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This talk is based on Deligne’s Théorie de Hodge, II (Sections 3 and 4) and Peters-Steenbrink’s
Mized Hodge Structures (Chapter 4).

1 Recap

Recall the setup. We have a smooth variety U with a smooth compactification X such that D =
X — U is a simple normal crossings divisor. The inclusion U < X is denoted j. The logarithmic de
Rham complex Q% (log D) is generated by differential forms locally of the form dzil (near z; = 0) and
dz; (otherwise). We denote the indivudal m-fold intersections of the components Dy, ..., Dg by D;
(I < {1,...,s}) and denote the closed embeddings D; — X by a;y. We denote the disjoint union of
the m-fold intersections D; (|I| = m) by D™ and we denote the natural map D™ — X by a,,.

Our goal is the following theorem.

Theorem 1. H*(U;Z) carries a natural mixed Hodge structure. These mixed Hodge structures
are functorial with respect to maps of smooth varieties U — V.

2 The logarithmic de Rham complex

We can use Q% (log D) to compute the cohomology of U by the following proposition, which can be
proven using the residue map (we will introduce this in a bit).

Lemma 1. The inclusion Q% (log D) — 54}, is a quasi-isomorphism.
To summarize, we have a zig-zag of quasi-isomorphisms
RjC = j:Qu < Q% (log D),

so we have a natural isomorphism H*(U;C) = H*(X, Q% (log D)), along with a natural isomorphism
of hypercohomology spectral sequences with respect to the canonical filtration.
Why Q% (log D)? There is a natural weight filtration W on Q% (log D), which is the increasing

filtration where W, (2% (log D)) is locally spanned by forms of the form a A RN izm , where

Zq

a is holomorphic on X and m’ < m. The key feature of the weight filtration is that it caf;cures the
geometry of the D; via the residue map. For each I < {1,..., s}, define a map

res; : W, Q% (log D) — a7 QY [—m]

dz1 dzm ,
AN — AN —+d —alp,,
Z1 Zm



where 21, ..., 2z, are local coordinates on X such that Dy is cut out by z; = -+ = z,,, = 0 (these must
be ordered compatibly with I). Note that res;(W,,—12% (log D)) = 0, so res; descends to a map
resy : Gr,v,‘f Q% (log D) — a4}, We can patch together all the res; to get res,, = @|1|=m resy :

Gr)) Q% (log D) — asQ2% .0y -

Lemma 2. res,, defines an isomorphism Gr,VX Q% (log D) = A Q% my -

Corollary 1. (a) The cohomology sheaves of Gr!Y Q% (log D) are all 0 except the mth cohomol-
ogy, which is @, C.

(b) The identity map is a filtered quasi-isomorphism (2% (log D), ) = (Q% (log D), W).
To sum up, we have a zig-zag of filtered quasi-isomorphisms
(RjxC,7) = (j«Qu,7) — (Qk (log D), 7) = (2% (log D), W).

From this, we get an identification of the hypercohomology spectral sequences of (Rj.C,7) and
(% (1og D), W).

The last piece of geometry we need is the following. This can be proven by looking at explicit
generators of cohomology near points of X.

Lemma 3. Consider the identification of cohomology sheaves R™j«Cy = amxCpqy,). The image
of R™j.Zy — R™j,Cy is identified with am*ZD<m)(—m) S amxCpimy-

3 The weight spectral sequence

The rest of the proof is homological algebra.
The main object here is the weight spectral sequence, which is the hypercohomology spectral
sequence for (2% (log D), W):

BP9 = P, GrZV Q% (log D)) = H~2PT4(DW); C) — HP*(U;C).

Since (Rj«C,7) ~ (2% (log D), W) and (Rj«C,T) ~ (Rj+Q, T) ®g C, the weight spectral sequence is
defined over Q. By Lemma 3, the weight spectral sequence over Q is given by

E;P9 = H=+4(DWP), Q)(—p) — HPH(U;Q).

