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This talk is based on Deligne’s Théorie de Hodge, II (up to 3.I) and Peters-Steenbrink’s Mixed
Hodge Structures (Chapter 4).

1 Introduction
Hodge theory is a powerful tool for studying the topology of complex varieties. For smooth proper
X, we have a decomposition of each cohomology group, a.k.a. a pure Hodge structure:

HnpX;Cq “
à

p`q“n

Hp,qpXq.

In Hodge II, Deligne proves that all smooth varieties X carry mixed Hodge structures. The main
trick is to pick a simple normal crossings compactification of X and to study its boundary; the
Hodge structures on the compactification and the boundary components will give us a mixed Hodge
structure on X. I will explain the first part of the story today.

2 Review of Hodge theory
Definition 1. There are a couple ways to define Hodge structures:

(1) For A P tZ,Q,Ru, an A-Hodge structure is a finitely generated A-module H with a decompo-
sition of HC :“ H bA C of the form

HC “
à

p,qPZ
Hp,q.

In this decomposition, we must have Hq,p “ Hp,q. We say that H is of weight n when
Hp,q “ 0 for all p ` q ‰ n.

(2) An A-Hodge structure of weight n is a finitely generated A-module H with a finite decreasing
filtration F on HC. This filtration F is required to be n-opposite, meaning that whenever
p ` q “ n ` 1, F p X F

q
“ 0 and F p ‘ F

q
“ HC. In the language of definition (1), F ppHCq “

À

iěp H
i,n´i.

(3) An A-Hodge structure is a finitely generated A-module with an action of the Deligne torus
S :“ ResCR Gm,C on HR. H is of weight n when the representation is of weight n (I am too lazy
to write down what this means).
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When we say “Hodge structure,” we really mean “Z-Hodge structure.” When we say “pure A-Hodge
structure,” we mean “an A-Hodge structure of some weight n.”

A morphism of A-Hodge structures is a map of the underlying A-modules respecting the filtration
after tensoring with C (note that this is enough to guarantee that the map respects the bi-grading).

Tensor products and duals of Hodge structures (maybe assume torsion-free) are naturally Hodge
structures. The degrees behave as you’d expect.

Example 1. (1) Let X be a smooth projective variety. The main theorem of Hodge theory is
that HnpX;Zq is naturally a Hodge structure of weight n:

HnpX;Cq “
à

p`q“n

Hp,qpXq.

This is proven by placing a Kähler metric on X using a projective embedding. When we do
this, we get an isomorphism between HnpX;Cq and the space of harmonic n-forms on X,
i.e. forms killed by the Hodge Laplacian. Moreover, because the metric is Kähler, the Hodge
Laplacian respects bi-degrees on differential forms, so we get the Hodge decomposition above.

(2) In Théorème de Lefschetz et critères de dégénérescence de suites spectrales, Deligne uses Chow’s
lemma to prove that HnpX;Zq is naturally a Hodge structure of weight n when X is smooth
and proper.

(3) The Tate-Hodge structure Zp1q is the Hodge structure of weight ´2 with underlying Z-
module 2πiZ and Zp1q bZ C “ H´1,´1. Tensoring Hodge structures with powers of Zp1q

(denoted Zpnq) allows us to raise/lower their weights. We write Hpnq :“ H b Zpnq. For
instance, if Z ãÝÑ X is a codimension r inclusion of smooth projective varieties, the Gysin map
is a map of Hodge structures Hn´2rpZ;Zqp´rq Ñ HnpX;Zq.

Speaking of the Gysin map, let’s look at the Gysin sequence (let U :“ X ´ Z):

¨ ¨ ¨ Ñ Hn´2rpZ;Zqp´rq Ñ HnpX;Zq Ñ HnpU ;Zq Ñ Hn´2r`1pZ;Zqp´rq Ñ ¨ ¨ ¨

The fact that HnpU ;Zq is sandwiched between two Hodge structures of weights n and n ` 1
strongly suggests that there should be some kind of “mixed” Hodge structure on HnpU ;Zq. The
“weight n part” of HnpU ;Cq should be the image of HnpX;Cq, and the quotient, coming from
Hn´2r`1pZ;Zqp´rq, should have “weight n`1.” If all smooth varieties arose as complements of
smooth closed subvarieties, we would have our mixed Hodge structures, but sadly, the situation
isn’t that simple.

This last example motivates the following definition.

Definition 2. A mixed Hodge structure is a finitely generated Z-module H with an increasing
filtration W (the weight filtration) on HQ and a decreasing filtration F (the Hodge filtration)
on HC such that for all n, pGrWn HQ, F q is a pure Hodge structure of weight n.

Example 2. A pure Hodge structure H of weight n is naturally a mixed Hodge structure: set
Wn´1HQ “ 0 and WnHQ “ HQ.

