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CHAPTER 1

Introduction

In writing about finite topological spaces, one feels the need, as McCord did in his paper
“Singular Homology Groups and Homotopy Groups of Finite Topological Spaces” [8], to begin
with something of a disclaimer, a repudiation of a possible initial fear. What might occur as
the homotopy groups of a topological space with only finitely many points? The naive answer
would be to assume that these groups must be trivial. This is based, however, on a mistaken
intuition, namely that a finite space is endowed with the discrete topology (as it would be,
for example, if it were a finite subset of Euclidean space with the subspace topology). Upon a
moment’s further reflection, however, it is apparent that this is by no means necessarily the case,
and there could be many nontrivial continuous maps into finite spaces with more interesting
topologies. Indeed, the main theorem of McCord’s paper provides a correspondence up to weak
homotopy equivalence between finite topological spaces and finite simplicial complexes, proving
that these two classes of spaces exhibit precisely the same homotopy groups.

The goal of this paper is to provide a thorough explication of McCord’s results and prove a
new extension of his main theorem. More specifically, Chapter Two contains the preliminary
material on homotopy theory, beginning with a discussion of weak homotopy equivalence and
the related notion of quasifibration. It also includes a sketch of the proof of the Dold-Thom
theorem, perhaps the most remarkable application of quasifibrations, and it concludes with a
brief introduction to inverse limits of topological spaces, the main ingredient in the generalization
of McCord’s theorem presented in Chapter Four.

McCord’s paper is discussed in detail in Chapter Three. This chapter begins by establishing
an equivalence between transitive, reflexive relations on a set and topologies under which the
set is an A-space (that is, under which arbitrary intersections of open sets are open). This
correspondence is used to prove that there is a natural association of a simplicial complex K(X)
to each T0 A-space X and a weak homotopy equivalence |K(X)| → X. With the help of one
additional theorem, this implies that every finite topological space is weakly homotopy equivalent
to a finite simplicial complex. Finally, by imposing a partial order on the set of barycenters of
simplices of a simplicial complex, the same ideas are used to prove, conversely, that every finite
simplicial complex is weakly homotopy equivalent to a finite topological space.

In Chapter Four, we prove that every finite simplicial complex is homotopy equivalent to an
inverse limit of finite topological spaces, a generalization of McCord’s theorem. The idea of the
proof is to associate a sequence of progressively better finite approximations to a simplicial com-
plex K; the first finite approximation is the space appearing in McCord’s correspondence, while
the rest are finite spaces with a strictly greater number of points but which retain the property
of weak homotopy equivalence to K. By visualizing points in the inverse limit as convergent
sequences of points in K, we obtain a homeomorphism between the geometric realization of K
and a quotient space of the inverse limit. Finally, we prove that this quotient space is in fact a
deformation retract of the entire inverse limit, thereby obtaining the result.
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CHAPTER 2

Preliminaries

1. Weak Homotopy Equivalences

A map f : X → Y is called a weak homotopy equivalence if the induced maps

f∗ : πn(X, x0)→ πn(Y, f(x0))

are isomorphisms for all n ≥ 0 and all basepoints x0 ∈ X. In the case where n = 0, the
term “isomorphism” should be understood as simply “bijection”, since there is no natural group
structure on the sets π0(X, x0) and π0(Y, f(x0)), which are the sets of path-components of X
and Y respectively.

It should be noted that, as the terminology indicates, every homotopy equivalence is also
a weak homotopy equivalence. This is obvious if we take a restricted notion of homotopy
equivalence, considering only maps f : X → Y for which there exists a map g : Y → X and
based homotopies f ◦ g ∼ idY and g ◦ f ∼ idX . For in this case, the existence of these based
homotopies together with the functoriality of πn implies that f∗◦g∗ = id and g∗◦f∗ = id, so that
f∗ and g∗ are inverse isomorphisms. But indeed, even if homotopies are not required to keep
basepoints stationary, it is true that a homotopy equivalence is a weak homotopy equivalence.
The proof is a straightforward generalization of Proposition 1.18 of [6], in which the statement
is proved in the special case of π1.

The converse, on the other hand, is not true: a weak homotopy equivalence is not necessarily
a homotopy equivalence. Indeed, there are weak homotopy equivalences X → Y for which there
does not exist a weak homotopy equivalence Y → X, a phenomenon which is by definition
impossible for the stronger notion of homotopy equivalence. One such example comes from
the so-called “real line with two origins”, the quotient space Y of R × {0, 1} obtained via the
identification (x, 0) ∼ (x, 1) if x 6= 0. There is a weak homotopy equivalence f : S1 → Y , so
in particular Y has nontrivial fundamental group. However, since S1 is Hausdorff, any map
g : Y → S1 must agree on the two origins, and hence g factors through the map Y → R which
identifies the two origins. By composing with a contraction of R we see that g is nulhomotopic
and hence induces the trivial homomorphism on all homotopy groups, so it cannot be a weak
homotopy equivalence.

There is one situation, though, in which a weak homotopy equivalence is indeed a homotopy
equivalence; namely, Whitehead’s theorem states that if X and Y are CW complexes and
f : X → Y is a weak homotopy equivalence, then f is a homotopy equivalence. Nevertheless,
most of the weak homotopy equivalences that will be considered in this paper will be maps
K → X where K is a CW complex and X is a finite topological space, so Whitehead’s Theorem
will not apply. Such maps will in general not be homotopy equivalences.

Indeed, a map from a CW complex K into a finite space X cannot be a homotopy equivalence
unless K is a disjoint union of contractible spaces. To see this, consider first the case where
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K is connected. If a map f : K → X is a homotopy equivalence, then there exists an inverse
homotopy equivalence g : X → K. The image of g ◦ f is a finite, connected subspace of K,
and hence is a point. So, since g ◦ f ∼ idK , this homotopy provides a contraction of K. In the
general case when K is not necessarily connected, the same reasoning shows that each connected
component of K must be contractible.

2. Quasifibrations

A related notion to that of weak homotopy equivalence is the notion of a quasifibration. A
map p : E → B over a path-connected base is said to be a quasifibration if the induced map

p∗ : πn(E, p−1(b), x0)→ πn(B, b)

is an isomorphism for all b ∈ B, all x0 ∈ p−1(b), and all n ≥ 0.
First, as before, let us verify the logic of the terminology by observing that a fibration is also

a quasifibration. Recall that a map p : E → B is said to be a fibration if for any space X and
any homotopy gt : X → B of maps from X into B, if we are given a lift g̃0 : X → E of the
first map in the homotopy, then there exists a lift g̃t : X → E of the entire homotopy which
extends g̃0. This condition is sometimes expressed by saying that the map p : E → B has the
homotopy lifting property with respect to all spaces X, or that the dotted map exists in the
following commutative diagram:

X × {0} g̃0 //
� _

��

E

p

��
X × I

gt //

g̃t

::v
v

v
v

v
B.

The proof that every fibration is a quasifibration uses a slightly different form of the homotopy
lifting property. Namely, given a space X and a subspace A ⊂ X, a map p : E → B is said
to have the relative homotopy lifting property with respect to the pair (X,A) if for any
homotopy gt : X → B of maps from X into B, if we are given both a lift g̃0 : X → E of the first
map in the homotopy and a lift g̃t : A → E of the entire homotopy over the subspace A, then
there exists a lift g̃t : X → E of the entire homotopy over X extending these. One can show
that the homotopy lifting property for cubes In implies the relative homotopy lifting property
for pairs (In, ∂In). In particular, any fibration has the relative homotopy lifting property for
such pairs.

