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Abstract—We study two dimensional path integral Lefschetz thimbles, i.e. the possible path integration con-
tours. Specifically, in the examples of the O(N) and  models, we find a large class of complex critical
points of the sigma model actions which are relevant for the theory in finite volume at finite temperature, with
various chemical potentials corresponding to the symmetries of the models. In this paper we discuss the case
of the O(2m) and the  models in the sector of zero instanton charge, as well as some solutions of the
O(2m + 1) model. The -model for all instanton charges and a more general class of solutions of the
O(N)-model with odd N will be discussed in the forthcoming paper.
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1. INTRODUCTION
The partition function of a quantum field theory is

formally given by the path integral

(1.1)

over some space  of fields. The correlation functions
are defined in a similar manner:

(1.2)

In order to study the analytic properties of these
quantities, as the parameters t are varied, a useful trick
is to deform the contour of integration, so as if it were
a middle dimensional cycle in the complexification

 of the space of fields. There may be many cycles γa
for which the integral (1.1) converges. For finite
dimensional integrals, these are classified by the rela-
tive homology group Hmiddle( , ; ) where  is

the set Φ ∈  for which Re(St(Φ)/ ) ≫ 0. For

generic t there is a basis (γa) in Hmiddle( , ; ) of

the so-called Lefschetz thimbles. The thimble γa cor-
responds to the critical point a of St(Φ), and is the
union of gradient trajectories of Re (St(Φ)/ ) emanat-
ing from a. The original path integral decomposes as
the sum

(1.3)

where

(1.4)

is the integral over the Lefschetz thimble correspond-
ing to the critical point, the complex classical solution a.
The multiplicities na are integers. For small variations
of t the multiplicities are constant, however, as t cross
certain hypersurfaces (the walls of marginal stability)
the integers na may jump. This is known as the Stokes
phenomenon.

In this paper we are studying the critical points a in
several examples of field theories.
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1.1. Fields and Symmetries

The space of fields  in each model is the set of
maps of some source manifold Σ to the target space X.
We will be avoiding the rather toxic questions about
the precise degree of smoothness of the maps relevant
for the path integral measure. Of course, one should
look into the cutoff version of the path integral mea-
sure, where the naive microscopic action St(Φ) is
replaced by some St(∧)(Φ∧) where the characteristic
momenta of the fields Φ∧ are less than ∧, and the cou-
plings t(∧) are made depend on ∧ in such a way, that
the limit ∧ → ∞ makes the correlation functions (1.2)
finite, for macroscopic separations between the points
x1, …, xs. Hopefully, for the problem of classification of
the possible path integral contours for the asymptoti-
cally free theories, such as the sigma models on the
positively curved target spaces, the more rigorous
treatment will give a similar result.

To probe the symmetries of the theory one also
studies the integrals over the spaces Mapsh(Σ, X) of
twisted maps. Here h : π1(Σ) → H denotes a homo-
morphism of the fundamental group of Σ to the group
of symmetries of X (and additional structures on X).
The h-twisted maps are the π1(Σ)-equivariant maps f :

 → X of the universal cover of Σ, obeying:

(1.5)

In other words, if a point ξ ∈ Σ and a representative
f(ξ) ∈ X is chosen, then the twisted map f in the neigh-
borhood U of ξ is a well-defined map U → X, however
its continuation to the whole of Σ is multi-valued, up
to the action of h(π1(Σ)) ⊂ G on X.

Another possibility presented by the symmetries of
X are the defect operators, classified by all the homo-
topy groups πk(H). For example, the elements of
πdim(Σ) – 1(H) classify local twist operators, these can be
described as the instruction to perform the path inte-
gral over the space Γ(Σ, X ×H H) of sections of the fiber
bundle associated with the principal H-bundle H over
Σ, corresponding to the element

(1.6)

1.2. Quantum Mechanics

The case of Σ = S1 was discussed in [1], where the
class of quantum mechanical (= Σ is one-dimen-
sional) models was considered. The target (X, ω) is a
symplectic manifold such that its complexification
( , ) is an algebraic integrable system π :  →

 ≈  with the fibers Ju = π–1(u) being Lagrangian

polarized abelian variety for generic u ∈ . The
action St(Φ) is given by:

^
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(1.7)

where s ~ s + 1 is a parameter on Σ, uk are the global
coordinates on U—the Hamiltonians of the integrable
system, t is the set of times, or generalized inverse tem-
peratures, so that the path integral (1.1) represents the
trace of the complexified evolution operator:

(1.8)
Let Ξ ∈ U denote the discriminant, i.e. the set of

singular fibers Ju. Pick a basepoint ∈ U\Ξ. Let Γ be
the monodromy group, i.e. the image of the based fun-
damental group π1( \Ξ, ) in the group Sp(2r, ) ×

 of affine transformations of the fiber H1( , ),
preserving the symplectic structure given by the inter-
section form (with the help of the polarization).

The critical points a in these examples are classified
by the Γ-orbits [c] of the homology classes c ∈
H1(π‒1( ), ) under the action of the monodromy
group. Let Γ[c] ⊂ Γ denote the stabilizer of c, and  =

/Γ[c] be the associated quotient of the universal
cover. Clearly,  = , for any integer n ≠ 0. Let
P := PH1( , ) denotes the set of primitive homology
classes (i.e. the homology classes which are not multi-
ples of the others). Let  = , ρ ∈ P. For n ∈ ,

t ∈  define the superpotential, the holomorphic
function on , given by

(1.9)

The set

(1.10)

of Lefschetz thimbles of quantized algebraic integrable
system can be viewed as a discrete subset of

(1.11)

For ρ ≠ 0 the set  is the set of critical points of
superpotential (1.9) on . There is a subtlety at ρ = 0,
where  ≈ U. The superpotential is this case becomes
simply a linear combination of the regular functions
uk, which has no critical points. However, on physical
grounds, we should include in  the set Ξmax ⊂ Ξ of
maximally degenerate fibers. These correspond to the
degenerate orbits of the Hamiltonian vector field gen-

erated by  viewed as a function on the whole

phase space .
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736 KRICHEVER, NEKRASOV
There is a simple modification of the problem in
case of the systems with symmetries, preserving the
Hamiltonians hk. Instead of the space of loops  = LX

and its complexification  = L  one considers, as
in (1.5), the spaces  = {x(s) | 0 ≤ s ≤ 1, x(1) = h ⋅

x(0)} of twisted loops and its complexification .
Here [h] is a conjugacy class in the group H of sym-
plectic symmetries of X, [hc] is a conjugacy class in the

complex group  of symplectic holomorphic sym-
metries of . Since the group preserves the Hamilto-
nians, it acts on the fibers Ju. In case the group H is a
Lie group generated by some Hamiltonians, the
twisted case is equivalent to the untwisted one, up to a
redefinition of the times t. The case of the discrete
group H is quite interesting, and is not completely cov-
ered in the literature. It can again be reduced to (1.9)
with P being the space of equivalence classes of h-
twisted loops on Ju.

