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(TODO: add notes from �rst three talks)

Theorem 1 (Rigidity). Let f ∶X → S be proper �at with κ(s) ≅ H0(Xs,OXs) for all s ∈ S and
S connected. Also, let g∶Y → S be separated. If π∶X → Y is an S-map such that the restriction
πs∶Xs → Ys is constant (i.e. factors through s), then π is constant (i.e. factors through S).

Theorem 2 (Seesaw theorem). Let f ∶X → S be proper �at with geometrically integral �bers. Let
L ∈ Pic(X). Then,

(i) Z ∶= {s ∈ S∶Ls is trivial} is a closed subset of S.

(ii) LZred is pulled back from Zred (the reduced induced structure on Z).

(iii) ∃! closed subscheme structure on Z such that LZ is pulled back from Z , and Z is universal
with this property among all S-schemes.

1 02/17: Projectivity of abelian varieties

We will continue discussing the theorem of the cube and see some applications to abelian vari-
eties. In particular, the theorem of the square will motivate the existence of dual abelian varieties.
After introducing some important constructions, such as the Mumford bundle and the Picard
functor, we will prove that abelian varieties are projective.

Theorem 3. Let S be a connected Noetherian scheme, X → S,Y → S be proper and �at with
geometrically integral �bers, and L ∈ Pic(X ×S Y ). Suppose there are sections eX ∈ X(S) and
eY ∈ Y (S) such that L∣{eX}×SY and L∣X×S{eY } are trivial and there is a point s ∈ S such that
L∣Xs×sYs is trivial. Then, L is trivial.

Proof. Let π∶P = X ×S Y → S be the standard projection and Z ⊂ S the universal subscheme
from the Seesaw theorem. We are done if we can show Z = S. Note that s ∈ Z so Z is nonempty,
so it su�ces to show thatZ is closed under generalization. Can assume S = Spec(R) with (R,m)
a DVR and Z = Spec(R/I). WTS I = 0.

If I ≠ 0, we can �nd an ideal J ⊂ I such that I/J ≅ k = R/m; e.g. take J to be mI since mI = I
implies I = 0 (by NAK) and I/mI is a k-vector space injecting into R/m = k. Now, we have
W = Spec(R/J) ⊂ S strictly contains Z (scheme-theoretically), i.e. we have a closed immersion
Z → W that is not an isomorphism. Now, using some universal property related to Z , we will
show that W cannot have this same property, which will let us achieve our contradiction.

In particular, Pic(local ring) is trivial, so LPZ
, which is pulled back from Z , is necessarily trivial.

If we can show that LPW
is also trivial, we get a contradiction. We have the SES (on Z) given by

0 → k → R/J → R/I → 0, which can be pulled back to P (π is �at) and tensored with L (which
is exact) to get 0→ LPs → LPW

→ LPZ
→ 0. Suppose LPZ

= OPZ
⋅ s. If we can lift s to a section of

LPW
, say t, then the map OPW

→ LPW
given by multiplication by t descends to an isomorphism

k → LPW
⊗OPW

k, so NAK implies LPW
= OPW

⋅ t. So if we can show that δ∶H0(PZ , LPZ
) →

H1(Ps, LPs) sends s to 0, then we are done. Note that we have mapsH1(Ps, LPs)→H1(Xs, LXs)
andH1(Ps, LPs)→H1(Ys, LYs) given by pullback, which are both trivial by assumption that the
existence of sections eX , eY that make L∣{eX}×SY and L∣X×S{eY } trivial. But Kunneth, the fact that
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the �bers are geometrically integral, and L∣Xs×sYs = LPs being trivial imply that H1(Ps, LPs) →
H1(Xs, LXs) ×H1(Ys, LYs) is bijective, so δ(s) = 0, and the result follows. ,

Corollary 4 (Theorem of the cube). Let k be a �eld, X and Y be proper, geometrically integral
schemes of �nite type over k, and Z be connected of �nite type over k. If L ∈ Pic(X × Y × Z) and
x ∈X(k), y ∈ Y (k), z ∈ Z(k) such that L is trivial on {x}×Y ×Z,X × {y}×Z,X ×Y × {z}, then
L is trivial.

Proof. Consider X × Y ×Z = (X ×Z) ×Z (Y ×Z)→ Z and apply the theorem above. ,

Corollary 5. Let A be an abelian variety over k, and Z be a k-scheme with maps f, g, h∶Z → A.
Then, for any L ∈ Pic(A), we have (f + g + h)∗L ≅ (f + g)∗L⊗ (g + h)∗L⊗ (f + h)∗L⊗ f∗L−1 ⊗
g∗L−1 ⊗ h∗L−1.

Corollary 6 (Theorem of the square). LetA be an abelian S-scheme and L ∈ Pic(A), then for any
x, y ∈ A(S), we have t∗x(L)⊗ t∗y(L) ≅ t∗x+y(L)⊗L, up to line bundles pulled back from S.

Proof. Let cx be the constant map A→ S → A with x = S → A, and similarly for cy and ce. Then,
apply the previous corollary to cx, cy, ce. ,

Corollary 7. IfA is an abelian variety over k andL ∈ Pic(A), then [n]∗L ≅ L(n2
+n)/2⊗[−1]∗L(n2

−n)/2.

Remark 8. IfA is an abelianS-scheme, thePicard functor ofA is the functor PicA/S ∶ (Sch/S)op →
Ab sending T /S to Pic(AT )/Pic(T ). The theorem of the square implies that the map φL∶A →
PicA/S of presheaves sending a T -valued point x∶T → A to φL(x) = t∗x(LT ) ⊗ L−1

T on A ×S T is
actually a group homomorphism.

De�nition 9. Let A/k be an abelian variety and L ∈ Pic(A). The kernel of φL is denoted K(L)
(as a presheaf). The Mumford bundle of L is denoted Λ(L), and is the line bundle m∗(L) ⊗
pr∗1(L)⊗ pr∗2(L) on A ×A.

Applying the Seesaw theorem to A × A → A, we can also view K(L) as the maximal closed
subscheme of A such that Λ(L)∣K(L)×A is pulled back from K(L). To see how this is related to
the φL, consider a T -point x∶T → Awith T a k-scheme. Let tx be de�ned as the map T ×A ≅ (T ×
A)×T T → (T ×A)×T (T ×A)→ T ×A given by (Id, xT ) followed bym. Note that the composition
pr1 ○tx =m○(x, Id), so (x, Id)∗Λ(L) = t∗x(LT )⊗pr∗1 x

∗(L−1)⊗L−1
T .We have pr∗1 x

∗(L−1) is pulled
back from T , so it follows a map x∶T → A factors through K(L) precisely when t∗x(LT )⊗L−1

T is
pulled back from T , i.e. ∣K(L)∣ is the set of points x ∈ A such that t∗x(L) ≅ L.

Corollary 10. K(L) is a subgroup scheme of A.

Proof. Immediate from the theorem of the square. ,

Corollary 11. If L is ample, then K(L)→ k is �nite.

Proof. We �rst assume k is algebraically closed.
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We claimK(L)○red is an abelian subvariety (where ○ denotes the connected component containing
the identity). It is a proper, reduced, connected group scheme over k = k, so its smooth locus is
nonempty. Using the group structure, we can push the smooth locus everywhere (more precisely,
use the di�erential criterion from earlier—f is smooth of rel. dim. d if it is locally of �nite
presentation, �at, has all nonempty �bers of equidimension d, and ΩX/Y is �nite locally free
of rank d). Thus, B =K(L)○red is an abelian subvariety.

Next, let M = L∣B ∈ Pic(B). Clearly, we have Λ(M) = Λ(L)∣B×B . We have the section K(L) →
K(L) ×A sending de�ned by (Id, e) of K(L) ×A → K(L). Note that Λ(L)∣K(L)×A pulled back
along (Id, e) is i∗L⊗ i∗L−1⊗ c∗eL−1 with i∶K(L)↪ A. We are working over a �eld so the ce term
is trivial, and so Λ(L)∣K(L)×A pulled back along (Id, e) is trivial, and hence Λ(L) pulled back
along K(L)×A→K(L) is trivial. Hence, Λ(L)B×B is trivial, and hence Λ(M) is trivial. Pulling
back Λ(M) along (Id,− Id)∶B → B ×B gives M ⊗ [−1]∗M is then trivial.

Note that K(L) is proper, so it has �nitely-many connected components, so K(L) is �nite i�
B = 0. For general k, we can base change to the algebraic closure to check thatK(L) is �nite, i.e.
we can assume k is algebraically closed for convenience. It su�ces to show dimB = 0, since B is
an abelian variety. Since L is ample,M is ample and hence [−1]∗M is also ample, soM⊗[−1]∗M
is also ample.

In general, OX being ample is true i� X is quasia�ne, which is true i� X → Spec Γ(OX) is
quasicompact and an open immersion. Since X → Spec Γ(OX) → k is proper, we have X →
Spec Γ(OX) is proper. Proper + open immersion implies isomorphism, so X is a�ne. A�ne +
proper implies zero dimensional, so the result follows. ,

Remark 12. Without further conditions, it’s clear that the converse to the previous corollary is
false: note φL−1(x) = t∗x(L−1

T )⊗ LT = −φL(x), so K(L) = K(L−1). The key point is to add some
e�ectivity.

The rest of this talk will be devoted to showing that abelian varieties are projective. By descent,
it su�ces to check projectivity after base change to the algebraic closure, so we will assume that
k = k in the sequel. Our next proposition tells us that every map out of a simple abelian variety
to a k-variety is either constant or �nite (according to Bhatt’s notes, appearing �rst in http://van-
der-geer.nl/∼gerard/AV.pdf).

Proposition 13. LetA/k be an abelian variety and f ∶A→ Y amorphism of k-varieties. For each k-
point a ∈ A(k), set Fa = (f−1(f(a))○red. Then, Fe is an abelian subvariety, and Fa = a+Fe = ta(Fe).

Proof. Recall the rigidity lemma tells us for k-varieties X,Y,Z with X complete that a map X ×
Y → Z that is constant on one �ber above Y (i.e. X × {y} → {z} for some y ∈ Y (k), z ∈ Z(k))
impliesX×Y → Z factors through Y (apply our version of the rigidity lemma withX×Y → Z×Y
over Y ).

Consider φ ∶= f ○ m∶A × Fa → A × A → A → Y . Note that φ is constant on the �ber above
e ∈ A(k), so A × Fa → Y factors through A, say φ∶A → Y . Suppose σ∶A → A × Fa is the section
of A×Fa → A given by (Id, a) (the constant map sending everything to a∶A→ k → A). Now, let
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b ∈ A(k). Then, we have φ(b) = φ(b, a) = f(b + a), so

f(b − a + Fa) = φ(b − a,Fa) = φ(b − a) = f(b − a + a) = f(b).

Taking a = e gives f(b + Fe) = f(b), so b + Fe ⊂ Fb. Taking b = e gives f(−a + Fa) = f(e), so
−a + Fa ⊂ Fe. So Fa = a + Fe.
Finally, to check Fe is an abelian (sub-)variety, we need to verify that for any x ∈ Fe, we have
x + Fe ⊂ Fe. But we already showed that x + Fe ⊂ Fx = Fe, so we’re done. ,

Remark 14. The same argument should be �ne for arbitrary k.

Lemma 15. Let A be an abelian variety over k and L = OA(D) for an e�ective Cartier divisor
D ⊂ A. Then, L⊗2 is globally generated.

Proof. Let a ∈ A(k). Saying that L⊗2 is globally generated is saying that the complete linear
system ∣2D∣ is base-point free, i.e. there exists an e�ective divisor E so that a /∈ E (i.e. the linear
system de�nes a morphism into projective space). Consider U = A/D−a ⊂ A and [−1]∗U , which
are both dense open subsets of A. Then, U ∩ [−1]∗U is also an dense open subset of A. If b is
a k-point of this intersection, note that b ∈ U implies that b + a ∈ A/D. Also, b ∈ [−1]∗U , so
−b ∈ U , so −b + a ∈ A/D. Then, a /∈ b + D and a /∈ −b + D, so a /∈ t−b(D) ∪ tb(D). Then, if
E = tb(D) + t−b(D), the theorem of the square implies that E is an e�ective divisor linearly
equivalent to 2D, as desired. ,

Theorem 16. If A is an abelian variety over k, then A is projective over k.

Proof. First, recall that an arbitrary morphism from an a�ne scheme to a separated scheme is
a�ne. If U ⊂ A is a nonempty a�ne open, D = A/U , and y a generic point of Y , then the map
g∶SpecOA,y → A is a�ne, so g−1(U) = SpecOA,y/{y} is a�ne. Since A is normal, it follows that
the dimension of the local ring is 1. Then, D is an e�ective Cartier divisor. Let L = OA(D). We
claim that L is ample.