To show, now, that any fibration is also a quasifibration, we will begin by verifying surjectivity
of p∗ : πn(E, p−1(b), x0)→ πn(B, b). Let [f ] ∈ πn(B, b) be represented by a map f : (In, ∂In)→
(B, b), which we can view as a based homotopy of maps In−1 → B. From this perspective, the
relative homotopy lifting property for the pair (In−1, ∂In−1) says that we can extend any lift of
f over the subspace Jn−1 ⊂ In (the union of all but one face of the cube) to a lift of f over all
of In. In particular, suppose we lift f over Jn−1 via the constant map to x0 and extend this
to a lift f̃ : In → E. Then f̃ represents a class in πn(E, p−1(b), x0) with p∗([f̃ ]) = [f ], so p∗ is
indeed surjective. The proof of injectivity is similar, for if [f ] = [g] ∈ πn(B, b), then there exists
a based homotopy from f to g, and we can use the homotopy lifting property again to obtain
an appropriate homotopy from f̃ to g̃. Therefore, p∗ is an isomorphism, so p is a quasifibration.

One sense in which quasifibrations are related to weak homotopy equivalences is illuminated
by the following alternative definition of a quasifibration. Recall that, given an arbitrary map
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p : E → B, we define Ep ⊂ E × Map(I, B) as the space of pairs (x, γ), where x ∈ E and
γ : I → B is a path starting at p(x). This space is topologized as a subspace of E ×Map(I, B),
where Map(I, B) is given the compact-open topology. The projection map Ep → B given by
(x, γ) 7→ γ(1) is a fibration for any map p, and the fibers Fb of this map are called the homotopy
fibers of p. There is an inclusion of each fiber p−1(b) into the homotopy fiber Fb of p over b, given
by mapping x to the pair (x, γ) where γ is the constant path at x. An alternative definition
of a quasifibration is given by requiring that each of these inclusions p−1(b) ↪→ Fb be a weak
homotopy equivalence.

To see that these two definition are equivalent, notice that since Fb → Ep → B is always a
fibration, the map p∗ : πn(Ep, Fb, x0) → πn(B, b) is an isomorphism for all n ≥ 0. Therefore,
in the following commutative diagram, the left-hand map is an isomorphism if and only if the
upper map is an isomorphism:

πn(E, p−1(b), x0) //

((QQQQQQQQQQQQ
πn(Ep, Fb, x0)

∼=wwooooooooooo

πn(B, b).

Now, E is homeomorphic to the subspace of Ep consisting of pairs (x, γ) where γ is a constant
path at x. Moreover, there is a deformation retraction from Ep to this subspace, given by pro-
gressively shrinking the paths γ to their basepoints; in particular, Ep is homotopy equivalent to
E. Therefore, the upper map in the above diagram will be an isomorphism if and only if the
inclusion p−1(b) ↪→ Fb is a weak homotopy equivalence, that is if and only if the alternative def-
inition of a quasifibration is fulfilled. Combining these observations, we see that the alternative
definition is fulfilled if and only if the left-hand map in the above diagram is an isomorphism,
which is precisely when p is a quasifibration by our original definition.

3. The Dold-Thom Theorem

A remarkable application of quasifibrations is given in the proof of the Dold-Thom theorem;
for this reason, and because it may prove useful in the possible extension of our work discussed
in the conclusion, we will state the theorem and sketch its proof here.

Given a space X, there is an action of the symmetric group Sn on the product Xn of n copies
of X given by permuting the factors. The n-fold symmetric product SPn(X) is defined as
the quotient space of Xn where we factor out this action of Sn; thus, it consists of unordered
n-tuples of points in X.

If we fix a basepoint e ∈ X, we can identify each of the products Xn with the subspace
{(e, x1, . . . , xn) | xi ∈ X} of Xn+1. We thus obtain an inclusion Xn ↪→ Xn+1 for each n,
and since equivalent points under the action of Sn are mapped to equivalent points, this map
descends to an inclusion SPn(X) ↪→ SPn+1(X).

The associations X 7→ SPn(X) are functorial. That is, if f : X → Y is a basepoint-

preserving map, there is an induced map f̃ : SPn(X) → SPn(Y ) given by [(x1, . . . , xn)] 7→
[(f(x1), . . . , f(xn))], and these maps satisfy (̃f ◦ g) = f̃ ◦ g̃ and ĩd = id. Moreover, a homotopy
between two maps X → Y induces a homotopy between the corresponding maps SPn(X) →
SPn(Y ), so if X is homotopy equivalent to Y then SPn(X) is homotopy equivalent to SPn(Y ).
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The infinite symmetric product SP (X) is defined as the increasing union

SP (X) =
∞⋃
n=1

SPn(X),

or in other words the direct limit of the system

SP1(X) ↪→ SP2(X) ↪→ SP3(X) ↪→ · · · ,
equipped with the weak (or direct limit) topology, wherein U ⊂ SP (X) is open if and only if
U ∩ SPn(X) is open for each n ≥ 1. The association X 7→ SP (X) is still functorial; a map

f : X → Y induces a map f̃ : SPn(X) → SPn(Y ) for each n, and the restriction of each

such f̃ to the subspace SPn−1(X) ⊂ SPn(X) is precisely the map f̃ : SPn−1(X) → SPn−1(Y ).

Therefore, the maps f̃ are compatible with the direct systems defining SP (X) and SP (Y ), so

they induce a continuous map f̃ : SP (X)→ SP (Y ). For the same reason as above, homotopic
maps X → Y induce homotopic maps SP (X)→ SP (Y ).

We are now equipped to state the theorem of Dold and Thom:

Theorem 2.1 (Dold and Thom). If X is a connected CW complex with basepoint, then
πn(SP (X)) ∼= Hn(X; Z).

The proof of this result involves showing that the association X 7→ πn(SP (X)) defines a
reduced homology theory on the category of basepointed CW complexes. By the functoriality of
the associations X 7→ SP (X) and SP (X) 7→ πn(SP (X)), this candidate theory is indeed func-
torial. Thus, all that remains in order to show that it defines a homology theory is verification
of the following three axioms:

(1) If f : X → Y and g : X → Y are homotopic maps between CW complexes, then they
induce the same map πn(SP (X))→ πn(SP (Y )).

(2) For CW pairs (X,A), there is a natural long exact sequence

· · · → πn(SP (A))→ πn(SP (X))→ πn(SP (X/A))→ πn−1(SP (A))→ · · · .
(3) If X =

∨
αXα and iα : Xα ↪→ X are the inclusions, then the homomorphism given by

⊕α(ĩα)∗ : ⊕απn(SP (Xα))→ πn(SP (X)) is an isomorphism for all n ≥ 0.

The first axiom is evidently satisfied by our previous observations, since we already know
that if f ∼ g : X → Y , then f̃ ∼ g̃ : SP (X) → SP (Y ), and hence f̃ and g̃ induce the same
map on homotopy groups.

The wedge axiom is also essentially immediate, once we observe that if the basepoint in∨
αXα and in each Xα is chosen to be the wedge point, then there is a homeomorphism

ϕ :
∏
α

′ SP (Xα)→ SP

(∨
α

Xα

)
,

where
∏′ denotes the ‘weak’ product, that is, the union of all the products of finitely many

factors. The homeomorphism ϕ is given by simply concatenating all of the tuples in the various
SP (Xα). We have a composition

SP (Xα)
eiα−→ SP

(∨
α

Xα

)
ϕ−1

−−→
∏
α

′ SP (Xα),
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which, under closer inspection, is simply the natural inclusion jα : SP (Xα) ↪→
∏′

α SP (Xα).
Now, the map

⊕αjα∗ :
⊕
α

πn(SP (Xα))→ πn

(∏
α

′ SP (Xα)

)
is an isomorphism, since a map f : Y →

∏′ SP (Xα) is the same as a collection of maps
fα : Y → SP (Xα) with the property that for every y ∈ Y , fα(y) is the basepoint for all but
finitely-many values of α. Therefore, since ⊕αjα∗ = ⊕αiα∗ ◦ϕ−1

∗ and ϕ is a homeomorphism, we
conclude that ⊕αiα∗ is an isomorphism, as desired.

