Implicitization of surfaces via Geometric Tropicalization

María Angélica Cueto

Columbia University

Minisymposia on Tropical Geometry
SIAM AG^2 Meeting 2011
NCSU, Raleigh
October 7th 2011

Three references:

Sturmfels, Tevelev, Yu: The Newton polytope of the implicit equation (2007)
Sturmfels, Tevelev: Elimination theory for tropical varieties (2008)
(and many, many more!)
Implicitization problem: Classical vs. tropical approach

Input: Laurent polynomials $f_1, f_2, \ldots, f_n \in \mathbb{C}[t_1^{\pm 1}, \ldots, t_d^{\pm 1}]$.

Algebraic Output: The *prime* ideal I defining the Zariski closure Y of the image of the map:

$$f = (f_1, \ldots, f_n) : \mathbb{T}^d \to \mathbb{T}^n$$

The ideal I consists of all polynomial relations among f_1, f_2, \ldots, f_n.

Existing methods: Gröbner bases and resultants.
- **GB:** always applicable, but often too slow.
- **Resultants:** useful when $n = d + 1$ and I is principal, with limited use.

Geometric Output: Invariants of Y, such as dimension, degree, etc.

Punchline: We can *effectively* compute them using tropical geometry.

TODAY: Study the case when $d = 2$ and Y is a surface.
Example: parametric surface in \mathbb{T}^3

Input: Three Laurent polynomials in two unknowns:

\[
\begin{align*}
 x & = f_1(s, t) = 3 + 5s + 7t, \\
 y & = f_2(s, t) = 17 + 13t + 11s^2, \\
 z & = f_3(s, t) = 19 + 47st.
\end{align*}
\]

Output: The Newton polytope of the implicit equation $g(x, y, z)$.

STRATEGY: Recover the Newton polytope of $g(x, y, z)$ from the Newton polytopes of the input polynomials f_1, f_2, f_3.
\(Y = \begin{cases}
 x = f_1(s, t) = 3 + 5s + 7t, \\
 y = f_2(s, t) = 17 + 13t + 11s^2, \\
 z = f_3(s, t) = 19 + 47st.
\end{cases} \)

\[\leadsto \text{Newton polytope of } g(x, y, z). \]

\(\Gamma \) is a balanced weighted planar graph in \(\mathbb{R}^3 \). It is the tropical variety \(\mathcal{T}(g(x, y, z)) \), dual to the Newton polytope of \(g \).

- We can recover \(g(x, y, z) \) from \(\Gamma \) using numerical linear algebra.
What is Tropical Geometry?

Given a variety \(X \subset \mathbb{T}^n \) with defining ideal \(I \subset \mathbb{C}[x_1^{\pm1}, \ldots, x_n^{\pm1}] \), the tropicalization of \(X \) equals:

\[
\mathcal{T}X = \mathcal{T}I := \{ w \in \mathbb{R}^n \mid \text{in}_w I \text{ contains no monomial} \}.
\]

1. It is a rational polyhedral fan in \(\mathbb{R}^n \leadsto \mathcal{T}X \cap S^{n-1} \) is a spherical polyhedral complex.

2. If \(I \) is prime, then \(\mathcal{T}X \) is pure of the same dimension as \(X \).

3. Maximal cones have canonical multiplicities attached to them.

Example (hypersurfaces):

- Maximal cones in \(\mathcal{T}(g) \) are dual to edges in the Newton polytope \(\text{NP}(g) \), and \(m_\sigma \) is the lattice length of the associated edge.
- Multiplicities are essential to recover \(\text{NP}(g) \) from \(\mathcal{T}(g) \).
What is Geometric Tropicalization?

AIM: Given $Z \subset \mathbb{T}^N$ a surface, compute $\mathcal{T}Z$ from the geometry of Z.

KEY FACT: $\mathcal{T}Z$ can be characterized in terms of divisorial valuations.
What is Geometric Tropicalization?

AIM: Given $Z \subset \mathbb{T}^N$ a surface, compute $\mathcal{T}Z$ from the geometry of Z.

