The image of the cohomology of a compactification

Kevin Chang

November 19, 2021

See Section 9.2 of Grothendieck's paper. This starts on page 153 of the paper/page 66 of the PDF. Grothendieck does things in the étale topology, but we'll work over \mathbb{C} and use the analytic topology.

Proposition 1. Let U be a smooth variety, and let $f : X' \to X$ be a map of smooth compactifications of U that is an isomorphism above $U \subset X$. Let \mathcal{F} be a local system on X. Then

$$\operatorname{im}(H^k(X,\mathcal{F}) \to H^k(U,\mathcal{F}|_U)) = \operatorname{im}(H^k(X',f^*\mathcal{F}) \to H^k(U,\mathcal{F}|_U))$$

Proof. Let Y = X - U and Y' = X' - U. We have a map of exact sequences in cohomology:

$$\begin{array}{cccc} H^{k}(X,\mathcal{F}) & \longrightarrow & H^{k}(U,\mathcal{F}|_{U}) & \longrightarrow & H^{k+1}_{Y}(X,\mathcal{F}) \\ & & & \downarrow & & \downarrow \\ & & & \downarrow^{\cong} & & \downarrow \\ H^{k}(X',f^{*}\mathcal{F}) & \longrightarrow & H^{k}(U,\mathcal{F}|_{U}) & \longrightarrow & H^{k+1}_{Y'}(X',f^{*}\mathcal{F}) \end{array}$$

It suffices to prove that $H_Y^{k+1}(X, \mathcal{F}) \to H_{Y'}^{k+1}(X', f^*\mathcal{F})$ is an injection. Consider the composite

$$r: \mathcal{F} \to Rf_* f^* \mathcal{F} \xrightarrow{\sim} Rf_* f^! \mathcal{F} \to \mathcal{F}$$

in $D^+(X,\mathbb{Z})$. The first and last maps are induced by the adjunctions $(f_* = f_! \text{ because } f \text{ is proper})$, and the middle map is induced by the isomorphism $f^*\mathcal{F} \xrightarrow{\sim} f^!\mathcal{F}$ (here, we use that \mathcal{F} is a local system, that $f^! = \mathbb{D}f^*\mathbb{D}$, and that X and X' are the same dimension). Since $f|_U = \text{id}|_U, r|_U = \text{id}_{\mathcal{F}|_U}$. Since \mathcal{F} is a local system, r is determined by its value on any stalk. In particular, since r is the identity on any stalk in $U, r = \text{id}_{\mathcal{F}}$.

We apply $R^{k+1}\Gamma_Y$ to the maps $\mathcal{F} \to Rf_*f^*\mathcal{F} \to \mathcal{F}$ to get

$$H^{k+1}_Y(X,\mathcal{F}) \to H^{k+1}_{Y'}(X', f^*\mathcal{F}) \to H^{k+1}_Y(X,\mathcal{F}),$$

where the composite is the identity. Here, we use that $\Gamma_Y f_* = \Gamma_{f^{-1}(Y)} = \Gamma_{Y'}$. We conclude that $H_Y^{k+1}(X, \mathcal{F}) \to H_{Y'}^{k+1}(X', f^*\mathcal{F})$ is an injection, which implies the proposition. \Box

Corollary 1. Let X be a smooth compactification of a smooth variety U. The image of $H^k(X;\mathbb{Z}) \to H^k(U;\mathbb{Z})$ is independent of choice of X.

Proof. Given any two compactifications X_1 and X_2 , we can get a smooth compactification X' dominating both X_1 and X_2 by taking a resolution of singularities of the closure of the image of $U \stackrel{\Delta}{\hookrightarrow} X_1 \times X_2$. Hence, we just need to apply the proposition to $X' \to X_1$ and $X' \to X_2$ where our local system is the constant sheaf \mathbb{Z} .