Definition 3. A morphism of mixed Hodge structures pH,W,F q Ñ pH 1,W 1, F 1q is a map of
Z-modules H Ñ H 1 compatible with both filtrations.
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An important feature of mixed Hodge structures is that morphisms of mixed Hodge structures
are automatically strictly compatible with both filtrations: if b P W 1

npH 1q is in the image of some
morphism f : pH,W,F q Ñ pH 1,W 1, F 1q, then b “ fpaq for some a P WnpHq (the analogous thing
holds for F as well).

Here is the main theorem of Hodge II.

Theorem 1. If U is a smooth variety, then HnpU ;Zq carries a natural mixed Hodge structure. This
mixed Hodge structure is functorial.

3 Hypercohomology spectral sequences
Let’s think about the Hodge decomposition HnpX;Cq “

À

p`q“n H
p,qpXq in terms of homological

algebra. The Hodge decomposition implies the degeneration of the Hodge-de Rham spectral
sequence at E1:

Epq
1 “ HqpX,Ωp

Xq ùñ Hp`qpX;Cq,

identifying Hp,qpXq – HqpX,Ωp
Xq. The Hodge filtration F is then the filtration given by this spectral

sequence, i.e. F ppH˚pX;Cqq “ impH˚pX,Ωěp
X q Ñ H˚pX,Ω‚

Xqq, where we identify H˚pX,Ω‚
Xq –

H˚pX;Cq (C „
ÝÑ Ω‚

X by the holomorphic Poincaré lemma).
The Hodge-de Rham spectral sequence is an example of a hypercohomology spectral se-

quence: for any bounded filtered complex of abelian sheaves pK,F q on a space X such that F is
finite on each component of K and decreasing, we get a spectral sequence

Epq
1 “ Hp`qpX,GrpF Kq ùñ Hp`qpX,Kq.

To get the Hodge-de Rham spectral sequence, we take K to be the de Rham complex Ω‚
X and F to

be the bête filtration (“stupid” filtration), which is denoted σ:

σppKqn “

#

Kn if n ě p

0 if n ă p.

Then
Epq

1 “ Hp`qpX,GrpF Kq “ Hp`qpX,Kpr´psq “ HqpX,Kpq “ HqpX,Ωp
Xq,

and Hp`qpX;Cq – Hp`qpX; Ω‚
Xq because C „

ÝÑ Ω‚
X .

Hypercohomology spectral sequences are everywhere in this subject, so we say a bit about them
here. As stated above, the input for a hypercohomology spectral sequence is a filtered complex
of abelian sheaves pK,F q. A map of filtered complexes pK,F q Ñ pK 1, F 1q induces a map on the
corresponding hypercohomology spectral sequences. If pK,F q

„
ÝÑ pK 1, F 1q is a filtered quasi-

isomorphism (i.e. the induced map on every Gr is a quasi-isomorphism), then the induced map on
spectral sequences is an isomorphism from E1 onward. F induces a filtration on H˚pX,Kq given by
F ppH˚pX,Kqq “ impH˚pX,F ppKqq Ñ H˚pX,Kqq; this is reflected by the hypercohomology spectral
sequence.

In addition to the bête filtration, any complex K carries a canonical filtration τ , which is an
increasing filtration:

τppKqn “

$

’

&

’

%

0 if n ą p

ker dp if n “ p

Kn if n ă p.
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The associated graded pieces are Grτp K » HppKqr´ps. This implies that any quasi-isomorphism
K

„
ÝÑ K 1 induces a filtered quasi-isomorphism pK, τKq

„
ÝÑ pK 1, τK1 q, so it makes sense to talk about

the canonical filtration on a bounded below derived category object.

4 Hodge theory on arbitrary smooth varieties
Let U be an arbitrary (connected) smooth variety. We bust out some heavy geometric machinery
to get a nice compactification of U . First, Nagata’s compactification theorem implies that we can
embed U as an open subvariety of some proper X 1. Then by resolution of singularities, we can find
some resolution f : X Ñ X 1 for which f´1pUq – U and D :“ X ´U is a simple normal crossings
divisor, i.e. D analytic locally looks like an intersection of hyperplanes z1 ¨ ¨ ¨ zr “ 0 in X. We order
the components of D: D1, . . . , Ds. For each subset I Ă t1, . . . , su, let DI denote the intersection
Ş

iPI Di. Here, DH “ X. Note that each DI is smooth and proper, so each of them has a Hodge
decomposition. We expect the cohomology of U to be related to the cohomology of the DI . For
each 0 ď i ď n, let Dpiq denote the disjoint union of the i-wise intersections:

Dpiq :“
ğ

|I|“i

DI .