By the previous lemma, we know L⊗2 is globally generated, i.e. there is a morphism f ∶A → Pm
such that f∗OPm(1) = L⊗2. It follows that we can �nd some hyperplaneH in Pm such that pulling
back the section corresponding toH gives the section corresponding to 2D. For any closed point
x ∈ Pm/H , we have f−1(x) ⊂ A/D = U. Note that there exists an x with f−1(x) nonempty; else,
f would be degenerate. Also, note that A → Pm → k and Pm → k are proper, so A → Pm is
proper, so f−1(x) is proper. It is also a�ne because U → Pm is a�ne (by the �rst sentence of this
proof). Then, f−1(x) is �nite. By the previous proposition, it follows that f is quasi-�nite. By
ZMT, we get that f is �nite (since it is also proper), so L is ample, since L⊗2 is the pullback of
the ample line bundle OPm(1) by a �nite map (this follows from the Leray spectral sequence, the
cohomological criterion of ampleness, and the fact that higher pushforwards of �nite morphisms
vanish). ,
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2 02/24: Embeddings and torsion subgroups

Blackboxing some facts about Chern classes, we will prove that abelian varieties of dimension g
cannot be embedded into projective (2g−1)-space. Then, we will discuss the structure of torsion
subgroups of abelian varieties over algebraically closed �elds.

We quickly recall some facts about Chern classes. IfH∗ is a Weil cohomology theory, then to any
coherent sheaf F ∈ Pm, we can associate the ith Chern class ci(F ) ∈ H2i(Pm). It is compatible
with pullback, the total Chern class, de�ned as the sum of ci(F ) over all i (living in H2∗(Pm)) is
a map from the K-theory of Pm to the cohomology ring H2∗(Pm), vector bundles of rank r have
trivial Chern class above degree r, and h = c1(O(1)) ∈ H2(Pm) satis�es (h∣X)d ≠ 0 for any X a
subvariety of Pm.

Proposition 17. If A/k is an abelian variety of dimension g, then A cannot be embedded in P2g−1.

Proof. LetA↪ Pm be a closed immersion cut out by IA. We want to show thatm ≥ 2g. There is a
conormal exact sequence 0 → IA/I2

A → ΩPm ∣A → ΩA → 0 because A/k is smooth. As a result, we
have IA/I2

A is locally free of rank m − g, and so ci(IA/I2
A) = 0 for i > m − g. Then, ctot(ΩPm ∣A) =

ctot(IA/I2
A)ctot(ΩA). Note that ΩA = O⊕g

A , so it follows that ctot(ΩA) = ctot(OA)g = 1—this follows
from compatibility with pullback of Chern classes. So ci(ΩPm ∣A) = 0 for i >m − g.

The Euler exact sequence tells us that 0→ ΩPm → O(−1)m+1 → OPm → 0, so taking Chern classes
tells us that ctot(ΩPm) = ctot(ΩPm)ctot(OPm) = ctot(O(−1)m+1) = ctot(O(−1))m+1 = (1 − h)m+1.
Then, ctot(ΩPm ∣A) = (1 − h∣A)m+1. But ci(ΩPm ∣A) = 0 for i > m − g and hg ∣A ≠ 0, so m − g ≥ g, so
m ≥ 2g, as desired. ,

We will need some general constructions about degrees of coherent sheaves to understand the
torsion subgroups of abelian varieties.

Let X be a projective variety of dimension g, L ∈ Pic(X), and F a coherent sheaf on X . Then,
de�ne PF,L(n) to be the polynomial sending n ↦ χ(F ⊗L⊗n). The degree of F with respect to
L is denoted by dL(F ) ∶= g! ⋅ (coe�cient of ng in PF,L(n)). The degree of L is dL(OX). We also
de�ne the rank of a coherent sheaf to be the rank of the sheaf at the generic point.

Remark 18. It is easy to see that dL is additive in short exact sequences (using the de�nition of
cohomology and SESs).

Also, for any positive integer k, we have deg(L⊗k) = kg deg(L).

If L is ample, then dL(F ) ≥ 0 for all F , and this inequality is strict if dim(F ) ∶= dim(Supp(F )) =
g.

Lemma 19. LetX be a Noetherian integral scheme with ξ the generic point. Suppose F is a coherent
sheaf on X and let r = rk(Fξ). Then, there is some sheaf of ideals I ⊂ OX such that I⊕r ↪ F , and
is an isomorphism at ξ.

Proof. Tag 01YE. The general idea is as follows. We have an isomorphism of OrX and F at the
stalk ξ, so we can �nd some nonempty open U ⊂ X and a morphism ψ∶OrU → F ∣U , which is an
iso at ξ. But then we have an iso in a neighborhood of ξ; we can shrink U and assume it is iso on
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U . Now, take I ⊂ OX to be the ideal cutting out the complement of U, and we get some morphism
(In)⊕r = InO⊕r

X → F which induces ψ over U (there is some colimit of such morphisms that is
precisely ψ). Injectivity follows by noting that ifA is a domain and I ⊂ A, then I ↪ I⊗AFrac(A)
and checking at the generic point (so that if we have blah to blah to blah with �rst blah to third
blah injective then �rst blah to second blah is injective). ,

Lemma 20. We have dL(F ) = rk(F ) ⋅ deg(L) and for any projective variety of dimension g with
f ∶Y →X �nite, deg(f∗L) = deg(f)deg(L).

Proof. The previous lemma gives us an exact sequence 0 → Ir → F → Q → 0. Applying dL gives
dL(F ) = dL(Q)+dL(Ir) = rdL(I), sinceQ is supported on a lower-dimensional subvariety. Also,
from the exact sequence 0→ I → OX → OX/I → 0, we see that deg(L) = dL(I), so the �rst result
follows.

For the second, note that POY ,f∗L(n) = χ(f∗Ln) = χ(f∗f∗Ln) = χ((f∗OY )⊗Ln) = Pf∗OY ,L(n),
using the fact that �nite pushforward is exact (hence commutes with cohomology) and the projec-
tion formula. Then, deg(f∗L) = df∗L(OY ) = dL(f∗OY ) = rk(f∗OY )dL(OX) = rk(f∗OY )deg(L) =
deg(f)deg(L), as desired. ,

Theorem 21. If A/S is an abelian scheme with n ∈ Z/{0}, then [n]∶A → A is �nite �at. If S = k,
then deg([n]) = n2g where g = dimA. As a corollary, A(k = k) is divisible.

Proof. Let us �rst assume that S is k. Then, picking an ample line bundle L onA and settingM =
L ⊗ [−1]∗L gives a symmetric ample line bundle. Then, we have [n]∗M = M (n2

+n)/2+(n2
−n)/2 =

Mn2 . Since Mn2 is also ample, we must have [n] is �nite (pullback of ample line bundle by f
is ample implies f is �nite, positive dimensional variety cannot have trivial ample line bundle).
Then, globally, [n] is �nite because it is proper + quasi�nite. The dimensions of �bers are 0, and
hence by miracle �atness we get [n] is �at.

Next, to compute the degree of [n], note that deg(Mn2) = deg([n]∗M) = deg([n]) ⋅deg(M). We
also have deg(Mn2) = (n2)g degM , and since degM > 0 (since it is ample), we get deg([n]) =
n2g. ,

Lemma 22. If k is perfect and char(k) = p, SpecR is an a�ne and smooth over k, then ker(d∶R →
ΩR/k) is precisely Rp ⊂ R.

Proof. Tag 031W says that the result holds if K/k is an extension. The idea is that we can take a
min poly P (T ) of a ∈K in k(x1, . . . , xr)[T ], which is separable, so that P (T ) = T d+∑di=1 aiT

d−i,
so 0 = dP (a) = ∑di=1 a

d−idai ∈ ΩK/k =⊕r
i=1Kdxi, so that dai = 0 and hence ai is a power of p. But

then if the coe�cients of the min poly are powers of p, so is the root.

Now, we can assume R is a domain (connected components are the same as irreducible com-
ponentS), so the claim holds for Frac(R) �rst. Then, noting that we have a composition R →
ΩR/k → ΩFrac(R)/k = R ⊂ Frac(R)→ ΩFrac(R)/k, the required claim holds. ,
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Remark 23. The previous lemma implies that if f ∶S → R is a map of k-algebras such that ΩS/k⊗S
R = f∗ΩS/k → ΩR/k is the zero map, then f factors uniquely as S → Rp ⊂ R (since if d(f(s)) = 0,
then f(s) lands in Rp).

Globally, this just becomes the fact that if we have a morphism f ∶X → Y of k-schemes with
X smooth, then f∗ΩY /k → ΩX/k being 0 implies f factors as X → X(1) → Y as morphisms of
k-schemes, whereX →X(1) is the relative Frobenius (X(1) is justX ×Speck Speck with Speck →
Speck given by the p-th power Frobenius).

Theorem 24. Let A/k = k be an abelian variety of dimension g and n ∈ Z/{0}.
(i) If n is invertible on k, then A[n] ≅ (Z/n)2g.

(ii) If char(k) = p > 0, then there is a unique integer 0 ≤ i ≤ g (called the p-rank of A) such that
for allm, we have A[pm](k) ≅ (Z/pm)i.

Proof. From earlier, we know that if n ∈ k×, then [n] is �nite etale. Then, A[n] is �nite etale
over k—general fact about quotients by group schemes; also, ker → A → k is �nite by looking at
dimensions of �bers. The category of �nite etale k-schemes is equivalent to the category of �nite
sets, so for (1), it su�ces to show that G = A[n](k) ≅ (Z/n)2g as abelian groups. We already
know G is abelian and #G = n2g = deg([n]) and n ⋅G = 0. This also holds for any m∣n, since
G[m] = A[m](k), i.e. #G[m] = m2g and m ⋅ G[m] = 0. Then, by the classi�cation of �nite
abelian groups, we get G ≅ (Z/n)2g.

For (2), we induct on m. We want to use the previous lemma to factor [p] through the relative
Frobenius. To do this, we check that [p] induces the zero map on di�erentials [p]∗ΩA/k → ΩA/k.
But we know on tangent spaces that Te([p])∶Te(A) → Te(A) is multiplication by p (as done
earlier), and is hence the zero map. This holds for tangent spaces at all points by moving stu�;
dualizing implies the maps on stalks of cotangents sheaves are also 0, so [p] indeed induces the
zero map on di�erentials. Then, we can factor [p] as X → X(1) → X . We call the �rst map F ,
the relative Frobenius, and the second map V , the Verschiebung.

F is a homeomorphism, so there is a bijection between the p-torsion k-points and the k-points
V −1(e)(k). Since deg([p]) = p2g and deg(F ) = pg, we get deg(V ) = pg. Then, #V −1(e)(k) ≤
deg(V ) = pg. Since we know that A[p](k) is already a p-torsion abelian group, it follows that it
must be of the form (Z/p)i for some 0 ≤ i ≤ g.

Next, for m > 1, we know [pm] is surjective, so it follows that we have a SES

0→ A[p](k)→ A[pm](k)→ A[pm−1](k)→ 0.

The �rst term is iso to (Z/p)i and the third is iso to (Z/pm−1)i, so the middle has pi ⋅p(m−1)i = pmi
elements.

We also know that A[pm](k)/p ≅ A[p](k) ≅ (Z/p)i, so NAK implies A[pm](k) is a quotient
of (Z/pm)i (take (Z/pm)i → (Z/p)i → A[pm](k)). By cardinality, it follows that they are the
same! ,
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3 03/10: The dual abelian variety

We will begin discussing the dual abelian variety following Mumford’s approach. Given an
abelian variety A, the dual is roughly the solution of the moduli problem associating to each
k-scheme T a family of degree zero line bundles parametrized by T . We will see that the repre-
senting object (i.e. the dual abelian variety) has a remarkably simple description as the "quotient"
A/K(L). To make sense of this, we will appeal (likely without proof) to the theory of quotients
of schemes by group actions.

Recall that we have a map Pic(A)→ Hom(A,PicA/k) given by L↦ φL, where φL(x) = t∗x(LT )⊗
L−1
T if x is a T -point of A. By the theorem of the square, note that this map is a homomorphism.

Also, φL = 0 i� for every point x∶T → A, we have t∗x(LT ) ≅ LT .

De�nition 25. De�ne the degree zero line bundles of A to be Pic0(A) ∶= {L ∈ Pic(A) ∶ φL =
0} ⊂ Pic(A).

First, the following lemma tells us how to produce some easy examples of line bundles living in
Pic0(A) provided that we already one in Pic(A).

Lemma 26. For any L ∈ Pic(A) and x ∈ A(k), we have φL(x) = t∗x(L)⊗L−1 ∈ Pic0(A). In other
words, this induced a map Pic(A)/Pic0(A)→ Hom(A(k),Pic0(A)).

Proof. Apply the theorem of the square. Let’s just check that t∗y(φL(x)) = φL(x) for all y ∈ A(k)—
the argument is pretty much identical for T -points. Then, we have t∗y(t∗x(L) ⊗ L−1) = t∗x+yL ⊗
t∗yL

−1 = t∗xL⊗ t∗yL⊗L−1 ⊗ t∗yL−1 = t∗xL⊗L−1, as desired. ,

This lemma tells us that we can characterize degree zero line bundles using the Mumford bun-
dle.

Lemma 27. If L ∈ Pic(A), then L ∈ Pic0(A) i� Λ(L) is trivial.

Proof. By the Seesaw theorem, there is some maximal closed subscheme K(L) ⊂ A such that
Λ(L)∣K(L)×A is pulled back from K(L). Recall that Λ(L) =m∗L⊗pr∗1(L−1)⊗pr∗2(L−1) and that
K(L) = A precisely when φL = 0, i.e. when L ∈ Pic0(A). Saying that K(L) = A is the same as
Λ(L) being pulled back from A (the �rst coordinate). Consider the section (Id, e)∶A→ A ×A of
pr1, and note that pulling back Λ(L) along this gives L⊗L−1 ⊗OA is trivial. ,

This lemma tells us that degree zero line bundles behave linearly as opposed to general line
bundles, which act quadratically.

