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Recall...

Simplicial objects are functors
∆op → C

where C is some category. A simplicial objectX comes with face and degeneracy morphisms

di : Xn → Xn−1, si : Xn → Xn+1

for 0 ≤ i ≤ n. These come from di : [n− 1]→ [n] skipping i and si : [n+ 1]→ [n] repeating i.

We denote by S(C) the category of simplicial objects. We will also work with Sn(C) and
S+(C), the categories of n-truncated simplicial objects and augmented simplicial objects re-
spectively. These are functors from ∆≤n and ∆≥−1 respectively. In what follows, we will as-
sume that C has finite products and finite fiber products.

Essentially everything that follows comes from the notes Cohomological Descent by Brian
Conrad [1].

1 Coskeleta

Given a simplicial spaceX• ∈ S(C), we can consider its n-skeleton skX• ∈ Sn(C). Consider

Definition 1.1. Take Y• ∈ Sn(C). The n-coskeleton functor is the right adjoint to skn. That is,

HomSn(C)(skn(X•), Y•) ∼= HomS(C)(X•, coskn(Y•)).

Of course, we haven’t shown that such an adjoint exists. Let us first see what it must be
for n = 0. Fix Y0 ∈ S0(C) = C. We need to construct cosk0(Y0) such that for all X•, we have
Hom(X0, Y0) = Hom(X•, cosk0(Y0)). In fact, we will soon see that coskn does not change the
n-skeleton, so coskn satisfies the universal property that we can extend any map from an n-
skeleton of some simplicial object to the whole object. Here, given some sk0(X

′
•) → Y0, we

see that we obtain maps X1 → Y0 × Y0, X2 → Y0 × Y0 × Y0, etc. This shows that we should
take cosk0(Y0)n = Y n with the natural simplicial structure. Note that this is essentially a Cech
covering.

We now construct coskm.

Proposition 1.2. Take Y• ∈ Sn(C). Set

Y m
n = lim←−

skm(∆[n])

Yϕ = lim←−
[k]→[n],k≤m

Yk.

Given amorphism α : [n′]→ [n], we leave it to the reader to define the appropriate map Y m
n → Y m

n′ .
This gives the construction of coskm(Y•).
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Idea. Given a map skn(X•) → Y•, we have all these maps Xn ⇒ Xk → Yk for k ≤ m. These
combine to give the inverse limit object described. One can check that all desired functoriality
properties hold.

From this construction, we conclude the following statement.

Proposition 1.3. ForX• ∈ Sn(C), the mapX• → skn(coskn(X•)) is an isomorphism.

Indeed, looking at Y m
n for n ≥ m, we see that the single copy of Yn corresponding to [n]→

[n] determines everything.

Remark. It is not hard to see that the left adjoint to skn is simply the ‘inclusion’ of n-truncated
simplicial spaces into simplicial spaces. Moreover, in and coskn are the left and right Kan ex-
tensions of skn.

The adjunction id → coskm skm is not generally an isomorphism, but it is indeed an iso-
morphism on all n-coskeleta for n ≤ m. That is, for −1 ≤ n ≤ m, we have

ρm,n : coskn → coskm skm coskn

is an isomorphism of functors.

Moreover, if we takeX to be a Kan complex, we have that coskn(X) is also a Kan complex.
The sequence

· · · → coskn+1X → cosknX → coskn−1X → · · · → ∗

is then a Postnikov tower forX.

2 Hypercovers

Definition 2.1. Let P be a class of morphisms in C containing isomorphisms and stable under
base change and composition. A simplicial objectX• in C is a P-hypercovering if for all n ≥ 0 (or
−1), the natural adjunction

X• → coskn(skn(X•))

induces a mapXn+1 → coskn(skn(X•))n+1 which is in P.

In particular, the augmented simplicial object cosk0(S′/S)→ S is a P-hypercovering if and
only if S′ → S is in P. If P is some surjectivity condition, then taking S′ to be the disjoint union
of some open cover will yield the Cech construction. A key point of interest is that these can be
used to calculate cohomology. Indeed, given a hypercovering of some objectK, we may define

Ȟ i(K,F) = H i(s(F(K)),

where s(−) denotes taking the Moore complex. If F is abelian, we have Ȟ0(K,F) = F(X).
We can also take direct limits over hypercoverings, and unlike in the ordinary Cech theory, we
do indeed get derived functor cohomology! We will not prove this, but we will see a derived
version of these ideas later.

