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This talk is based on Deligne’s Théorie de Hodge, III (Section 8).

1 Mixed Hodge complexes from simplicial resolutions

Recall the following definition from last time.
Definition 1. A mixed Hodge complex consists of the following data:
(1) A complex K € D*(Z) such that each H*(K) is finitely generated.

(2) A filtered complex (Kg, W) € DYF(Q) (W is increasing) and an isomorphism a : K®zQ ~ Kg
in the derived category.

(3) A bifiltered complex (K¢, W, F) € D' F5(C) and an isomorphism S : (Kg, W)®qC ~ (K¢, W)
in the filtered derived category.

This data must satisfy the following condition: for each n, (Gr? Ko, (GrY K¢, F), B) is a Q-Hodge
complex of weight n.

Recall the geometric setup. We have X, an arbitrary variety, equipped with a proper hypercover-
ing Y, — X (a proper hypercovering is a simplicial variety such that each Y;,11 — (cosk, sky, Y3)n11
is proper and surjective). We can pick the Y, such that there is a simplicial compactification
(Yo » X) — (Y, — X) such that each Y, is smooth and each D,, := Y, —Y,, is a simple normal
crossings divisor.

The main theorem of Hodge II is that the induced filtrations (with the weight filtration shifted)
make the cohomology groups of a mixed Hodge complex into mixed Hodge structures. Thus, we
want to get a mixed Hodge complex from our proper hypercovering.

First, we need to introduce some more definitions that are suited to the simplicial setting. A
mixed Hodge complex of sheaves on a simplicial space Y, is defined to be a tuple of data
(K, (Kq,W),a, (K¢, W, F),5) on X, as in the definition of a mixed Hodge complex of sheaves on a
space, where we require the restriction to each X, to be a mixed Hodge complex of sheaves on the
space. The key example in our geometric setup is (Rj+Zy,, (Rj«Qy,, 7<), a, (Q’7 (log D,), W, F),8)
on Y,, where j is the inclusion Y, — Y, and W, F,qa, 3 are the usual filtrations and comparison
maps on each Y,,.

From a mixed Hodge complex of sheaves on an augmented simplicial space Y, — X, we can get
a cosimplicial mixed Hodge complex taking the right derived functor of global sections on each
piece, i.e.

(RT* RjsZy,, (RT* RjsQy,, 7<), R (a), (RT* (25 (log D.)), W, F), R (5)).



Let’s recall how this cosimplicial complex relates to the cohomology of X. For any sheaf F on X
H*(X,F) = H*(Y,,F*) (F* is the pullback of F to Y,). Let’s suppose we have a bounded-below
complex of abelian sheaves F* on Y,. The global sections of F* are ker(I'(Xy, F°) =3 I'(Xy, F1)).
Thus, to get the derived global sections, we replace F* by an injective resolution I** (all the
ICP® are injective; the first coordinate tracks the degree in the resolution; the second coordinate
tracks the simplicial degree) and then compute the cohomology of the complex whose gth term is
ker(I'(Xo, KP?) = T'(X1,KP1)). We can also consider the cosimplicial complex KP4 := I'(X,, KP?),
which becomes a double complex when we use the alternating sums of the faces as the differentials
in the g-direction. We can get the total complex sK*:

sK™ = P T (X,,KP),

p+q

with differential
d(zP7) = dic(aP9) + (—1)P D (—1)"6;a".
It follows from the usual homological algebra that I'(X,,K**) ~ s(K°**) = sI'*(X,,K**. Thus,
RT'(X,.,F*) ~ sRI'*(X., F*).
There is a filtration L on sK* given by L"(sK)® = @qu KPi1. The rth associated graded of
L is just the complex 0 — K% — K" — ... of global sections on X,, which has cohomology
H*(X,,F"). Thus, we have a spectral sequence

E' = H (X, F*) = H*"(X,,F*).

Everything I just said about sheaves F* applies to bounded-below complexes of sheaves, such as
Rj+Z in the geometric situation at hand.

Let’s look at the cosimplicial mixed Hodge complex RI'*Rj.Zy,. According to what I just said,
the cohomology of sRI'® Rj,Zy, computes the cohomology of X. Thus, to construct a mixed Hodge
structure on the cohomology of X, it suffices to place the structure of a mixed Hodge complex on
sRI*Rj.Zy,. This is the main theorem of Hodge III.

Theorem 1. Let K*°* be a cosimplicial mixed Hodge complex (the other data is omitted because
I’'m lazy). There exists a natural filtration 6(W, L) such that (sK*®,0(W, L), F) is a mixed Hodge
complex.

Proof. Define
S(W, L) (sK3) = @ Wt p(KBY).
p.q

Then
Gri(W’L)(sKé) ~ @Grmp K’ [-p]-
P

Because each K*? is a mixed Hodge complex, each Grmp Kép [—p] is a Q-Hodge complex of weight

n. Thus, Gri(W’L)(sKé) is a Q-Hodge complex of weight n, and (sK*,§(W, L), F) is a mixed Hodge
complex. ]

Applying this to our cosimplicial mixed Hodge complex RI'®Rj.Zy, gets us our mixed Hodge
structure on H*(Y,,Z*) =~ H*(X;Z). This mixed Hodge structure is functorial because we can pick
simplicial resolutions compatible with maps (this is pretty hard apparently, and Deligne blackboxes
it), and we can prove uniqueness in the same way as in Hodge I1.