Thus, the real work of the theorem is in proving the existence of the long exact sequence.
This is proved by showing that the map p : SP (X) → SP (X/A) induced by the quotient map
X → X/A is a quasifibration with fiber SP (A). To show that this map is a quasifibration, one
uses a number of locality properties of quasifibrations, first reducing the problem to showing
by induction that p is a quasifibration over each subspace SPn(X/A) ⊂ SP (X/A), and then
reducing the inductive step of this latter claim to showing that if p is a quasifibration over
SPn−1(X/A) then it is in fact a quasifibration over a neighborhood of SPn−1(X/A) and over
SPn(X/A) \ SPn−1(X/A).

Once we have that p is a quasifibration, the long exact sequence of the pair (SP (X), SP (A))
in homotopy yields:

πn(SP (X/A))

· · · // πn(SP (A))
i∗ // πn(SP (X))

j∗ // πn(SP (X), SP (A))
∂ //

p∗ ∼=

OO

πn−1(SP (A)) // · · · .

This allows us to write down an exact sequence

· · · // πn(SP (A))
i∗ // πn(SP (X))

p∗◦j∗ // πn(SP (X/A)
∂◦p−1
∗ // πn−1(SP (A)) // · · · ,

whose form is as required and whose naturality is clear. This, therefore, completes the proof
that we have a reduced homology theory.

One can check that the coefficients of this homology theory, the groups πi(SP (Sn)), are the
same as the coefficients Hi(S

n) for ordinary homology. To do so requires explicitly proving that
SP (S2) ∼= CP∞ and using the suspension property of reduced homology theories to deduce
the result for all higher values of n. Thus, we conclude that this homology theory agrees with
standard homology, which completes the proof of the theorem.

4. Inverse Limits of Topological Spaces

Given a countable sequence of spaces X0, X1, X2, . . . and continuous maps fn : Xn →
Xn−1 for each n, the inverse limit of this sequence, denoted lim

←−
Xn, is the set of all points

(x0, x1, x2, . . .) ∈
∏∞

n=0Xn such that f(xn) = xn−1 for all n, topologized as a subspace of∏∞
n=0Xn. The sequence of spaces and maps is sometimes called an inverse limit sequence, a

special case of the more general notion of an inverse system of topological spaces.
It is possible, of course, that no point in the product

∏∞
n=0Xn satisfies the requirements to

belong to the inverse limit, so the inverse limit of the sequence of spaces is empty. For example,
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suppose we define a discrete space

Xn =
∞⊔
m=0

{xn,m}

for each n ≥ 0. Define continuous maps fn : Xn → Xn−1 by fn(xn,m) = xn−1,m+1. The picture
is the following, where the leftmost point in the row corresponding to Xi is the point xi,0:

X0 • • • • • · · ·

X1 •

AA��������
•

AA��������
•

AA��������
•

AA��������
• · · ·

X2 •

AA��������
•

AA��������
•

AA��������
•

AA��������
• · · ·

...

Figure 1: An inverse system for which the inverse limit is empty.

Suppose we attempt to construct a point (x0,j0 , x1,j1 , x2,j2 , . . .) in the inverse limit. We will be-
gin with the point x0,j0 and observe that by the definition of the inverse limit, x1,j1 ∈ f−1

1 (x0, j0),
which implies that x1,j1 = x1,j0−1. Similarly x2,j2 = x2,j0−2. Continuing in this way, we will find
that we can only repeat the process up to the first j0 iterations, at which point we are forced
to conclude that there is no appropriate point xi,ji for i > j0. Thus, the inverse limit of this
sequence of spaces is empty.

One situation in which the inverse limit is never empty is when the spaces Xn are compact
and Hausdorff (see [7]). This will not be the case in the inverse limits we consider in this
paper, but it will nevertheless be clear in the cases under consideration that the inverse limit is
nonempty.

There is a natural map

λ : πi

(
lim
←−

Xn

)
→ lim
←−

πi(Xn)

given by viewing a map ϕ : Si → lim
←−

Xn as a collection of maps ϕn : Si → Xn with the property

that for each x ∈ Si and each n, fn(ϕn(x)) = ϕn−1(x). It can be shown (see [6], Proposition
4.67) that λ is surjective if the maps fn are fibrations, and λ is injective if the induced maps
fn∗ : πi+1(Xn)→ πi+1(Xn−1) are surjective for n sufficiently large.

An interesting consequence of this fact comes from the notion of a Postnikov tower. Given
a connected CW complex X, a commutative diagram of the form shown below is said to be a
Postnikov tower if the map X → Xn induces an isomorphism on πi for i ≤ n and πi(Xn) = 0
for i > n. It is not difficult to construct a Postnikov tower for any connected CW complex X,
and by the path-fibration construction mentioned in the previous section we can replace each of
the maps Xn → Xn−1 by a fibration without losing the defining properties of the tower.

A Postnikov tower for a space X gives one an inverse system of progressively better homotopy-
theoretic models of X. Since the maps πi(Xn+1) → πi(Xn) are isomorphisms for n sufficiently
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...

��
X3

��
X2

��
X //

>>}}}}}}}}

GG���������������
X1

Figure 2: A Postnikov tower.

large, the result mentioned above implies that λ is an isomorphism. And since the maps πi(X)→
πi(Xn) are isomorphisms for n sufficiently large, the same type of reasoning shows that the
composition

πi(X)
f∗−→ πi

(
lim
←−

Xn

)
λ−→ lim
←−

πi(Xn)

is an isomorphism, where f : X → lim
←−

Xn is the natural map coming from the maps X → Xn.

This in particular implies that f∗ is a weak homotopy equivalence, so X is a CW approximation
for the inverse limit lim

←−
Xn.
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CHAPTER 3

The Results of McCord

In his 1965 paper Singular Homology Groups and Homotopy Groups of Finite Topological
Spaces [8], McCord established a correspondence up to weak homotopy equivalence between
finite topological spaces and finite simplicial complexes. More precisely, he proved that to each
finite simplicial complex K one can associate a finite topological space X (K) whose points are
in one-to-one correspondence with the simplices of K, and if we topologize X (K) via the partial
order induced by inclusion of simplices, then the natural map K → X (K) is a weak homotopy
equivalence. Conversely, he showed that to each finite topological space X one can associate a
simplicial complex K(X) whose vertices are the points of X, and a weak homotopy equivalence
X → K(X).

Perhaps the first striking feature of this correspondence is that, as noted in the introduc-
tion, it alleviates any concern that finite spaces might be topologically uninteresting objects;
in particular, these results imply that the class of finite topological spaces enjoys precisely the
same homotopy groups as does the class of finite simplicial complexes. But more importantly,
McCord’s findings hint at the possibility that useful information about a topological space can
be uncovered by studying its finite model. Recently, Barmak and Minian have explored this
notion extensively. In [3] they introduced the notion of a collapse of finite spaces, which corre-
sponds under McCord’s association to a simplicial collapse, and they used this construction to
develop an approach to simple homotopy theory based upon elementary moves on finite spaces.
In [2] they defined a broader class of spaces, the so-called “h-regular CW complexes”, to which
McCord’s theorems and their extensions apply. Aside from Barmak and Minian’s work, the
results of [8] were also recently used in an influential paper of Biss [4], which seeks to relate
the finite poset MacP(k, n), a combinatorial analogue of the Grassmanian, to its associated
simplicial complex and thereby to the Grassmanian G(k, n) of k-planes in Rn.