Lemma 28. If L ∈ Pic0(A) and x, y ∈ A(T ) for some k-scheme T , then (x + y)∗L ≅ x∗L ⊗ y∗L.
For example, [n]∗L = L⊗n.

Proof. Use the previous lemma and pull back the Mumford bundle along the map (x, y)∶T →
A ×A. ,

Lemma 29. If L ∈ Pic(A), then there is someM ∈ Pic0(A) such that [n]∗L ≅ L⊗n2 ⊗M .
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Proof. From a corollary of the theorem of the cube, we have [n]∗L = L(n2
+n)/2⊗ [−1]∗L(n2

−n)/2 =
Ln

2⊗(L⊗[−1]∗L−1)(n2
−n)/2. So it su�ces to show that this latter term is in Pic0(A), i.e. because

Pic0(A) is a group, it su�ces to show L⊗ [−1]∗L−1 is.

Let x ∈ A(k). Then, it’s easy to see t∗x(L ⊗ [−1]∗L−1) = t∗xL ⊗ [−1]∗(L ⊗ t∗
−x(L−1)) ⊗ [−1]∗L−1.

Since L ⊗ t∗
−x(L−1) ∈ Pic0(A) by an earlier lemma, it follows that [−1]∗(L ⊗ t∗

−x(L−1)) = (L ⊗
t∗
−x(L−1))⊗−1 = L−1⊗t∗

−xL. Then, t∗x(L⊗[−1]∗L−1) simpli�es to L⊗[−1]∗L−1 (using the theorem
of the square), as desired. ,

Lemma 30. If L ∈ Pic(A) has �nite order, then L ∈ Pic0(A).

Proof. Suppose L⊗n = OA. Then, nφL = 0 (via the homomorphism L ↦ φL), so 0 = nφL(x) =
φL(nx) for all x ∈ A(k). Since A(k) is divisible, it follows that φL = 0, as desired. I’m not sure
how to get around the fact that x ∈ A(k) (I don’t think it’s divisible for T -points) unless we use
the silly fact that a morphism of k-varieties is determined on its closed points (I think Pic(A)
should be a variety—at least separated and �nite type over k?). ,

Lemma 31. Let S be connected and of �nite type over k. If L ∈ Pic(A × S) and s, t ∈ S(k), then
Ls ⊗L−1

t ∈ Pic0(A).

Proof. By shrinking S, we can assumeL∣{e}×S is trivial. We can also assumeLs is trivial and show
that Lt is then in Pic0(A) for all t. We want to show that Λ(Lt) is trivial. Let µ∶S × A × A →
S × A be multiplication on S × A (sending (s, a, b) to (s, a + b)) and consider M = Λ(L) =
µ∗L ⊗ pr∗12(L−1) ⊗ pr∗13(L−1) on S × A × A. Note that for all t, we have M ∣{t}×A×A ≅ Λ(Lt).
Since M ∣{s}×A×A,M ∣S×{e}×A,M ∣S×A×{e} are trivial, the theorem of the cube tells us M is trivial,
so Λ(Lt) is trivial too. ,

Lemma 32. If L ∈ Pic0(A) is non-trivial, then H i(A,L) = 0 for all i ≥ 0.

Proof. For i = 0, note that if H0 is not 0, then we can write L = OA(D) for some e�ective Cartier
divisor D. Note that [−1]∗L = L−1 is then also e�ective, which is impossible.

Now, let i > 0 be the smallest i such that H i is not 0. The identity can be factored as A →
A×A→ A, where the �rst map is (Id, e) and the second m. The identity on cohomology factors
as H i(A,L) → H i(A × A,m∗L) → H i(A,L), so it su�ces to show H i(A × A,m∗L) = 0. By
Kunneth, we have H i(A ×A,m∗L) = H i(A ×A,pr∗1 L⊗ pr∗2 L) = ⊕ stu�⊗ stu�, and each term
is 0 by minimality and the base case i = 0. ,

Proposition 33. If L ∈ Pic(A) is ample, then φL∶A(k) → Pic0(A) is surjective and has kernel
K(L)(k).

Proof. We already showed the fact about kernels in a previous talk. So we just need to show
surjectivity. This relies on a trick that Mumford uses again and again.
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Suppose M is not in the image of φL and consider K = Λ(L) ⊗ pr∗1(M−1) ≅ m∗L ⊗ pr∗2 L
−1 ⊗

pr∗1(L−1 ⊗M−1). For any x ∈ A(k), we have

K ∣A×{x} ≅ t∗x(L)⊗L−1 ⊗M−1 and K ∣{x}×A ≅ t∗x(L)⊗L−1.

For every x, we necessarily have that K ∣A×{x} is nontrivial (because M is not in the image); it
is also a degree zero line bundle because t∗x(L) ⊗ L−1 and M are. By the previous lemma, it
follows that K has no cohomology when restricted to any �ber in the second coordinate. By
the semicontinuity theorem, we have Ri pr2∗K = 0 for all i. By the Leray spectral sequence, it
follows that H i(A ×A,K) = 0 for all i.

Also, K ∣{x}×A is trivial i� x ∈ K(L)(k), so Ri pr1∗(K) has support contained in K(L), which
is �nite because L is ample. Any coherent sheaf supported on a �nite subscheme has no higher
cohomology, so the Leray spectral sequence tells us that H i(A ×A,K) ≅⊕x∈K(L) (Ri pr1∗K)x.

Combining the results from the last two paragraphs yields Ri pr1∗K = 0 for all i. Then, by
proposition 4.6 of Bhatt, it follows that H i(A,K ∣{x}×A) = 0 for all i and x ∈ A(k). In particular,
for x = e and i = 0, we get H0(A,OA) = 0, which is a contradiction! ,

We’ll now blackbox the theory of quotients by �nite group schemes. Given a �eld k, a �nite
group scheme G/k, and X/k �nite type, then we say that an action G ×X → X on X is free if
G ×X → X ×X is injective on the level of points. E.g. translation is a free action on an abelian
variety.

A quasicoherent sheaf F on X is said to be G-equivariant if it comes with isomorphisms
λg ∶a∗gFS → FS (where S is a k-scheme, g ∈ G(S), ag ∶XS → XS is the induced action on XS

by g) so that λh⋅g = λg ○ a∗gλh.

Theorem 34. Let X/k be �nite type and separated and G a �nite group scheme over k acting
freely on X . Suppose any �nite subset of X is contained in an a�ne open subset of X (e.g. X is
quasiprojective—then, we can always a hypersurface that avoids any �nite set of points + complement
of hypersurface is a�ne by the Veronese). Then, there is a universal G-invariant morphism π∶X →
X/G such that:

(i) π is �nite, �at, surjective, and G ×X ≅ (G ×X/G) ×X/GX →X ×X/GX is an isomorphism
(i.e. a torsor).

(ii) deg(π) = rk(G) ∶= dimk(Γ(G)).
(iii) If f is X ×G → X → X/G, then OX/G → π∗OX ⇉ f∗OX×G, with the second maps given by

the action of G and pr2, is an equalizer.

(iv) If k is algebraically closed, then X(k)/G(k) → (X/G)(k) is an iso and ∣X ∣/∣G∣ → ∣X/G∣ is
a homeo.

(v) π∗ induces an equivalence of categories (via descent)

QCoh(X/G) ≅ {G-equivariant quasicoherent sheaves on X}.

(vi) There is a norm map Nm∶Pic(X) → Pic(X/G) such that the composition with π∗ is the
multiplication-by-rk(G) map L→ L⊗ rk(G) with L ∈ Pic(X/G).
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Let us now describe the moduli problem associated to the dual abelian variety. The main goal
now is the following theorem:

Theorem 35. Let A/k be an abelian variety. Let CA be the category of triples (S,L, ι), where S is
a k-scheme, L ∈ Pic(A × S) such that L∣{s}×A ∈ Pic0(A) for all s ∈ A(k), and ι∶L∣S×{e} ≅ OS is a
choice of isomorphism (“rigidi�cation”).

Then, CA has a �nal object called the dual abelian variety (denoted (At,P, ιuniv)), i.e. for any k-
scheme S, k-morphisms S → At are in bijection with triples (S,L, ι) given by pulling (At,P, ιuniv)
back along S → At.

Remark 36. The purpose of adding a rigidi�cation is so that we don’t have to worry about auto-
morphisms of objects—otherwise, we would need to use the language of stacks.

The general strategy will to pick some ample line bundle L on A, de�ne At to be A/K(L), and
construct P by descending the Mumford bundle from A × A to At × A = (A × A)/(K(L) × 0).
Then, we will show that this satis�es the universal property as described in the theorem.

To make this work precisely, we will need the following lemma along with the theory of quo-
tients.

Lemma 37. Λ(L) isK(L)-equivariant: aK(L)-equivariant structure on Λ(L) is uniquely deter-
mined after specifying a rigidi�cation L∣{e} ≅ k.

Proof. Let x ∈ K(L)(T ), where T is some k-scheme. Then, there exists some line bundle M0

pulled back from T so that t∗x(LT ) ≅ LT ⊗M0. Then, we have

t∗
(x,e) (Λ(L)T ) = t∗(x,e) (Λ(LT ))

= t∗
(x,e) (m∗

T (LT )⊗ pr∗1 L
−1
T ⊗ pr−1

2 (L−1
T ))

=m∗

T t
∗

x(LT )⊗ pr∗1 t
∗

xL
−1
T ⊗ pr∗2 L

−1
T

≅m∗

TLT ⊗m∗

TM0 ⊗ pr∗1 L
−1
T ⊗ pr∗1 M

−1
0 ⊗ pr2L

−1
T

=m∗

TLT ⊗ pr∗1 L
−1
T ⊗ pr2L

−1
T

= Λ(LT ),

since m∗

TM0 = pr∗1 M0 (since prT ○mT = prT ○pr1—they are both map of T -schemes, so all maps
to T agree).

To ensure that these isomorphisms are canonical (so that we get compatibility with the K(L)
action on A), we use the rigidi�cation. It su�ces to de�ne this isomorphism after pulling back
along the inclusion ι∶AT → AT ×T AT (given by (Id, e)), since any two isomorphisms, either on
AT or on AT ×T AT , di�er by global units H0(AT ,O×

AT
) =H0((A×A)T ,O×

(A×A)T
) =H0(T,O×

T )
by Kunneth, so that the restriction H0((A ×A)T ,O×

(A×A)T
)→H0(AT ,O×

AT
) is an iso.

Now, note that t(x,e) ○ ι = ι ○ tx∶AT → (A × A)T , from which it follows that ι∗t∗
(x,e)

(Λ(LT )) =
t∗xι

∗(Λ(LT )). Also, ι∗(Λ(LT )) = ι∗(m∗

T (LT )⊗pr∗1 L
−1
T ⊗pr−1

2 (L−1
T )) = LT ⊗L−1

T ⊗(L−1∣{e}×AT ) =
L−1∣{e} ×AT . Then, we just need to �x an iso between t∗x(L−1∣{e} ×AT ) and L−1∣{e} ×AT , which
is given by simply having tx only on the second factor and be constant on the �rst fact (we �x a
rigidi�cation L∣{e} ≅ k). ,
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This allows us to descend the Mumford bundle Λ(L) to P . To de�ne ιuniv, note that we need to
write down an iso PAt×{e} ≅ OAt . To do this, it su�ces to write an isomorphism Λ(L)∣A×{e} ≅ OA
that is compatible with the K(L)-action.

The LHS is given by L⊗L−1 ⊗ (L−1∣{e} ×A) ≅ L−1∣{e} ×A. Hence, after choosing an iso L∣{e} ≅ k
as in the previous lemma, we get Λ(L)∣A×{e} ≅ OA that is compatible with the K(L) action. So
this gives us the triple (At,P, ιuniv).

Next time, we will check the universal property and complete the construction of the dual abelian
variety.
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4 03/24: Constructing the dual abelian variety and Fourier-Mukai
transforms

We will construct the dual abelian variety following Mumford’s approach, concluding our dis-
cussion from last time. Along the way, we will compute the cohomology of the Poincare bun-
dle, as well as the cohomology of the structure sheaf of an abelian variety. This will naturally
lead us to Fourier-Mukai transforms, and we will state the famous Fourier-Mukai equivalence
D(A) ≅D(At) for an abelian variety A and its dual At.

Last time, we constructed (At,P, ιuniv). It remains to show that for any object (S,F, ι) in our
category of triples parametrizing degree zero line bundles, we have a unique map S → At such
that F and ι arise from P, ιuniv under pullback.

Consider M = pr∗13(F −1) ⊗ pr∗23(P) living in S × At × A, and let ΓS be the maximal closed
subscheme of S ×At, obtained from the Seesaw theorem, such that M ∣ΓS×A arises from pullback
from ΓS . Then, it su�ces to show that ΓS ⊂ S × At → S is an isomorphism; the unique map
S → At is given by S ≅ ΓS ⊂ S ×At → At

Indeed, for any morphism φ∶S → At, let Γφ∶S → S × At denote the graph. We then have (φ ×
Id)∗P ≅ F i� Γφ factors through ΓS . But ΓS is already the graph of S ≅ ΓS ⊂ S × At → At, so
uniqueness follows.

