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Brian Jiang

In these notes I discuss algebraic field extensions (splitting and separable fields) and category
theory, which correspond to sections 1.1 and 1.4 of Szamuely, respectively.

1 Splitting Fields

The notion of splitting fields is motivated by the factorization of polynomials. More specifi-
cally,

Definition 1. For field F and nonconstant polynomial p(x), an extension E of F is a splitting
field if the roots α1, ..., αn of p(x) exists in E such that E = F (α1, ..., αn).

Example 2. Some simple examples.

(i) Q(
√
2, i) is a splitting field of x4 + 2x2 − 8

(ii) Q( 3
√
3) is not a splitting field of x3 − 3 due to imaginary roots.

Proposition 3. For any nonconstant polynomial p(x) ∈ F [x], a splitting field E exists.

Proof. This can be shown using mathematical induction on the order of the polynomial. The
important idea is that any non constant polynomial p(x) ∈ F [x] with order p contains a root α1

in the field F [x]
<p(x)> . Thus we can factor the polynomial into p(x) = (x −α1)q(x), where q(x) is of

order one less than p. ,

Now consider an isomorphism of fields ϕ∶E → F , with K the extension field of E with α ∈ K
algebraic over E with minimal polynomial p(x). Let L extend F with algebraic β over p(x)
under the image of ϕ. Then we have a unique isomorphism ϕ̄ ∶ E(α) → F (β) with ϕ̄(α) = β
and ϕ̄ agrees with ϕ on E. This isomorphism maps an element of E(α), which can be written as
a0 + ... + an−1αn−1 to ϕ(a0) + ... + ϕ(an−1)βn−1. And thus by induction, we can show that:

Proposition 4. We can find an isomorphism between two splitting fields of F of p(x) that pre-
serves F .

2 Separable Fields

Let k̄ denote the algebraic closure of field k. Recall separability intuitively is related to the mul-
tiplicity of roots. More specifically,
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Definition 5. For field extension L∣K , α ∈ L is separable over K if the minimal polynomial,
when factored over L̄, has no repeated roots. If every α ∈ L is separable, then L∣K is a separable
extension.

Lemma 6. For finite field extension L∣k of degree n, L has at most n distinct k-algebra homo-
morphisms to k̄, with equality iff L∣k is separable.

Proof. Recall in the simplest case where F = k(α1) that a k-algebra homomorphism ϕ ∶ F → k̄,
maps ϕ(x) → x for all x ∈ k, and thus is solely defined by where α1 maps to. And then we
proceed by induction on the number of elements that generate L. For example, if there are two
elements F = k(α1, α2), then we have [F ∶ k] = [F ∶ k(α1)][k(α1) ∶ k]. And thus α2 can map to
p elements, and α1 can map to q elements, with pq = n. ,

From this, we easily conclude that for a tower of finite field extensions L∣M ∣k, L∣k is separable iff
L∣M andM ∣k are separable. And thus we see that the compositum is also separable. The com-
positum of all separable subextensions of k̄ is a separable extension, which we call the separable
closure.

The multiple roots of polynomial f ∈ F [x] coincide with the common roots of it’s derivative f ′.
For example, if f contains some multiple root (x−a)n, n > 1 its derivative will also contain some
factor of (x − a). If f is irreducible, than it has multiple roots iff f ′ = 0.

Example 7. Fields are perfect if all finite extensions are separable, or if in other words the alge-
braic and separable closures are the same. Some examples of perfect fields include

(i) Fields of characteristic 0. For any irreducible polynomial xn + ... + a0 ∈ F [x], its gcd with
its derivative nxn−1 + ... + a1 is 1 (because it is irreducible and characteristic 0).

(ii) Finite fields. Let Fp = Z/Zp for prime p. All finite fields look like Fq = Fp(xq − x) where
q = pn. Fq however is separable. This is because, gcd(xq − x, qxq − 1) = gcd(xq − x,−1) = 1.
(Note that all elements a ∈ Fp satisfy aq − a = 0).

What fields are not separable? Consider the extension Fp(t)[x]∣(xp−t) is over Fp. The derivative
xp − t is pxp−1 is zero, so the extension is not separable. Another way to see this is that xp − t =
(x − t1/p)p in Fp.