This chapter is devoted to discussing McCord’s paper, which will serve as the foundation
for the generalization established in Chapter 4. Although we will generally restrict ourselves to
finite topological spaces, the results of [8] apply more generally to A-spaces, a slightly broader
class. An A-space is a topological space in which the intersection of an arbitrary collection of
open sets is open.

Clearly every finite space is an A-space, since an arbitrary intersection of open sets is neces-
sarily a finite intersection. However, not every A-space is finite. For example, there is a topology
on Z+ generated by the sets of the form {m | m ≥ n} for each fixed n ≥ 1. Since the intersection
of an arbitrary collection of basis elements is another basis element, this topology makes Z+

into an A-space.
The crucial observation for McCord’s correspondence is that given a set X, imposing a

topology on X that makes it into an A-space is equivalent to imposing a transitive, reflexive
relation on its elements. We discuss this equivalence below.
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First, let X be an A-space; we will exhibit a transitive, reflexive relation on X. For each
x ∈ X, the open hull of x, denoted Ux, is defined as the intersection of all open subsets of X
containing x. This allows us to define a relation ≤ on X by declaring x ≤ y if x ∈ Uy. This
is equivalent to the requirement that Ux ⊂ Uy, for it implies that every open set containing y
also contains x, so the collection of open sets containing y is a subset of the collection of open
sets containing x; therefore, the intersection of the latter is contained in the intersection of the
former. This second description of ≤ makes it clear that it is a transitive, reflexive relation.

Lemma 3.1. Let X and Y be A-spaces, and let ≤ be the relation described above. Then a
map f : X → Y is continuous if and only if it is order-preserving, that is, if and only if x ≤ y
implies f(x) ≤ f(y).

Proof. Suppose f : X → Y is continuous, and let x, y ∈ X be such that x ≤ y. Then
x ∈ Uy, and we must show that f(x) ∈ Uf(y). To do so, let V ⊂ Y be an open set containing
f(y). Then f−1(V ) is an open subset of X containing y, and hence x ∈ f−1(V ). Therefore, we
have f(x) ∈ V , so that f(x) lies in every open set containing f(y). That is, f(x) ∈ Uf(y), as
required.

Conversely, suppose f : X → Y is order-preserving, and let V ⊂ X be open. To show
that f−1(V ) ⊂ Y is open, it suffices to prove that for all y ∈ f−1(V ), Uy ⊂ f−1(V ). So, let
y ∈ f−1(V ), and let x ∈ Uy. Then by definition, x ≤ y, and since f is order-preserving this
implies that f(x) ≤ f(y), that is, f(x) lies in every open set containing f(y). In particular, V
is an open set containing f(y), so f(x) ∈ V . Therefore, x ∈ f−1(V ). We have therefore shown
that Uy ⊂ f−1(V ) for each y ∈ f−1(V ), and hence f−1(V ) is open. �

Another useful observation about the relation ≤ is that it is antisymmetric (and hence a
partial order) if and only if X is T0. (Recall that a topological space X is said to be T0 if, given
any pair of distinct points in X, there exists an open set containing one but not the other.)

For the opposite direction of the equivalence between A-space structures and transitive, re-
flexive relations, suppose that we are given a set X with a transitive, reflexive relation ≤. Then
we can define, for each x ∈ X, the set Ux = {y ∈ X | y ≤ x}. This collection of sets forms the
basis for a topology on X, with the reflexivity and transitivity corresponding precisely to the
two axioms required to be a basis. And under this topology, X is an A-space; indeed, if {Vα}α∈A
is a collection of open subsets of X and V = ∩α∈AVα, then for all x ∈ V we have x ∈ Ux ⊂ Vα
for each α, so that x ∈ Ux ⊂ V and hence V is open.

Moreover, as the notation would suggest, Ux is the open hull of x in the topology we have
defined on X. Since Ux is open by definition, it is clear that the open hull of x is contained in
Ux. For the reverse inclusion, let V be any open set containing x. Then we can express V as a
union of basis elements, say V = ∪z∈BUz. Since x ∈ V , x lies in some Uz, and therefore x ≤ z.
Therefore, for any y ∈ Ux we have y ≤ x ≤ z, so y ∈ Uz and hence y ∈ V . This shows that
Ux ⊂ V , and thus establishes that Ux is contained in every open set that contains x. Hence, Ux
is exactly the open hull of x, as claimed.

With this equivalence defined, we are prepared to prove the first direction of the correspon-
dence between finite topological spaces (or, more generally, A-spaces) and simplicial complexes.
This is encapsulated in the following theorem:

Theorem 3.2 (McCord). There exists a correspondence that assigns to each T0 A-space X a
simplicial complex K(X), whose vertices are the points of X, and a weak homotopy equivalence
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fX : |K(X)| → X. This correspondence is natural in X: a map ϕ : X → Y of T0 A-spaces
induces a simplicial map K(X)→ K(Y ), and ϕ ◦ fX = fY ◦ |ϕ|.

To prove Theorem 3.2, we will use the equivalence discussed above to notice that since X is
a T0 A-space, there is a partial order ≤ on the elements of X. With this in mind, define the
simplicial complex K(X) by letting its vertices be the points of X and its simplices be the finite
subsets of X that are totally ordered by ≤.

Example 3.3. We will define a finite topological space S1
4 , the 4-pointed finite model of the

circle.
Let S1

4 = {a, b, c, d}, and let B = {{a}, {c}, {a, b, c}, {a, d, c}} be the basis for the topology
on S1

4 . Then the corresponding poset can be graphically depicted as follows, where an arrow
from x to y indicates x < y:

b d

a

OO ??��������
c.

OO__????????

The totally-ordered subsets of S1
4 are {a, b}, {a, d}, {c, b}, {c, d}, and the four singletons.

Therefore, the simplicial complex K(S1
4) has four 0-simplices, four 1-simplices, and no other

simplices. Its geometric realization is the circle S1.

Figure 1: The Circle and Its Finite Model.

Notice that if X is a T0 A-space and Y ⊂ X, then the open hull in Y of a point y ∈ Y is
simply the intersection of the open hull of y in X with the subspace Y ; thus, the relation ≤
on Y is the restriction to Y of the relation ≤ on X. This implies that a totally-ordered subset
of X is still totally-ordered as a subset of Y , and hence that if a collection of vertices belongs
to K(Y ) ⊂ K(X) and the vertices span a simplex in K(X), then they span a simplex in K(Y ).
That is, K(Y ) is a full subcomplex of K(X).

To define the map fX : |K(X)| → X, we recall that each point u ∈ |K(X)| is contained in
the interior of a unique simplex σ = {x0, x1, . . . , xk}, which corresponds to the totally-ordered
subset x0 < x1 < · · · < xk of X. We define fX(u) = x0. In other words, viewing the poset X as a
directed graph as in Example 3.3, each totally-ordered subset consists of all vertices lying on an
upward-pointing path starting at some fixed element x0 ∈ X, and fX maps the totally-ordered
subset to its initial element, x0.