We’ll divide up the proof into several steps:

(i) Some easy reductions: By descent and noting that ΓS is compatible with base change,
we can assume k is algebraically closed. Moreover, for varieties (or just �nitely presented
schemes over a base ring), if the induced morphism on Specs of local rings is an iso, it
follows that the original morphism is an iso (because we can uniquely extend to neighbor-
hoods on both sides). Since completions of Noetherian local rings are faithfully �at, we can
pass to the completions. Moreover (okay, this is probably overkill), by the Cohen structure
theorem, a complete Noetherian local ring containing its residue �eld is just a power series
in the �eld mod some ideal, which is an inverse limit of Artinian local rings. Hence, we
may assume S is an Artinian local ring with residue �eld k. Then, S is just a single point,
say {s}, and write S = Spec(B).
We can also assume that F ∣{s}×A ≅ OA by replacing M with M ⊗ pr∗3(P−1∣{b}×A) (this
doesn’t change ΓS), where b ∈ At(k) such that F ∣{s}×A ≅ P ∣{b}×A (such b exists because
At(k)→ Pic0(A) is surjective and we have F ∣{s}×A ∈ Pic0(A) by de�nition).

(ii) Cohomology ofM is free using pr13: By an earlier claim (from last lecture), we know that
for a line bundleL onA×S, we haveL∣{s} ∈ Pic0(A) impliesL∣{t} ∈ Pic0(A) for s, t ∈ A(k).
Since M ∣{s}×At×{e} is a degree zero line bundle, it follows that M ∣{s}×At×{a} ∈ Pic0(At) for
any a ∈ A(k). Now, M ∣{s}×At×{a} is trivial for only �nitely many a: Let π∶A → At be the
quotient, and note π∗(M ∣{s}×At×{a}) ≅ t∗a(L) ⊗ L−1, which is trivial i� a ∈ K(L), which is
�nite because L is ample. Hence,⊕i∈ZRi pr13,∗(M) has �nite, discrete support (by a result
from last time—all cohomology groups of a non-trivial degree zero line bundle are 0). Then,
arguing as we did before, the Leray spectral sequence gives us an iso H i(S ×At ×A,M) ≅
H0(S×A,Ri pr13,∗M).By shrinkingS×A so thatF is trivial (but still contains the support),
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it follows that we can assume F is trivial. Then, we get

H i(S ×At ×A,M) ≅H0(S ×A,Ri pr13,∗M)
≅H0(S ×A,Ri pr13,∗(pr∗13F

−1 ⊗ pr∗23P))
≅H0(S ×A,F −1 ⊗Ri pr13,∗(pr∗23P)) (projection formula)
≅H0(S ×A,Ri pr13,∗(pr∗23P))
≅H i(S ×At ×A,pr∗23P) (again by the Leray SS)
≅ B ⊗k H i(At ×A,P) (by �at base change),

so H i(S ×At ×A,M) is a free B-module.

(iii) Vanishing of cohomology ofM using pr12: Now, consider M ∣{s}×{a}×A with a ∈ At(k).
If it is nontrivial, then we again have from last time (since it lives in Pic0(A)) that all
cohomology groups Ri pr12,∗(M) are trivial. Note that M ∣{s}×{a}×A = P ∣{a}×A is trivial
precisely when a = e, so the support of ⊕Ri pr12,∗(M) ⊂ {s} × {e}. Let R = B ⊗k OAt,e.
Then, since Ri pr12,∗(M) is supported at (s, e), we can view it as an Artinian R-module
(more precisely, it is the skyscraper corresponding to this Artinian R-module supported
at (s, e)); note that it is also an Artinian OAt,e-module. There is a perfect complex K● =
(K0 → ⋯→Kg) that universally computes the cohomology of Ri pr12,∗(M).
In general, Mumford claims that if O is an Artinian local ring of dimension g and K● =
(K0 → ⋯ → Kg) is a complex of perfect O-modules such that H i(K●) is an Artinian O-
module. Then, H<g(K●) = 0. To see this, let us induct on g. The case g = 0 is trivial. Pick
x ∈ m −m2; then, O/x is also regular and of dimension g − 1 (do this exercise!). Let K

● =
K●⊗OO/x. Now, consider the SES 0→K● →K● →K

● → 0 given by multiplication by x in
the �rst map. We get the LES Hp(K●) → Hp(K●) → Hp(K●) → Hp+1(K●) → Hp+1(K●),
which shows that H i(K●) are Artinian. Then, by induction, these vanish for i < g − 1, so
Hp+1(K●) → Hp+1(K●) (multiplication by x) is injective for p < g − 1. Since each one is
injective, some power of x will eventually kill Hp+1(K●), so it follows that Hp+1(K●) = 0
for p < g − 1, as desired.
SoRi pr12,∗(M) = 0 for i < g. Again, the Leray SS tells us thatH i(S×At×A,M) ≅H0(S×
At,Ri pr12,∗(M)) (since each Ri pr12,∗(M) has �nite support), so H i(S ×At ×A,M) = 0
for i < g and is some free B-module N in degree g.

(iv) Scheme structure on ΓS : We will only sketch this. The idea is roughly the same as how
we proved the Seesaw theorem: Take the dual of the perfect complex K●, and let Q be the
cokernel of K1,∨ → K0,∨. Then, repeating the same argument shows that HomR(Q,k) is
1-dimensional over k so that NAK implies Q is cyclic, i.e. of the form R/I . Then, using the
universal property of ΓS lets us verify that ΓS = Spec(R/I) ⊂ SpecR.

(v) ΓS → S is an iso: We want to show thatB → R → R/I is an iso. First,H i(K●,∨) is Artinian
because it is true for K●. Again, we have that 0 → K●,∨ → Q → 0 is a resolution. Since
I kills Q, we also have that I kills H i(HomR(K●,∨,R)) (indeed, for any R-linear functor
applied toK●,∨), so I ⋅H i(K●) = 0. Now,N is non-zero (why?) and I ⋅N = 0, so I ∩B = {0}
and B → R/I is injective.
For surjectivity, by NAK, it su�ces to verify the claim after modding out by mB . So we
can assume S is k. Then, SpecR/I → At is the maximal closed subscheme such that P is
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pulled back from SpecR/I . Then, π−1(Spec(R/I)) is the maximal closed subscheme such
that (π, Id)∗P = Λ(L) is pulled back from SpecR/I . So K(L) = π−1(Spec(R/I)). So it
follows that R/I is just k, and the result follows.

Corollary 38. If A is an abelian variety of dimension g, thenH i(At ×A,P) = 0 for i < g and k for
i = g. This implies that Ri pr1,∗(P) = 0 for i < g and k(e) for i = g.

Proof. The i < g case is clear from the proof above by setting S = Speck. For i = g, writeQ = R/I
as in the proof, and recall Q =Hg(K●,∨) so that K●,∨ is a resolution of k. It is a fact that any two
resolutions over a regular local ring are homotopy equivalent, so we can use the Koszul resolution
instead (I won’t write it down here). It is also self-dual. Then, the result follows. ,

Corollary 39. If A is an abelian variety of dimension g, then H i(A,OA) has rank (g
i
).

Proof. Like in the previous corollary, we can use the Koszul complex, which universally computes
cohomology. Now, note that since Ri pr1,∗(P) is just a skyscraper (0 for i ≠ g and k(e) for i = g),
it follows that on e ×A, we have Ri pr1,∗(P)∣{e}×A can be identi�ed with H i(A,OA). Then, the
corresponding complex is

0→ Λgkg → Λg−1kg → ⋯→ kg → k → 0,

and all of the maps are 0 because we are taking the �ber (i.e. tensoring by k). So the result
follows. ,

We now move on to duality. Given a morphism of abelian varieties f ∶A→ B, we can construct a
morphism f t∶Bt → At. To see this, consider g = (Id, f)∶Bt ×A→ Bt ×B and g∗PB . To construct
f t, we use the universal property of At, i.e. we need to check that g∗PB ∣{s}×A ∈ Pic0(A) for all
s ∈ Bt and g∗PB ∣Bt×{e} ≅ OBt . The latter is just PB ∣Bt×{e} because homomorphisms send e to
e, and this already has a trivialization. For the former, note that it is iso to f∗(PB ∣{s}×B) and
that PB ∣{e}×B is trivial (and hence g∗PB ∣{s}×A is in Pic0(A)). Then, by a lemma from last time, it
follows that g∗PB ∣{s}×A is in Pic0(A) for all s ∈ Bt(k).

As a result, we have a unique f t∶Bt → At such that (f t, Id)∗PA ≅ g∗PB = (Id, f)∗PB .

Proposition 40. If f ∶A → B is an isogeny (i.e. is surjective and has �nite kernel), then so is
f t∶Bt → At.

Proof. We will use the following lemma, which characterizes isogenies. Since f is an isogeny,
we have dim(Bt) = dim(B) = dim(A) = dim(At) (because π∶A → At,B → Bt is �nite and
surjective). So by the following lemma, it su�ces to show that f t is surjective.

To see this, let L be an ample line bundle of B, so that φL∶B → Bt is a polarization. Since A→ B
is �nite, pulling back L to A is still ample. We get the following diagram (from the universal
property):
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A B

At Bt

f

φL∣A φL

f t

Since φL∣A ∶A→ At is surjective it follows that f t∶Bt → At is surjective too. ,

Theorem 41. There is a canonical biduality A→ (At)t.

Proof. First, let us construct such a map. Consider PA ∈ Pic(A × At). Note that PA∣{x}×At ∈
Pic0(At) for all x ∈ A(k) because it holds for x = e (since PA∣{e}×At ≅ OAt). Next, to construct
a rigidi�cation PA∣A×{e} ≅ OA, consider the homomorphism A(k) → Pic0(A) given by sending
x↦ Λ(L)∣A×{x}, which descends to an isomorphism (as shown before)At(k)→ Pic0(A) sending
x↦ PA∣A×{x}.

So we have a morphismα∶A→ (At)t (using the universal property of (At)t) such that (α, Id)∗(PAt) ≅
PA. Let π = (α, Id). Then, we claim that π is an isomorphism (which implies α is).

First, π is �at since the explicit description of α is something like S ≅ ΓS → S ×At → S (from the
proof), which has �bers of the same dimension; we can then use miracle �atness.

Next, π is �nite becauseA→ (At)t → At (the latter given by the dual of a polarization φL∶A→ At)
is the same as φL∶A → At using the universal property; φL is an isogeny and its dual is also an
isogeny, so both are �nite.

Finally, π is of degree 1 by using the fact that for a proper variety X , G �nite acting freely on X ,
π∶X →X/G, and F ∈ Coh(X/G), then χ(X/G,F )deg(π) = χ(X,π∗F ) (c.f. Mumford). Letting
π = (α, Id) and F = PAt , we have deg(π)(−1)g = χ(A ×At, π∗PAt) = χ(A ×At,PA) = (−1)g.
So π is an iso, as desired. ,

Lemma 42. Let f ∶A → B be a homomorphism of abelian varieties. TFAE (and f is then called an
isogeny):

(i) f is surjective and dimA = dimB.

(ii) ker f is a �nite group scheme and dimA = dimB.

(iii) f is �nite, �at, and surjective.

Proof. Relatively straightforward, c.f. EvdGM (Prop 5.2). Also Tag 047T (subgroup is closed im-
mersion, so ker f → A→ k is proper—only need to check quasi-�niteness by ZMT). ,

Remark 43. There is an alternative approach using Cartier duality. If f ∶A→ B is an isogeny with
kernel K , then f t is an isogeny with kernel Kt, where Kt is the Cartier dual of K , i.e. the �nite
group scheme given by Hom(−,Gm), which on points sends T ↦ HomT (GT ,Gm,T ).

The dualAt can also be described as Ext1(A,Gm), i.e. rigidi�ed line bundles onA are in bijection
with extensions by Gm. The idea is roughly as follows (the only reference I can �nd for this is
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https://www.raymondvanbommel.nl/talks/duality_av.pdf and allegedly Serre’s textbook on alge-
braic groups and class �elds, which unfortunately doesn’t use schemes). Let L ∈ Pic0(A) and
L∣e ≅ k. Then, the claim is that this corresponds to some extension 0 → Gm → E → A → 0.
Let E be Isom(OA, L) over A, which happens to be represented by a scheme. Pick two points
(a,α), (b, β) ∈ E(T ), where T is some S-scheme; we have an iso α∶OT → a∗L (similarly for
β and b). By the theorem of the square, we have (a + b)∗L ≅ a∗L ⊗ b∗L ⊗ e∗TL

−1. Using the
rigidi�cation, we have e∗TL ≅ OT , so we get a canonical iso (a + b)∗L ≅ OT via α and β. This
exhibits a way of adding (a,α) and (b, β). The map Gm,S → E is given by sending x ∈ Gm,S(T )
to (eT , ⋅x∶OT → e∗TL ≅ OT ) and E → A is given by forgetting the isomorphism.

Using this, consider the sequence 0→K → A→ B → 0. Hitting it with Hom(−,Gm) (i.e. Cartier
duality) gives the sequence Hom(A,Gm) → Hom(K,Gm) → Ext1(B,Gm) → Ext1(A,Gm) →
Ext1(K,Gm). The �rst and last terms are 0 because A is proper and Gm is a�ne (by the rigid-
ity lemma) and because K is 0-dimensional. The induced map Ext1(B,Gm) → Ext1(A,Gm)
corresponds to f t∶Bt → At (why is this true?) from which it follows that Kt = Hom(K,Gm).