1.3. Organization of the Paper
We are studying the two dimensional field theories,

with the target spaces an odd dimensional sphere S2m – 1,
or its quotient with respect to the U(1)-action produc-
ing the complex projective space . The com-
plexifications of these spaces contain, as real sections,
other interesting symmetric manifolds, including the
Lobachevsky space, the anti-de Sitter, and de Sitter
spaces.

In Section 2 we introduce the Lagrangians of the
sigma models in two dimensions, and their realization
through the (linear) sigma models with constraints
and gauge symmetries. We then discuss the models
with twisted boundary conditions and their complexi-
fication. We then present the first hints the structure
similar to the Eqs. (1.9) can be expected in the case of
the two dimensional sigma models: in the restricted
class of the folded string solutions, we recover a special
class of algebraic integrable systems: Gaidin model,
i.e. Hitchin system at genus zero with punctures, as in
[2], albeit with irregular singularities.

Section 3 introduces the main tool in our analysis:
the Fermi-curves. First, we remind the construction
of the Fermi-curve for a small perturbation of a con-
stant Schrödinger potential. We show that the double
points are resolved by the Fourier modes of the poten-
tial u(z, ).

Section 4 reverse-engineers the Schrödinger
potential u(z, ) from the Fermi-curve of finite genus.
We characterize the latter as an analytic curve with an
additional structure: an involution with two fixed
points and a set of meromorphic differentials Ω, Ω±

with specified properties.
Section 5 relates Schrödinger operator –Δ + u to its

solutions ψ, Δψ = uψ, as specified by the sigma model
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equations of motion. We show that this relation
implies the additional structure on the Fermi-curve: a
meromorphic function E. Moreover, we find the
superpotential  whose critical points correspond to
the double-periodic solutions of the sigma model
equations of motion, much like the superpotential
(1.9) we find in the quantum mechanical model. In
fact, we make the relation between the two explicit.

Section 6 presents our conclusions and directions
of future research. In particular, we comment on the
finite-dimensional approximations of the field theory
configuration space, inspired by the finite-gap solu-
tions.

2. SIGMA MODELS
Let X, the target space be a Riemannian manifold

with the metric g = gmn(X)dXmdXn. The action St(Φ) of
the sigma model will be taken to be

(2.1)

where (Xm(z, )) parametrizes the map Φ : Σ → X,
while t stands for other parameters described below.
The Lagrangian of the two dimensional sigma model
depends on the conformal class of metric d  =
habdξadξb, hab ~ e2ψhab.

Let Σ denote a two-dimensional torus S1 × S1. Let
x, y denote the real coordinates on Σ, with the periods
1, i.e. x ~ x + m, y ~ y + n with m, n ∈ , on Σ, which
is parametrized by the complex number τ = τ1 + iτ2,
with τ2 > 0, via

(2.2)
where z = x + τy,  = x + y denote the holomorphic
and anti-holomorphic coordinates on Σ, respectively.

In what follows we often use the notation ωx = 1,
ωy = τ to denote the periods, and  = 1,  =  to
denote the conjugate periods.

t stands for the parameters of the conformal struc-
ture hαβ of Σ, the parameters of the metric g, as well
as the twist parameters. The latter occur when the
metric g has isometries. Let H denote the group of
symmetries of g. We deform the theory by turning on a
flat H-connection A

(2.3)

where Aadz +  is the H-connection form, with
a = 1, …, dimH, and Va ∈ Vect(X) the generators of H
acting by isometries of X. The invariance of the path
integral measure under the local transformations of
the map Φ : Σ → X by the isometry group H implies
that the correlation functions depend only on the
gauge equivalence class of A ~ h–1Ah + h–1dh.

0

αβ
α β

Σ

Φ = ∂ ∂( ) ,m n
t mnS hh g X X

z

Σ
2s

Z

Σ ∝ + τ + τ =2 ( )( ) ,ds dx dy dx y dzdz
z τ
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h

Σ
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TOWARDS LEFSCHETZ THIMBLES 737
We can rewrite (2.3) using the background-inde-
pendent form of Σ, i.e. in the coordinates x, y:

(2.4)

with

(2.5)

When the H-connection A is f lat,

(2.6)

the partition function (1.1) can be cast in the Hamilto-
nian form:

(2.7)

where q = e2πiτ,  = ,

(2.8)

are the light-cone Hamiltonians, and the H-twists,
respectively, and  denotes the space of states
of the theory obtained by quantizing the space of gx-
twisted loops into the target space X.

An interesting aspect of theories with the symmetry
groups H having nontrivial fundamental group π1(H)
is the possibility of having topologically nontrivial
backgrounds, while maintaining the f latness of the
background connection A. They are in one-to-one
correspondence with the elements c ∈ H2(Σ, π1(H)),
cf. (1.6), known as the generalized Stiefel-Whitney
classes, for finite π1(H). For simple Lie group H, π1(H)
is identified with the subgroup of the center Z( ) of
its simply-connected cover . The topologically non-
trivial background is defined by studying the path inte-
gral over the space  of sections of the X-bundle over
Σ, associated to the principal H-bundle P over Σ. The
latter can be trivialized over a complement Σ\Up to a
small neighborhood Up of a point p ∈ Σ, as well as over
Up itself. The class c ∈ π1(H) is then represented by the
loop in H given by the map ∂Up → H comparing the
two trivializations  × H × Σ\Up and  ≈
H × Up.

Thus, on the one hand, the path integral over 
can be interpreted as 1-point function on the torus of
a local disorder operator ,

(2.9)

Φ =
τ

= τ∇ − ∇ τ∇ − ∇
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On the other hand the bundle Pc lifts to a trivial
bundle  × , for some isogeny  → Σ. The flat H-
connection on Σ can be viewed as the f lat -connec-
tion on , equivariant with respect to the π1(H)-
action.

Classically, we only see H as the symmetry of the
theory, as it is the symmetry of the target space X.
Quantum mechanically, however, the group H may
act on the Hilbert space of the theory projectively, i.e.

 is really a -representation. Then (2.9) is an
important tool for tracking the extension of the sym-
metry.

For example, one can reliably demonstrate the
existence of BPS solitons in  = 2 supersymmetric

  sigma model (see, e.g. [3]), which transform in
the fundamental representations ∧l  of the group

= SU(N). Thus the Hilbert space of the theory con-
tains excitations transforming under the extended
symmetry.

2.1. Complexification

The partition function (2.7) admits an analytic
continuation in the parameters q, , gy. It would cor-
respond to taking the same path integral over the
(twisted) maps Φ : Σ → X but now in the presence of
deformation of the action (2.4), where the parameters
τ and  are not complex conjugates, and the compo-
nent Ay of the background gauge field is complex.
Modular invariance then suggests one should be able
to promote Ax to the complex gauge field as well. The
saddle points of (2.4) would, naturally, have Xm com-
plex as well, thus prompting the search for the complex
solutions of the sigma model equations of motion.