There are indeed a lot more examples of hypercovers than just the Cech construction. For
example, if we have anm-truncated P-hypercovering Y•, then coskm(Y•) is a P-hypercovering.
We are particularly interested in the case of hypercoverings of singular schemes. To get there,
first we discuss splittings.
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Definition 2.2. Assume C admits finite coproducts. A simplicial object X•in C is split if there
exist subobjects NXj with ⊕

ϕ:[n]↠[m]

NXm → Xn

an isomorphism.

Recall that the left hand side is essentially the Γ-functor used in the proof of the Dold-Kan
theorem. We will now assume C admits finite inverse limits, finite coproducts, and unique
complements. This last condition ensures that split simplicial objects have unique (up to
unique isomorphism) splittings. While this doesn’t hold for abelian categories in general,
Dold-Kan does give a canonical splitting for them.

One key property of splittings is the following fact. Given a split n-truncated object skn(X)
and NXn+1 along with a map NXn+1 → (coskn sknX)n+1 (which is meant to factor through
the inclusion intoXn+1, we can recover skn+1(X). Indeed, we know thatXn+1 needs to be this
sum

⊕
[n+1]↠[m]NXm, and the face and degeneracy maps are defined naturally.

For our purposes, we will restrict to one of the following cases.

• C = spaces over a base, P = proper surjections

• C = spaces étale over a space, P = surjective étale maps

• C = a topos, P = epic morphisms

The flexibility of hypercovers and being split is illustrated in the next statement.

Theorem 2.3. If sknX is split, there exists a map f : X ′ → X with skn(F ) an isomorphism and
X ′ split. Furthermore, if X is an augmented P-hypercover, we can take X ′ to be an augmented
P-hypercover.

The point of this is the following statement.

Corollary 2.4. Consider the proper/étale surjective case. Form ≥ 0, an (augmented)m-truncated
P-hypercovering Z, the face and degeneracy maps for Z are proper/étale.

In particular, if X• → S is a proper/étale hypercovering, then all structure maps Xn → S
are proper/étale. We can now prove a theorem of interest.

Theorem 2.5. Let S be a separated scheme of finite type over a field k. Then there exists a dense
open immersion S ↪→ S into a proper k-scheme and an augmented proper hypercovering X• of S
such that eachXn is a projective k-scheme which is regular and the part ofXn lying over S − S is
a strict normal crossings divisor inXn for all n ≥ 0.

Before we give the proof, let us recall the statement of resolution of singularities. Recall
that Hironaka proved that ifX is a complex algebraic variety, then there is a proper birational
map p : Y → X from some regular Y . Johan proved the following theorem.

Proposition 2.6 (Johan). LetX be a variety over a field k and letZ ⊂ X be a proper closed subset.
There exist an alteration

φ1 : X1 → X

and an open immersion j1 : X1 → X1 such that

• X1 is a projective variety and is a regular scheme.
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• The closed subset j1(φ−1
1 (Z)) ∪X1\j1(X1) is a strict normal crossings divisor inX1.

If k is perfect then the alteration φ1 may be chosen to be generically étale.

Recall that an alteration of X is a dominant proper morphism X ′ → X of varieties over k,
with dimX = dimX ′. Note that this differs from a resolution as finite extensions of k(X) are
allowed. But we can choose X ′ to be a complement of a divisor with strict normal crossings
in some regular projective variety X ′. Johan noted himself at the beginning of his alterations
paper (using smooth instead of regular, so he assumes k is perfect) that this proves Theorem
2.5.
Remark. Apparently another definition of alterations is a surjective, generically finite, and
proper morphism. Then every variety has an alteration from a regular variety.

Proof of Theorem 2.5. By Nagata’s compactification theorem, we have a dense open immersion
S ↪→ S into a proper k-scheme. We now apply de Jong’s theorem to obtain a regular X0 with
a proper surjection to S where the preimage of S has complement a strict normal crossings
divisor. This gives us the 0-skeletonX0.
Given X≤m, we have that coskmXm is a proper hypercovering of S. Moreover, each term is
S-proper. Now apply de Jong’s theorem again to (coskmXm+1)m+1 togetX

′ proper and gener-
ically finite over them+1-termwith the part over S−S a strict normal crossings divisor. Then
using this for NXn+1 and taking the construction above of taking Xn+1 =

⊕
[n+1]↠[m]NXm,

we get an (m+ 1)-truncated solution. We are done by induction.

3 Cohomological descent: definitions

To define cohomological descent, wewill first need to define sheaves on simplicial objects. One
can view them as either a simplicial object in the category of sheaves, where C is some site:

F : ∆op → Sh(C)

or a simplicial-set valued presheaf which satisfies the sheaf condition in each degree. In par-
ticular, we are interested in sheaves on the following site.

Definition 3.1. Let C be a site with a topology generated by E-morphisms. Let X• be a simply
object of C. Then define X̃• to be the category of sheaves of sets on the following site.