By the holomorphic Poincaré lemma, there is a quasi-isomorphism CU
„

ÝÑ Ω‚
U . We can push

this forward to X along the inclusion j : U ãÝÑ X: Rj˚CU
„

ÝÑ Rj˚Ω
‚
U . Since the Ωk

U are coherent
sheaves on U and j locally looks like a map of Stein manifolds (this is the complex analytic version
of being an affine morphism; more precisely, X locally looks like a polydisc (product of open discs)),
all the higher pushforwards Rij˚Ω

k
U vanish. Thus, Rj˚Ω

‚
U » j˚Ω

‚
U . Moreover, these complexes

carry canonical filtrations: pRj˚CU , τq » pj˚Ω
‚
U , τq.

The nice thing about the boundary being a simple normal crossings divisor is that we can consider
the logarithmic de Rham complex Ω‚

XplogDq Ă j˚Ω
‚
U . The sections of the logarithmic de Rham

complex are called logarithmic forms, and they are defined as follows. Near each point of X, we
can pick coordinates z1, . . . , zn on X such that D is locally cut out by z1 ¨ ¨ ¨ zt “ 0 for some t. The
sheaf of logarithmic 1-forms Ω1

XplogDq is the OX -module locally spanned by dzi
zi

(1 ď i ď t) and
dzi (t ` 1 ď i ď n). We then define Ωk

XplogDq to be the image of
Źk

Ω1
XplogDq in j˚Ω

k
X . We see

that the Ωk
XplogDq are locally free and that they form a complex.

Proposition 1. The inclusion Ω‚
XplogDq ãÝÑ j˚Ω

‚
U is a quasi-isomorphism.

Proof. This is a local statement, so since every point of X has a fundamental system of neighborhoods
that look like polydiscs, we just need to check this for j : ∆n

k ãÝÑ ∆n, where ∆n is a polydisc
with coordinates z1, . . . , zn and ∆n

k is the complement of z1 ¨ ¨ ¨ zk “ 0. Let Dn
k denote the divisor

z1 ¨ ¨ ¨ zk “ 0, i.e. Dn
k “ ∆n ´ ∆n

k . Let K‚
n,k :“ Γp∆n,Ω‚

∆n
plogDk

nqq. It suffices to show that the
natural map K‚

n,k ãÝÑ Γp∆n
k ,Ω∆k

n
q is a quasi-isomorphism.

Since ∆n
k is Stein, H˚pΓp∆n

k ,Ω∆k
n

qq – H˚p∆n
k ;Cq (by the natural map). We find representatives

for the cohomology classes of ∆n
k in K‚

n,k as follows. Let R‚
n,k be the subcomplex of K‚

n,k with
R1

n,k “ Cdz1
z1

‘ ¨ ¨ ¨ ‘ Cdzk
zk

and R˚
n,k “

Ź˚
R1

n,k. Then R‚
n,k has trivial differential, and moreover,

R‚
n,k Ñ Γp∆n

k ,Ω
‚
∆k

n
q is a quasi-isomorphism (∆n

k is a product of punctured discs and discs, so we
know its cohomology).

It remains to show that R‚
n,k Ñ K‚

n,k is a quasi-isomorphism. We use induction. For k “ 0, we
are done. To induct, we use the residue map res : K‚

n,k Ñ K‚
n´1,k´1r´1s: for ω “ η ^

dzk
zk

` η1
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with η, η1 not containing dzk, we define respωq “ η|∆n´1
k´1

, where ∆n´1
k´1 is defined by zk “ 0. We then

induct by spamming the five lemma on this commutative diagram:

0 R‚
n,k´1 R‚

n,k R‚
n´1,k´1r´1s 0

0 K‚
n,k´1 K‚

n,k K‚
n´1,k´1r´1s 0

res

res

To summarize, we have a zig-zag of quasi-isomorphisms

Rj˚C
„

ÝÑ j˚ΩU
„

ÐÝ Ω‚
XplogDq,

so we have a natural isomorphism H˚pU ;Cq – H˚pX,Ω‚
XplogDqq, along with a natural isomorphism

of hypercohomology spectral sequences with respect to the canonical filtration.
What was the point of considering Ω‚

XplogDq? There is a natural weight filtration W on
Ω‚

XplogDq, which is the increasing filtration where WnpΩ‚
XplogDqq is locally spanned by forms of

the form α ^
dzi1
zi1

^ ¨ ¨ ¨ ^
dzim
zim

, where α is holomorphic on X and m ď n. I will prove next time
that the identity pΩ‚

XplogDq, τq Ñ pΩ‚
XplogDq,W q is a filtered quasi-isomorphism. Thus, we have

a zig-zag of filtered quasi-isomorphisms

pRj˚C, τq
„

ÝÑ pj˚ΩU , τq
„

ÐÝ pΩ‚
XplogDq, τq

„
ÝÑ pΩ‚

XplogDq,W q.

We get an identification of hypercohomology spectral sequences. Next time, we will see what that
gets us.
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