3 Category Theory: Definitions and Examples

Definition 8. A category C consists of objects and morphisms between the objects. For any two
objectsA andB, the morphisms ϕ ∶ A→ B form a set denoted byHom(A,B)with the following
properties:

(i) idA ∈Hom(A,A), i.e there exists an identity morphism for all objects

(ii) Given two morphisms ϕ ∈ Hom(A,B) and ψ ∈ Hom(B,C), there exists a composition of
morphisms that is associative and preserves the identity (ϕ ○ idA = ϕ)

Definition 9. A morphism ϕ ∈ Hom(A,B) is an isomorphism if there exists some morphism
ψ ∈Hom(B,A) such that ϕ ○ ψ = idB and ψ ○ ϕ = idA
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Example 10. A couple straightfoward example of categories include

(i) Category of sets: objects are sets, morphisms are bijective maps

(ii) Category of groups: objects are groups, morphisms are homomorphisms

(iii) Category of topological spaces: objects are topologies, morphisms are continuous maps

Additionally, for every category C , we have the opposite category Cop, which simply reverses
the direction of the morphisms: there is a bijection between the sets Hom(A,B) of C and the
sets Hom(B,A) of Cop

Definition 11. Let ϕ be a morphism from A to B. ϕ is a monomorphism if for any objectX and
any two morphisms α and α′ from X to A, ϕ ○ α = ϕ ○ α′ means α = α′. ϕ is an epimorphism of
for two morphisms β and β′, β ○ ϕ = β′ ○ ϕ means β = β′.

Example 12. In the category of sets, monomorphisms are one-to-one functions, and epimor-
phisms are onto functions.

4 Functors

Functors establish relationships between categories

Definition 13. A functor F between two categories C1 and C2 consists of:

(i) A map on objects, A↦ F (A)

(ii) A map on sets of morphisms, Hom(A,B)↦Hom(F (A),B(A)) that preserves composi-
tion and maps the identity to the identity.

We say that C1 is the domain and C2 is the target.

Example 14. We have the identity functor idC on a categoryC leaves all morphisms and objects
fixed. An example that is little more exciting is the functor π1 from (pointed) topologies to groups.
Specifically, for π maps pointed topologies (X,x0) to the fundamental group π1(X,x0).

Recall in the first class we showed that the algebraic closure of R is C . This required some
composition of maps S1

r → C → C − {0} → S1. We then applied the functor π1 to get π1(S1
r ) →

π1(C) → π1(C − {0}) → π1(S1). Doing this makes sense because maps between these groups
also change via the application of the functor.

Example 15. We can consider a category of functors between categories C1 and C2. The objects
are functors. For functors F and G we have morphisms Φ∶F → G. These morphisms are defined
as a set of morphisms inside C2, ΦA∶F (A) → G(A), where A is an object of C1. For this map to
be well defined, for every ϕ∶A → B in C1, we need a commutation relation where G(ϕ) ○ΦA =

ΦB ○ F (ϕ). The morphism Φ is an isomorphism if each ΦA is an isomorphism.

Just as we have an identity morphism, we also have an identity functor. Similarly, just as we have
an isomorphism of objects, we have isomophisms of categories.

Definition 16. Two categories C1 and C2 are isomorphic if there are two functors F ∶ C1 → C2

and G ∶ C2 → C1 such that F ○G = idC2 and G ○ F = idC1 . If we merely have an isomorphism of
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functors with the identity (i.e. there exists an isomorphism of functors Φ such that Φ ∶ F ○G →
idC2 and vice-versa), we say that C1 and C2 are equivalent.

Example 17. Another example of a functor fixing an object A in category C . We then have a
functor Hom(A, ) to sets: objects B get mapped to the set Hom(A,B), and morphisms B → C
get mapped to Hom(A,B)→Hom(A,C).

Definition 18. A functor F from some category C to Sets is representable if there is an object
A ∈ C and an isomophism of functors F ≅Hom(A, ),

Lemma 19. If F and G are functors C → Sets represented by objects A and B, respectively,
every morphism of functors Φ ∶ F → G of functors is induced by a unique morphism B → A as
above. This statement is Yoneda’s lemma.

Proof. Basically we want to show there is an isomorphism from Hom(Hom(A, ),Hom(B, ))
to Hom(A,B). In the forward direction, we can consider a morphism Φ, which contains some
morphism ΦA ∶ Hom(A,A) → Hom(B,A), which maps the identity morphism to some map f .
Thus we have a morphism Φ → f . In the other direction, for any morphism ϕ ∈ Hom(B,A)
(or in other words ϕ ∶ B → A), we want a mapping that brings a morphism ψ ∈ Hom(A,C),
to some element of Hom(B,C). We do this by mapping ψ to ψ ○ ϕ. So we have morphisms in
both directions, the trick is to show (which I will instead just believe) that these morphisms are
isomorphisms. ,
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