We shall still call ωα and , for α = x, y, the con-
jugate periods. The conjugation in question corre-
sponds to the symmetry (x, y)  (x, –y) of the physi-
cal torus, not the (artificial in the present context)
complex conjugation.

In what follows we discuss the geometric aspects of
the complexification of the fields Φ. They are naturally
the maps of Σ to the complexification  of the origi-
nal target space. Next we discuss the analytic continu-
ation of the Lagrangians  of our sigma models,
twisted boundary conditions, and equations of
motion. We conclude by the detailed analysis of an
interesting reduction of the equations of motion of the
O(N) and  models, the so-called winding ansatz.
The significance of this ansatz is its algebraic integra-
bility. We find the winding string solutions of the O(N)
and  models are described by an irregular version
of the genus zero Hitchin system, a spin zero 
Gaudin model.
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738 KRICHEVER, NEKRASOV
2.1.1. Complexifications of spheres and projective
spaces. The familiar triple , ,  of spaces
with the O(m), U(m), Sp(m) symmetries has an inter-
esting complex version.

For a vector space L over a field k, let us denote by
L ∨ the dual vector space. For l ∈ L, p ∈ L ∨ we denote
by p ⋅ l ∈ k the value of p at l.

Let V ≈  be a complex Euclidean space, i.e. a
complex vector space with the non-degenerate sym-
metric form g(⋅, ⋅). Let W ≈  be a complex vector
space. Finally, let U ≈  be a complex symplectic
vector space, i.e. a complex vector space with the non-
degenerate anti-symmetric form ω(⋅, ⋅).

Of course, noncanonically, U = W ⊕ W∨ for any
Lagrangian sub-space W ⊂ U, and, in the case of even
n + 1, V = W ⋅ W∨ for any maximally isotropic W ⊂ V.

The complexification S(V) of the sphere Sm is the
space of vectors x ∈ V, obeying g(x, x) = 1.

The complexification (V) of  is the quo-
tient of the space of vectors x ∈ V, obeying g(x, x) = 1,
modulo the -symmetry x   –x.

The complexification (W) of  is the space
of pairs (ψ, ψσ), ψ ∈ W, ψσ ∈ W∨, obeying

(2.10)

modulo the -action

(2.11)

In other words, (W) is the holomorphic sym-
plectic quotient T*W// , (2.10) being the moment
map equation.

The complexification (U) of  is the quo-
tient of the space of pairs (u1, u2) with u1, 2 ∈ U, obeying

(2.12)

by the SL(2, )-action

(2.13)

2.1.2. Complexification: the Lagrangians. The cor-
responding Lagrangians are written in the terms of the
same geometric structures:
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(2.14)

with ε12 = –ε21 = 1. The S(V)-model which we shall
call the O(n + 1)-model in what follows has the
Lagrangian

(2.15)

which is identical to that of the -model. The dif-
ference is in gauging. The -model is obtained by
identifying the solutions (x(z, )) and (–x(z, )). One
is also forced to include the twisted sectors [4], where
x(z + ωα,  + ) = uαx(z, ), with uα = ±1, α = 1, 2.

The classical  model consists of solving the
Euler-Lagrange equations following from .
However, certain care is needed in formulating the
periodicity conditions.

The space of fields of the  model is the space
of maps

(2.16)
which in turn is the quotient of the space of U(1)-equi-
variant maps

(2.17)
of some principal U(1)-bundle P over Σ to the sphere
S2m – 1, by the action of the group  = Maps(Σ, U(1))
of gauge transformations.

Accordingly, the set of connected components
π0Maps(Σ, ) is, for n ≥ 2, the set of topological
classes of P, which is isomorphic to . In this paper we
shall only consider the case of P = Σ × U(1), a zero ele-
ment in .

In this case we can describe the corresponding com-
plexification as the set of maps ψ : Σ → W, ψσ : Σ → W∨,
supplemented with the twisted boundary conditions
ψ(z + ωα,  + ) = uα(z, )ψ(z, ), ψσ(z + ωα,  +

) = uα(z, )–1ψσ(z, ), for α = 1, 2 with uα(z, ) ∈
, modulo the identifications (ψ, ψσ) ~ (tψ, t–1ψσ),

for any -valued double periodic function t : Σ → .
The gauge field  is required to obey the twisted
periodicity condition

(2.18)

We leave the definition of the classical  model
as an exercise to the reader.
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2.1.3. The principal chiral field models. More gen-
erally we might be interested in the case where X = 
a compact Lie group. In this so-called called principal
chiral field model one takes a  × -invariant metric
on X:

(2.19)

The principal chiral field model has H =  × 
group of symmetries.

2.1.4. Twisted boundary conditions and complexifi-
cation. As we explained in the introduction (2.3), the
simplest twisted boundary conditions correspond to a
choice of a f lat connection in a principal H-bundle Pc

over Σ. Practically, for Σ ≈ S1 × S1 it means fixing two
commuting elements hx, hy ∈ H, hxhy = hyhx, up to a
simultaneous conjugation (hx, hy) ≡ (h–1hxh, h–1hyh),
h ∈ H.

In the case of X =  the twisted boundary condi-
tions have the form:

(2.20)

where aL, R, bL, R ∈ , and can be simultaneously con-
jugated to the maximal torus T ⊂ .

In the case of X = S2m – 1, the commuting pair of
generic twists hx, hy ∈ O(V), determines a decomposi-
tion V   = W  W∨, such that hx, hy can be repre-
sented by some commuting unitary operators a, b ∈
GL(W), [a, b] = 0:

(2.21)

In the case of X = S2m, the commuting pair of
generic twists hx, hy ∈ O(2n + 1), hxhy = hyhx, deter-
mine a decomposition V ⊕  = W ⊕ W∨ ⊕ , such
that hx, hy can be represented by some commuting uni-
tary operators a, b ∈ U(W), as in (2.21) and act on 
by multiplication by ±1. Here the metric on V is
expressed as:

(2.22)

Upon complexification we simply take ψ, ψσ, and
χ to be independent W, W∨, -valued fields, while a,
b become the general commuting elements of GL(W).
In this paper we shall mostly consider the case, where

(2.23)

however, the case of Jordan blocks is also quite inter-
esting.
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In the case of X =  the boundary conditions

are classified by an element c =  ∈ , the second
Stiefel–Whitney class of the SU(m)/  bundle, and a
pair hx, hy of the SU(m) matrices obeying

(2.24)
up to the simultaneous conjugation hα ~ h–1hαh, α = x,
y with h ∈ SU(m). The boundary conditions read,
now:

(2.25)

where  is a U(1)-valued function. Let l = gcd(p,
m), and k = m/l. Then h1  = h1, so upon going onto
a k-fold cover  of Σ one can obtain the usual twisted
boundary conditions. Upon complexification the
operators hx, hy become the generic GL(W) elements,
commuting up to an element c of the center, as in
(2.24).

