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This talk is based on Deligne’s Théorie de Hodge, III (Section 8).

1 Mixed Hodge complexes from simplicial resolutions
Recall the following definition from last time.

Definition 1. A mixed Hodge complex consists of the following data:

(1) A complex K P D`pZq such that each HkpKq is finitely generated.

(2) A filtered complex pKQ,W q P D`F pQq (W is increasing) and an isomorphism α : KbZQ » KQ
in the derived category.

(3) A bi-filtered complex pKC,W, F q P D`F2pCq and an isomorphism β : pKQ,W qbQC » pKC,W q

in the filtered derived category.

This data must satisfy the following condition: for each n, pGrWn KQ, pGrWn KC, F q, βq is a Q-Hodge
complex of weight n.

Recall the geometric setup. We have X, an arbitrary variety, equipped with a proper hypercover-
ing Y‚ Ñ X (a proper hypercovering is a simplicial variety such that each Yn`1 Ñ pcoskn skn Y‚qn`1

is proper and surjective). We can pick the Y‚ such that there is a simplicial compactification
pY‚ Ñ Xq ãÝÑ pY ‚ Ñ Xq such that each Y n is smooth and each Dn :“ Y n ´ Yn is a simple normal
crossings divisor.

The main theorem of Hodge II is that the induced filtrations (with the weight filtration shifted)
make the cohomology groups of a mixed Hodge complex into mixed Hodge structures. Thus, we
want to get a mixed Hodge complex from our proper hypercovering.

First, we need to introduce some more definitions that are suited to the simplicial setting. A
mixed Hodge complex of sheaves on a simplicial space Y‚ is defined to be a tuple of data
pK, pKQ,W q, α, pKC,W, F q, βq on X‚ as in the definition of a mixed Hodge complex of sheaves on a
space, where we require the restriction to each Xn to be a mixed Hodge complex of sheaves on the
space. The key example in our geometric setup is pRj˚ZY‚

, pRj˚QY‚
, τďq, α, pΩ‚

Y
‚ plogD‚q,W, F q, βq

on Y ‚, where j is the inclusion Y‚ ãÝÑ Y ‚ and W,F, α, β are the usual filtrations and comparison
maps on each Y n.

From a mixed Hodge complex of sheaves on an augmented simplicial space Y‚ Ñ X, we can get
a cosimplicial mixed Hodge complex taking the right derived functor of global sections on each
piece, i.e.

pRΓ‚Rj˚ZY‚
, pRΓ‚Rj˚QY‚

, τďq, RΓ‚pαq, pRΓ‚pΩ‚

Y
‚ plogD‚qq,W, F q, RΓ‚pβqq.
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Let’s recall how this cosimplicial complex relates to the cohomology of X. For any sheaf F on X,
H˚pX,Fq – H˚pY‚,F‚q (F‚ is the pullback of F to Y‚). Let’s suppose we have a bounded-below
complex of abelian sheaves F‚ on Y‚. The global sections of F‚ are kerpΓpX0,F0q Ñ ΓpX1,F1qq.
Thus, to get the derived global sections, we replace F‚ by an injective resolution K‚‚ (all the
Kp‚ are injective; the first coordinate tracks the degree in the resolution; the second coordinate
tracks the simplicial degree) and then compute the cohomology of the complex whose qth term is
kerpΓpX0,Kp0q Ñ ΓpX1,Kp1qq. We can also consider the cosimplicial complex Kpq :“ ΓpXq,Kpqq,
which becomes a double complex when we use the alternating sums of the faces as the differentials
in the q-direction. We can get the total complex sK‚:

sKn “
à

p`q

ΓpXq,Kpqq,

with differential
dpxpqq “ dKpxpqq ` p´1qp

ÿ

i

p´1qiδix
pq.

It follows from the usual homological algebra that ΓpX‚,K‚‚q » spK‚‚q “ sΓ‚pX‚,K‚‚. Thus,
RΓpX‚,F‚q » sRΓ‚pX‚,F‚q.

