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Abstract
A meromorphic differential on a Riemann surface is said to be real-normalized if
all its periods are real. Real-normalized differentials on Riemann surfaces of given
genus with prescribed orders of their poles form real orbifolds whose topology is
closely related to that of moduli spaces of Riemann surfaces with marked points. Our
goal is to develop tools to study this topology. We propose a combinatorial model for
the real-normalized differentials with a single order 2 pole and use it to analyze the
corresponding absolute period foliation.

Mathematics Subject Classification 14H10 · 37C86

1 Introduction

The general concept of real-normalized differential was introduced in [18] in the
framework of the spectral theory of periodic linear operators.
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Definition 1 A meromorphic differential on a Riemann surface is said to be real-
normalized if all its periods are real.

By itself, this concept is almost equivalent to the concept of a harmonic function on a
punctured Riemann surface. Indeed, by the definition the imaginary part

y(p) := �
∫ p

dζ

of the abelian integral of a real-normalized differential dζ is a single-valued harmonic
function (defined up to adding a constant).

Conversely, let y(p) be a real-valued harmonic function on a Riemann surface with
punctures; then, locally there exists a unique up to an additive constant conjugate
harmonic function x(p). Hence, y(p) uniquely defines the differential dζ = dx +
idy, which, by construction, is a real-normalized holomorphic differential on the
complement to the marked points. One can specify asymptotic behavior of y(p) near
a marked point by the requirement that dζ extends to a meromorphic differential on
the Riemann surface and has a fixed principal part at the marked points. Recall that

Definition 2 The principal part of a meromorphic differential at a point p on a
Riemann surface C is an equivalence class of meromorphic differentials ω in a neigh-
borhood of p, with the equivalence ω ∼ ω′ if and only if ω′ − ω is holomorphic at
p.

Non-degeneracy of the imaginary part of the Riemann matrix of b-periods of a nor-
malized holomorphic differential on a smooth genus g algebraic curve implies that

Proposition 1 For any fixed principal parts of poles with pure imaginary residues,
whose sum is zero, there exists a unique real-normalized meromorphic differential dζ ,
having prescribed principal parts at the marked points.

The real-normalized differentials are central in the Whitham perturbation theory of
algebraic-geometrical solutions of the integrable systems [19,21]. A special case
of curves endowed with real-normalized differentials is known under the name of
Boutroux curves, see, e.g., [5,6]. Diagrams of separatrices similar to those appearing
in the study of real normalized differentials play a crucial role in the theory of Stokes
phenomenon [28].

In [11], it was shown that certain structures and constructions of the Whitham
theory can be instrumental in understanding the geometry of the moduli spaces of
Riemann surfaces with marked points. In particular, a new proof of the Diaz’ bound
on the dimension of complete subvarieties of the moduli spaces was obtained. In [22],
the real-normalized differentials were used for the proof of Arbarello’s conjecture [1]:
Any compact complex cycle in Mg of dimension g − n must intersect the stratum of
smooth genus g algebraic curves having a Weierstrass point of order at most n.

The main goal of this paper is to propose a combinatorial model for the moduli
space of compact Riemann surface S with one marked point p ∈ S and a chosen
1-jet z of a local coordinate at p via identification of this space with the moduli space
of real-normalized differentials having a single pole of order 2.
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Remark The 1-jet of a local coordinate z at a point of a Riemann surface S can be
interpreted as a nonzero cotangent vector at this point. Indeed, this cotangent vector
is nothing but the one given by the 1-form dz. In contrast, the principal part of a
meromorphic differential φ at a pole p of order 2, where the residue of φ vanishes,
Respφ = 0, can be identified with a tangent vector at this point: The value of this
tangent vector on a cotangent vector of the form d f , with f vanishing at p, is defined
to be Resp f φ.

Any space of differentials is foliated into loci of differentials having the same peri-
ods (absolute period foliation). In holomorphic dynamics, the study of this foliation
plays a crucial role in understanding the behavior of the Teichmüller flow on Teich-
müller spaces. This flow preserves the stratification of the space of differentials by the
orders of their zeroes.