• Objects: E-morphisms U → Xn

• Morphisms: commutative squares

U U ′

Xn Xn′

f

where f is any morphism in C.

• A covering of Ui → Xn is given by a covering of Ui in C.

A map U• : X• → Y• of simplicial spaces gives pushforward and pullback functors

u•∗ : X̃• → Ỹ•, u∗• : Ỹ• → X̃•.

We are interested in the case a : X• → S, where we can apply the constant augmentation S to
be S•. We obtain functors

a∗ : X̃• → S̃, a∗ : S̃ → X̃•.
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Here, (a∗F)n = a∗nF and a∗F• is the equalizer of σ1
0, σ

1
1 : a0∗F0 → a1∗F1. We obtain derived

functors
a∗ : D+(S)→ D+(X•), Ra∗ : D+(X•)→ D+(S).

We now give the key definition.

Definition 3.2. The adjoint pair (a∗, a∗) : X̃• → S̃ (abbreviated a : X• → S is a morphism of
cohomological descent if the natural transformation

id→ Ra∗ ◦ a∗

on D+(S) is an isomorphism.

Remark. For simplicity, when we talk about abelian sheaves we can restrict to abelian groups,
or Z/n-modules over the étale site.

Recall that (a∗,Ra∗) are adjoint on bounded below derived categories. Thus wemay restate
the definition of morphism of cohomological descent as follows.

Lemma3.3. Amap a : X• → S is amorphismof cohomological descent if and only if a∗ : D+(S)→
D+(X•) is fully faithful.

Definition 3.4. LetX• be a simplicial space and let a : X• → S be an augmentation. We say that
a is universally of cohomological descent if every base change map

a/S′ : X• ×S S′ → S′

is of cohomological descent. Furthermore, a map of spaces a0 : X0 → S is amap of cohomological
descent if

cosk0(a0) : cosk0(X0/S)→ S

is a morphism of cohomological descent, and similarly for the universal case.

The fact that the cohomological descent is preserved under composition is extremely non-
trivial. In fact, we will show that morphisms universally of cohomological descent can be used
to define a site.

Theorem 3.5. The class of morphisms universally of cohomological descent satisfies the following
properties.

1. Let π be universally of cohomological descent in the following Cartesian diagram. Then f is
universally of cohomological descent if and only if f ′ is.

X ′ X

S′ S

π′

f ′

π

f

2. If f and g ◦ f are maps universally of cohomological descent, then g is universally of cohomo-
logical descent.

3. The composition of two maps universally of cohomological descent is universally of cohomo-
logical descent.

4. The fiber product over some base S of two maps universally of cohomological descent is uni-
versally of cohomological descent.

The first one is the difficult one. Using it, one can show 2, provided one knows that a map
with a local section is universally of cohomological descent. 3 and 4 follow formally.
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4 Cohomological descent: properties and applications

Let us begin by explaining the relationship between cohomological descent and ordinary de-
scent. Recall that in descent, one takes a cover p : X ′ → X, e.g. some fppf/fpqc covering, and
takes the projections p0, p1 : X ′′ = X ′×X X ′ → X ′. Given a sheaf F onX, we can construct its
associated descent data, which consists of a sheafF ′ = p∗F onX ′, along with an isomorphism
α : p∗1F ′ ∼= p∗2F ′ that satisfies a cocycle relation p∗02(α) = p∗12(α) ◦ p∗01(α) on the triple fiber
power.

For instance, if we take the covering to be
∐

i Ui
pi−→ X, then descent datum consists of

sheaves Fi on Ui with an isomorphism ϕij : Fi|Uij → Fj |Uij satisfying the cocycle condition. If
such descent data does indeed come from a sheaf on X, then we say that the descent datum
is effective. Thus, another way to say that all descent data descend is to say that the functor
from sheaves to descent data is fully faithful. In such a case, the fibered category of descent
data over the underlying site is a stack. For example, QCoh is an fpqc stack. Representable
functors are fpqc sheaves, which means that morphisms descend.

Now let us revisit cohomological descent in this context. Recall that the condition for a :
X• → S to have cohomological descent is for id→ Ra∗ ◦a∗ to be an isomorphism onD+(S), or
for a∗ : D+(S)→ D+(X•) to be fully faithful. Unwinding this definition, on the level of sheaves
we need

F ∼= a∗a
∗F = ker(a0∗a

∗
0F → a1∗a

∗
1F), Ria∗(a

∗F) = 0

for i > 0. The second condition distinguishes this from ordinary descent. Alternatively, from
the second formulation we can see that we want a derived version of full faithfulness working
with the entire simplicial object, not just the 2-truncation.

