gm) = 0 Ext2X(Z,Gm) = 0

Ext3X(Z/pZ,Gm) Ext3X(Z,Gm) = Q/Z Ext3X(Z,Gm) = Q/Z ⋯

The result then follows. ,

As stated in the introduction, the Yoneda pairing induces a pairing as follows:

H i
c(U,F ) ×Ext3−iU (F,Gm) H3

c (U,Gm) Q/Z

H i(X, j!F ) ×Ext3−iX (j!F,Gm) H3(X,Gm) Q/Z

≅

Tr

Tr

=≅
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Theorem5 (Artin-Verdier duality). LetX be a smooth proper curve over k. IfU ⊂X is a non-empty
open subscheme of X and F ∈ Ab(Uét) is constructible, then ∀i ∈ Z, the pairing

H i
c(U,F ) ×Ext3−iU (F,Gm)→H3

c (U,Gm) Tr→ Q/Z

is non-degenerate. Also, H i
c(U,F ) and Ext3−iU (F,Gm) are �nite groups.

By how this pairing is constructed, it’s clear that it su�ces to prove the theorem for the case U =
X , which we will assume in the sequel. Denote bymi(F ) =mi

X(F )∶H i(X,F )→ Ext3−iX (F,Gm)∨
the map induced by the Yoneda pairing, where ∨ denotes taking the Q/Z-dual. Then, it su�ces
to show that mi(F ) is an isomorphism for all constructible F .

3 Proof of the “geometric” portion: sheaves with torsion prime to p

In this section, we will prove Artin-Verdier duality for the case of sheaves with torsion prime to
p.

Let us �rst recall the following fact. Let S a locally Noetherian scheme with n ∈ Z invertible on
S and F a sheaf of Z/nZ-sheaves on Sét. Then, for all i ≥ 0, we have

ExtiZ/nZ(F,µn) = ExtiS(F,Gm),

where the LHS is computed in the category of Z/nZ-sheaves on Sét and the RHS is computed in
Ab(Sét).

To see this, let I● be an injective resolution of Gm. Then, we compute Ext by the sequence with
HomS(F,−) and taking cohomology. Evidently HomS(F, I) = HomZ/nZ(F, I[n]), and noting
that (I[n])● gives an injective resolution of µn in the category of Z/nZ-sheaves on Sét, the result
follows.

The key input to the geometric portion of Artin-Verdier duality is provided by Poincaré duality
for curves over an algebraically closed �eld. We have an isomorphism

H i(X,F )Ð̃→ (Ext2−i
X

(F ,Gm))∨

for any constructible Z/nZ-sheaf F (theorem V.2.1 in [7]).

Again, by the Hochschild-Serre spectral sequences, we have

H i(G,Hj(X,F ))⇒H i+j(X,F )

and similarly
H i(G,Extj

X
(X,Gm))⇒ Exti+jX (F,Gm).

BecauseG has cohomological dimension 1, these spectral sequences give short exact sequences:

0 H1(G,Hj−1(X,F )) Hj(X,F ) H0(G,Hj(X,F )) 0

0 H0(G,Ext3−j
X

(F ,Gm))∨ Ext3−jX (F,Gm)∨ H1(G,Ext2−j
X

(F ,Gm))∨ 0

m′ mi(F ) m′′
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The �rst and third vertical arrows are isomorphisms by Poincaré duality and Pontryagin duality,
which tells us that for r = 0,1,

Hr(G,M) ×H1−r(G,M∨)→ Q/Z
is a non-degenerate pairing for all �nite Galois modules M .

Then, the middle vertical arrow is an isomorphism as well, and the geometric portion of Artin-
Verdier duality follows.

4 Proof of the “arithmetic” portion: sheaves with p-torsion

In this section, we will prove the arithmetic portion of Artin-Verdier duality, i.e. the case of
sheaves with p-torsion. Hence, F will now denote a constructible p-adic sheaf on X

Let us �rst being with the case of punctual sheaves: F = i∗P for some inclusion of a closed
point i∶x ↪ X and P a �nite étale sheaf on x. In this case, we can again conclude via Pon-
tryagin duality. To see this, we will identify H i(X, i∗P ) with H i(G,P ), Ext3−iX (i∗P,Gm) with
H1−i(G,Hom(P,Q/Z)), and H3(X,Gm) with H1(G,Q/Z).