We now move on to Fourier-Mukai transforms, which will allow us to go between the derived
category of an abelian variety and the derived category of its dual using the integral transform
of the Poincare bundle.

De�nition 44. Let X be a scheme over k.

(i) D(X) is the full subcategory of the derived category ofOX-modulesK such thatH i(K) ∈
QCoh(X) for all i. Note: it is not always true that D(X) = D(QCoh(X)) (but it is if X
has a�ne diagonal)—this isn’t useful because QCoh(X) has ugly injective resolutions.

(ii) Db(X) is the full subcategory of D(X) that is bounded, i.e. cohomology vanishes eventu-
ally in both directions.

(iii) Db
coh(X) is the full subcategory of D(X) such that H i(K) ∈ Coh(X) for all i and is also

bounded.

De�nition 45. Let X,Y be schemes over k and K ∈D(X × Y ). Then, de�ne

φK ∶D(X)→D(Y ),N ↦ Rpr2,∗(Lpr∗1(N)⊗K)

and
ψK ∶D(Y )→D(X),M ↦ Rpr1,∗(Lpr∗2(N)⊗K).

φK and ψK are called integral transforms and K is called the kernel (of φK or ψK).

Remark 46. Many functors between derived categories are secretly integral transforms! Orlov
proved that every fully faithful functor arises as an integral transform.

Example 47.

(i) Let ∆∶X →X ×k X be the graph. Set K = R∆∗OX . Then, we have φK = Id:

N ↦ Rpr2,∗(Lpr∗1 N ⊗R∆∗OX) ≅ Rpr2,∗(R∆∗(L∆∗Lpr∗1 N ⊗OX)) (projection formula)
= Rpr2,∗(R∆∗N)
= N.
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(ii) Let f ∶X → Y be a morphism of k-schemes and Γ∶X → X ×k Y be the graph with i∶Γ ↪
X ×k Y the inclusion. Set K = Ri∗OΓ. Then, we have φK = Rf∗ and ψK = Lf∗:

N ↦ Rpr2(Lpr∗1 N ⊗Ri∗OΓ) ≅ Rpr2,∗(Ri∗(Li∗Lpr∗1 N ⊗OΓ)) (projection formula)
= Rpr2,∗(Ri∗N)
= Rf∗N.

We can �nally state the famous Fourier-Mukai equivalence.

Theorem 48 (Mukai). Let A be an abelian variety. Then, φPA
∶D(A) → D(At) is an equivalence

of triangulated categories.
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5 03/31: The Fourier-Mukai equivalence

We will restate the Fourier-Mukai equivalence. Then, we will prove it.

For today, let us �x an abelian variety A/k of dimension g and set φA to be φPA
.

Proposition 49. Let X,Y,Z be k-schemes. Let K ∈ D(X × Y ) and L ∈ D(Y × Z). De�ne the
convolution

K ∗L = pr13,∗(pr∗12K ⊗ pr∗23L) ∈D(X ×Z).
Then,

φL ○ φK = φK∗L.

Proof. The argument is essentially formal, using with the input of �at base change and the pro-
jection formula applied to the diagram below.

X × Y ×Z

X × Y Y ×Z

X Y Z

pY Z

prZ

pXY

pX

prX

pZ

prY prY

,

Next, we have a lemma generalizing the fact that m∗L ≅ pr∗1 L⊗ pr∗2 L for L ∈ Pic0(A).

Lemma 50. Let µ∶A×At×A→ A×At be the map sending (a, b, c)↦ (m(a, c), b) on points. Then,

µ∗(P−1
A )⊗ pr∗12(PA)⊗ pr∗23(PA)

is trivial.

Proof. Use the theorem of the cube to check that the �bers above e on each coordinate is trivial.
,

Theorem 51 (Mukai). φPA
∶D(A)→D(At) is an equivalence of triangulated categories. Moreover,

φPAt ○ φPA
≅ [−1]∗[−g].

Proof. First, write φPAt ○ φPA
= φPA∗PAt . Next, if Γ ⊂ A ×A is the graph of [−1], it follows (from

the example at the end of last time) that it remains to show PA ∗PAt = OΓ[−g].
Write

PA ∗PAt = pr13,∗(pr∗12PA ⊗ pr∗23PAt) = pr13,∗(µ∗PA).
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Now, consider the following diagram:

A ×At ×A A ×At

A ×A A

µ

pr1

m

pr13

By �at base change, we then have PA∗PAt ≅m∗ pr1,∗PA ≅m∗k(e)[−g], with the latter from our
computation of the cohomology of the Poincare bundle. We also have:

Γ A ×A

{e} A

i

mm

i

Again, by �at base change, we have m∗k(e)[−g] ≅ OΓ[−g], as desired. ,

Remark 52. One can check that Db
coh(A) ≅ Db

coh(At) under this equivalence (by some general
properties—check Huybrechts).

Proposition 53. Let x ∈ At(k) andMx = t∗xL⊗L−1 ∈ Pic0(A) be degree zero line bundle associated
to x. Then, for any F ∈D(A), we have

φA(F ⊗Mx) ≅ t∗xφA(F ).

Similarly, we have
φA(t∗xF ) ≅ N−x ⊗ φA(F ),

where x ∈ A(k).

Proof. Let us express the LHS as pr2,∗(pr∗1(F )⊗ pr∗1(Mx)⊗PA) and the RHS as

t∗xφA(F ) ≅ t∗x pr2,∗(pr∗1 F ⊗PA)
≅ pr2,∗(t∗(e,x) pr∗1 F ⊗ t∗

(e,x)PA)
≅ pr2,∗(pr∗1 F ⊗ t∗

(e,x)PA).

Then, it su�ces to show that
pr∗1(Mx)⊗PA ≅ t∗

(e,x)PA.

Then, we conclude by using the Seesaw theorem. First, we can check that on any �ber A × {y},
both sides restrict to the same thing. This means that the LHS tensored by the inverse of the RHS
is pulled back from At. So it su�ces to check that on the �ber {e} ×At, both sides restrict to the
same thing, which is indeed true. ,
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Corollary 54. Let F = OA. Then, we have

φA(Mx) ≅ t∗xφAOA
≅ t∗x pr2,∗PA
≅ t∗xk(e)[−g]
≅ k(−x)[−g],

since we have the diagram
{−x} A

{e} A

tx

Proposition 55. LetM,N ∈D(A). Then,

φA(M)⊗ φA(N) ≅ φA(M ∗N).

Proof. The proof is essentially formal. Consider the following diagram:

A ×A ×At A ×At At

A ×A A

A A

pr12

m

µ=(m,Id) pr2

pr1

pr3

pr1 pr2

pr1

pr2

Using �at base change, the projection formula, and our lemma from earlier (the one where we
said “µ∗(P−1

A )⊗ pr∗12(PA)⊗ pr∗23(PA)”), one can verify that

φA(M ∗N) ≅ pr3,∗((pr∗13PA ⊗ pr∗1 M)⊗ (pr∗23PA ⊗ pr∗2 N).

Since pr3 is the �ber product of pr2 with itself, we can then use Kunneth (use the derived version
on the Stacks project!), it follows that

φA(M ∗N) ≅ pr2,∗(PA ⊗ pr∗1 M)⊗ pr2,∗(PA ⊗ pr∗2 N)
≅ φA(M)⊗ φA(N),

as desired. ,

Lemma 56. Let x ∈ At(k) andMx = t∗xL⊗L−1 be the corresponding degree zero line bundle. Then,
if F ∈D(A), we have

RΓ(A,F ⊗Mx) ≅ φA(F )∣{x} ∈D(k)
and G ∈D(At), then

RΓ(A,φAt(G)⊗Mx) ≅ G[−g]∣{−x} ∈D(k).
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Proof. The second claim follows from the �rst by plugging in F = φAt(G). For the �rst claim,
consider the following:

A × {x} A ×At

{x} At

i

pr2pr2

i

By �at base change, we get

φA(F )∣{x} ≅ pr2,∗(pr∗1 F ⊗PA)∣{x}
≅ RΓ(A, (pr∗1 F ⊗PA)∣A×{x})
≅ RΓ(A,F ⊗Mx),

as desired. ,

Corollary 57. Taking F = OA and x = e gives RΓ(A,OA) ≅ k(e)[−g]∣{x} (both sides are actually
exterior algebras!).

Corollary 58. Taking G ∈ Pic(At) and x = e gives RΓ(A,φAt(G)) ≅ G[−g]∣{e}. The RHS is non-
canonically isomorphic to k(e)[−g], so taking Euler characteristics gives χ(A,φAt(G)) = (−1)g.
Proposition 59. If A→ B is a homomorphism of abelian varieties, then φB ○ f∗ ≅ (f t)∗ ○ φA.

Proof. Note that (Id, f t)∗PA ≅ (f, Id)∗PB from our discussion of the dual abelian variety. For
any F ∈D(A), note that

(f t)∗ ○ φA(F ) ≅ (f t)∗(pr2,∗(pr∗1 F ⊗PA))
≅ pr2,∗((Id, f t)∗ pr∗1 F ⊗ (Id, f t)∗PA))
≅ pr2,∗(pr∗1 F ⊗ (f, Id)∗PB)
≅ pr2,∗(f, Id)∗(pr∗1 F ⊗ (f, Id)∗PB)
≅ pr2,∗((f, Id)∗ pr∗1 F ⊗PB)
≅ pr2,∗(pr∗1 f∗(F )⊗PB)
≅ φB ○ f∗(F ),

using �at base change twice and the projection formula. ,

We can generalize degree zero line bundles by considering homogeneous vector bundles in the
derived category.

De�nition 60. E ∈D(A) ishomogeneous if for all x ∈ A(k), we have an isomorphism t∗xE ≅ E.

Theorem 61. The functor φA[g]∶D(A)→D(At) restricts to an equivalence of categories

{homogeneous vector bundles on A}←→ {coherent sheaves on At with �nite support}.

Under this equivalence, the rank of a homogeneous vector bundle E is the same as the length of the
coherent sheaf φA(E)[g].

23



The proof of this theorem requires the following lemma, which we will only sketch.

Lemma 62. Suppose G ∈ Db
coh(A) satis�es G ⊗ L ≅ G for all L ∈ Pic0(A). Then, G has �nite

support.

Proof. We can assumeG is a coherent sheaf placed in degree 0. If the support is not �nite, then we
can �nd a curve in the support, sayC . The normalization, say C̃ , comes with �nite map f ∶ C̃ → C .
Consider G ∶= f∗G/torsion, which is a vector bundle on C̃ . By assumption, f∗G ⊗ f∗L ≅ f∗G
for degree zero L, so modding out by torsion gives G⊗ f∗L ≅ G. Taking determinants gives that
f∗L⊗ rkG is trivial. This gives us a map π = ([rkG]○f, Id), so that π∗PA is trivial along the �bers
of pr2. The Seesaw theorem then implies that it is pulled back fromAt. This then implies that the
map associated to PAt , i.e. C̃ → (At)t is constant with image equal to the point corresponding to
the line bundle on At. This map C̃ → (At)t ≅ A turns out to be the same as C̃ → A = C̃ → C ⊂ A,
so we get a contradiction. ,

Proof of theorem. First, recall that for any extension k(x) → N → k(x) in D(At), we can write
this as φA(M−x)[g] → φA(M) → φA(M−x)[g] for some M ∈ D(A) (and Mx de�ned earlier).
Then, by duality, we have an exact triangle M−x[g]→M →M−x[g]. Then, M =H−g(M)[g].
Suppose now thatN is a coherent sheaf onAt with �nite support. We will show that we can obtain
a homogeneous vector bundle on A. Write N = φA(M). Since we can write N as a sequence of
extensions by k(x), we can use the �rst paragraph to conclude thatM is a concentrated in a single
degree (degree −g) and expressed as a sequence of extensions by M−x. Then, M[−g] is a vector
bundle, and it is homogeneous because φA(t∗x(M)) ≅ N−x ⊗ φA(M) ≅ N−a ⊗N ≅ N ≅ φA(M)
(using that N has �nite support). So applying φ−1

A [−g] sends a coherent sheaf on At with �nite
support to a homogeneous vector bundle on A.

In the other direction, suppose we have a homogeneous vector bundle E on A. Then, φA(E) is
invariant under tensoring by L for any L ∈ Pic0(At). By our lemma, it follows that φA(E) has
�nite support. If it has at least two non-zero cohomology sheaves (lives in more than one degree),
then E would necessarily as well, which is a contradiction! So we are done. ,
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6 04/07: Cohomology of ample line bundles

We will discuss which line bundles L give rise to �nite K(L). We will then compute the coho-
mology of such line bundles using the machinery of the Fourier-Mukai transform that we have
developed so far. This will be used later to understand (semi-)stable vector bundles on elliptic
curves.

De�nition 63. L ∈ Pic(A) is said to be non-degenerate if K(L) is �nite.

Lemma 64. If L ∈ Pic(A), then φ∗L(φA(L)) = RΓ(A,L) ⊗ L−1. In particular, each cohomology
sheaf Hi(φ∗L(φA(L))) is a vector bundle (over A) and Hi(φA(L)) is a vector bundle on At.