Continuity of the map fX will follow from the next lemma. Before stating the lemma,
we require a definition: for a simplicial complex K with a subcomplex L ⊂ K, the regular
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neighborhood of L in K is the set ⋃
x∈L

stK(x) ⊂ |K|,

where stK(x) denotes the open star of x in K, that is, the union of the interiors of the simplices
of K that contain x as a vertex.

Lemma 3.4. Let X be a T0 A-space, and let Y ⊂ X be open. Then (fX)−1(Y ) is the regular
neighborhood of K(Y ) in K(X).

Proof. Before proving the lemma, let us observe that since regular neighborhoods are
always open, this implies that fX is continuous.

Let u ∈ (fX)−1(Y ). Then fX(u) ∈ Y , that is, u lies in the interior of a simplex σ =
{x0, x1, . . . , xk} such that x0 < x1 < · · · < xk, and x0 ∈ Y . The interior of σ is therefore a
subset of stK(X)(x0), so we have

u ∈ stK(X)(x0) ⊂
⋃

y∈K(Y )

stK(X)(y),

that is, u lies in the regular neighborhood of K(Y ) in K(X).
Conversely, suppose that u lies in the regular neighborhood of K(Y ) in K(X). Then u ∈

stK(X)(y) for some y ∈ K(Y ), and since the vertices of K(Y ) are points in Y , we can view y as
lying in Y . In particular, there is a simplex σ = {x0, x1, . . . , xk} such that x0 < x1 < · · · < xk,
xi = y for some i, and u ∈ int(σ). Then x0 ≤ y, so x0 ∈ Uy, which says that x0 is contained in
every open set containing y. Thus, x0 ∈ Y , which proves that fX maps the interior of σ to Y ,
so fX(u) ∈ Y . We conclude that u ∈ f−1

X (Y ), as desired. �

At this point, let us digress to state (without proof) a theorem that will be used to show
that the map fX is a weak homotopy equivalence. This result appears in [8] as Theorem 6,
and in [6] as Corollary 4K.2. The proof in [8] is essentially a sketch, since it closely follows the
proof of an analogous result for quasifibrations (rather than weak homotopy equivalences) that
appears in [5]. The main idea behind McCord’s adaptation of the result for quasifibrations to
the present situation is the observation that a surjective map p : E → B with the property
that πn(p−1(x), y) = 0 for all x ∈ E, y ∈ p−1(x), and n ≥ 0 is a quasifibration if and only if
it is a weak homotopy equivalence. This follows immediately from the long exact sequence in
homotopy of the pair (E, p−1(x)).

Theorem 3.5 (McCord). Let p : E → B be any continuous map, and suppose that there
exists an open cover U of B with the property that if x ∈ U ∩ V for some U, V ∈ U , then there
exists W ∈ U such that x ∈ W ⊂ U ∩ V . Suppose further that for each U ∈ U , the restriction
p|p−1(U) : p−1(U) → U is a weak homotopy equivalence. Then p is itself a weak homotopy
equivalence.

In our application of this result, we will take as the open cover U the collection of sets Ux for
x ∈ X. In light of this theorem, we must show that (fX)|(fX)−1(Ux) : (fX)−1(Ux)→ Ux is a weak
homotopy equivalence for all x ∈ X. We will do so by proving that its domain and codomain are
both contractible, so that the induced homomorphisms on homotopy groups are maps between
trivial groups and hence clearly isomorphisms.

Lemma 3.6. If X is an A-space and x ∈ X, then Ux is contractible.

18



Proof. Define a homotopy F : Ux × I → Ux by

F (y, t) =

{
y t ∈ [0, 1)

x t = 1.

If continuous, this clearly defines a contraction of Ux to x.
To see that F is continuous, let V ⊂ Ux be open. If x ∈ V , then since no proper open subset

of Ux contains x, we must have Ux = V and hence F−1(V ) = Ux × I, which is open. If x /∈ V ,
then F−1(V ) = V × [0, 1), which is also open. This completes the proof. �

Lemma 3.7. If X is a T0 A-space and x ∈ X, then (fX)−1(Ux) is contractible.

Proof. Recall that the regular neighborhood of a full subcomplex deformation retracts onto
the full subcomplex; in particular, (fX)−1(Ux) deformation retracts onto |K(Ux)|. So to prove
the claim, it suffices to show that |K(Ux)| is contractible.

Let Vx = Ux \ {x}. We claim that K(Ux) = cone(K(Vx), x), or in other words that the
simplices of K(Ux) consist precisely of the simplices of K(Vx), together with simplices of the
form {x0, x1, . . . , xk, x} where {x0, x1, . . . , xk} is a simplex of K(Vx).

First, any such simplex is a simplex of K(Ux). To see this, observe that every simplex of K(Vx)
is of the form {x0, x1, . . . , xk} where x0 < x1 < · · · < xk, and where xi < x for all i ∈ {0, . . . , k}.
Therefore, for any simplex of K(Vx), the set {x1, . . . , xk, x} is a simplex of K(Ux).

Moreover, these are all the simplices of K(Ux). For if σ = {x0, x1, . . . , xk} is a simplex of
K(Ux) but not a simplex of K(Vx), then xi = x for some i.

Thus, we have established that K(Ux) = cone(K(Vx), x), and therefore its geometric realiza-
tion is contractible to the cone point x. �

The proof of Theorem 3.2 is now almost immediate:

Proof of Theorem 3.2. By the above two lemmas, the maps

(fX)|(fX)−1(Ux) : (fX)−1(Ux)→ Ux

are weak homotopy equivalences for all x ∈ X, and hence, by Theorem 3.5, fX is itself a weak
homotopy equivalence.

All that remains is to establish naturality of the association X 7→ K(X). Let ϕ : X → Y be
a map of T0 A-spaces. Recall that since ϕ is continuous, it is order-preserving by Lemma 3.1.
Thus, it maps totally-ordered sets onto totally-ordered sets, and so it maps simplices of K(X)
onto simplices of K(Y ). That is, the map ϕ : K(X)→ K(Y ) is simplicial.

To see that ϕ ◦ fX = fY ◦ |ϕ|, let u ∈ |K(X)| lie in the interior of the simplex {x0, x1, . . . xk},
where x0 < x1 < · · · < xk. Then, since ϕ is simplicial, |ϕ|(u) lies in the interior of the simplex
{ϕ(x0), ϕ(x1), . . . , ϕ(xk)}, and since ϕ is order-preserving we have ϕ(x0) ≤ ϕ(x1) ≤ · · · ≤ ϕ(xk).
Hence, (fY ◦|ϕ|)(u) = ϕ(x0). On the other hand, since fX(u) = x0, we have (ϕ◦fX)(u) = ϕ(x0).
So fY ◦ |ϕ| = ϕ ◦ fX , as claimed. �

It should be noted that Theorem 3.2 implies that every finite T0 space is weakly homotopy
equivalent to a finite simplicial complex. For the more general statement that every finite space
(not necessarily T0) is weakly homotopy equivalent to a finite simplicial complex, a further result
is required:
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Theorem 3.8 (McCord). There exists a correspondence that assigns to each A-space X a

quotient space X̂ of X such that

(1) The quotient map νX : X → X̂ is a homotopy equivalence,

(2) X̂ is a T0 A-space,
(3) The construction is natural in X: for each map ϕ : X → Y , there exists a unique map

ϕ̂ : X̂ → Ŷ such that νY ◦ ϕ = ϕ̂ ◦ νX .

Proof. Let X be an A-space. Define an equivalence relation ∼ on X by declaring x ∼ y if
Ux = Uy, and let X̂ = X/ ∼. Since this is equivalent to the requirement that x ≤ y and y ≤ x,
we are essentially forcing that the relation ≤ is antisymmetric. To make this rigorous, though,
we need to make two observations.