Recall that Rii!Gm =
⎧⎪⎪⎨⎪⎪⎩

Z q = 1

0 q ≠ 1
(this comes from the divisor exact sequence—look at the proof

of theorem V.2.1 in [5]). Then, the spectral sequence Extix(P,Rji!Gm)⇒ Exti+jX (i∗P,Gm) gives
rise to an isomorphism

ExtiX(i∗P,Gm) ≅ Exti−1x (P,Z) ≅ Exti−1G (P,Z).

We also have H i(X, i∗P ) = H i(G = Gal(κ(x)/κ(x)), P ) (the former being étale cohomology
and the latter Galois cohomology).

There is a local-global Ext spectral sequence (for Galois cohomology) that tells us that

H i(G,ExtiZ(P,Q))⇒ Exti+jG (P,Q).

Since the LHS is zero, we have ExtiG(P,Q) = 0 for all i. Taking the exact sequence 0→ Z→ Q→
Q/Z→ 0, we see that for all i ≥ 0,

Exti+1G (P,Z) ≅ ExtiG(P,Q/Z).

The local-global Ext spectral sequence similarly gives us

H i(G,HomZ(P,Z)) ≅ ExtiG(P,Q/Z).
This completes the necessary identi�cations for the punctual case. We then have the following
commutative diagram, which completes our proof of Artin-Verdier duality in the punctual setting
via Pontryagin duality:
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H i(X, i∗P ) ×Ext3−iX (i∗P,Gm) H3(X,Gm)

H i(G,P ) ×Ext2−iX (P,Z) H2(G,Z)

H i(G,P ) ×H1−i(G,Hom(P,Q/Z)) H1(G,Q/Z)

≅

≅ ≅

Next, we show that Artin-Verdier duality only needs veri�cation in a few degrees.

Lemma 6. Let F ′ be a constructible p-torsion sheaf on U . Then, H i
c(U,F ′) = 0 for i ≥ 3 and

ExtiU(F,Gm) = 0 for i > 3.

Proof. By Artin-Schreier theory (theorem 7.2.13 in [4]), the p-cohomological dimension of X is
at most dimX + 1 = 2. So the �rst result is immediate.

For the claim about Ext, note thatExtiU(punctual sheaf,Gm) = 0 for i > 3 by Artin-Verdier duality
(for punctual sheaves). If j′∶U ′ ⊂ U is an inclusion of nonempty open subsets with i′ the inclusion
of the complement, we have an exact sequence 0 → j′!j

′∗F ′ → F → i′∗i′∗F → 0, which by what
we just said implies ExtiU(j′!j′∗F ′,Gm) ≅ ExtiU(F ′,Gm) for i > 3. Also, the LHS is isomorphic
to ExtiU ′(j′∗F,Gm) because j∗ preserves injectives. So it su�ces to show the claim for locally
constant sheaves F ′.

By considering a Jordan-Hölder sequence of F ′, we can reduce to the case F ′ = Z/pZ. By con-
sidering the exact sequence 0 → Z ⋅p→ Z → Z/pZ → 0, and noting that ExtiU(Z,Gm) = 0 for i ≥ 1,
we have ExtiU(F ′,Gm) = 0 for i ≥ 2. The p-cohomological dimension of U is at most 2, so using
the local-global Ext spectral sequence gives the desired result. ,

The rest of the argument proceeds inductively, and we begin by proving the base case. We also
verify that that the sizes of the groups in the duality theorem are the same. One should view this
as the “meat” of the arithmetic portion of the proof.

Lemma 7.

(i) ∣H i(X,Z/pZ)∣ = ∣Ext3−iX (Z/pZ,Gm)∣ for all i ∈ Z (and both are �nite).

(ii) m0(Z/pZ) is an isomorphism.

Proof. We �rst prove (i). For i < 0 and i > 2, the result follows from the previous lemma and
lemma 4.

For i = 0, note that ∣H0(X,Z/pZ)∣ and ∣Ext3X(Z/pZ,Gm)∣ are both equal to p by lemma 4.