2.2. The Equations of Motion upon Complexification
In the O(N)-case we get, for N even

(2.26)

for N odd:

(2.27)

In the case of the   model, upon complexifi-
cation, the equations of motion read:

(2.28)

where

(2.29)

and the gauge field Aα and the potential U are
expressed through ψ, ψσ

(2.30)
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which obey the usual constraint

(2.31)
Equations (2.30) are gauge-invariant. In what fol-

lows we shall often use the gauge, in which  = 0.

2.3. First Glimpses of Algebraic Integrability
Let us work in the real coordinates (x, y) on Σ for

now. For the O(N) model introduce the winding
ansatz:

(2.32)

with f(y) ∈ W, fσ(y) ∈ W∨ for N even, and, in addition,
χ(x, y) = χ(y) ∈ , for N odd. For the  model,
we use (2.32) as well. The twist a is given by:

(2.33)

The fields f(y), fσ(y) are constrained

(2.34)
in the case of O(N) model with even N and in the case
of the  model. In the O(N) case with N odd

(2.35)
Substituting this ansatz into the equations of

motion gives (we denote by  the y-derivatives ∂yΞ) for
the O(N) model for even N

(2.36)

where

(2.37)

One can recognise in (2.36), (2.37) a generaliza-
tion of the Neumann system [5], which is linearized
on the Jacobian of a spectral curve [6]. The
system (2.36) admits Lax representation with spec-
tral parameter, it can be mapped to a genus zero 
Hitchin system with both regular [2] and irregular
singularities. There is also an analogue of the winding
ansatz for the  model, which also maps to a
genus zero Hitchin system.

There are two conclusions from this analysis. First,
sigma models do have solutions described by the linear
motion on some abelian variety, similar to those we
saw in the quantum mechanical case. Secondly, these
abelian varieties are the Jacobians or Prym varieties of
some spectral curves. Unfortunately, the winding
ansatz does not seem to generalize in any simple way
to the case of the general sigma model solutions. We
need another approach.
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For N = 4 the O(N) model coincides with the prin-
cipal chiral field, i.e. the group SU(2)-valued sigma
model. As any principal chiral field model, it admits
the zero curvature representation, which we discuss
[7]. However, our approach to solving the O(N) model
does not use the zero-curvature type representation of
equations. Rather, it is a development of the scheme
proposed first in [8], then extended in [9], namely the
construction of integrable linear operators with self-
consistent potentials.

3. COMPLEX FERMI-CURVE

The construction consists of two steps. The first
step is to parameterize a periodic linear operator –Δ +
u by a spectral curve and a line bundle (divisor) on it.
The spectral curve , which we call the complex
Fermi-curve, parameterizes the complex Bloch solu-
tions of the linear equation. The second step of the
construction is the characterization of the spectral
curves for which there exists a set of points on the
curve such that the corresponding Bloch solutions sat-
isfy a specific quadratic relation.

3.1. Periodic Linear Operators

In this section we present the first step for the prob-
lem in question. For a smooth double-periodic com-
plex function u : Σ → , consider the Bloch solutions
of the Schrödinger-like equation

(3.1)

i.e.

(3.2)

For given u = u(z, ) define Cu ⊂  =  ×  to
be the set of (a, b) for which (3.1), (3.2) are obeyed.

In [10] it was shown that for a generic smooth peri-
odic potential the locus Cu is a smooth Riemann sur-
face of infinite genus. Moreover, it was shown that the
algebraically-integrable potentials are dense in the
space of all smooth periodic potentials. The latter are
the potentials for which the normalization  of Cu
called the Fermi-curve is of finite genus. For such
potentials  is compactified by two smooth infinity
points P±.

The Schrödinger equation with any smooth complex
potential is formally self-adjoint. Therefore to any Bloch
solution with the multipliers (a, b) ∈  there is the dual
Bloch solution ψσ with the multipliers (a–1, b–1) ∈ .
In other words any Fermi curve is invariant under the
holomorphic involution σ :  → :

(3.3)

#u

C

∂∂ψ = ψ( , ) ,u z z

ψ + + = ψ
ψ + τ + τ = ψ

( 1, 1) ( , ),
( , ) ( , ).

z z a z z
z z b z z

z }
×

C
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C
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#u #u

− −σ = 1 1( , ) : ( , ).a b a b
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Note, that fixed points of the involution exist only
when E = 0 is an eigenlevel of the (anti-) periodic
problem for the operator H.

3.1.1. A model example. It is instructive to present
the simplest example with u(z, ) = u0 = const ≠ 0. Let
Λ,  ⊂   denote the lattices, which in our world are
not, in general, complex conjugate:

(3.4)

For κ = m + nτ ∈ Λ0, define

(3.5)

and

(3.6)
Equation (3.1) is solved by:

(3.7)

The curve  can be explicitly parametrized:

(3.8)

It is invariant under the involution

(3.9)

The map (3.8) is the normalization map of the
Fermi curve  =  to . It sends an infinite num-

ber of pairs ( , ), for κ ∈ Λ0, to the double

points ( , ) = (a( ), b( )), where  are
the solutions of

(3.10)

Explicitly

(3.11)

where

(3.12)

and

(3.13)

3.1.2. Perturbation of the curve. Let us denote by
eκ, for κ ∈ Λ, the double-periodic function:
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(3.14)

Now let us consider a more general potential

(3.15)

where u(λ) ∈ . We view ε  = ε (z, ) as small smooth
periodic perturbation, so that u(λ) = ε  for λ ∈ Λ0,
and u(0) = u0 + ε  for the constant mode.

We have, with  = –∂  + u0,

(3.16)
with

(3.17)

The vanishing of (3.17) at ζ =  reflects the
identity:

(3.18)

We expand

(3.19)

and look for the solution of the Schrödinger equation

(3.20)

of the form:

(3.21)

Equation (3.20) is equivalent to the system of qua-
dratic equations:

(3.22)

We now solve (3.22) in perturbation theory, for
small ε. There are two types of possible scalings of the
solutions:

(1) Away from the double points, i.e. ε ≪ |ζ – |
for all κ ∈ Λ. In this case the solution (3.21) is domi-
nated by the single plane-wave , the corrections
being of order ε,

(3.23)

while the zero mode u(0) differs from u by the terms of
order ε2:
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(3.24)
with … denoting the higher order terms in ε. The cor-
responding nonsingular portion of the curve  is
deformed to Cu:

(3.25)

(2) We zoom at the vicinity of one of the double
points, i.e. for some κ ∈ Λ0 and a choice of “+” or “‒”
ζ = ζ+ or ζ = ζ–where ζ± are found from the equations

(3.26)

or, equivalently

(3.27)

Explicitly, u± = u ± εy, u = u(0) – εx,

(3.28)

The solution to HΨ = 0 can be found by expanding

(3.29)

where the coefficients ψ± =  + ε  + …, χλ = +
ε  + … are to be found from the quadratic-linear
equations which in the limit ε → 0 reduce to:

(3.30)
and

(3.31)

where t or  are arbitrary normalization factors.