Proof. Since φL is faithfully �at, it su�ces to show the �rst claim (it’s clear that the �rst thing
is a vector bundle because we are just pulling back things from D(k)). Consider the following
diagram:

A A ×A A

A A ×At At

p2p1

α

pr1 pr2

φL=

Using �at base change and the projection formula, we get

φ∗LφA(L) = φ∗L(pr2,∗(pr∗1 L⊗PA))
≅ p2,∗α

∗(pr∗1 L⊗PA)
≅ p2,∗(p∗1L⊗Λ(L))
≅ p2,∗(p∗1L⊗m∗L⊗ p∗1L−1 ⊗ p2L

−1)
≅ p2,∗m

∗L⊗L−1.

Now, consider this diagram:
A ×A A

A k

p2

m

Applying �at base change to this gives

φ∗LφA(L) ≅ f∗f∗L⊗L−1 ≅ RΓ(A,L)⊗L−1.

,

Lemma 65. If L ∈ Pic(A) is non-degenerate, then χ(A,L)2 = rk(K(L)) (recall rk(K(L)) =
dimk(O(At))).

Proof. From an earlier lemma about Euler characteristics, recall that

χ(A,φ∗LφA(L)) = rk(K(L))χ(At, φA(L))
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(since rk(K(L)) = deg(φL)). We computed the Euler characteristic appearing on the RHS last
time, so we have

χ(A,φ∗LφA(L)) = rk(K(L))(−1)g.

Let us compute the LHS in a di�erent way. From the previous lemma, we know thatχ(A,φ∗LφA(L)) =
χ(A,RΓ(A,L)⊗L−1). The projection formula tells us thatRΓ(A,RΓ(A,L)⊗L−1) = RΓ(A,L)⊗
RΓ(A,L−1), so we have

χ(A,φ∗LφA(L)) = χ(A,L)χ(A,L−1).
Also, by di�erential properties of abelian varieties, we know that the canonical bundle is trivial,
so Serre duality tells us that

χ(A,φ∗LφA(L)) = χ(A,L)2(−1)g.

So
rk(K(L)) = χ(A,L)2.

,

Lemma 66. If L ∈ Pic(A) is non-degenerate, then L ∗A [−1]∗L−1 is �nitely-supported.

Proof. It su�ces to show that if i∶K(L) ↪ A is the inclusion for any line bundle L ∈ Pic(A),
then L ∗A [−1]∗L−1 ≅ i∗(L∣K(L))[−g].
Consider the diagram

A ×A A ×A

k

η

p1
m

where η sends (x, y) to (m(x, y),−y) (so that η2 = Id). Then, η∗ = η∗, and we have

m∗(p∗1L⊗ p∗2[−1]∗L−1) = p1,∗(η∗p∗1L⊗ η∗p∗2[−1]∗L−1)
≅ p1,∗(m∗L⊗ p2L

−1)
≅ p1,∗(Λ(L)⊗ p∗1L)
≅ p1,∗(Λ(L))⊗L

by the projection formula. Now, consider the diagram

A ×A At ×A

A At

p1

α=(φL,Id)

φL

pr1

By de�nition, we have α∗PA = Λ(L), so applying �at base change twice (also to a diagram with
left vertical K(L) → {e} given by φL) and our earlier result on cohomology of the Poincare
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bundle gives

RHS ≅ p1,∗(α∗PA)⊗L
≅ φ∗L(k(e)[−g])⊗L
≅ i∗OK(L)[−g]⊗L
≅ i∗(L∣K(L))[−g],

as desired. ,

Theorem 67. Let L ∈ Pic(A) be non-degenerate.
(i) There is a vector bundle E on At such that φA(L) = E[−i(L)] for some integer 0 ≤ i(L) ≤ g.

As a corollary, we haveRΓ(A,L) ≅ E[−i(L)]∣{e} by a fact from the Fourier-Mukai transform
from last time, and hence H i(A,L) = E∣{e} for i = i(L) and 0 otherwise. i(L) is called the
index.

(ii) (dimH i(L)(A,L))2 = rk(K(L)) = deg(φL).

Proof. It su�ces to show the existence of a vector bundle E with 0 ≤ i(L) ≤ g and φA(L) =
E[−i(L)]. Since φL is faithfully �at, it su�ces to show

φ∗LφA(L) = E′[−i(L)]

for some vector bundle E′.

By a previous lemma the LHS is RΓ(A,L)⊗L−1, so it remains to show that RΓ(A,L) in a single
degree, which is between 0 and i(L).

By the previous lemma and using the fact that Fourier-Mukai exchanges convolutions for tensor
products, we have

φA(L)⊗ φA([−1]∗L−1) ≅ φA(i∗(L∣K(L))[−g]).
By the big theorem from last time, we know the RHS is a homogeneous vector bundle, and is
hence of the form E′′[−g] for some homogeneous vector bundle E′′ on A. Hitting both sides
with φ∗L gives

(RΓ(A,L)⊗L−1)⊗ (RΓ(A, [−1]∗L−1)⊗ [−1]∗L) ≅ E′′′[−g]

with E′′′ some vector bundle on A. Rearranging gives

RΓ(A,L)⊗RΓ(A, [−1]∗L−1) ≅ E′′′′[−g]

for some E′′′′ a vector bundle on A. The result follows. ,

Corollary 68. If L ∈ Pic(A) is very ample, then H i(A,L) = 0 for i > 0 (because H0 is non-zero).

We’ll show soon that we can replace “very ample” with just “ample.” The key point is that i(L) =
i(L⊗n).
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De�nition 69. Say L,L′ ∈ Pic(A) are algebraically equivalent if there is a smooth variety V
and a line bundle L ∈ Pic(V ×A) such that L∣{c0}×A = L and L∣{c1}×A = L′ for some closed points
c0, c1 ∈ V .

Example 70. EveryL ∈ Pic0(A) is algebraically equivalent to the trivial line bundle. This follows
from the fact that L corresponds to some x ∈ At(k) so that PA∣{x}×A ≅ L, and also PA∣{e}×A is
trivial.

Lemma 71. If L,L′ ∈ Pic(A) are algebraically equivalent and non-degenerate, then they have the
same index.

Proof. By assumption, there exists L and c0, c1 ∈ V such that L∣{c0}×A = L and L∣{c1}×A = L′. Let
M be the line bundle L ⊗ pr∗2 L

−1. Notice that M ∣{c0}×A is trivial, and so M ∣{c}×A ∈ Pic0(A) for
all c. So we get a map g∶V → At such that (g, Id)∗PA =M .

Since φL is surjective, it follows that L−1 ⊗ L′ can be written as φL(x) for some x ∈ A, i.e.
t∗xL ⊗ L−1 ≅ L−1 ⊗ L′, i.e. t∗xL ≅ L′. But this means that H∗(A,L) ≅ H∗(A,L′) under the
automorphism tx, so the result follows. ,

Lemma 72. Let f ∶A→ B be an isogeny and L ∈ Pic(B) be non-degenerate. Then, i(L) = i(f∗L).

Proof. First, we need to verify that the RHS even makes sense—why is f∗L non-degenerate? To
see this, it su�ces to show that φf∗L = f t ○ φL ○ f , since each term in the composition is an
isogeny.

Let us use the universal property of the dual, i.e. using the fact that there is a unique mapA→ At

such that pulling back PA under this map gives rise to a prescribed line bundle. In this case, let
the line bundle be Λ(f∗L) ≅ φ∗f∗LPA. Consider the following diagram (we want to show that the
top horizontal arrow makes the diagram commute):

A ×A At ×A

B ×A Bt ×A

Bt ×B

f t×Id

Id×f

f×Id

φf∗L×Id

φL×Id

We want to show that (f × Id)∗(φL × Id)∗(f t × Id)∗PA ≅ Λ(f∗L) (more precisely we should also
check the rigidi�cations too, but we’ll just ignore this). Now, by de�nition, we have the LHS is
isomorphic to

(f × Id)∗(φL × Id)∗(Id×f)∗PB ≅ (φL ○ f, f)∗PB
≅ (f, f)∗Λ(L)
≅ Λ(f∗L),

as desired.
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Let us now compute the index. Recall from last time that f t
∗
(φB(L)) = φA(f∗L), and f t is an

isogeny, we have f t
∗
(φB(L)) = f t∗(E[−i(L)]) = E′[−i(L)] for some vector bundle E′ on A. So

we are done. ,

Lemma 73. For su�ciently large n > 0 and a non-degenerate line bundle L ∈ Pic(A), we have
i(L) = i(L⊗n).

Proof. We can actually just take n =m2. Since [m] is an isogeny, we have i(L) = i([m]∗L) by the
previous lemma. Earlier in our discussion about degree zero line bundles, we showed there exists
a degree zero line bundleN such that [m]∗L ≅ Lm2⊗N. SinceN is algebraically equivalent to the
trivial line bundle (see the example above), it follows that [m]∗L and Lm2 are also algebraically
equivalent. Then, i(L) = i([m]∗L) = i(Lm2). ,

Remark 74. The previous lemma holds for any positive integer n > 0. The general idea (due to
Zarhin) is to observe the fact (!) thatn can be expressed as a sum of four squares: n = a2+b2+c2+d2.
Then, there is a morphism f ∶A4 → A4 de�ned by a matrix M corresponding to multiplication by
the quarternion a + bi + cj + dk. Note that i(L⊠4) = 4i(L) (I think by Kunneth). Also, one can
check that f∗L⊠4 is algebraically equivalent to (Ln)⊠4 (the reason being that M t ⋅M = n Id4). So
4i(L) = i(L⊠4) = i(f∗L⊠4) = 4i(Ln), as desired.

Corollary 75. If L is ample, then i(L) = 0 and (dimH0(A,L))2 = deg(φL).

Proof. Simply choose m large enough and apply the previous lemma. ,
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7 04/14: Atiyah’s theorem on vector bundles on elliptic curves

Using the Fourier-Mukai equivalence, we will explain a simpli�cation of Atiyah’s original paper
("Vector bundles over an elliptic curve"). To build up to the proof, we will also review the notions
of (semi-)stability of a vector bundle and the Harder-Narasimhan �ltration. In particular, Atiyah’s
theorem describes an equivalence between the category of semistable vector bundles on an elliptic
curve (of given slope) with the category of torsion coherent sheaves.

First, letC be a smooth projective, geometrically connected curve over a �eld k. If F is a coherent
sheaf on C , then we can de�ne two important numerics as follows:

De�nition 76. The rank r(F ) ≥ 0 is de�ned as the dimension of the vector space Fη, where η
is the generic point of C . The degree d(F ) ∈ Z is de�ned by decomposing F as a direct sum of
a vector bundle E and a torsion sheaf T and de�ning d(F ) = d(E) + d(T ), where d(E) is the
degree of the determinant of E and d(T ) is the length of T .

Note that r and d are additive in short exact sequences, giving rise to a function (r, d)∶K0(C)→
Z⊕2, which we can descend to the bounded coherent derived category.

The slope µ(F ) is de�ned to be d(F )/r(F ) ∈ Q∪{∞} (this is not additive clearly). If F is more-
over a vector bundle, we say that F is semistable (resp. stable) if for any non-trivial quotient
bundle Q of F we have µ(Q) ≥ µ(F ) (resp. >).

Remark 77. This requires a bit of justi�cation. Some helpful notes: https://ocw.mit.edu/

courses/18-725-algebraic-geometry-fall-2015/ec341c7a2524e5dba7c3e939f322613a_

MIT18_725F15_notes.pdf

Lemma 78. Let 0→ E1 → E → E3 → 0 be a SES of coherent sheaves on C . Then,

min{µ(E1), µ(E2)} ≤ µ(E) ≤ max{µ(E1), µ(E2)}.

Proof. Let di = d(Ei) and ri = r(Ei). Note that d1/r1 and d2/r2 are upper/lower bounds on
(d1 + d2)/(r1 + r2), so the result follows. ,

Lemma 79. Let E be a vector bundle on C . The, E is semistable (resp. stable) i� for any non-trivial
subsheaf F ⊂ E, we have µ(F ) ≤ µ(E) (resp. <).

Proof. Suppose E is semistable and F a non-trivial subsheaf of E. Then, let F be the saturation
of E (take the preimage of the torsion subsheaf of E/F under the projection E → E/F , this is
de�ned so that E/F gives a vector bundle). First, note that µ(F ) ≤ µ(F ) using the following
exact sequence

0→ F → F → F /F → 0.

Since F and F have the same rank, the previous lemma tells us that µ(F ) ≥ min{µ(F ),∞} =
µ(F ).

To see that µ(F ) ≤ µ(E), consider the exact sequence

0→ F → E → E/F → 0,
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so µ(E) ≥ min{µ(F ), µ(E/F )} by the previous lemma. E is semistable so µ(E) ≤ µ(E/F ), so
µ(F ) ≤ µ(E).

Conversely, if µ(E) ≥ µ(F ) for any non-trivial subsheaf, let E → Q be any quotient subbundle
and consider the sequence 0 → ker → E → Q → 0. Then, by the lemma, we have µ(E) ≤ µ(Q)
because ker is a subsheaf of E.

A similar argument works for E stable. ,

Lemma80. LetE,F be semistable vector bundles onC such thatµ(E) > µ(F ). Then,Hom(E,F ) =
0.