There is a filtration L on sK‚ given by LrpsKq‚ “
À

qěr K
pq. The rth associated graded of

L is just the complex 0 Ñ K0r Ñ K1r Ñ ¨ ¨ ¨ of global sections on Xr, which has cohomology
H˚pXr,Frq. Thus, we have a spectral sequence

Est
1 “ HtpXs,Fsq ùñ Hs`tpX‚,F‚q.

Everything I just said about sheaves F‚ applies to bounded-below complexes of sheaves, such as
Rj˚Z in the geometric situation at hand.

Let’s look at the cosimplicial mixed Hodge complex RΓ‚Rj˚ZY‚
. According to what I just said,

the cohomology of sRΓ‚Rj˚ZY‚
computes the cohomology of X. Thus, to construct a mixed Hodge

structure on the cohomology of X, it suffices to place the structure of a mixed Hodge complex on
sRΓ‚Rj˚ZY‚

. This is the main theorem of Hodge III.

Theorem 1. Let K‚‚ be a cosimplicial mixed Hodge complex (the other data is omitted because
I’m lazy). There exists a natural filtration δpW,Lq such that psK‚, δpW,Lq, F q is a mixed Hodge
complex.

Proof. Define
δpW,LqnpsK‚

Qq :“
à

p,q

Wn`ppKpq
Q q.

Then
GrδpW,Lq

n psK‚
Qq »

à

p

GrWn`p K
‚p
Q r´ps.

Because each K‚p is a mixed Hodge complex, each GrWn`p K
‚p
Q r´ps is a Q-Hodge complex of weight

n. Thus, GrδpW,Lq
n psK‚

Qq is a Q-Hodge complex of weight n, and psK‚, δpW,Lq, F q is a mixed Hodge
complex.

Applying this to our cosimplicial mixed Hodge complex RΓ‚Rj˚ZY‚
gets us our mixed Hodge

structure on H˚pY‚,Z‚q – H˚pX;Zq. This mixed Hodge structure is functorial because we can pick
simplicial resolutions compatible with maps (this is pretty hard apparently, and Deligne blackboxes
it), and we can prove uniqueness in the same way as in Hodge II.
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We can describe the E1 page of a spectral sequence converging to the cohomology H˚pX;Qq,
using the theory of mixed Hodge complexes. If you do the bookkeeping, letting D

prq
n denote the

disjoint union of the r-wise intersections of Dn, we have

E´a,b
1 “

à

p`2r“b
q´r“´a

HppDprq
q ;Qqp´rq ùñ H´a`bpX;Qq.

Note that it is possible for a to be negative. By the properties of mixed Hodge complexes established
in Hodge II, this spectral sequence degenerates at the E2 page. Moreover, it is possible to characterize
the d1 differentials as Gysin maps, as they are in Hodge II.

E´a,b
1 is a Q-Hodge structure of weight b. However, unlike in Hodge II, we have different restric-

tions on which terms can be nonzero based on the properties of X.

Proposition 1. All the Hodge numbers hst that appear in HnpX;Qq satisfy 0 ď s, t ď n.

Proof. All the terms HppD
prq
q ;Qqp´rq have nonnegative hst only (recall that twisting by ´r raises

both s and t by r ě 0), so s, t ě 0.
If HppD

prq
q ;Qqp´rq contributes to HnpX;Qq, then p ` q ` r “ n, so p ` r ď n. For any hs1t1

appearing in HppD
prq
q ;Qq, s1 ` t1 “ p, so s1, t1 ď p. Thus, s, t ď p ` r ď n.

Proposition 2. If X is proper, all the weights that appear in HnpX;Qq are between 0 and n,
inclusive. Moreover, Wn´1pHnpX;Qqq “ kerpHnpX;Qq Ñ HnpY0;Qqq.

Proof. There are no Dq, so r “ 0 for all terms appearing in the spectral sequence. The terms that
contribute to HnpX;Qq are HppYq;Qq with p ` q “ n. The weights of HppYq;Qq are all p ď n, so
HnpX;Qq has weights ď n. The second claim follows from the spectral sequence.