First of all, X̂ is still an A-space, under the quotient topology from the quotient map νX :
X → X̂. For if {Uα}α∈A is a collection of open sets, then we have

ν−1
X

(⋂
α∈A

Uα

)
=
⋂
α∈A

ν−1
X (Uα),

and hence by the definition of the quotient topology and the fact that X is an A-space, we
conclude that ∩α∈AUα is open.

Second, the relation coming from this A-space structure on X̂ is the same as the one induced
via νX by the A-space structure on X. That is, if x, y ∈ X, then νX(x) ≤ νX(y) if and
only if x ≤ y. To see this, notice first that Ux ⊂ ν−1

X (νX(Ux)). But moreover, the reverse
containment is also true; for if z ∈ ν−1

X (νX(Ux)) then νX(z) = νX(w) for some w ∈ Ux, and thus
z ∈ Uz = Uw ⊂ Ux. Therefore, we have

ν−1
X (νX(Ux)) = Ux.

This in particular implies that νX(Ux) is open. Next, observe that

νX(Ux) = UνX(x).

To see why this is true, note that νX(Ux) is open and contains νX(x), so UνX(x) ⊂ νX(Ux); on
the other hand, if V ⊂ X is an open set such that νX(x) ∈ V , then ν−1

X (V ) is an open set
containing x and hence Ux ⊂ ν−1

X (V ). Therefore, νX(Ux) ⊂ V . So νX(Ux) is contained in every
open set that contains νX(x), that is, νX(Ux) ⊂ UνX(x).

At this point, the claim that νX(x) ≤ νX(y) if and only if x ≤ y follows immediately. For if
x ≤ y, then νX(x) ≤ νX(y) by continuity of νX ; and if νX(x) ≤ νX(y), then the above implies
that νX(x) ∈ νX(Uy), so there exists a z ∈ Uy such that νX(x) = νX(z), and hence x ≤ z ≤ y.

Now, it is clear that the relation ≤ on X̂ is antisymmetric (in addition to reflexive and

transitive), so X̂ is a T0 A-space. This completes the proof of part (2) of the theorem.
To see that νX is a homotopy equivalence and thereby prove part (1) of the theorem, choose

any right inverse µ : X̂ → X. While it is not a priori obvious that the map µ is continuous,
continuity indeed follows because, by the above observations, µ is necessarily order-preserving.
Therefore, we have νX ◦ µ = idX̂ . To see that π = µ ◦ νX is homotopic to idX , define a map
H : X × I → X by

H(x, t) =

{
x t ∈ [0, 1)

π(x) t = 1.
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To show that H is continuous, it suffices to verify that for each point (x, s) ∈ X × I, there
exists a neighborhood of (x, s) which is mapped by F into UF (x,s). We claim that Ux × I is
such a neighborhood. To see this, notice first that (νX ◦ π)(x) = (νX ◦ µ ◦ νX)(x) = νX(x), and
hence by the definiton of νX we have Uπ(x) = Ux for all x ∈ X. This implies that UF (x,s) = Ux.
Take any (y, t) ∈ Ux × I. Then, if t < 1, it is clear that F (y, t) = y ∈ Ux; if t − 1, then
F (y, t) = π(y) ∈ Uπ(y) = Uy ⊂ Ux. Therefore, it is indeed the case that F (Ux×I) ⊂ Ux = UF (x,s),
and by the above observations, this completes the proof that H is continuous.

Finally, the naturality statement in part (3) follows from the fact that if ϕ : X → Y is a
continuous map of A-spaces, then it is order-preserving and hence maps equivalent points of X
to equivalent points of Y . This implies that ϕ descends to a unique function ϕ̂ such that the
following diagram commutes:

X̂
ϕ̂ //

νX

��

Ŷ

νY

��
X ϕ

// Y.

And indeed, the function ϕ̂ so defined is continuous by the universal property of the quotient
map νX . This completes the proof. �

From Theorems 3.2 and 3.8 we see that if X is a finite topological space, then the homotopy
inverse µ : X̂ → X to νX is also a homotopy equivalence, and thus the composition µ ◦ fX̂ :

|K(X̂)| → X gives a weak homotopy equivalence from a finite simplicial complex to X. That
is, these two theorems together imply that every finite topological space is weakly homotopy
equivalent to a finite simplicial complex.

We conclude this chapter by discussing the reverse direction of the correspondence established
by McCord; since it follows with little extra work from what we have already shown, our coverage
will be rather brief.

Theorem 3.9. There exists a correspondence that assigns to each simplicial complex K a T0

space X (K) whose points are the barycenters of simplices of K, and a weak homotopy equivalence
fK : |K| → X (K). To each simplicial map ψ : K → L is assigned a map ψ′ : X (K) → X (L)
such that ψ ◦ fK is homotopic to fL ◦ |ψ|.

Proof. Let K be a simplicial complex, and let K ′ denote its first barycentric subdivision.
Define X (K) to be the set of barycenters of simplices of K, or in other words, the set of vertices
of K ′. We can make the set X (K) into an T0 A-space by imposing the partial order given by
b(σ) ≤ b(σ′) whenever σ ⊂ σ′, where b(τ) denotes the barycenter of the simplex τ . It is clear
that K(X (K)) = K ′. Therefore, we can define fK : |K| → X (K) to be the map fX (K) defined
in Theorem 3.2, which indeed maps into X (K) since

fK(|K|) = fX (K)(|K|) = fX (K)(|K ′|) = fX (K)(|K(X (K))|) = X (K).

Therefore, the fact that fK is a weak homotopy equivalence follows from the proof of Theorem
3.2.

If ψ : K → L is a simplicial map, then we can define a simplicial map ψ′ : K ′ → L′ by
setting ψ′(b(σ)) = b(ψ(σ)), and the maps |ψ| and |ψ′| are homotopic. We can view ψ′ as a map
X (K) → X (L), and from this perspective it is order-preserving and therefore continuous. It
follows from Theorem 3.2 that ψ′ ◦fK = fL ◦ |ψ′|, and hence ψ′ ◦fK is homotopic to fL ◦ |ψ|. �
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Example 3.10. Suppose we realize S1 as a simplicial complex K with three 0-simplices (say
v, w, and z) and three 1-simplices (say e, f , and g), arranged as follows:

v w

z

e

fg

Then the finite model of K will have six points, which we will denote by pv, pw, pz, pe, pf , and
pg in accordance with the correspondence between points of X (K) and barycenters of simplices
of K. Moreover, since v ⊂ e and v ⊂ g, we will have pv ≤ pe and pv ≤ pg. Similar orderings
result from the inclusions of the other two vertices into the corresponding faces, so the collection
of sets

Upv = {pv, pe, pg}
Upw = {pw, pe, pf}
Upz = {pz, pf , pg}
Upe = {pe}
Upf = {pf}
Upg = {pg}

forms a basis for the topology on X (K).
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CHAPTER 4

Inverse Limits of Finite Topological Spaces: An Extension of
McCord

It follows from Theorem 3.9 that every finite simplicial complex K is weakly homotopy
equivalent to a finite topological space X (K). The space X (K) is aptly termed the “finite
model” of K, for it not only has isomorphic homotopy groups but, at least in the case of
Example 3.3, also bears some intuitive resemblance to the original simplicial complex. This
invites the question: might we model K better? Is it possible to obtain a finite topological
space with strictly more points than X (K), which nevertheless retains the property of weak
homotopy equivalence to K? If so, we might then wonder whether, by a process of iteratively
refining our models, we might in the limit get the original space K back again.