Since it is defined over Q, the weight spectral sequence (over C) has an action by complex
conjugation. Recall that Q% (log D) has a second filtration F', the béte filtration. F' induces three
filtrations on the terms of the spectral sequence, called the first direct filtration F,, the second
direct filtration Fy«, and the inductive filtration F,.. These filtrations do not agree in general.
Rather than define them and waste your time, I will state the key properties of the filtrations.

Lemma 4. Suppose (K, W, F) is a doubly filtered complex, where F' has finitely many associated
gradeds in each component (i.e. it is biregular). Then there are filtrations Fy, F., Fyx on the terms
of the spectral sequence of the filtered complex (K, W).

(a) Fd C Fr (e Fd*.

(b) The differentials d, are compatible with F; and Fysx.



(¢) Suppose the d,. are strictly compatible with F,. for r € {0,...,r9—2}. Then for all 0 < r < 7o,
Fy = F. = Fgx. In particular, Fy; = F,. = Fyx automatically on Fy and Fj.

(d) Suppose the d, are strictly compatible with F,. for all . Then F; = F,. = Fy« on Ey, and this
filtration is the filtration induced by F on the associated gradeds Gr)¥ H*(K).

Now I'll state the actual result.
Theorem 2. (a) Fy = F, = Fy« for all terms of the weight spectral sequence.

(b) The filtration on H*(U; C) obtained from the weight spectral sequence is induced by a filtration
W on H*(U;Q). Neither W nor F (the Hodge filtration, which is obtained from the béte
filtration) depends on the choice of compactification X.

(c) The filtrations W[k] (W[k]m = Wy,—) and F make H*(U;Z) into a mixed Hodge structure.

Proof. We have already proven the first claim of (b), since the weight spectral sequence is defined
over Q.
The proof proceeds in a series of lemmas.

Lemma 5. The hypercohomology spectral sequence of (Gr" 0% (log D), F') degenerates at Ey. The
filtration on E;P? =~ H~2P+4(D®);C) induced by this spectral sequence (i.e. induced by F) is
g-opposite with respect to complex conjugation (note that the complex conjugation comes from
H=2»1(DP); Q)(—p), not H~2r+4(D®);Q)).
Proof. Recall that Cr!’ Q% (log D) = x5 my [—m], so the hypercohomology spectral sequence
here is just the Hodge-de Rham spectral sequence, which degenerates at F;. The second claim
follows because the Hodge filtration on H—2P+4(D®);C) = H=?*4(D®); Q)(—p)®qC is g-opposite.
O

From this lemma, we see that the terms FE;”? over Q are actually H—2P*4(D®);Q)(—p) as
Q-Hodge structures, with the filtration induced by F.

Lemma 6. d; (on the weight spectral sequence) is strictly compatible with the filtration induced
by F (we will call this filtration F').

Proof. dy : H=2r+4(D®);C) — H~2r+3+2(D(P=1). ) is automatically compatible with F, if we view
F as the first direct filtration. Thus, dy : H=?P*4(D®): Q)(—p) — H-2»*+a+2(DP=1: Q)(—p + 1) is
a morphism of Q-Hodge structures, which must automatically be strict.

O

Lemma 7. The inductive filtration on E, " is g-opposite.

Proof. This follows from the strict compatibility of d; with F'. More precisely, the inductive filtration
is the filtration induced on E, F;? by E; P9, where we treat E,iq as the cohomology of E,. The
lemma then follows because the d; differentials are morphisms of Q-Hodge structures.

O

Lemma 8. For r > 0, d, is strictly compatible with the inductive filtration. For r > 2, d,. = 0.



Proof. For r =0 (I haven’t exactly explained what the Ej page is, but trust me), the claim follows
from Lemma 5. For r = 1, we have already proven the claim in Lemma 6. Thus, it suffices to show
that d, = 0 for all r > 2.