In the Whitham theory, it was revealed [10,20,21] that the leaves of the isoperiodic
foliation of meromorphic differentials admit the structure of Frobenius manifolds,
which is a geometric manifestation of the topological quantum field theory.

Our goal is to study the stratification and the foliation of the space of real-normalized
differentials with a single order 2 pole using their combinatorial presentation bymeans
of so-called cut diagrams.

The paper is organized as follows. In Sect. 2, we recall main known results con-
cerning the absolute period foliation of spaces of holomorphic differentials. These
results are to be compared with the ours and can be used to analyze the similarity and
the difference in the properties of REL foliations in holomorphic and real-normalized
cases. In Sect. 3, we introduce a combinatorial model for the principal stratum in the
space of real-normalized differentials with a single order 2 pole based on the behavior
of separatrices of a line field associated with the differential. The principal stratum
consists of differentials having simple zeroes and such that none of the zeroes belongs
to a separatrix entering another zero. In Sect. 4, we investigate density and connect-
edness properties of the constant period loci in the principal stratum of the space of
real-normalized differentials with a single order 2 pole. Section 5 is devoted to a com-
binatorial description of the stratification of the space of real-normalized differentials
with a single order 2 pole on elliptic curves.

2 REL foliations: historical notes

The space of real-normalized differentials with a single pole of order 2 on genus g
curves is foliated: A leaf of this foliation passing through a real-normalized Abelian
differential φ is the connected component, which contains φ, in the locus of all
differentials whose subgroup of periods coincides with Per(φ) ⊂ R. For holomor-
phic differentials, a similar foliation into leaves associated with fixed subgroups
Per(φ) ⊂ C has been extensively studied. In this section, we present a brief description
of the results of these studies. The spaces of holomorphic differentials are stratified
with respect to the orders of the zeroes of the differentials, and the corresponding foli-
ations are restricted as well to the strata. A number of the results about the structure
of the foliations are related to this stratification.
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Denote by H(d1, . . . , dm), d1 + · · · + dm = 2g − 2, the subvariety in the
space of holomorphic differentials consisting of differentials having zeroes of orders
d1, . . . , dm . Below, we will also use multiplicative notation for partitions, so that
1k12k2 . . . is the partition having k1 parts equal to 1, k2 parts equal to 2, and so on. In
particular, the principal stratum H(1, . . . , 1) = H(12g−2) consists of generic differ-
entials, that is, differentials all whose zeroes are simple.

Each stratum H(d1, . . . , dm) admits a natural action of the group SL(2,R) which
generalizes the action of SL(2,R) on the space GL(2,R)/SL(2,Z) of flat tori; this
action can be described in terms of the period map or period coordinates. Let (C, φ)

be a point of the stratum H(d1, . . . , dm), � ⊂ C be the set of zeroes of φ, |�| = m,
and let γ1, . . . , γk be a basis of the relative homology group H1(C, �). Then, the
periods (∫

γ1

φ, . . . ,

∫
γk

φ

)
(1)

define a period map� : H(d1, . . . , dm) → C
k,which is a system of local coordinates

in a neighborhood of (C, φ). The choice of the basis γ1, . . . , γk defines a covering of
the stratum H(d1, . . . , dm) by the corresponding Teichmüller space Ĥ(d1, . . . , dm).

The local coordinate system given by a period map can be written as a 2 × k real
matrix; so the SL(2,R)-action in these coordinates is linear. The restriction of this
action to some fundamental domain of the mapping class group leads to the notion of
Kontsevich–Zorich cocycle.

Each stratum of the Teichmüller space Ĥ(d1, . . . , dm) carries a natural measure λ̂

obtained by pulling back the Lebesgue measure on H1(C, �,C) by the period map.
This measure descends to the measure λ on the stratum H(d1, . . . , dm) of moduli
space. However, the volume of the stratum with respect to this measure is infinite. The
natural way to solve this issue is to restrict ourselves to the subset of area 1 surfaces.
Namely, the area map α is defined as follows:

α(C, φ) = i

2

∫
C

φ ∧ φ̄. (2)

Disintegration of the measure λ = ∫
R+ λa gives a family of measures λa . The measure

λ1 defined on α−1(1) is called the Masur–Veech measure. This measure is known to
be ergodic and finite.