2 The Hodge characteristic
Given a variety X and a decomposition X “ U \ Z, where U is open and Z is closed, it’s true that
χcpXq “ χcpUq ` χcpZq, where χc is the Euler characteristic with compact support. This follows
from the long exact sequence in relative cohomology. Combined with the Künneth formula, this
means that χc defines a ring homomorphism K0pVarq Ñ Z, where the Grothendieck ring of varieties
K0pVarq is generated by complex varieties with additive relations rXs “ rU s ` rZs (the scissor
relations) and multiplicative relations rX ˆ Y s “ rXs ¨ rY s.

We would like to upgrade this to something involving Hodge numbers. For this, we first need
that there are mixed Hodge structures on cohomology groups with compact support. Thankfully,
Deligne has our back.

Theorem 2. Let Y Ă X be a locally closed subvariety. There is a natural mixed Hodge structure
on H˚pX,Y ;Zq. Moreover, the maps in the long exact sequence

¨ ¨ ¨ Ñ Hn´1pY ;Zq Ñ HnpX,Y ;Zq Ñ HnpX;Zq Ñ ¨ ¨ ¨

are maps of mixed Hodge structures.

Theorem 3. The Künneth isomorphism
à

p`q“n

HppX;Qq b HqpY ;Qq
–

ÝÑ HnpX ˆ Y ;Qq

is an isomorphism of mixed Hodge structures. The same holds for the relative Künneth isomorphism.
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Example 1. We can use the compactification P1 of A1 to compute the mixed Hodge structure on
H˚

c pA1;Zq – H˚pP1,pt;Zq. The only nonzero group is H2
c pA1q, and the long exact sequence in

cohomology yields an isomorphism H2
c pA1;Zq

–
ÝÑ H2pP1;Zq. Thus, GrW2 H2

c pA1;Qq – Q. By the
Künneth theorem, we get GrW2n H

2n
c pA2n;Qq – Q.

Any mixed Hodge structure V defines an element rVQs P K0phsq, the Grothendieck group of
Q-Hodge structures, just by taking the graded pieces. V yields numerical invariants by taking
the Hodge numbers: define PhnprM sq “

ř

p,q h
p,qupvq. Now define the Hodge characteristic

with compact support χc
Hdg : K0pVarq Ñ K0phsq by χc

HdgpXq :“
ř

ip´1qirHi
cpX;Qqs. This is

a ring homomorphism by the above theorems. We can also define the Hodge-Euler polynomial
with compact support ecHdg : K0pVarq Ñ Zru, vs by ecHdgpXq :“ Phnpχc

HdgpXqq. This is also a
ring homomorphism because Phn is. If X is smooth and proper, X has pure Hodge structures on
cohomology, so ecHdgpXq actually determines the cohomology.

Example 2. Let X be a toric variety with sk orbits of dimension k. Each k-dimensional orbit is
isomorphic to pC˚qk, which has Hodge-Euler polynomial puv ´ 1qk (we can check that ecHdgpC˚q “

uv ´ 1 by applying the scissor relations to A1 “ C˚ \ pt). Thus, ecHdgpXq “
ř

k skpuv ´ 1qk. If X
is a smooth proper toric variety (or even proper with quotient singularities), this tells us that the
Poincaré polynomial of X is

ř

k skpt2 ´ 1qk.

Example 3. Let X be an irreducible nodal curve whose normalization has genus g. This isn’t the
best way to do this, but we can use scissor relations to compute the mixed Hodge structures on
H˚pX;Qq. First off, H0pX;Qq – H2pX;Qq – Q, with both groups of the “correct” weight. The
scissor relations give us

ecHdgpXq “ ecHdgpX ´ t2p pointsuq ` ecHdgpp pointsq

“ ecHdgpXq ´ 2p ` p

“ p1 ´ gu ´ gv ` uvq ´ p

“ p1 ` uvq ´ pp ` gu ` gvq.

Thus, the Hodge numbers appearing in H1pX;Qq are h00 “ p, h10 “ g, and h01 “ g.
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