FURTHER SMALL CORRECTIONS AND EXPLANATIONS FOR "A CYLINDRICAL REFORMULATION OF HEEGAARD FLOER HOMOLOGY"

ROBERT LIPSHITZ

This document contains further mild corrections and explanations for [Lip06], beyond those corrected in [Lip14].

Page 26 of [Lip14]. In the proof of Proposition 4.2', the instances to $\pi_{\mathbb{D}} \circ u$ should be $\pi_{\Sigma} \circ u$. (Thanks to Morgan Weiler for pointing out this typo.)

Page 1001 of [Lip06] In Proposition 8.6, the proof that A_{ζ} induces an action of the exterior algebra is incorrect: the moduli spaces $\widehat{\mathcal{M}}_{K,2}^A$ have an unaccounted for end where $p_1 \to p_2$. To correct the proof, we first show that for any $\zeta, \eta \in H_1(Y)$, the map $A_{\zeta} \circ A_{\eta} + A_{\eta} \circ A_{\zeta} = 0$ on \widehat{HF} , HF^+ , HF^- , and HF^{∞} . To see this, choose disjoint knots $K_{\zeta}, K_{\eta} \subset \Sigma \times [0, 1]$ representing ζ and η , and consider the index 2 moduli space of holomorphic curves with one point mapped to ζ and a second point mapped to η . The ends of this moduli space show that $A_{\zeta} \circ A_{\eta} + A_{\eta} \circ A_{\zeta}$ is chain homotopic to the zero map. Next, to see that $A_{\zeta}^2 = 0$ on Floer homology it suffices to consider the case that ζ is represented by a chain K in Σ which is dual to some α_i , i.e., K intersects α_i in one point and is disjoint from α_j for $j \neq i$. Let K' be a small isotopic translate of K, and consider the moduli space of holomorphic curves

$$\{u\colon (S,p,q)\to \Sigma\times [0,1]\times \mathbb{R}\mid \pi_{\Sigma}(u(p))\in K,\ \pi_{\Sigma}(u(q))\in K',\ \pi_{\mathbb{R}}(u(p))-\pi_{\mathbb{R}}(u(q))>0\}$$

(and with u satisfying the conditions (M0)–(M6) from the paper). This moduli space has no end with $\pi_{\mathbb{R}}(u(p)) - \pi_{\mathbb{R}}(u(q)) \to 0$ because K and K' are disjoint and intersect the α -circles in a single point. Then, it is easy to see that the ends of the moduli space imply that A_{ζ}^2 is chain homotopic to 0.

(Thanks to Ian Zemke for pointing out this mistake.)

Page 1005 of [Lip06]. In the proof of Lemma 9.3, the fact that the ends of $\widehat{\mathcal{M}}_1(\vec{x}^1, \vec{y}^2, k)$ correspond to height 2 holomorphic buildings in which the \mathbb{R} -invariant level has ind = 1 and the non- \mathbb{R} -invariant level has ind = 0 is not sufficiently justified, because Proposition 4.2 was only proved with respect to \mathbb{R} -invariant almost complex structures. The easiest solution is to define Φ to only count embedded, rigid holomorphic curves in homology classes with ind = 0. (This is, in some sense, three conditions: the combinatorial index $\operatorname{ind}(A) = e(A) + n_{\vec{x}}(A) + n_{\vec{y}}(A) = 0$, the curve must be embedded, and the curve must lie in a 0-dimensional moduli space. Presumably the condition that $\operatorname{ind}(A) = 0$ implies the other two, but that has not been shown for non- \mathbb{R} -invariant almost complex structures.) Similarly, define $\overline{\widehat{\mathcal{M}}_1(\vec{x}^1, \vec{y}^2, k)}$ to consist of $\operatorname{ind}(A) = 1$, 1-dimensional moduli spaces of embedded curves with $n_{\mathfrak{z}} = k$. Since $\operatorname{ind}(A)$ agrees with the dimension of the moduli space of curves

Date: December 16, 2015.

ROBERT LIPSHITZ

for \mathbb{R} -invariant levels and is additive under gluing, if a sequence of curves in $\widehat{\mathcal{M}}_1(\vec{x}^1, \vec{y}^2, k)$ converges to a 2-story holomorphic building then the \mathbb{R} -invariant level must have $\operatorname{ind}(A) = 1$, so the non- \mathbb{R} -invariant level must have $\operatorname{ind}(A) = 0$. Note also that gluing preserves (non-)embeddedness. It follows that the ends of $\bigcup_k \widehat{\mathcal{M}}_1(\vec{x}^1, \vec{y}^2, k)$ correspond to the terms in $\partial \circ \Phi + \Phi \circ \partial$, as desired. (Thanks to Cagatay Kutluhan for pointing out this gap.)

References

- [Lip06] Robert Lipshitz, A cylindrical reformulation of Heegaard Floer homology, Geom. Topol. 10 (2006), 955–1097, arXiv:math.SG/0502404.
- [Lip14] _____, Correction to the article: A cylindrical reformulation of Heegaard Floer homology [mr2240908], Geom. Topol. 18 (2014), no. 1, 17–30.