Now, each stratum H(d1, . . . , dm) carries a natural holomorphic foliation: A leaf
of this foliation passing through an Abelian differential φ is the connected component,
which contains φ, in the locus of all differentials whose subgroup of absolute periods
coincides with Per(φ) ⊂ C. This foliation extends to the closure H(d1, . . . , dm) of
the stratum (so that the intersection of a leaf in H(d1, . . . , dm) with a more degener-
ate stratum is a disjoint union of leaves of the foliation in the latter). This foliation
can be considered as a quotient of the foliation defined on the Teichmüller space
Ĥ(d1, . . . , dm), whose leaves are known to be invariant under the action of the map-
ping class group.

This foliation was described many times independently (see [24,25,27,31]) and is
known under several different names, for example, absolute period foliation, isoperi-
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odic foliation, REL foliation and kernel foliation. This object played an important role
in the study of dynamics of the action of GL(2,R) on the moduli space. It is known
to be invariant under the action of the Teichmüller flow and the holonomy map. The
leaves of the absolute period foliation are transverse to the orbits of the SL2(R)-action
above; the dimension of the latter leaves is 2g − 3 (for g ≥ 2).

The most interesting questions about REL foliation concern its ergodic properties
(transitivity and ergodicity) as well as geometry of the leaves. By transitivity, wemean
the existence of a dense leaf. A smooth foliation is said to be ergodic with respect to a
given measure if every Borel set that is a union of its leaves has either a full measure
or measure zero.

The first result concerning ergodicity of REL foliation in principal strata is due to
McMullen who proved in [23] that for every genus g, any fiber of the period mapping
on Hg is a slice of the Schottky locus in the Siegel space Hg of symmetric g × g
matrices with positive definite imaginary part, by a linear copy of the Siegel space
Hg−1 inside Hg (modulo partially compactifying the fibers by adding nodal abelian
differentials of compact type) (Theorem 1.1 in [23]). In case of g ≤ 3, this implies
that the absolute period foliation is ergodic and its closed leaves all come from elliptic
cohomology classes (Proposition 2.6). Recall that a cohomology class [φ] ∈ H1(C)

is called elliptic of degree d > 0, if Per(φ) ∼= Z
2 is a lattice inC and if the natural map

fromC to the elliptic curveC/Per(φ) has degree d. The proof of the ergodic statement
is based on the standard tools of homogeneous dynamics (Moore’s ergodic theorem
for the first statement and Ratner’s theorems for the second one) and uses the fact that
in case of genus 2, 3, the Schottky locus is the whole Siegel space. As for the closed
leaves, Ratner’s theorem implies that the leaf of the foliation F for a given �g defined
by φ : H1(�g,R) → C is closed iff 
 = G ∩ Sp2g(Z) is a lattice in G = Sp2g(R)φ.

However, for higher genera (g ≥ 5), there is no simple explicit way to understand,
for a given τ ∈ Hg , whether [τ ] ∈ Ag belongs to Jg or not, where Ag denotes
the moduli stack of principally polarized (complex) abelian varieties of dimension
g and Jg is the image of the moduli stack of smooth (compact complex) curves of
genus g under the Jacobian map. As a consequence, McMullen’s approach to ergodic
properties of REL foliations is hard to generalize.

However, a much more general result is established in [14] and [7]:

Theorem 2 The absolute period foliation of the principal stratum is ergodic in every
genus g ≥ 2.

The two proofs of this theorem are morally significantly different. Calsamiglia,
Deroin and Francaviglia in [7] classify completely the closures of the leaves of the
absolute period foliation of the principal stratum and obtain the statement about
ergodicity as a consequence of this classification. More precisely, first they prove
the so-called transfer principle, which asserts that the fibers of the period map are
connected, and then apply Ratner’s theory to the linear action of the integer sym-
plectic group Sp(2g,Z) on the subset in C

2g corresponding to the periods of abelian
differentials. The idea to apply Ratner’s theory in this context is due to Kapovich [17].