Induct on r, starting from r = 2. By induction, Fy = F, = Fyx on E, P (use Lemma 4(c)), so d
is compatible with F,.. Call this common filtration F'. F' is the same filtrations as on E; "7 = E P,
Thus, Lemma 7 implies that F' is g-opposite with respect to complex conjugation. Now

4, () = dr< > FUEP) mFb(Erp"‘)>
a+b=q
- Z Fa(Eprrr,qfrJrl)mfb(Eprrr,qfrJrl)
a+b=q

=0,

where in the last step, we use that F is (¢ — r + 1)-opposite on EPT™4="+! and ¢ —r + 1 < ¢. This
proves that d, = 0.
O

We are basically done. Lemma 4(d) implies that the filtration F on E; "% = E P agrees with
the filtration induced by F on HPT¢(U;C) (it also implies (a)). Hence, the associated graded
Gry'brtad g=rta(U;Q) = Gl H7+9(U;Q) = Gr,? HP+9(U;Q) is E, ™%, which is a Q-Hodge
structure of weight ¢ (more precisely, recall that F,?? is a subquotient of H_2p+q(D(p); Q)(—=p)).
We have thus constructed a mixed Hodge structure on H*(U; Q).

What remains is to prove the independence of choice of compactification in (b) and the functo-
riality in (c). We prove the functoriality first. Suppose f: U — V is a map of smooth varieties. We
can find some good compactifications X and Y (of U and V, respectively) with a compatible map
f: X — Y (first get a rational map X’ --» Y and then take a resolution of the closure of the graph
of this rational map). Then we get a map ?*93/ (log Dy) — Q% (log Dx) compatible with the weight
and béte filtrations, so we get a map on hypercohomology H* (Y, 2}, (log Dy)) — H*(X, Q% (log Dx)
compatible with the filtrations. This map is a map of mixed Hodge structures, so we have our func-
toriality, and we have proven (c).

Finally, we prove independence of choice of compactification, using the functoriality. Given two
compactifications X7, Xs of U, we can pick some compactification X with maps X — X; and

X — X> (take a resolution of the closure of U A X x X5). Then the maps H*(X,Q% (log Dx)) —
H*(X,»,Q;Q (log Dx,)) are bijective maps compatible with the filtrations. By strictness of maps of
mixed Hodge structures, bijective maps compatible with the filtrations must be isomorphisms of
mixed Hodge structures, so we have proven (b).

O

Corollary 2. (a) The hypercohomology spectral sequence of (Q% (log D), W) degenerates at Es.
The differential d; : H=2**4(D®); Q)(—p) — H-2»*9+2(D(P=1); Q)(—p + 1) is identified with
the alternating sum of the Gysin maps with respect to D; — Dy — {i}.

(b) The hypercohomology spectral sequence of (Q% (log D), F') degenerates at Ej.

Corollary 3. If H*(U;C) has a nonzero weight space H?'? in some associated graded, then p, q < k,
and p+q = k.



Corollary 4. If X is any smooth compactification of U, then the image of H*(X;Q) — H*(U;Q)
is the bottom weight part Wy (H*(U;Q)). If we have maps Y — U < X with Y smooth and proper,
then the image of H*(X) — H*(Y) equals the image of H*(U) — H*(Y).

Theorem 3 (Global invariant cycles theorem). If U — S is a smooth proper map with S smooth
and separated and U < X is a smooth compactification, then the image of H*(X;Q) — H*(X,; Q)
(X, is a smooth fiber) is the monodromy invariants H*(X,; Q)™ (5:5),

Sketch. The surjectivity of H*(U; Q) — H*(X,; Q)™ (%) U — § is projective was proven by Deligne
in an earlier paper (this is a corollary of the degeneration of the Leray spectral sequence for smooth
proper maps). We then apply the previous corollary to prove the projective case. To prove the

general proper case, we can use Chow’s lemma.
O
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