MATH V1201 PROBLEM SET 5 DUE OCTOBER 20, 2009.

INSTRUCTOR: ROBERT LIPSHITZ

(1) In the textbook:
(Appendix H) 8, 27, 32, 36, 38, 47
(§17.1) $1,2,12,17,21,23$.
(2) (a) Let $y(t)$ denote your solution to 17.1.17. Define a parametric curve in \mathbb{R}^{2} by $\vec{r}(t)=$ $\left(y(t), y^{\prime}(t)\right)$. Plot the curve $\vec{r}(t)$.
(b) Repeat Part (2a) for your solution to 17.1.21.
(c) Repeat Part (2a) for your solution to 17.1.23.
(d) Say a few sentences about what these plots of $\left(y(t), y^{\prime}(t)\right)$ look like in the un-damped, under-damped, and over-damped cases.
(This is an example of plotting curves in phase space.)
(3) Use Newton's method to find approximate a solution to $z^{4}+3 z^{2}+2 z+1=0$ to 5 decimal places, starting with initial guess $1+i$. (Note: these numbers are not cooked; use a calculator to do the arithmetic.) Feel free to check your answer however you like.

If you had trouble with	Do problems
H.8	H.1-H.14
H.27	H.25, H.26, H.28
H.32	H.29-H.31
H.36	H.33-H.35
H.38	H.37, H.39, H.40
H.47	Do the same for $\sin (2 \theta)$ and $\sin (4 \theta)$.
$17.1 .1,2,12$	$17.1 .3,4,5,13$
$17.1 .17,21,23$	$17.1 .18,17.1 .19,22,24$