For i = 1, recall thatH1(X,Z/pZ) classi�esZ/pZ-torsors onX and is equal toHomcts(π1(X),Z/pZ).
As a consequence of (geometric) class �eld theory1, this is the same as Hom(Pic(X),Z/pZ).
Then, ∣H1(X,Z/pZ)∣ and ∣Ext2X(Z/pZ,Gm)∣ both have size ∣Pic(X)/pPic(X)∣ by lemma 4.

1The key point being that ̂Pic(X) ≅ πab
1 (X).
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For i = 2, note that Pic(X) ≅ Pic0(X) × Z and Pic0(X) is �nite. The Artin-Schreier se-
quence implies that ∣H2(X,Z/pZ)∣ = ∣H1(X,Z/pZ)∣/p = ∣Pic(X)/pPic(X)∣/p = ∣Pic(X)[p]∣ =
∣Ext1X(Z/pZ,Gm)∣, as desired.

For (ii), the mapm0(Z/pZ)∶Z =H0(X,Z)→ Ext3X(Z,Gm)∨ ≅ (Q/Z)∨ ≅ Ẑ is given by inclusion.
We have the following commutative diagram:

0 Z Z H0(X,Z/pZ) 0

0 Ẑ Ẑ Ext3X(Z/pZ,Gm)∨⋅p

⋅p

m0(Z/pZ)

By an easy diagram chase, it’s clear thatm0(Z/pZ) is injective (note that we haveH0(X,Z/pZ)→
Ẑ/pẐ ≅ Z/pZ↪ Ext3X(Z/pZ,Gm)∨). Hence, by (i), it must be an isomorphism. ,

The next lemma roughly tell us how to reduce from constructible sheaves to constant sheaves.
The idea is that we can embed a constructible sheaf into a direct sum of pushforwards of constant
sheaves (we will see this later). Let CX denote either the 1. category of constructibleZ/pZ-sheaves
on X or 2. category of constructible p-torsion sheaves on X .

Lemma 8. Let X and Y be smooth proper curves over k, and suppose π∶Y → X is �nite and
dominant. Then, for all i and any constructible sheaf F on Y , we havemi

X(π∗F ) is an isomorphism
i�mi

Y (F ) is an isomorphism.

Proof. By Tag 0BCX ([7]), there exists a norm map

π∗Gm → Gm,

which is compatible with the trace morphism:

H3(X,π∗Gm) H3(Y,Gm) Q/Z

H3(X,Gm) Q/Z

≅

norm

≅

≅

≅

By exactness of π∗, we have a morphism ExtiY (F,Gm) → ExtiX(π∗F,π∗Gm), which composed
with the norm gives the map

N ∶ExtiY (F,Gm)→ ExtiX(π∗F,Gm).

We have a commutative diagram as follows:
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H i(Y,F ) ×Ext3−iY (F,Gm) H3(Y,Gm) ≅H3(X,π∗Gm) Q/Z

H i(X,π∗F ) ×Ext3−iX (π∗F,Gm) H3(X,Gm) Q/Z

N norm ≅

It follows that if F is punctual, then by Artin-Verdier duality, N is necessarily an isomorphism.

If π is étale, N is automatically an isomorphism2.

The norm map is also compatible with restriction to open subschemes. If j∶U ⊂ X is an open
immersion, j∶V ⊂ Y is the base change along π, and π′∶V → U is the base change of π along j,
then we have the following diagram:

ExtiY (j!F,Gm) ExtiX(π∗j!F,Gm) ExtiX(j!π′∗F,Gm)

ExtiV (F,Gm) ExtiU(π′∗F,Gm)

≅

N

≅

≅

N

Then, one N being an isomorphism implies the other is.

Now, for a general F , consider the exact sequence 0 → j!j∗F → F → i∗i∗F → 0, where j is
chosen so that π∣V is étale (Tag 0C1C, [7]). Then, we conclude by the discussion above. ,

Let us now return to the induction.

Lemma 9. Suppose there is a positive integer r such thatmi(F ) is an isomorphism for all i < r and
F ∈ CX . Then,mr(F ) is injective.