(3.32)

The portion of the curve Cu close to the point ( ,
) is parameterized by (x, y) as follows, cf. (3.5),

(3.13):

(3.33)

This is the parametrized form of a non-singular
quadric, which degenerates to a pair of lines when

 → 0, with the double point at (x, y) = (0, 0).
For  ≠ 0 the double point is resolved.

Notice, that the resolution of double points hap-
pens simultaneously at κ and –κ, since the parameter
in the right hand side of (3.30) is even in κ. It is easy to
see that the symmetry ζ  –ζ persists at every order
in perturbation theory.

Remark 3.1. Note, that the perturbation theory
approach used in [10] is of a different kind. It is neces-
sary to emphasize that the description of the Fermi
curve for finite perturbation involves resonance of
higher order.

4. ALGEBRAICALLY INTEGRABLE 
POTENTIALS

Recall that the algebraically-integrable potentials
were defined above as those for which the Fermi curve

 is of finite genus.
The theory of periodic two-dimensional operators

integrable on one energy level, goes back to the work
[11], which the algebraic–geometrical construction of
integrable two-dimensional Schrödinger operators in
a magnetic field

(4.1)

was proposed. The shift of the potential U → U – E
transforms the equation Hψ = Eψ into Hψ = 0.
Hence, without loss of generality it can be assumed
that the level equals zero.

The construction of [11] is based on a notion of the
two-point, two parametric Baker–Akhiezer function
ψ(z, , p). The latter is uniquely determined by a
smooth genus g algebraic curve Γ with two marked
points P± and an effective non-special divisor D = γ1 +
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… + γg. The Baker–Akhiezer function and the opera-
tor H were explicitly written in terms of the Riemann
theta-function associated with the curve Γ.

In [12, 13] the sufficient conditions that single out
the algebraic-geometrical data {Γ, P±, D} correspond-
ing to potential operators

(4.2)
i.e. the operators with vanishing gauge field, was
found. The corresponding curves are the ones with a
holomorphic involution σ : Γ → Γ, having exactly two
fixed points P± = σ(P±). It is necessary to emphasize
that the latter condition turns out to be crucial for
another remarkable Novikov–Veselov result: the cor-
responding Baker–Akhiezer functions can be
expressed in terms of the Prym theta-function.

In [14] Novikov–Veselov construction was gener-
alized for the case when the energy level is the eigen-
level of the periodic Schrödinger operator.

Let Γ be a smooth genus g algebraic curve with n +
1 pairs P± and , i = 1, …, n of punctures. We also fix

the local coordinates (p) in the neighborhoods of
P±, (P±) = 0. In addition we assume a holomorphic
involution σ of the curve

(4.3)

with Γσ = {P±} ∪ {  | i = 1, …, n} being the set of its
fixed points, i.e.

(4.4)

The local parameters are σ-odd, i.e.

(4.5)
The quotient Γ/σ will be denoted by Γ0. The pro-

jection

(4.6)
represents Γ as a two-fold cover of Γ0 ramified at Γσ. In
this realization the involution σ is a permutation of the
sheets. By the Riemann–Hurwitz formula the genus
of Γ is equal to

(4.7)
where g0 is the genus of Γ0.

Let dΩ be a third kind meromorphic differential on
Γ0 with poles only at the fixed points of the involution
and residues satisfying the equations

(4.8)

The differential dΩ has 2(g0 + n) = g + n zeros that

will be denoted by , s = 1, …, g + n.

(4.9)
Let us choose for each s a point γs on Γ such that

= −∂ ∂ + ( , ),z zH U z z
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(4.10)
(there are 2g + n choices). Below γ1, …, γg + n will be
called the admissible divisor.

Lemma 4.1 [14]. For generic admissible divisor D
there is a unique Baker–Akhiezer function ψ(z, , p),
p ∈ Γ, such that

(i) ψ is meromorphic on Γ\P± and has at most simple
poles at the points γs (if they are distinct);

(ii) in a neighborhood of the points P± the function ψ
has the form

(4.11)

(iii) its values at the points  satisfy the equations

(4.12)
We now recall the standard facts about the Prym

variety and the Prym theta function.
There is a basis of a- and b-cycles on Γ with canon-

ical intersection matrix: ai ⋅ aj = bi ⋅ bj = 0, ai ⋅ bj = δij.
In such basis the involution σ acts by

(4.13)
and

(4.14)

If dωi are holomorphic differentials on Γ, normal-
ized with respect to the basis (4.13), (4.14),

(4.15)

then the differentials

(4.16)

are odd: σ*(duj) = –duj. By definition they are called
the normalized holomorphic Prym differentials. Note
that for n > 0 their number g0 + n is greater than half
the genus g of Γ. We denote by

(4.17)
the vector of the normalized Prym differentials.

The matrix Π ∈  of their B-peri-
ods

(4.18)

is symmetric, has positive definite imaginary part, and
defines the Prym theta-function

(4.19)
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where for z ∈ 

(4.20)

The theta-function has the following periodicity
properties: for

(4.21)

(4.22)

Lemma 4.2 [14]. The Baker–Akhiezer function in
Lemma 4.1 equals

(4.23)

where

(1) A(p) = u ∈ /   Π ;

(2) Ω±(p) = Ω±, where dΩ± is a unique σ-odd

meromorphic differential on Γ, normalized so that

(4.24)

with the single (second order) pole at P±, respectively, of
the form

(4.25)

(3) The vectors U± =  ∈  have the compo-
nents

(4.26)

(4) the vector Z ∈ /   Π  parame-
trizes the admissible divisor,

(4.27)

where we recall that dΩ(π(γs)) = 0.
Remark 4.3. The definition of Ω– above needs clar-

ification, since dΩ– has a pole at P–. By the integral
dΩ– we mean the choice of the branch Ω– = k– +

O( ) in a neighborhood of P– and the analytic con-
tinuation along the path. It is assumed that the paths
in the definition of A(p) and Ω±(p) are the same.

Theorem 4.4 [14]. The Baker–Akhiezer function
ψ(z, , p) given by the formula (4.23) satisfies the equa-
tion

(4.28)

with the potential
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(4.29)

In other words, the data (Γ, σ, P±, k±, Ω) defines
the Schrödinger potential u(z, ). If it happens to be
double-periodic, then its Fermi-curve and the curve Γ
coincide,  = Γ.