We can describe the E; page of a spectral sequence converging to the cohomology H*(X;Q),

using the theory of mixed Hodge complexes. If you do the bookkeeping, letting Dﬁfﬂ) denote the
disjoint union of the r-wise intersections of D,,, we have

B[ = @ H/(DY:Q)(-r) = H ""(X;Q).

p+2r=>b

qg—r=—a
Note that it is possible for a to be negative. By the properties of mixed Hodge complexes established
in Hodge II, this spectral sequence degenerates at the E5 page. Moreover, it is possible to characterize
the d; differentials as Gysin maps, as they are in Hodge II.

£y @b s a Q-Hodge structure of weight b. However, unlike in Hodge II, we have different restric-

tions on which terms can be nonzero based on the properties of X.

Proposition 1. All the Hodge numbers k¢ that appear in H"(X;Q) satisfy 0 < s,t < n.

Proof. All the terms HP (D((f); Q)(—r) have nonnegative h® only (recall that twisting by —r raises
both s and ¢ by r = 0), so s,t = 0.

If HP(D((JT);Q)(—T) contributes to H"(X;Q), then p + ¢ + 7 = n, so p + 7 < n. For any h*'*
appearing in HP(D(S,T);Q), s+t =p,s0s,t' <p. Thus, s,t<p+r<n. O

Proposition 2. If X is proper, all the weights that appear in H"(X;Q) are between 0 and n,
inclusive. Moreover, W,,_1(H"(X;Q)) = ker(H"(X; Q) — H"(Yy; Q)).

Proof. There are no D,, so r = 0 for all terms appearing in the spectral sequence. The terms that

contribute to H"(X;Q) are H?(Y,; Q) with p + ¢ = n. The weights of H?(Y,; Q) are all p < n, so
H™(X;Q) has weights < n. The second claim follows from the spectral sequence. O

2 The Hodge characteristic

Given a variety X and a decomposition X = U 1 Z, where U is open and Z is closed, it’s true that
X¢(X) = x°(U) + x°(Z), where x° is the Euler characteristic with compact support. This follows
from the long exact sequence in relative cohomology. Combined with the Kiinneth formula, this
means that x¢ defines a ring homomorphism Ky(Var) — Z, where the Grothendieck ring of varieties
Ky(Var) is generated by complex varieties with additive relations [X] = [U] + [Z] (the scissor
relations) and multiplicative relations [X x Y] = [X] - [Y].

We would like to upgrade this to something involving Hodge numbers. For this, we first need
that there are mixed Hodge structures on cohomology groups with compact support. Thankfully,
Deligne has our back.

Theorem 2. Let Y < X be a locally closed subvariety. There is a natural mixed Hodge structure
on H*(X,Y;Z). Moreover, the maps in the long exact sequence

-—> H"N(Y;Z) - HY(X,Y;Z) » H"(X;Z) — - -
are maps of mixed Hodge structures.

Theorem 3. The Kiinneth isomorphism

P H(X;Q®H(Y;Q) = H"(X xY;Q)

p+qg=n

is an isomorphism of mixed Hodge structures. The same holds for the relative Kiinneth isomorphism.



Example 1. We can use the compactification P! of A! to compute the mixed Hodge structure on
H¥(AY;Z) =~ H*(P!,pt;Z). The only nonzero group is HZ(A'), and the long exact sequence in
cohomology yields an isomorphism HZ(Al;Z) = H?(P';Z). Thus, Grgv H2(A';Q) ~ Q. By the
Kiinneth theorem, we get Gry, H2*(A**; Q) ~ Q.

Any mixed Hodge structure V defines an element [Vg] € Ko(hs), the Grothendieck group of
Q-Hodge structures, just by taking the graded pieces. V yields numerical invariants by taking
the Hodge numbers: define P, ([M]) = >,  hP9uPv?. Now define the Hodge characteristic
with compact support xfy, : Ko(Var) — Ko(hs) by xf,(X) = 2,(=1)'[HL(X;Q)]. This is
a ring homomorphism by the above theorems. We can also define the Hodge-Euler polynomial
with compact support efy, : Ko(Var) — Z[u,v] by efjq,(X) = Phn(Xfrqe(X)). This is also a
ring homomorphism because Py, is. If X is smooth and proper, X has pure Hodge structures on
cohomology, so ef{dg(X ) actually determines the cohomology.

Example 2. Let X be a toric variety with s; orbits of dimension k. Each k-dimensional orbit is
isomorphic to (C*)*, which has Hodge-Euler polynomial (uv — 1)* (we can check that efag (C*) =
uv — 1 by applying the scissor relations to A = C* L pt). Thus, ef{dg(X) = > sk (uv — Dk If X
is a smooth proper toric variety (or even proper with quotient singularities), this tells us that the
Poincaré polynomial of X is >}, s (t? — 1).

Example 3. Let X be an irreducible nodal curve whose normalization has genus g. This isn’t the
best way to do this, but we can use scissor relations to compute the mixed Hodge structures on
H*(X;Q). First off, H(X;Q) =~ H?*(X;Q) =~ Q, with both groups of the “correct” weight. The

scissor relations give us

€f1ag(X) = €f1aq(X — {2p points}) + efyq,(p points)
= ehag(X) —2p+p
=(1—-—gu—gv+uv)—p
= (14 wv) — (p+ gu + gv).

Thus, the Hodge numbers appearing in H'(X;Q) are h% = p, h'% = g, and A = g.
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