These are the questions that motivate the following result:

Theorem 4.1. Any finite simplicial complex is homotopy equivalent to the inverse limit of a
sequence of finite spaces.

The first space in the inverse limit is essentially McCord’s space X (K), and each of the
others is indeed a larger finite space that is weakly homotopy equivalent to K. Although
the inverse limit of these finite spaces is not, as we might have hoped, homeomorphic to the
original simplicial complex, the homotopy equivalence mentioned in the theorem is in some sense
“almost” a homeomorphism; it is a homeomorphism onto a quotient space of the inverse limit,
and moreover onto a quotient space to which the entire inverse limit deformation retracts.

We will begin by discussing how the finite spaces are constructed.
Let K be a finite simplicial complex. To construct its finite models, we begin by letting X0

be the finite space whose points are in one-to-one correspondence with the faces of simplices
of K, just as in McCord’s definition of X (K). Also analogously to McCord, we make X0 into
a poset by declaring that if x, y ∈ X0 correspond to the faces σx and σy of K, then x ≤ y if
and only if σx ⊆ σy. We topologize this finite space slightly differently than McCord’s X (K),
however; in our case, we endow X0 with the topology generated by the sets

Bx = {y ∈ X0 | x ≤ y}
for x ∈ X0, as opposed to the sets Ux defined in the previous section. The reason for this
distinction involves the continuity of the maps qn defined below.

For each n ≥ 0, let Kn denote the nth barycentric subdivision of K, and let Xn be the finite
space whose points are in one-to-one correspondence with the faces of simplices of Kn. Using an
analogous partial order on the points of Xn, we can endow each Xn with the topology generated
by the sets Bx as above.

There is a natural map pn : |K| → Xn for each n, since every point in K is contained in the
interior of precisely one face of the nth barycentric subdivision of K; indeed, this is precisely the
map fKn appearing in Theorem 3.9. Moreover, there is a unique projection map qn : Xn → Xn−1
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making the following diagram commute:

|K|
pn

}}|||||||| pn−1

##FFFFFFFF

Xn

qn // Xn−1.

In light of the correspondence between points in Xn and faces of simplices in Kn, we will
typically denote the simplex corresponding to x ∈ Xn by σnx . It is straightforward to check that
for each n ≥ 0 and each x ∈ Xn, one has

p−1
n (Bx) = stn(σnx),

where stn(σnx) is the open star of σnx in Kn. This implies in particular that the maps pn are all
continuous, even in our modified topology on Xn. They are also open maps; for if U ⊂ |K| is
open and x ∈ pn(U), then there exists z ∈ U such that x = pn(z), or in other words, z ∈ int(σnx).
So to say that x ∈ pn(U) is to say that int(σnx) ∩ U 6= ∅, and it is easy to see that this implies
that for any simplex σny of Kn such that σnx ⊂ σny , we also have int(σny )∩U 6= ∅. That is, if x ≤ y
then y ∈ pn(U), so Bx ⊂ pn(U). This says that for each x ∈ pn(U) one has x ∈ Bx ⊂ pn(U),
and hence pn(U) is open.

By the commutativity of the above diagram, this implies that each qn is continuous. Hence,
we now have an inverse system:

X0
q1←− X1

q2←− X2
q3←− X3

q4←− · · ·
and we can define X̃ to be its inverse limit. The main work of the proof of Theorem 4.1 will be
in showing that |K| is homeomorphic to a quotient space of X̃.

Before doing so, however, it should be noted that the maps pn : |K| → Xn are all still
weak homotopy equivalences. To prove this, recall that for any basis element Bx ⊂ Xn, the
set p−1

n (Bx) = stn(σnx) is contractible. And, using the fact that Bx is the smallest open set
containing x, it is readily verified that each Bx is also contractible. Hence the restriction
pn|p−1

n (Bx) : p−1
n (Bx) → Bx is a weak homotopy equivalence for each basis element Bx, and by

Theorem 3.5 this is sufficient to conclude that pn is a weak homotopy equivalence.

Lemma 4.2. If K is a finite simplicial complex and the finite spaces Xn are defined as above,
then |K| is homeomorphic to a quotient space of lim

←−
Xn.

Proof. Given x = (x0, x1, x2, . . .) ∈ X̃, we can associate to x a sequence of points in |K| by
choosing an arbitrary element an ∈ p−1

n (xn) for each n ≥ 0. Because these points lie in nested
simplices of increasingly fine barycentric subdivisions of K, and since the maximum diameter
of a geometric simplex of |Kn| approaches zero as n approaches infinity, any sequence obtained
in this way is Cauchy and therefore convergent.

Now, we could have chosen a different sequence {an} corresponding to the same element
x ∈ X̃. However, we claim that if {an} and {bn} are any two sequences obtained in this way,
then limn→∞ an = limn→∞ bn. To see this, let a = limn→∞ and let ε > 0. By the convergence
of {an}, there exists a natural number N such that |a − an| < ε

2
for all n > N . And because

the diameters of the simplices p−1
n (xn) approach zero as n approaches infinity, there also exists

a natural number M such that |an − bn| < ε
2

for all n > M . So for n > max{N,M}, we have
that |a− bn| < ε, and hence {bn} converges to a, also.
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We have thus established that there is a well-defined map

G : X̃ → |K|

given by sending (x0, x1, x2, . . .) to the limit of any sequence {an} ⊂ |K| where pn(an) = xn for
all n. To prove that G is continuous, let U ⊂ |K| be any open set, and let x = (x0, x1, x2, . . .) ∈
G−1(U). First, observe that

G−1(U) ⊂
∞∏
n=0

pn(U),

that is, xn ∈ pn(U) for all n. For if there exists some n such that xn /∈ pn(U) and {an} is as above,
then the commutativity of the diagram on the previous page implies that pn(an+1) /∈ pn(U) and
hence an+1 /∈ U . Similarly, we obtain that ai /∈ U for all i > n, contradicting the assumption
that the the sequence {an} converges to G(x) ∈ U . So, the above containment holds, and
therefore we may as well assume that an ∈ U for all n. Since U is open and {an} converges to
a point in U , there is an open set V such that each an ∈ V and such that V ⊂ U . Now, the set

∞∏
n=0

pn(V )

is open since the pn are open maps. Moreover, if y = (y0, y1, y2, . . .) ∈
∏
pn(V ), then yn ∈ pn(V )

for all n, so we can choose a sequence {bn} ⊂ V such that pn(bn) = yn for all n. Denote the
limit of {bn} by b, so that b = G(y). Then, since {bn} ⊂ V , we have b ∈ V ⊂ U , so y ∈ G−1(U).
Thus,

x ∈
∞∏
n=0

pn(V ) ⊂ G−1(U),

and hence G−1(U) is open.
Define an equivalence relation on X̃ by x ∼ y if and only if G(x) = G(y), and denote by Y

the corresponding quotient space of X̃. (In fact, one can check that this equivalence relation
is simply the T1 relation, wherein x ∼ y if and only if either every open set containing x also
contains y or vise versa, since any open set in X̃ containing (p0(z), p1(z), p2(z), . . .) necessarily
contains every x such that G(x) = z. Thus, we might say that Y is the “T1-ification” of X̃.)

