MATH V1201 PROBLEM SET 5 DUE OCTOBER 20, 2009.

INSTRUCTOR: ROBERT LIPSHITZ

(1) In the textbook:

(Appendix H) 8, 27, 32, 36, 38, 47

 $(\S17.1)$ 1, 2, 12, 17, 21, 23.

- (2) (a) Let y(t) denote your solution to 17.1.17. Define a parametric curve in \mathbb{R}^2 by $\vec{r}(t) = (y(t), y'(t))$. Plot the curve $\vec{r}(t)$.
 - (b) Repeat Part (2a) for your solution to 17.1.21.
 - (c) Repeat Part (2a) for your solution to 17.1.23.
 - (d) Say a few sentences about what these plots of (y(t), y'(t)) look like in the un-damped, under-damped, and over-damped cases.

(This is an example of plotting curves in *phase space*.)

(3) Use Newton's method to find approximate a solution to $z^4 + 3z^2 + 2z + 1 = 0$ to 5 decimal places, starting with initial guess 1 + i. (Note: these numbers are not cooked; use a calculator to do the arithmetic.) Feel free to check your answer however you like.

INSTRUCTOR: ROBERT LIPSHITZ

If you had trouble with	Do problems
H.8	H.1–H.14
H.27	H.25, H.26, H.28
H.32	H.29–H.31
H.36	H.33–H.35
H.38	H.37, H.39, H.40
H.47	Do the same for $\sin(2\theta)$ and $\sin(4\theta)$.
17.1.1, 2, 12	17.1.3, 4, 5, 13
17.1.17, 21, 23	17.1.18, 17.1.19, 22, 24

E-mail address: rl2327@columbia.edu