Proof. Suppose we have a non-zero map E → F . Then, im is a subsheaf of F , so µ(F ) ≥ µ(im).
Also, E surjects onto im, so µ(E) ≤ µ(im). This is a contradiction. ,

Lemma 81. Let 0 → E1 → E → E2 → 0 be a SES of vector bundles on C with the same slope µ.
Then, E is semistable i� E1 and E2 are.

Proof. Suppose E is semistable. Then, for any nontrivial subsheaf F ⊂ E1 ⊂ E, we have µ(F ) ≤
µ(E) = µ = µ(E1), so E1 is semistable. For any nontrivial quotient bundle E → E2 → Q, the
same argument works.

Now, suppose E1 and E2 are both semistable. Let F be a nontrivial subsheaf of E. It su�ces to
show that µ(F ) ≤ µ(E).

Consider the SES
0→ F ∩E1 → F → F /(F ∩E1)→ 0.

We have min{µ(F ∩E1), µ(F /(F ∩E1)} ≤ µ(F ) ≤ max{µ(F ∩E1), µ(F /F ∩E1)}.
By semistability, assuming F ∩E1 and F /(F ∩E1) are non-zero, we have µ(F ∩E1) ≤ µ(E1) = µ
and µ(F /(F ∩E1) ≤ µ(E2) = µ, so µ(F ) ≤ max{µ,µ} = µ(E). The case where either of them is
zero is easy. ,

Example 82. Every line bundle is stable. More generally, extensions of line bundles of the same
slope are semistable by the lemma.

Remark 83. If C = P1, then every vector bundle of slope a is of the form ⊕n
i=1OC(a) (using the

Grothendieck-Birkho� theorem). In fact, there is an equivalence of categories between k-vector
spaces and semistable vector bundles over P1 of slope a given by V ↦ V ⊗O(a).

Theorem 84 (Harder-Narashimhan �ltration). Let E be a vector bundle on C . Then, there is a
unique �ltration 0 = E0 ⊂ ⋯ ⊂ E` = E such that Qi = Ei/Ei−1 is semistable and µ(Qi−1) > µ(Qi).

Proof. Let us �rst establish uniqueness by induction on the rank r of E. Suppose we have two
Harder-Narasimhan �ltrations

0 = E0 ⊂ ⋯ ⊂ Em = E
0 = E′

0 ⊂ ⋯ ⊂ E′

n = E,
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with successive quotients having slopes λ1 > ⋯ > λm and λ′1 > λ′2 > ⋯ > λ′n. It su�ces to show
that E1 = E′

1, since then we can quotient everything by E1 = E′

1 and then apply the induction
hypothesis to E/E1 = E/E′

1.

Suppose λ1 ≠ λ′1, WLOG λ1 > λ′1. Then, λ1 > λ′i for all i. Then, there are no non-zero maps from
E1 to E′

i/E′

i−1. Since E admits a �nite �ltration such that its quotients are given by E′

i/E′

i−1, it
follows that there are no non-zero maps from E1 to E, which is a contradiction (because E1 ⊂ E
is a non-zero map!).

So λ1 = λ′1. Again, λ1 > λ′i for all i > 1. By the same argument, it follows that there are no
non-zero maps from E1 to E/E′

1, i.e. the composite E1 → E → E/E′

1 is zero, i.e. E1 ⊂ E′

1. By
symmetry, E′

1 ⊂ E1, so we get E1 = E′

1. This completes the uniqueness part of the proof.

For existence, choose an inclusion E ⊂ L⊕n for a su�ciently ample line bundle L on C and some
n. We can do this because a su�ciently high twistE∨(a) has �nitely many global sections, giving
a surjection⊕n

i=1OX → E∨(a), so that⊕n
i=1OX(−a)→ E∨ is a surjection, then take duals. Since

L is a line bundle, it it semistable, so L⊕n is also semistable. So for any F ⊂ E a subsheaf, we
have µ(F ) ≤ µ(L⊕n).

The slopes are rational numbers and the rank of F is at most the rank of E, so the denominators
are necessarily bounded below. Then, this bounded set of rational numbers will attain a max-
imum, i.e. there exists a subsheaf of maximal slope. Of course, then any such subsheaf is also
necessarily semistable.

Let F and G be two subsheaves of this maximal slope µ. Then, µ(F +G) = µ because F +G is
a quotient of F ⊕G (note µ(F ⊕G) = µ as well and is hence semistable). So there is a maximal
subsheaf of slope µ, which we denote by E1.

Moreover, E1 is saturated. Else, taking the exact sequence 0 → E1 → E1 → E1/E1 → 0 would
imply E1 has larger slope than that of E1, which contradicts maximality. Then, E/E1 is a vector
bundle.

We can then induct by taking a �ltration for E/E1 and then take preimages. It remains to show
that the slopes are indeed strictly decreasing. Again, by induction, it su�ces to check µ(E1) >
µ(E2/E1). Else, consider the SES

0→ E1 → E2 → E2/E1 → 0.

Then, µ(E2) ≥ µ(E1) = µ, so µ(E2) = µ(E1) and hence E2 = E1 by maximality, which is a
contradiction (I guess we can just remove E2 from the �ltration and move on to E3, etc.). ,

Corollary 85. Suppose C has genus 1 (e.g. an elliptic curve). Then, the Harder-Narasimhan �ltra-
tion of any vector bundle E is split. In particular, any indecomposable vector bundle is semistable.

Proof. Let E0 ⊂ ⋯ ⊂ E` = E be the Harder-Narasimhan �ltration of E. Let the quotients be
Qi = Ei/Ei−1. Let us induct on the length of the �ltration. The base case is obviously trivial. By
induction, we can assume all but the last term is split, i.e. E`−1 =⊕`−1

i=1 Ei/Ei−1, and it remains to
split the SES

0→ E`−1 =
`−1

⊕
i=1

Ei/Ei−1 → E` → E`/E`−1 → 0.
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Consider Ext1(E`/E`−1,E`−1) =⊕`
i=1 Ext1(E`/E`−1,Ei/Ei−1). By Serre duality, we have

Hom(Ei/Ei−1,E`/E`−1) ≅H1−1(C,Hom(Ei/Ei−1,E`/E`−1))
≅ Ext1(Hom(Ei/Ei−1,E`/E`−1), ωC)∨

≅ Ext1((Ei/Ei−1)∨ ⊗E`/E`−1,OC)∨

≅ Ext1(E`/E`−1,Ei/Ei−1)∨.

Since Ei/Ei−1 has slope larger than that of E`/E`−1, it follows the LHS is 0. So the result follows.
,

We now �nally arrive at the statement of Atiyah’s theorem on vector bundles on elliptic curves.
LetE be an elliptic curve over k and �x a principal polarization (i.e. an isomorphism φL∶E → Et)
given by L = O(e) (which we note is ample). From last time, we know φL has degree equal to
the square root of dimH0(E,L) = 1, so φL is indeed an isomorphism. We use φL in the sequel
to identify E with its dual.

Theorem 86 (Atiyah). Let µ ∈ Q. Then, there is an equivalence of categories between semistable
vector bundles on E of slope µ and torsion coherent sheaves on E.

If F is a semistable vector bundle on E, then the length of F , viewed as a torsion coherent sheaf, is
given by the gcd of the rank of F and the degree of F .

Corollary 87. The category of torsion coherent sheaves on E is independent of E, and there are
semistable vector bundles of any slope.

Remark 88. We include the zero vector bundle in the category of semistable vector bundles (of
any given slope). I suppose this makes the above corollary a little stupid.

Lemma89. LetF ∈Db
coh(E). Then, d(φE(F )) = −r(F ) and r(φE(F )) = d(F ). Hence, µ(φE(F )) =

−1/µ(F ).

Proof. By Riemann-Roch, we have χ(E,F ) = d(F ) and χ({e}, F ∣{e}) = r(F ). Also, by Fourier-
Mukai, we know RΓ(E,φE(F )) = F [−1]∣{e} and RΓ(E,F ) ≅ φE(F )∣{e}, so taking Euler char-
acteristics gives −r(F ) = d(φE(F )) and r(φE(F )∣{e}) = d(F ), as desired. ,

Lemma 90. If F is a vector bundle on E with µ(F ) < 0, then φE(F [1]) is a semistable vector
bundle with slope −1/µ(F ).

Proof. We can assume F is indecomposable. Then, φE(F [1]) is also indecomposable. For any
degree zero line bundle L, we have Hom(L,F ) = 0 by the assumption on slope. The former is
alsoH0(E,F⊗L−1), so it follows that φE(F )∣{xL} ≅ RΓ(E,F⊗L) is concentrated in degree 1 for
any L ∈ Pic0(E) (where xL is the point in Et corresponding to L). Then, we see that φE(F )[1]
is free at every closed point, and it is moreover coherent, so it is actually free in a neighborhood
of every closed point, so it is in fact a vector bundle. We showed earlier that an indecomposable
vector bundle is semistable.

Finally, the slope computation follows from the previous lemma. ,
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Lemma 91. Let µ ∈ Q. Then, there is an equivalence of categories between vector bundles of slope
0 and vector bundles of slope µ, which is obtained by some sequence of applying the operations
F ↦ φE(F )[1], F ↦ F ⊗O(e), and their inverses.

Proof. If µ = 0, we are done already. If µ < 0, we can go to −µ−1 via the �rst operation. We can also
go from µ to µ+1 via the second operation. Note that SL2(Z) acts transitively on P1(Q) and has

generators [ 0 1
−1 0

] and [1 1
1 0

], which correspond to the two operations. The result follows. ,

Proof of Atiyah’s theorem. By the previous lemma, it su�ces to show that the category of semisim-
ple vector bundles of slope 0 is equivalent to the category of torsion coherent sheaves. More
precisely, we’ll show that if F is a semistable vector bundle of slope 0, then φE(F )[1] is a torsion
coherent sheaf on E.

Suppose there is a non-zero map L → F with L ∈ Pic0(E). Then, L is saturated (else, L would
have strictly larger slope, so the we would have a non-zero map L → L → F , which contradicts
semistability). So F /L is a vector bundle of degree 0, and hence slope 0, and hence also semistable
by a previous lemma (all three have the same slope). Since φE(L)[1] is a skyscraper, it su�ces
to show the claim for F /L.

So we can assume that there are no non-zero maps L→ F , i.e. H0(F ⊗L) = 0 for all L ∈ Pic0(E).
Then, by the same argument as in an earlier lemma, it follows that φE(F )[1] is a vector bundle.
But its rank is equal to the degree of F (by a previous lemma), which is 0. So φE(F )[1] = 0, so F
is 0.

Conversely, note that any torsion coherent sheaf is generated by extensions of skyscrapers. The
inverse functor can also just be taken to be [−1]∗φE(−).

Finally, note that the length of φE(F )[1] is χ(E,φE(F )[1]) = r(F ) = gcd(r(F ), d(F ) = 0).
Now, observe that gcd(r(F ), d(F )) is preserved under equivalence of the categories of semisim-
ple vector bundles of di�ering slope, since gcd(r(F ), d(F )) = gcd(−d(F ), r(F )) = gcd(r(F ), d(F )+
r(F )). ,

Remark 92. Let k be algebraically closed. Then, for an indecomposable vector bundle F of degree
d and rank r, TFAE: 1. F is stable, 2. F is simple (meaning that that Hom(F,F ) = k), 3. gcd(d, r) =
1, and 4. F is simple as an object of the category of semistable vector bundles of slope µ = d/r.
The reason is that stable vector bundles have endomorphism rings that are division rings (a vari-
ant of Schur’s lemma, which follows almost immediately from de�nition), which are isomorphic
to k when k = k. Then, the point is that stable bundles (resp. skyscrapers) are simple objects of
the category of semistable bundles of slope µ (resp. torsion coherent sheaves).
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8 04/21: Symmetric powers of curves and Jacobians

We will �rst describe a few important constructions—the Picard scheme, the Albanese, symmetric
powers of curves, and the Jacobian—and see how they are related to each other. Then, we will say
a bit about Hacon’s work on generic vanishing and Beilinson-Polishchuk’s work on the Torelli
theorem via Fourier-Mukai transforms.

Let us assume that k is of characteristic 0 and algebraically closed and that X is a smooth proper
scheme/k with x ∈ X(k). Recall that the Picard functor Pic(X)∶Sch/k → Ab is given on the
level of points by sending T to (L ∈ Pic(X × T ), ι∶L∣{x}×T ≅ OT )/ ∼. Note that Pic(X)(k) =
Pic(X).

Theorem 93. The Picard functor is representable by a locally �nitely-presented group scheme/k and
the identity component Pic0(X) is an abelian variety/k.

Remark 94. The assumption on the characteristic of k is only used in the smoothness of Pic0(X).

De�nition 95. The Poincare bundle PX is the line bundle over X ×Pic(X) corresponding to
the identity map Pic(X) to itself. It also comes with a universal trivialization PX ∣{x}×Pic(X) ≅
OPic(X).

Proposition 96. For a smooth proper k-scheme X , the abelian variety Pic0(X) has dimension
dimH1(X,OX).

Proof. We’ll show thatTePic0(X) ≅H1(X,OX). Recall that the former can be written as ker(Pic(X)(k[ε])→
Pic(X)(k)) = ker(Pic(X ×k k[ε])→ Pic(X)). Consider the exponential exact sequence

1→ 1 + εOX×kk[ε] → O×

X×kk[ε]
→ O×

X → 1.