We get an induced map G̃ : Y → |K|, which is by construction both well-defined and injective.
Since G̃([(p0(x), p1(x), p2(x), . . .)]) = x for any x ∈ |K|, it is also clearly surjective. Hence G̃ is
a bijection. It is continuous by the universal property of quotient spaces, since if π : X̃ → Y
is the quotient map then G = G̃ ◦ π is continuous. And its inverse is the map G̃−1 : |K| → Y
defined by

x 7→ [(p0(x), p1(x), p2(x) . . .)],

which is the composition of the quotient map π with the map x 7→ (p0(x), p1(x), p2(x), . . .), and
hence is continuous. Thus, G̃ is a homeomorphism. �

All that remains, now, is to show that in fact Y is homotopy equivalent to |K|. This will be
achieved by way of the following lemma:

Lemma 4.3. The quotient space Y is homeomorphic to a deformation retract of X̃.
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Proof. Let x̃ ∈ X̃, and suppose that G(x̃) = y. We claim that every neighborhood of
the point (p0(y), p1(y), p2(y), . . .) ∈ X̃ contains x̃. To see this, let x̃ = (x0, x1, x2, . . .), and let
{an} be a sequence of points converging to y such that pn(an) = xn for all n. Then, for each
n ≥ 0, y lies in the interior of precisely one simplex σn of Kn, and moreover, it clearly must
be the case that an ∈ stn(σn). This implies that for each n, xn ∈ pn(stn(σn)) = Bpn(y) ⊂ Xn.
But since Bpn(y) is the smallest open subset of Xn containing pn(y), this implies that any

open subset of Xn containing pn(y) also contains xn. Hence, any open subset of X̃ containing
(p0(y), p1(y), p2(y), . . .) also contains x̃, as claimed.

Let E be any equivalence class under ∼, wherein every element defines a sequence converging
to x ∈ |K|. Define a homotopy hE : E × [0, 1]→ hE by

hE(y, t) =

{
y if t ∈ [0, 1)

(p0(x), p1(x), . . .) if t = 1.

To see that this is continuous, let U ⊂ Y be open. If the point (p0(x), p1(x), . . .) lies in U ,
then every element of the equivalence class also lies in U , so that h−1

E (U) = Y × [0, 1]. If
(p0(x), p1(x), . . .) /∈ U , then h−1

E (U) = U × [0, 1), which is open. Hence, hE is continuous, and
so we have a homotopy from the identity map on Y to a constant map. In particular, we have
shown that every equivalence class is contractible.

Combining all of these homotopies on the various equivalence classes, we obtain a map F :
X̃ × [0, 1] → X̃, which we claim is also continuous. To verify this, let U ⊂ X̃ be open, and
define a subset UBC ⊂ U as follows:

UBC = {x ∈ U | (p0(G(x)), p1(G(x)), . . .) /∈ U}.
These are the “boundary-convergent” points in U , those that we view as sequences of points in
the open set U converging to a point that is not in U . The set UBC is closed in U , since we can
define a continuous map p : X̃ → X̃ by p(x) = (p0(G(x)), p1(G(x)), · · · ), and

U \ UBC = {x ∈ U | p(x) ∈ U} = U ∩ p−1(U),

which is an intersection of two open sets by the continuity of p and hence is open. Moreover:

F−1(U) = (U × [0, 1]) \ (UBC × {1}),
so F−1(U) is open. Therefore, F is continuous, as claimed.

We have thus defined a deformation retraction of X̃ onto a subspace Z that contains exactly
one element from each equivalence class. It is clear that if i : Z ↪→ X̃ is the inclusion map and
π : X̃ → Y is the quotient map as above, then the map

f = π ◦ i : Z → Y,

is a bijection. Indeed, this map is a homeomorphism; for if U ⊂ Z is open, then U = V ∩ Z for
some open subset V ⊂ X̃, and π(V ) = f(U). And by the definition of Z, the set V is forced
to contain every point in each equivalence class it intersects, so π−1(π(V )) = V . In particular,
π(V ) is open, so f is an open map. Conversely, if U ⊂ Y is open, then π−1(V ) ⊂ X̃ is open, so
π−1(V ) ∩ Z = f−1(Z) is open in Z. Hence f is continuous.

Therefore, by the composition of the homotopy equivalence X̃ → Z and the homeomorphism
f : Z → Y , we obtain the claim. �

The proof of Theorem 4.1 is now immediate:
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Proof of Theorem 4.1. Composing the homeomorphism from Lemma 4.2 and the ho-
motopy equivalence from Lemma 4.3, we obtain the desired result. �

It is worth noting that, as observed by Barmak and Minian in [2], McCord’s results apply
more generally to regular CW complexes. Recall that a CW complex is regular if its attaching
maps are all embeddings; it can be shown that this implies that the closure of each cell is a
subcomplex. If K is a regular CW complex, one can define an associated simplicial complex K ′

whose vertices are the cells of K and whose n-simplices are the sets {e1, e2, · · · , en} of simplices
where ei is a face of ei+1 for each i. Moreover, |K ′| is homeomorphic to K. Therefore, the
composition of this homeomorphism with the map fK′ : |K ′| → X (K ′) is a weak homotopy
equivalence from K to a finite space.

For the same reasons, then, if K is a regular CW complex, we can apply the results of
Theorem 4.1 to the simplicial complex K ′ to show that K is homotopy equivalent to an inverse
limit of finite topological spaces.
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CHAPTER 5

Conclusion: Symmetric Products of Finite Topological Spaces

A possible extension of this work could come from studying the symmetric products of finite
topological spaces. In particular, if K is a simplicial complex, one can consider, on one hand,
the spaces SPn(X (K)); on the other hand, each SPn(K) is naturally a ∆-complex (see [6]), and
hence one can subdivide it to give it the structure of a simplicial complex and then consider
X (SPn(K)). It seems plausible that SPn(X (K)) and X (SPn(K)) are closely related, perhaps
weakly homotopy equivalent, so this topic may merit further investigation.

Moreover, the infinite symmetric product of a space is a monoid under the operation given
by concatenating tuples, and under good conditions this operation is continuous as a map
µ : SP (X)×SP (X)→ SP (X). If µ is indeed continuous, then the set of based homotopy classes
of maps into SP (X) from some other basepointed topological space Y , denoted 〈Y, SP (X)〉,
inherits the structure of a monoid, where we multiply maps pointwise. More generally, even if µ
is not necessarily continuous, the set 〈Y, SP (X)〉 still forms a monoid as long as Y is compact.
For if Y is compact and f, g : Y → SP (X) are basepoint-preserving maps, then f(Y ) and g(Y )
are compact subsets of SP (X) and hence they lie in finite symmetric products SPn(X) and
SPm(X), respectively. In particular, (f · g)(Y ) ⊂ SPn+m(X), so if U ⊂ SP (X) is any open set,
then

(f · g)−1(U) = (f · g)−1(U ∩ SPn+m(X)) = f−1(U ∩ SPn(X)) ∩ g−1(U ∩ SPm(X)),

which is the intersection of two open sets (and hence open) since both f and g are continuous.
So f · g is continuous, and we can conclude that 〈Y, SP (X)〉 is a monoid.

Given these monoids, one could take their group completions 〈Y, SP (X)〉∗. It might be
interesting to check whether a cohomology theory arises in this way. For example, one could
define

hn(Y ) = 〈Y, SP (X (Sn))〉∗.
It is not clear whether this satisfies the necessary axioms required to define a cohomology theory,
or indeed, even whether 〈Y, SP (X (Sn))〉 is a monoid at all (unless, as noted above, we restrict
ourselves to compact spaces Y ). However, it would be interesting to explore whether this is
the case, and if so, whether the resulting cohomology theory distinguishes between topological
spaces (perhaps finite spaces) that singular cohomology does not.
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