KEY FACT: $\mathcal{T}Z$ can be characterized in terms of divisorial valuations.

Theorem (Geometric Tropicalization [Hacking - Keel - Tevelev, C.])

Consider \mathbb{T}^N with coordinate functions χ_1, \ldots, χ_N, and let $Z \subset \mathbb{T}^N$ be a closed smooth surface. Suppose $\overline{Z} \supset Z$ is any normal and \mathbb{Q}-factorial compactification, whose boundary divisor has m irreducible components D_1, \ldots, D_m with no triple intersections (C.N.C.). Let Δ be the graph:

$$V(\Delta) = \{1, \ldots, m\} \quad ; \quad (i, j) \in E(\Delta) \iff D_i \cap D_j \neq \emptyset.$$

Realize Δ as a graph $\Gamma \subset \mathbb{R}^N$ by $[D_k] := (\text{val}_{D_k}(\chi_1), \ldots, \text{val}_{D_k}(\chi_N)) \in \mathbb{Z}^N$.

Then, $\mathcal{T}Z$ is the cone over the graph Γ.

M.A. Cueto (Columbia Univ.)

Tropical Implicitization of surfaces

Oct. 7 2011
What is Geometric Tropicalization?

AIM: Given $Z \subset \mathbb{T}^N$ a surface, compute T_Z from the geometry of Z.

KEY FACT: T_Z can be characterized in terms of divisorial valuations.

Theorem (Geometric Tropicalization [Hacking - Keel - Tevelev, C.])

Consider \mathbb{T}^N with coordinate functions χ_1, \ldots, χ_N, and let $Z \subset \mathbb{T}^N$ be a closed smooth surface. Suppose $\overline{Z} \supset Z$ is any normal and \mathbb{Q}-factorial compactification, whose boundary divisor has m irreducible components D_1, \ldots, D_m with no triple intersections (C.N.C.). Let Δ be the graph:

$$V(\Delta) = \{1, \ldots, m\} \quad ; \quad (i, j) \in E(\Delta) \iff D_i \cap D_j \neq \emptyset.$$

Realize Δ as a graph $\Gamma \subset \mathbb{R}^N$ by $[D_k] : = (\text{val}_{D_k}(\chi_1), \ldots, \text{val}_{D_k}(\chi_N)) \in \mathbb{Z}^N$.

Then, T_Z is the cone over the graph Γ.

Theorem (Combinatorial formula for multiplicities [C.])

$$m([D_i], [D_j]) = (D_i \cdot D_j) \left[(\mathbb{Z}[D_i], [D_j])^{\text{sat}} : \mathbb{Z}[D_i], [D_j] \right]$$
QUESTION: How to compute $\mathcal{T}Y$ from a parameterization

$$f = (f_1, \ldots, f_n): \mathbb{T}^2 \to Y \subset \mathbb{T}^n$$
QUESTION: How to compute $\mathcal{T} Y$ from a parameterization

$$f = (f_1, \ldots, f_n): \mathbb{T}^2 \dashrightarrow Y \subset \mathbb{T}^n \ ?$$

ANSWER: Compactify the domain $X = \mathbb{T}^2 \setminus \bigcup_{i=1}^{n} (f_i = 0)$ and use the map f to translate back to Y.

Proposition

Given $f: X \subset \mathbb{T}^2 \rightarrow Y \subset \mathbb{T}^n$ generically finite map of degree δ, let \overline{X} be a normal, \mathbb{Q}-factorial, CNC compactification with intersection complex Δ. Map each vertex D_k of Δ in \mathbb{Z}^n to a vertex $[\tilde{D}_k]$ of $\Gamma \subset \mathbb{R}^n$, where

$$[\tilde{D}_k] = \text{val}_{D_k}(\chi \circ f) = f^#([D_k]).$$

Then, $\mathcal{T} Y$ is the cone over the graph $\Gamma \subset \mathbb{R}^n$, with multiplicities

$$m_{([\tilde{D}_i],[\tilde{D}_j])} = \frac{1}{\delta} (D_i \cdot D_j) \left[(\mathbb{Z}\langle [\tilde{D}_i],[\tilde{D}_j] \rangle)^{sat} : \mathbb{Z}\langle [\tilde{D}_i],[\tilde{D}_j] \rangle \right].$$
Implicitization of generic surfaces

SETTING: Let \(f = (f_1, \ldots, f_n) : \mathbb{T}^2 \to Y \subset \mathbb{T}^n \) of \(\deg(f) = \delta \), where we fix the Newton polytope of each \(f_i \) and allow generic coefficients.

