MATH W4051 PROBLEM SET 11 DUE NOVEMBER 26, 2008.

INSTRUCTOR: ROBERT LIPSHITZ

(1) We used the following group theory fact in class, to show there was a surjective homomorphism from the fundamental group of the trefoil complement to D_3 :

Let $G = \langle g_1, g_2, \dots, g_k \mid r_1, r_2, \dots, r_l \rangle$ be a group given in terms of generators and relations. Write $r_i = g_{i,1}^{n_{i,1}} g_{i,2}^{n_{i,2}} \dots g_{i,j_i}^{n_{i,j_i}}$.

Let *H* be any group, and $h_1, \ldots, h_k \in H$. Then there is a group homomorphism $f: G \to H$ such that $f(g_i) = h_i$ $(i = 1, \ldots, k)$ if and only if, for all

$$h_{i,1}^{n_{i,1}} h_{i,2}^{n_{i,2}} \dots h_{i,j_i}^{n_{i,j_i}} = 1_H$$

for i = 1, ..., l.

Prove this. (Hint: one direction is easy. For the other, you'll use the definition of G as a quotient group of a free group.)

(2) Let $\mathbb{R}P^2$ denote the space of lines through the origin in \mathbb{R}^3 . That is, $\mathbb{R}P^2 = (\mathbb{R}^3 \setminus 0)/(p \sim \lambda p)$ (where $\lambda \neq 0$). Compute $\pi_1(\mathbb{R}P^2)$.

(Hint: you can either do this directly using van Kampen's theorem or by putting a cell structure on $\mathbb{R}P^2$. To do the former, let U be a neighborhood of the vertical line $(\{(0,0,\lambda)\})$, and V the complement of a smaller neighborhood of this line.)

- (3) Let Homeo(X) denote the group of homeomorphisms $X \to X$ and Homeo(X, x_0) denote the subgroup of homeomorphisms $X \to X$ sending x_0 to x_0 .
 - (a) Prove that $\text{Homeo}(X, x_0)$ acts on $\pi_1(X, x_0)$. Prove that if homeomorphisms f and g are homotopic rel x_0 then f and g act in the same way. (This says that the action descends to an action of the group of path components of $\text{Homeo}(X, x_0)$, where we endow $\text{Homeo}(X, x_0)$ with the compact-open topology.)
 - (b) Let $H_1(X) = \pi_1(X, x_0)/[\pi_1, \pi_1]$ denote the abelianization of $\pi_1(X, x_0)$. Prove that Homeo(X) acts on $H_1(X)$, and that homotopic homeomorphisms act in the same way.
 - (c) Find a homeomorphism $T^2 \to T^2$ which is not homotopic to the identity map, and prove that it is not homotopic to the identity map.

(4) Optional: recall the definition of L(5,3) from problem set 3. Compute $\pi_1(L(5,3))$. *E-mail address*: r12327@columbia.edu