5. CONSISTENCY CONDITIONS
5.1. Self-Consistent Potentials: Enters the E-Function

Suppose that the curve Γ0 admits a meromorphic
function E(q) with m simple poles. Let us denote them
by q(j) ∈ Γ0, j = 1, …, m, and let { ,  = σ( )} =
π–1(q(j)) denote their preimages in Γ. The pull-back
π*E of E is the σ-even meromorphic function on Γ,
which we also denote by E, so that E  σ = E. Define
the “times”  by expansion of E near P± in the local
coordinates k±:

(5.1)

Let ψ(z, , p) be the Baker–Akhiezer function
(4.23) on Γ. Define the N = n + 2m dimensional vector
x(z, ) = χ ⊕ ψ ⊕ ψσ with χ ∈ , ψ ∈ , ψσ ∈ 
by the formulae

(5.2)

with, cf. (5.1)

(5.3)

Remark 5.1. The first Eq. in (5.3) can also be writ-
ten as

(5.4)

making manifest the role of the differential EdΩ.

Theorem 5.2. The vector x(z, ) ∈  satisfies the
equations

(5.5)

(5.6)
where u is the potential of the corresponding Schrödinger
operator. In addition, we have the following results for the
components Tzz,  of the classical stress-tensor:
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(5.7)

as well as the expressions for the higher-spin currents

(5.8)

where

(5.9)

Proof. Consider the differential

(5.10)
where

(5.11)
Since the local coordinates k± in the neighbor-

hoods of P± are σ-odd, the essential singularities of the
first two factors in (5.10) cancel. Moreover, by the
definition of the admissible divisor the poles from ψ
and ψσ = σ*ψ are canceled by the zeros of dΩ. Hence,
dΩ[0, 0] is an σ-even meromorphic differential on Γ with
the poles at where either dΩ or E have poles, i.e. at

(5.12)

The sum of the residues of dΩ[0, 0] equals zero. Then
the evaluation of the residues of dΩ[0, 0] proves
Eq. (5.5). Equation (5.6) is a direct corollary of (5.5)
and (4.28). One can also prove it by the consideration
of the residues of the differential (∂zψ ψσ +

ψ∂zψσ)EdΩ.
To demonstrate (5.7) we apply the vanishing of the

sum of the residues of the meromorphic differential
dΩ[1, 1] = ∂zψ∂zψσEdΩ. Similarly, Eq. (5.8) follows by
the residue considerations for the differential dΩ[2, 2] =
( ψ)( ψσ)EdΩ. □

5.2. Periodicity Conditions

In order for the potential u(z, ) to be double-peri-
odic we need to impose the additional g + n = 2(g0 +
n) constraints:

(5.13)

In this case we can map the curve Γ to  =  ×
, via, cf. (3.2):

(5.14)
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The expression (5.14) is well-defined, since the A-
periods of dΩ± are zero, the periods of (dA(p), ),
(dA(p), ) are integers, while the B-periods of the dif-
ferentials

(5.15)

(5.16)

are the components of the vectors 2πim, and 2πil,
respectively.

Note also that if the potential u(z, ) is double peri-
odic then the corresponding Baker–Akhiezer function
is the Bloch solution of the Schrödinger equation, i.e.

(5.17)

(5.18)

In order to prove (5.17) it is enough to check that
the left and right hand sides have the same analytic
properties on Γ.

A smooth genus g algebraic curve with involution
having 2n + 2 fixed points is uniquely defined by a fac-
tor curve and a choice of 2n + 2 points of it. Hence the
space of such curves is of dimension 3g0 + 2n – 1. The
vectors U± above depend on a choice of the first jet of
the local coordinate  in the neighborhood of the
marked points P±. Hence, the total number of param-
eters is 3g0 + 2n + 1. For fixed integer vectors l, , m,

 the 2(g0 + n) Eqs. (5.13) cut out a (local) variety of
dimension g0 + 1, if it is not empty.

The manifold  of curves Γ satisfying periodic-
ity constraints for some integer vectors l, , m,  is a
union of connected components

(5.19)

The (local) coordinates on  can be defined
similarly to those for the families of the Seiberg–Wit-
ten curves, namely

(5.20)

Although the Abelian integral α(p) is multi-valued
the expressions (5.20) are well-defined. Indeed, a shift
of α by a constant does not change A0 since dβ has no
residue. It does not change Ai either, since dβ is odd
with respect to the involution σ while the cycle ai +
ag + i is even.

From the definition (4.16) of Prym differentials it
follows, cf. (5.14):

(5.21)
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Under the periodicity assumption the monodromy
properties of the coordinates of the vector x = χ ⊕ ψ ⊕
ψσ are as follows:

(5.22)

with i = 1, …, n, while

(5.23)

where

(5.24)

5.3. Why E Exists
The existence of the meromorphic function E with

certain analytical properties on the spectral curve Γ of
the operator –Δ + u implies u is expressed quadrati-
cally in terms of its solutions.

The goal of this section is to show that in the case
of the smooth spectral curves the existence of E is also
necessary, or in other words the construction above
gives all the solutions of the problem in question.

Recall that the linear Eq. (3.1) follows from the
variation of the Lagrangian (2.15) with respect to the
variable x. The twisted boundary conditions constrain
the Lagrange multiplier U = u(z, ) by that the Fermi
curve passes in the space  of Bloch multipliers, also
known as the moduli space of f lat -connections,
through the prescribed set of points  = ( , ),
determined by the twist parameters.

In the untwisted case, (ai = bj = 1), this becomes a
highly nontrivial non-local condition that the multi-
plicity of the zero eigenvalue of the Schrödinger oper-
ator equals at least N.

Fix the twists

(5.25)
with

(5.26)

Let  be the locus of potentials u(z, ) such that the
constraint above is satisfied, i.e.

(5.27)

It is stratified by the finite-dimensional loci 
whose smooth open cell are the potentials constructed
in the previous section, with g0 the genus of the quo-
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tient-curve Γ0 := Γ/σ and #Γσ = 2(n + 1) fixed points
of the involution.

The locus  is of dimension

(5.28)
The first summand on the right hand side of (5.28)

is the dimension of the manifold of spectral curves in
 that pass through the 2m non-trivial twists ,

, j = 1, …, m. The second term is the dimension of
the corresponding Prym variety.

The tangent space to the locus  in the infinite-
dimensional space of all Schrödinger potentials u on Σ
is described by the following lemma:

Lemma 5.3. The variation δu(z, ) is in the tangent
space Tu  to the potential u ∈  if and only if the
equations

(5.29)

hold. Here ψj(z, ):= ψ(z, , ), (z, ) := ψ(z, ,

).
Proof. The first variation of (3.1) gives the equation

(5.30)
By assumption the variation δψj has the same

Bloch multipliers (aj, bj) as ψj. Multiplying both sides

of (5.30) by the dual solution  of (3.1) which has

Bloch multiplies ( , ), then averaging over Σ gives
(5.29).

The variation of the Lagrangian with respect to u
gives the equation

(5.31)

Taking into account Eq. (5.29) we get that the solu-
tions of the sigma model correspond to critical points
of the functional

(5.32)

restricted to the locus . □
Theorem 5.4. The potential u(z, ) ∈  with the

smooth Fermi curve  ∈  is a critical point of the
functional (5.32) restricted onto  if and only if there
is a meromorphic function E on the quotient-curve

= /σ with the only simple poles at qj ∈ , j =
1, …, m.