Let us look at the simplest example.

Example 4.1. The augmentation S• → S from the constant simplicial space on S is of cohomo-
logical descent.

Here, a∗ pulls back an abelian sheaf on S to one on the whole simplicial object. As this is a
simplicial object where the category is the category of abelian sheaves over S, this corresponds
to chain complexes of abelian sheaves. By Dold-Kan, we can for the associated chain complex
of abelian sheaves over S. Taking the normalized complex, we see that we just get

a∗(F) = F [0].

On the other hand, a∗ is the equalizer of σ1
0, σ

1
1 : a0∗F0 → a1∗F1, and under Dold-Kan this cor-

responds to takingH0. Now we have that the adjunction id→ a∗a
∗ is clearly an isomorphism,

and the derived functors areHj , which on F [0] are 0 for j > 0.
We now describe the cohomology of abelian sheaves on simplicial spacesX•.

Definition 4.2. Let F be an abelian sheaf onX•. The global sections of F are defined by

Γ(X•,F) := ker(Γ(X0,F0)→ Γ(X1,F1)).

Then Γ(X•,−) is left exact, and RΓ(X•,−) is the resulting total derived functor with hypercoho-
mology groups Hi(X•,−).

If we have an augmentation a : X• → S, then Γ(X•,F•) = Γ(S, a∗F•). We have the follow-
ing spectral sequences.
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Theorem 4.3. Let X• be a simplicial space (or a truncated one). For any complexK ′ in D+(X•),
there is a natural spectral sequence

Ep,q
1 = Hq(Xp,K

′|Xp)⇒ Hp+q(X•,K
′)

with d•,q1 induced by the “associated differential complex" structure alongX•.

When we have an augmentation a : X• → S of cohomological descent and we let K ′ = a∗K,
thenK ′|Xp = a∗pK and the spectral sequence becomes

Ep,q
1 = Hq(Xp, a

∗
pK)⇒ Hp+q(S,K).

This is functorial.

Given a : X• → S inducing ap, we canworkwith a∗ and ap∗ instead ofΓ(X•,−) andΓ(Xp,−).
This leads to the following relative spectral sequence that does not require cohomological de-
scent.

Theorem4.4. With the notation above, for anyK inD+(X•) there is a canonical spectral sequence

Ep,q
1 = Rqap∗(K|Xp)⇒ Rp+qa∗(K)

functorial in a : X• → S.

Next, we give a useful criterion for a map to be universally of cohomological descent.

Theorem 4.5. Let f : X → S be a map of spaces which has a section locally on S. Then f is a
map universally of cohomological descent.

This can be proven with the second spectral sequence above. Applying it to topological
spaces with S = ∅ with the first spectral sequence above, we can recover the classical Cech
spectral sequence. The main theorem, which we will state soon, allows us to give a vast gen-
eralization of this.

5 The main theorem

We begin with the 0-skeleton version of the desired statement.

Theorem 5.1. Let f : X → S be a proper surjective map of topological spaces. Then f is a map
universally of cohomological descent. The same holds for schemes with the étale topology, working
with derived categories of sheaves of Z/n-modules.

For this, we need to show that if F is an abelian sheaf on S and if a : X• → S is given by
cosk0(X0/S), then F → a∗a

∗F is an isomorphism and Ria∗(a
∗F) = 0 for i > 0. This can be

done through the second spectral sequence above and the proper base change theorem. This
reduces to checking on geometric fibers, from which the theorem about maps with local sec-
tions suffices to finish.

Now we state the main theorem.

Theorem 5.2. Let X• → S be a proper hypercovering of topological spaces or schemes with the
étale topology (in which case we replace abelian sheaves with sheaves of Z/n-modules). Then it is
universally of cohomological descent.
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By definition, a proper hypercoveringX• → S induces a proper surjection

Xn+1 → (coskn skn(X•/S))n+1.

By the previous theorem, these are maps universally of cohomological descent. Thus to prove
this theorem, it suffices to prove the next theorem, which does not involve hypercoverings.

Theorem 5.3. Let a : X• → S be an augmented simplicial space with each map of spaces

Xn+1 → (coskn skn(X•/S))n+1

universally of cohomological descent. Then a is universally of cohomological descent.

The proof is difficult. Note that using the first spectral sequence above, the following gen-
eralization of the Cech spectral sequence results.

Corollary 5.4. Let a : X• → S be an étale hypercovering of a space. Then for any K in D+(S),
there is a spectral sequence

Ep,q
1 = Hq(Xp, a

∗
pK)⇒ Hp+q(S,K)

where d•,q1 is induced by the simplicial structure onX•.
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