GOAL: Compute the graph \(\Gamma \) of \(T_Y \) from the Newton polytopes \(\{P_i\}_{i=1}^n \).

IDEA: Compactify \(X \) inside the proj. toric variety \(X_{\mathcal{N}} \), where \(\mathcal{N} \) is the common refinement of all \(\mathcal{N}(P_i) \). Generically, \(\overline{X} \) is smooth with CNC.

The vertices and edges of the boundary intersection complex \(\Delta \) are

\[
V(\Delta) = \{ E_i : \text{dim } P_i \neq 0, 1 \leq i \leq n \} \cup \{ D_\rho : \rho \in \mathcal{N}^{[1]} \},
\]

- \((D_\rho, D_{\rho'}) \in E(\Delta) \) iff \(\rho, \rho' \) are consecutive rays in \(\mathcal{N} \).
- \((E_i, D_\rho) \in E(\Delta) \) iff \(\rho \in \mathcal{N}(P_i) \).
- \((E_i, E_j) \in E(\Delta) \) iff \((f_i = f_j = 0) \) has a solution in \(\mathbb{T}^2 \).

Then, \(\Gamma \) is the realization of \(\Delta \) via

\[
[E_i] := e_i \quad (1 \leq i \leq n), \quad [D_\rho] := \text{trop}(f)(\eta_\rho) \quad \forall \text{ ray } \rho \quad (\eta_\rho \text{ prim. vector}.)
\]

Theorem [Sturmfels-Tevelev-Yu, C.]: \(T_Y \) is the weighted cone over \(\Gamma \).
Implicitization of *non-generic* surfaces

Non-genericity \leftrightarrow CNC condition is violated.

Solution 1:
1. Embed X in $X_\mathcal{N}$.
2. Resolve triple intersections and singularities by classical blow-ups, and carry divisorial valuations along the way.

The graph Δ is obtained by gluing resolution diagrams and adding pairwise intersections.
Implicitization of *non-generic* surfaces

Non-genericity \leftrightarrow CNC condition is violated.

Solution 1:
1. Embed X in X_N.
2. Resolve triple intersections and singularities by classical blow-ups, and carry divisorial valuations along the way.

Solution 2:
1. Embed X in $\mathbb{P}^2_{(s,t,u)} \leadsto n + 1$ boundary divisors
 \[E_i = (f_i = 0) \quad (1 \leq i \leq n), \quad E_\infty = (u = 0). \]
2. Resolve triple intersections and singularities by blow-ups $\pi: \tilde{X} \rightarrow X$, and read divisorial valuations by columns
 \[(f \circ \pi)^*(\chi_i) = \pi^*(E_i - \deg(f_i)E_\infty) = E_i' - \deg(f_i)E_\infty' - \sum_{j=1}^{r} b_{ij}H_j \quad \forall i. \]

The graph Δ is obtained by gluing resolution diagrams and adding pairwise intersections.
Example (non-generic surface)

\[Y = \begin{cases}
 x = f_1(s, t) = s - t, \\
 y = f_2(s, t) = t - s^2, \\
 z = f_3(s, t) = -1 + st,
\end{cases} \]

Affine Charts:

- \(E_1 := (s - t = 0) \)
- \(E_2 := (t - s^2 = 0) \)
- \(E_3 := (1 - st = 0) \)
- \(E_\infty := (u = 0) \)
- \(E_2 := (u - s^2 = 0) \)
- \(E_3 := (-u^2 + s = 0) \)

\(\Gamma \) (7, 11, 6)