The proof suggested by Hamenstädt in [14] is a direct proof of ergodicity statement
performed by induction based on McMullen’s result in genus 2.
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Almost nothing is known about ergodic properties of the absolute period foliation
on irreducible components of non-principal strata. The main difficulty comes from the
fact that in other strata, the fibers of the period map are not necessarily connected (see
[30] for the concrete examples).

One of the most advanced known results in this direction is due to Hooper and
Weiss (see [16]):

Theorem 3 The absolute period foliation in the odd connected component of the stra-
tumH(g− 1, g− 1) which contains the so-called Arnoux–Yoccoz surface always has
a dense leaf.

The proof relies on two observations that rarely can be combined: On the one
hand, Arnoux–Yoccoz surfaces are periodic under the Teichmüller flow (because of
the pseudo-Anosov property); this implies, in particular, that the horizontal foliation
is uniquely ergodic; at the same time, it is known that an arbitrarily small deformation
of these surfaces results in a surface such that the horizontal foliation is periodic. (The
latter property is related to the fact that a famous invariant, defined for a measured
foliation on surfaces, named SAF, vanishes for Arnoux–Yoccoz surface.)

Theorem 3was recently extended in [30] to an infinite family of translation surfaces
endowed with a zero SAF pseudo-Anosov flow introduced by Do and Schmidt in [9]:

Theorem 4 The leaves of the Do–Schmidt surfaces are dense in the stratum in which
they belong.

Transitivity very likely implies ergodicity, but there is no rigorous proof of any ergodic
statement yet.

Finally, a series of results about the isoperiodic dynamics in affinemanifolds of rank
1 (mainly, Prym eigenform loci) was established in [30]. In particular, the following
statement was proved:

Theorem 5 Let M be a rank one affine manifold. Then, either all the leaves of the
isoperiodic foliation on M are closed or all the leaves are dense in the iso-area
sublocus of M in which they belong. In the second case, the foliation is ergodic with
respect to any SL2(R)-invariant ergodic measure supported on M.

It was used to get information about the isoperiodic dynamics in the strata (the
problemwe started with) for some particular surfaces with foliations on them (namely,
for certain classes of Prym eigenforms). Again, it was shown that the considered
foliations are transitive. These observations were also used for the classification of
affine manifolds of genus g = 3.

We complete the description of the abelian differential case with a brief outline of
the notion of the Rel flow which seems to be a very efficient tool to study the absolute
period foliations (see [16,30] for the details). For a given point of moduli space (C, φ),
we define a leaf FC of the absolute period foliation F and the action of TCFC × R

on it. This action is described using a geodesic flow associated with the leaves of the
foliation F̂ defined on the stratum of the Teichmüller space in the same way as an
absolute period foliation. This action is known under the name Rel flow even if it is
not formally a flow.
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Despite of the existence of numerous results about the absolute period foliations
in the case of abelian differentials, almost nothing is known on the analogues of
the REL foliations for meromorphic foliations. Recently, we were updated about the
partial progress obtained by Arzhakova, Calsamiglia and Deroin [2,8] who work
on the analogue of the transfer principle applied to meromorphic case with several
restrictions on the number of poles or the genus of the surface. It would be interesting
to compare their observations with our results.

3 A combinatorial model for the space of generic real-normalized
differentials

Let φ be a meromorphic differential on a Riemann surface C , and let q ∈ C be a point
that is neither a pole, nor a zero of φ. To these data, one associates a real line in the
tangent line TqC to C at q in the following way: This line is tangent to the (germ of
the) curve given by the equation � ∫ z

q φ = 0. The line is oriented in the direction in

which the imaginary part � ∫ z
q φ of the integral increases. The oriented lines defined

in this way form a smooth oriented line field on the complement to the set of poles and
zeroes of φ. This oriented line field can be extended to the zeroes and poles of φ as a
singular oriented line field. We will not use the extension to poles, while at a zero q0
of order k there are 2(k + 1) distinguished oriented real half-lines in Tq0C , whose
orientations alternate around the point q0. In particular, at a zero of order 1 (a simple
zero), the singularity of the oriented line field looks like two transversally intersecting
lines, the four half-lines being oriented in an alternating order. We denote this singular
oriented line field on the complement to the poles of φ by Iφ .