Note that the �rst term is isomorphic to OX via sending (on local sections) 1 + εs↦ s. Then, the
LES gives

→H0(X,O×

X×kk[ε]
)→H0(X,O×

X)→H1(X,OX)→H1(X,O×

X×kk[ε]
)→H1(X,O×

X)→,

which is the same as (because X is smooth and proper)

→H0(X,O×

X×kk[ε]
)→ k× →H1(X,OX)→ Pic(X ×k k[ε])→ Pic(X)→ .

The �rst map is then necessarily surjective, so we get H1(X,OX) is ker(Pic(X ×k k[ε]) →
Pic(X)), as desired. ,

We now introduce the Albanese scheme, which is the universal abelian variety that receives a map
from X . There is actually a more explicit description, which we show is equivalent. Note that
the Poincare bundle induces a map X → Pic0(X)t (note that this is constructed essentially the
same way as the double dual map), which essentially maps a point y ∈ X(k) to PX ∣

{y}×Pic0(X)
∈

Pic0(Pic0(X)).

De�nition 97. The Albanese scheme of X is Alb(X) ∶= Pic0(X)t with natural map X →
Pic0(X)t the Albanese map.
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Proposition 98. The Albanese map a as above is indeed the universal map f ∶X → B (with B an
abelian variety) such that f(x) = e.

Proof. We have a(x) = e (OPic(X)) via the universal trivialization. Given a map X → B, we get
a pullback map f∗∶Pic(B) → Pic(X), which induces a pullback map f∗∶Pic0(B) → Pic0(X).
Taking duals gives Alb(X) → B. By using the universal property of the dual, it is easy to check
that X → Alb(X) → B is the same as the original map f (this is quite similar to the proof that
A→ (At)t → At is the same as A→ At given by some polarization). ,

Next, let us de�ne symmetric powers of a smooth projective curve C . Fix an integer r ≥ 0 and
denote by Cr the product of r copies of C . It has a natural Sr-action, and so using the theory of
quotients by �nite groups, we can de�ne the symmetric power of a curve.

Theorem 99. Let Symr(C) ∶= Cr/Sr. This is a smooth projective variety/k and its k-points can be
identi�ed with the e�ective divisors of degree r, denoted by Dive�(C)r.

Proof. The idea is that we take Sr-invariants on the level of a�nes, then glue them together.
Then, Symr(C) exists as a k-scheme and is normal because taking invariants is integrally closed.
Also, Symr(C) is projective (probably some easy argument, but this follows e.g. from GIT).

Consider x ∈ C(k) and the worse case y = (x,x, . . . , x) ∈ Cr(k) with image z ∈ Symr(C). Since
C is smooth, we have that ÔC,x ≅ k JtK. Then, we have ÔCr,x ≅ k Jt1, . . . , trK so that ÔSymr

(C),z ≅
k Jt1, . . . , trK

Sr , which turns out to be a power series ring in the elementary symmetric functions in
r variables, i.e. Symr(C) is still smooth at z (we end up getting something like k Jt1, . . . , tr′K

Sr′ ⊗
k Jt1, . . . , tr′′K

Sr′′ ⊗⋯ for a general point, and something similar works).

Finally, note that we have Symr(C)(k) = Cr(k)/Sr, and hence we have a mapCr(k)→ Dive�(C)r
sending (x1, . . . , xr)↦ ∑[xi], which clearly descends to Symr(C)(k). ,

Remark 100. It might be surprsing that this is smooth—this is special to the case of a curve (c.f.
https://www.jmilne.org/math/xnotes/JVs.pdf).

Remark 101. We can say something a bit stronger. In general, for any k-scheme T , the T -points of
Symr(C) are given by relative e�ective Cartier divisors onC×kT of degree r. These are e�ective
Cartier divisors Z of degree r on C ×k T such that the induced map Z → T is �nite �at and of
degree d. This is equivalent (c.f. Milne again) to each �ber of Z → T being a degree r divisor on
the corresponding �ber in C ×k T → T .

The next goal is to relate the symmetric powers with the Picard scheme. Consider the map Cr →
Pic(C) given on k-points by sending (x1, . . . , xr) ↦ OC([x1] + ⋯ + [xr]). Since this map is
Sr-invariant, it descends to a map Symr(C)→ Pic(C), which we denote by σr.

Also, consider the map deg∶Pic(C) → Z, where we view Z as a discrete scheme comprising Z-
many copies of k. Let Pic(C)r ∶= deg−1(r), which is a connected component of Pic(C). Since σr
lands in Pic(C)r, we re-de�ne σr to be a map landing in Pic(C)r.
Next, we de�ne the Jacobian of C .

De�nition 102. The Jacobian of C is Pic0(C).
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Theorem 103. Let r ≥ 0.

(i) Each �ber of σr is a projective space (possibly empty).

(ii) For r > g − 1, σr is surjective.

(iii) For r > 2g − 2, σr is a projective bundle.

(iv) For r ≤ g, σr is birational onto its imageW r ∶= σr(Symr(C)).
(v) Pic(C)0 is connected and Jac(C) = Pic(C)0.

Proof. For (i), note that for L ∈ Pic(C)r, we have σ−1
r (L) = P(H0(C,L)) since it comprises all

e�ective divisors D on C such that OC(D) ≅ L (i.e. the complete linear system of L).

For (ii), it su�ces to show H0(C,L) ≠ 0. By Riemann-Roch, note that dimH0(C,L) ≥ χ(C,L) =
r + 1 − g > 0, as desired.

For (iii), we want to construct a vector bundle E on Pic(C)r such that Symr(C) ≅ P(E) over
Pic(C)r. As a candidate, let us take pr2,∗PC , where PC is the Poincare bundle on C × Pic(C)r
(i.e. PC ∣C×{L} ≅ L).

By cohomology and base change (c.f. Hartshorne or Milne or what we did earlier), it’s clear that
E is a vector bundle because H1(C,L) = H0(C,KC ⊗ L−1)∨ = 0. Note that the �ber above L
in P(E) → Pic(C)r is given by P(H0(C,L)), since the stalk of E at L (by �at base change) is
pr2,∗(P ∣C×{L}) = pr2,∗(L) =H0(C,L).

We can construct a map Symr(C) → P(E) by descending one from Cr → P(E) (locally, this
will look like σ−1

r (U) → U ×k P(H0(C,L)) sending a collection of points to the corresponding
e�ective divisor in the complete linear system). On �bers we have an isomorphism.

For (iv), �rst observe thatW r is irreducible (image of an irreducible). We want to show Symr(C)→
W r is birational, and to do so it su�ces to �nd a point in the target whose �ber is scheme-
theoretically a single point (the �ber is a projective space so the �ber is reduced).

In other words, we want to �nd a degree r line bundle L on C such that dimH0(C,L) = 1. This
follows from the general fact that for 0 ≤ r ≤ g, there is a non-empty open U ⊂ Cr such that
dimH0(C,OC(∑[xi])) = 1 for any (x1, . . . , xr) ∈ U (c.f. Milne JVs, Lemma 5.2).

Finally, for (v), showing that Pic(C)0 is connected is the same as showing that Pic(C)r is con-
nected for some big r by just using the group structure. We know that for r su�ciently large that
σr is surjective, and since the image of a connected is still connected, the result follows. ,

Now, we’d like to relate the Albanese and the Jacobian—it turns out they are dual to each other!

First, let us de�ne the in�nite symmetric product of C . Note that for r, s ≥ 0, we have a clear
map Cr × Cs → Cr+s given by concatenation. Moreover, Sr × Ss acts on the left and there is
a natural map Sr × Ss → Sr+s so that we get a map Symr(C) × Syms(C) → Symr+s(C). This
basically just takes a degree r divisor, a degree s divisor, and adds them together to get a degree
r + s divisor.
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De�nition 104. The in�nite symmetric product of C is Sym(C) ∶= ⊔r≥0 Symr(C). It has a
commutative monoid structure via the maps above.

Note there is an obvious map C ≅ Sym1(C) ⊂ Sym(C).

Lemma 105. This obvious map is universal among all maps from C to a commutative monoid
scheme.

Proof. Let f ∶C → M be any map from C into a commutative monoid scheme M and consider
Cr → M r → M , where the second map is given by summing. This is clearly Sr-equivariant, so
it descends to fr∶Symr(C) →M . Combining these together gives a map F ∶Sym(C) →M , and
it’s easy to see that C → Sym(C)→M is the same as f . ,

Let σ be the map bundling up all the σr’s from earlier:

σ ∶= Sym(C) = ⊔
r≥0

Symr(C)→ Pic(C) = ⊔
r∈Z

Pic(C)r.

Lemma 106. The map C ↦ Pic(C) sending x ↦ OC([x]) is the universal map from C to a
commutative group scheme (that is locally �nitely presented and with the identity component being
an abelian variety—this isn’t strictly necessary).

Proof. Again, let f ∶C → G be any such map. Then, the previous lemma implies that there exists
some F ∶Sym(C) → G (since G, in particular, is a commutative monoid scheme). Restricting to
degree greater than 2g − 2 gives

F>2g−2∶ ⊔
r>2g−2

Symr(C)→ G

and similarly
⊔

r>2g−2

σr∶ ⊔
r>2g−2

Symr(C)→ ⊔
r>2g−2

Pic(C)r.

Using the next remark, we get a factorization ⊔r>2g−2 Symr(C)→ ⊔r>2g−2 Pic(C)r → G (same as
⊔r>2g−2 Symr(C)→ G), as desired.

Using the group law we can extend this to all r. ,

Remark 107. Suppose f ∶X → Y is a proper surjective morphism of normal varieties with �bers
covered by rational curves and that g∶X → A is any morphism to an abelian variety. Then, g
factors through f . If U is an a�ne open of A, then g−1(U) is an open subset of X , and us-
ing that g is constant on the �bers of f , we have f−1(V ) = g−1(U) for some V ⊂ Y . Note
that f(X/f−1(V )) = Y /V by surjectivity, and since f is closed, it follows that V is open. Let
V ′ ⊂ V be some open a�ne. Then, f−1(V ′) ⊂ g−1(U) → U with U a�ne, so we have a fac-
torization f−1(V ′) → Spec Γ ((f ∣f−1(V ′))

∗
OX) → U . By Stein factorization (c.f. Tag 0AY8), we

know (f ∣f−1(V ′))
∗
OX = OV ′ , so we have f−1(V ′) → V ′ → U . Patching these together gives our

factorization of f through g.
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Corollary 108. Fix a point P ∈ C(k). Let φ∶C → Jac(C) be the Abel-Jacobi map, which sends
x↦ OC([x] − [P ]).
Then, φ is also the Albanese map.

Proof. Let f ∶C → A be any map to an abelian variety A with f(P ) = e. The goal is to show that
f factors over φ.

First, by the previous lemma, we know that f factors through Pic(C) uniquely so that we have
a map F ∶Pic(C) → A (which is a map of commutative monoids, as before). More precisely, we
have F (OC([x])) = f(x). Let F0 be the map Pic0(C)→ Pic(C)→ A.

Now, consider the following:

f(x) = F (OC([x]))
= F (OC([x] − [P ])⊗OC([P ]))
= F0(Oc([x] − [P ])) + F (OC([P ]))
= F0(φ(x)) + e
= (F0 ○ φ)(x).

So f as factors as F0 ○ φ, and it’s easy to check that the factorization is also unique. ,

As a result (after �xing some P ), we have Jac(C) ≅ Alb(C) = Jac(C)t.
Theorem 109 (Torelli). Jac(C) is equipped with a principal polarization, and this pair determines
the curve C up to isomorphism.

Recall from before that for an ample line bundle L, we have φAt(L) is a vector bundle; denote
it by E(L). Also, let DX(−) be the Verdier dual functor Hom(−, ωX[dimX]) with X proper
smooth over k of dimension dimX .

Theorem 110 (Hacon). Let A be an abelian variety/k. If F ∈Db
coh(A), then TFAE:

(i) For L ∈ Pic(At) su�ciently ample, we have H i(A,F ⊗E(L)∨) = 0 for i ≠ 0.

(ii) For L ∈ Pic(At) su�ciently ample, we have H i(At, φA(DA(F ))⊗L) = 0 for i ≠ 0.

(iii) φA(DA(F )) is concentrated in degree zero.

Such F are called Hacon complexes (and is a Hacon sheaf is in degree zero), and they play a key
role in a proof of Green-Lazarsfeld generic vanishing:

Theorem 111 (Green-Lazarsfeld). For L ∈ Pic0(X) “general” and i < dim(a(X)) (recall a is the
Albanese map), then H i(X,L) = 0 and HdimX−i(X,ωX ⊗L) = 0.

More precisely, we can say something precise about the codimensions of the loci of where the
cohomology doesn’t vanish.

39



9 04/28: Weil conjectures for abelian varieties

40


	02/17: Projectivity of abelian varieties
	02/24: Embeddings and torsion subgroups
	03/10: The dual abelian variety
	03/24: Constructing the dual abelian variety and Fourier-Mukai transforms
	03/31: The Fourier-Mukai equivalence
	04/07: Cohomology of ample line bundles
	04/14: Atiyah's theorem on vector bundles on elliptic curves
	04/21: Symmetric powers of curves and Jacobians
	04/28: Weil conjectures for abelian varieties