Proof. Recall that Hr(X,−) is coe�aceable for constructible sheaves, i.e. for any F ∈ CX , we
can �nd G ∈ CX with an injection f ∶F ↪ G so that Hr(X,f) = 0 (proposition 5.6.13 in [4]).
Then, we have an exact sequence 0 → F → G → G/F → 0 and by assumption kermr(F ) maps
injectively into kermr(G). Take any x ∈ kermr(F ) ⊂ Hr(X,F ). It goes to 0 in Hr(X,F ′), so
we necessarily have x = 0, as desired. ,

Let (Cr) denote the following condition: mr(C) is an isomorphism for all X smooth proper
curves over k and for all �nite constant sheaves C ∈ CX .

Lemma 10. Suppose there is a nonnegative integer r such that mi(F ) is an isomorphism for all
i < r, X a smooth proper curve over k, and F ∈ CX , and that (Cr) holds.
Then, for all smooth proper curves X over k and F ∈ CX , we have mr(F ) is an isomorphism and
mr+1(F ) is injective.

2There is some discussion about this here: https://mathoverflow.net/questions/266877/

norm-theorem-for-finite-etale-morphisms-between-dedekind-affine-schemes
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Proof. The claim thatmr+1(F ) is injective is immediate from the preceding lemma (assuming the
claim that mr(F ) is an isomorphism).

Recall (proposition 5.8.11 in [4]) that there are �nite morphisms πi∶Yi →X with integral normal
schemes Yi and �nite constant sheaves Ci ∈ CYi

such that F ↪ ⊕i πi∗Ci. We claim that each
mr(πi∗Ci) is an isomorphism.

If πi is not dominant, then πi∗Ci is necessarily a punctual sheaf, and so our proof of Artin-Verdier
duality for punctual sheaves tells us that mr(πi∗Ci) is an isomorphism.

If πi is dominant, then we necessarily have that Yi is a smooth proper curve over O(Yi) (a �nite
�eld), so condition (Cr) implies that mr

Y (Ci) is an isomorphism. By lemma 8, it follows that
mr(πi∗Ci) is also an isomorphism.

Hence,mr (⊕i πi∗Ci) is an isomorphism. Now, consider the exact sequence 0→ F →⊕i πi∗Ci →
Q → 0, where Q is the cokernel of F ↪ ⊕i πi∗Ci. Then, we have the following commutative
diagram:

Hr−1
(X,G) Hr−1

(X,Q) Hr
(X,F ) Hr

(X,G) Hr
(X,Q)

Ext2−rX (G,Gm)
∨ Ext2−rX (Q,Gm)

∨ Ext3−rX (F,Gm)
∨ Ext3−rX (G,Gm)

∨ Ext3−rX (Q,Gm)
∨

≅ mr(F ) ≅ mr(Q)≅

By a diagram chase, it’s clear that the middle arrow is injective. This holds for any constructible
sheaf F , so it holds for G as well. Then, by the �ve lemma, it follows that the middle arrow is an
isomorphism, as desired. ,

We are almost done with the proof of the Artin-Verdier duality. The remainder is now mostly a
matter of piecing together the moving parts in a coherent way.

First, let us consider the case of constructible Z/pZ-sheaves on X . Since any such constant sheaf
is a direct sum of Z/pZ’s, it follows that (Cr) is equivalent to requiring that mr(Z/pZ) is an
isomorphism for all smooth proper curves X over k. By lemma 7, we know (C0) holds. Lemma
7 also ensures that “injective” and “isomorphic” are equivalent (because the sizes of the groups
are the same), and so the previous lemma lets us conclude the case of constructible Z/pZ-sheaves
via induction.

In particular, mr(Z/pZ) is an isomorphism for every r. By considering the exact sequence 0 →
Z/pZ → Z/p2Z → Z/pZ → 0, it follows that mr(Z/p2Z) is an isomorphism as well for all r.
We can similarly show that for any constant p-torsion sheaf that Artin-Verdier duality holds.
Then, by the previous lemma, Artin-Verdier duality holds for all constructible sheaves, and the
induction is complete.
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5 Concluding remarks

At this point, we should add a few words describing the development of Artin-Verdier duality.
Deninger, for instance, extended the duality theorem to non-torsion sheaves, namely to a class
of sheaves that are called “Z-constructible.” Others, including Artin, Mazur, and Milne, have
extended some of these results to �at cohomology. There is of course much more to this story,
and we recommend taking a look at Milne’s textbook ([3]) for a detailed account.
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