Proof. First, let us show that the functional (5.32)
coincides with the first coordinate A0 on  defined
in (5.20). Namely,

8
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(5.33)

From (5.17) it is easy to get an expression of the first
coefficients of the expansions near P+ of the differen-
tials dα and dβ

(5.34)

in terms of the first coefficients of the expansion (4.11)
of the BA function:

(5.35)

Equations (5.35) imply that α1, β1 are (z, )-inde-
pendent. From that it is easy to get

(5.36)

Then using (4.29) we get (5.33).
Consider now the variation δαdβ. Since the peri-

ods of dα are constant it is a single valued meromor-
phic differential on the Fermi curve with at most first
order poles at the marked points P±. From (5.20) it fol-
lows that it has the form

(5.37)

where dωi is the basis of normalized holomorphic dif-

ferentials on  = /σ; Ω± is the normalized differ-
ential of the third kind with the simple poles and resi-
dues ±1 at the marked points and π :  →  is the
projection.

If u(z, ) is a critical point of the functional (5.32),
then from (5.33), (5.37) it follows that δαdβ is a holo-
morphic differential on . That holomorphic differ-
ential vanishes at the points qj for the variations tan-

gent to the locus of spectral curves in  that are the

spectral curves of the potentials u ∈ , since the
multipliers (aj, bj) are preserved for these deforma-
tions. In that case the dimension of the space of holo-
morphic differentials on  vanishing at m points qj

equals to the dimension of  that is g0 + 1 – m. Rie-
mann–Roch theorem gives us the dimension of the
space of functions having at most simple poles at qj: it
is equal to m + (g0 + 1 – m) – g0 + 1 = 2. The constants
are in this space. Hence, there is a non constant func-
tion E with simple poles at qj on . □

+
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5.4. Superpotential and Glimpses
of Seiberg-Witten Geometry

Let us now reformulate the previous statement in
the form similar to (1.9). The loci  are the ana-
logues of the components  in the quantum-
mechanical case. The functional u = A0 = αdβ
is the analogue of the superpotential . Moreover, by
pulling the contour around P+ so that it circles around
the cuts and singularities of αdβ we can make it look
more like (1.9).

5.5. Discussion: from O(3) Model
to Reducible Spectral Curves

The construction above gives solutions of twisted
O(N) with N = n + 2m where m is the number of poles
of a meromorphic function E on Γ0. Since by assump-
tion E is not a constant we have m ≥ 1. In this way we
cover the case of the O(N) model with even N, and
some cases of the N odd.

For fixed m the solutions are indexed by g0 and I
that is a connected component of the space of corre-
sponding spectral curves (5.19).

The case N = 3 is special. There is only one possi-
bility: n = 1 and m = 1. Since m = 1 it follows Γ0 is a

rational curve, i.e. Γ0 = . Now, Γ, being the two-
sheet cover of Γ0 with 4 branch points, is an elliptic
curve. Therefore, the corresponding solutions are, to
some extend, trivial: they depend only on a linear
combination Uz +  where U,  are some constants.

This observation leads us [7] to look for further
generalizations of the Novikov–Veselov construction,
namely to the case of reducible spectral curves. These,
we show, produce the higher N analogues of the
instanton solutions of the O(3) model, in that the Tzz

and  components of the stress-tensor vanish for
them.

In [7] show that the corresponding Schrödinger
potentials satisfy the self-consistency conditions for
the O(2m + n)-model with n odd. Moreover the peri-
odicity constraint for the potential is effectively solved
in terms of the spectral curves of the elliptic Calogero-
Moser system.

5.6. Fermi Curve Approach to the  Model
The complex Fermi curve for the periodic two-

dimensional Schroödinger operator in a magnetic
field can be introduced in the same way [11] in the case
of the vanishing magnetic flux, i.e. trivial principal
U(1)-bundle P or -bundle .

Let Γ be a smooth genus g algebraic curve with
fixed local coordinates  in the neighborhoods of
two marked points P±. Let D = γ1 + … + γg be a generic

6
0,g n
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+
ResP
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zzT

−1N
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748 KRICHEVER, NEKRASOV
effective degree g divisor on Γ. Then Baker–Akhiezer
function associated with this data is a unique function
ψ(z, , p) such that:

(i) as a function of p ∈ Γ it is meromorphic on Γ
outside of the marked points P± with the divisor of
poles D;

(ii) in the neighborhoods of the marked points it
has the form (4.11), i.e.

(iii) normalized by the equation

(5.38)
Theorem 5.5 [11]. The BA function satisfies the

equation

(5.39)
where

(5.40)
Remark 5.6. The choice of the normalization

(5.38) of the BA function corresponds to the choice of
the gauge where  = 0.

5.6.1. The dual BA function. For an effective degree
g divisor D define the dual effective degree g divisor 
by the equation

(5.41)

• where  is the canonical class. In other words, for a
generic effective degree g divisor D there exists a
unique meromorphic differential dΩ with simple poles
at P± and the residues  such that dΩ(γs) = 0. The
total number of zeros of dΩ is 2g. The points  are the
remaining zeros of dΩ.

The dual BA function is a unique function ψσ(z, ,
p) such that:

(i) as a function of p ∈ Γ it is meromorphic on Γ
outside of the marked points P± with the divisor of

poles ;
(ii) in the neighborhoods of the marked points it

has the form

(5.42)

(iii) normalized by the equation

(5.43)
Arguments identical to that in [11] prove that the

dual BA functions satisfies the equation

(5.44)
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where

(5.45)
From the definition of the dual BA function it fol-

lows that the differential ψ dΩ is a meromorphic dif-
ferential on Γ with simple poles at P± with residues

(5.46)
Since the sum of residues of a meromorphic differ-

ential equals zero, we get

(5.47)
Similarly, we have

(5.48)

Equations (5.44), (5.47), and (5.48) imply that the
dual BA functions satisfies the formally adjoint equa-
tion

(5.49)

5.6.2. Self-consistency conditions in the 
case. Let E(p) be a meromorphic function on Γ with
simple poles at the points qi, qi = 1, …, N. Then
ψψσEdΩ is a meromorphic differential on Γ with the
poles at the points P± and qi. The sum of its residues is
zero. Hence,

(5.50)

where

(5.51)
and

(5.52)

Suppose, in addition, that the differential dE van-
ishes at the points P±, i.e. in the neighborhoods of the
marked points

(5.53)
Then the differential (∂zψ)ψσEdΩ has no residue at

the point P+ while its residue at the point P– is equal to

(5.54)
Hence,

(5.55)
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(5.56)

it follows that

(5.57)

5.6.3. Reality conditions. Let us assume that the
curve Γ is real, i.e. there is an antiholomorphic involu-
tion τ : Γ   Γ. We will also assume that under τ the
marked points are permuted, τ(P±) = , and the local
coordinates chosen in the neighborhood of these
points satisfy the condition k±(τ(p)) = – (p). If the
divisor D is real, τ(D) = D, then the uniqueness of the
BA function implies

(5.58)
From Eqs. (5.58) and (5.47) it follows that

(5.59)
The differential dΩ satisfies the equation

(5.60)
Let as assume that

(5.61)
and its poles are invariant under τ, i.e. τ(qi) = τ(qi).

Then the constants ri in (5.50) are real  = . The
data can be chosen such that

The gauge transformed properly normalized ψi

(5.62)
satisfy the equations

(5.63)
as well as the self consistency relations

(5.64)

and, cf. (2.30)

(5.65)

i.e. they are solution of the  model if the period-
icity constraints are satisfied. In (5.63) the potential V
differs from the potential U we discussed before by the
shift by Az .

Remark 5.7. The explicit theta-functional formula
for ψ is identical to (4.23) after replacing Prym theta
function by Riemann theta-function defined by the
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matrix T of b-periods of normalized holomorphic dif-
ferentials on Γ.

The periodicity constraint for the curve Γ are given
by the same Eqs. (5.13).

6. CONCLUSIONS
AND FUTURE DIRECTIONS

In this paper we found the set of complex critical
points of the O(N) model for even N and of the 
model, for generic twisted boundary conditions on the
worldsheet Σ, for generic complex metric on Σ. Each
critical point extends to a semi-infinite cell in the
complexification  of the configuration space of the
corresponding sigma model, the Lefschetz thimble.
The latter depends on nonholomorphic data, such as
the choice of hermitian metric on .

The main tool of our construction is the complex
analytic curve, the Fermi-curve , which encodes
the monodromy properties of a two-dimensional
Schrödinger operator –Δ + u. The linear fields of the
sigma model are in its kernel, while their twists define
a collection of points M1, …, MN in the moduli space

 of f lat -connections on Σ. The monodromy data
(an analogue of the Riemann-Hilbert map) maps
Fermi-curve to  in such a way that its image passes
through Mj's.

We found that the double-periodic complex solu-
tions of the sigma model equations of motion corre-
spond to the linear maps of Σ to the Prym variety of

. This is a direct analogue of the result found in [1]
for the quantum mechanical models, reviewed in the
Introduction.

We also found that the symplectic geometry of  is
reflected in a curious way in the structure of the space
of solutions. As in the quantum mechanical case (1.9),
the solutions are in one-to-one correspondence with
the critical points of a superpotential, which in the two
dimensional case turns out to be expressed through the
periods of the Seiberg–Witten-like differential αdβ,
induced from the Atiyah–Bott symplectic form dα ∧
dβ on .

The precise connection of Fermi-curves to
Seiberg–Witten curves remains a mystery. In fact,
some of the sigma model solutions can be understood
in terms of the analytic curves in several ways: using
the twistor-like curves corresponding to the zero cur-
vature representation [15–17], using Hitchin spectral
curves [18] and finally using our Fermi-curves. The
relation between these curves is as mysterious here as
it is in the conventional world of monopoles: in study-
ing the latter on  ×  one has both the curve which
encodes the scattering data [19], and the spectral curve
which actually is the Seiberg–Witten curve for quiver

 = 2 gauge theory in four dimensions [20]. Despite

−
CP

1N
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some progress in relating them [21] the general picture
is lacking.

Several extensions and generalizations of this work
are underway or should be. The case of the O(N)
model with the N odd leads to the reducible (singular)
Fermi-curves [7]. The transcendental periodicity con-
straints (5.13) turns out to have a remarkable represen-
tation in terms of the spectral curves of the elliptic
Calogero–Moser system, which has an intimate rela-
tion both with the Seiberg–Witten theory [23, 24], the
theory of solitons [20, 35], and Hitchin systems and
gauge theory [2, 25].

The construction of Lefschetz thimbles is supposed
to provide the tools of evaluation of the path integral.
The first step in the that direction is the analysis of the
determinant of the operator of the second variation of
the action. In the case of the O(N) model this would be
related to the determinant of our friend the Schrödiner
operator –Δ + U. The complex valuedness of the
potential makes the spectrum complex, leading to the
complications in the analysis of the direction of the
gradient f low whose trajectories span the thimble
emanating from a given critical point.

One can also envisage modifying the classical
action (2.14) by the contribution of loops, e.g. a one-
loop effective action. The critical points of the effec-
tive action, at the one-loop level, may well also be
expressed through the consistency relations of the
Schrödinger potential, relating it not only to its kernel,
but also to the rest of the spectrum. The conventional
1/N analysis of the O(N) and the  models done
in the infinite volume [26, 27] predicts the breakdown
of conformal invariance, mass gap generation, resto-
ration of the global symmetry. It would be nice to ver-
ify these claims by doing a more careful analysis of the
path integral. In particular, is the mass gap universal,
or depends on the choice of the thimble? a linear com-
bination thereof? Some indications of the subtlety of
this problem can be found in [28–30] on the large N
models, although on a different geometry world-
sheets Σ. See also [34–36] for the works on the appli-
cations of resurgence to the models with twisted
boundary conditions, where also some one-loop cal-
culations are performed.

The solutions of the classical complexified sigma
model on the two-torus presented in this paper are
dense in the space of all solutions in the sense that the
algebraic–geometric potentials U, being a nonlinear
generalization of trigonometric polynomials, are
dense in the space of all U’s. We hope that the repre-
sentation of these solutions as the set of critical points
of the superpotential  will help in evaluating the sum
of the integrals over the Lefschetz thimbles. Another
important goal of this project is the development of
intuition about these solutions. In the quantum
mechanical case the windings around the 1-cycles in
abelian variety, the complex Liouville torus, could be
qualitatively understood as the gas of instantons and

−
CP

1N

0
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anti-instantons (B-cycles windings) dressed with the
perturbative f luctuations (A-cycles windings). The
validity of this approximation was controlled by the
smallness of the parameter , where ω0 is the fre-
quency of the classical oscillations near the minimum
of the potential, and β → ∞ is the imaginary time. In
the case of the sigma model, there is an infinite num-
ber of ω0's, which tend to zero, thanks to the conformal
invariance of the classical theory. This is the problem
of point-like instantons, and it is at the origin of the
breakdown [31, 32] of the instanton gas picture in the
sigma models and in the four dimensional gauge the-
ory [33]. Could one find a phenomenological picture
of our solutions?

APPENDIX A
A GENERALIZATION

OF THE NEUMANN SYSTEM
Equations (2.36) for even N can be solved by

observing that the following function of the auxiliary
variable z (a U(1) current):

(A.1)

is conserved (z) = 0, for all z. Also, introduce

(A.2)

with w = z2. Now, the main claim is that the spectral
curve of the Lax operator

(A.3)

with A =  + iτ1 , D =  + iτ1 , C =  + 2iτ1  +
, B = , where

(A.4)

is conserved as well:

(A.5)
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