Now, suppose φ is a generic real-normalized meromorphic differential on C with
a unique pole, of order 2, at a point p ∈ C . Here, the term generic means that

• all the zeroes of φ are simple, and
• the integrals of φ between any pair of its zeroes are not purely imaginary.

Note that since all the zeroes are simple, there are exactly 2g of them.
The two integral curves of the oriented line field Iφ passing through each zero

of the 1-form φ connect this zero to the only pole of φ. Cut the surface C along
the two integral half-curves entering each zero of φ; the result will be called a cut
surface. Picking a point A in the cut surface C and introducing on this cut surface
the complex coordinate

∫ x
A φ, we identify it with the complex line C with 4g pairwise

distinct distinguished points on it split into 2g disjoint pairs, which is also cut along
the 4g vertical half-lines issuing down from the distinguished points. The vertical lines
�(z) = const form the image of the integral curves of the line field Iφ on C , while
the horizontal lines �(z) = const are the integral curves of the second line field, Rφ ,
formed by the lines tangent to the germs of the curves � ∫ z

q φ = 0, for each point
q ∈ C that is neither a pole, nor a zero of φ. Each pair of distinguished points lies
on the same horizontal line. The original surface C can be reconstructed from the cut
complex line C by gluing each left (resp., right) side of a cut to the right (resp., left)
side of the pair cut.
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Fig. 1 a A cut diagram and b the corresponding arc diagram

In the opposite direction, pick on the complex line C any 2g pairs (pi , qi ), i =
1, 2, . . . , 2g, of distinct points possessing the following properties:

• in each pair, two points have the same imaginary part (but distinct real parts):
�pi < �qi , �pi = �qi ;

• points belonging to different pairs have distinct imaginary parts.

Now, make cuts along vertical half-lines issuing down from all the points pi , qi and
going to infinity (see Fig. 1). To obtain the surface C = C(p,q), glue the left (respec-
tively, right) side of the cut at the point pi to the right (respectively, left) side of the
cut at the pair point qi , identifying points whose coordinates have the same imaginary
part. Under this gluing, the meromorphic 1-form dz induces a meromorphic 1-form
on C(p,q), which we denote by φ(p,q). The 1-form φ(p,q) is real-normalized. Indeed,
the group of its periods is generated by the distances qi − pi , which are real.

Remark The shift of all the points pi , qi , which determine the cutting, by the same
complex vector τ does change neither the resulting surfaceC(p,q), nor the 1-formφ(p,q)

on it. This shift corresponds to the choice of the base point A on the cut surface C .
Therefore, we may choose an appropriate normalization of the set (p, q). One of the
possible normalizations can require that

2g∑
i=1

(pi + qi ) = 0.

Remark At a simple zero p0 of the 1-form φ, there are two integral curves of the line
field Rφ , which is complimentary to Iφ , leaving the zero. In one of the two directions,
the integral curve of Iφ approaches infinity, while in the other one, it returns to p0; the
integral of φ over this closed curve is a period of φ. This period is strictly positive.

If we want that this resulting 1-form has a unique pole on C , we must impose a
non-degeneracy condition. This non-degeneracy condition is best expressed in terms
of the arc diagram associated with the given cut diagram. Pick a horizontal line in C

on the level that is so low that each of the 4g vertical cuts intersects it. Then, the cuts
intersect the horizontal line at 4g pairwise distinct points split into 2g pairs. Requiring
that the 1-form φ has a single pole means that after cutting the horizontal line and
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regluing it according to the gluing scheme given by the cuts, we obtain a connected
line once again (and not a disjoint union of a line and a number of circles).

We connect points belonging to the same pair by an arc in the upper half-plane and
get an object called an arc diagram. We say that two arcs intersect one another if their
ends follow the horizontal line in alternating order. The intersection graph of an arc
diagram is the graph whose vertices correspond one to one to the arcs of the diagram,
and two vertices are connected by an edge iff the corresponding arcs intersect one
another. The following statement justifies the degeneracy condition.

Theorem 6 [4,29] The result of cutting and gluing the horizontal line is a connected
line iff the adjacency matrix of the intersection graph of the arc diagram is non-
degenerate over F2.

For example, the adjacency matrix of the intersection graph of the arc diagram in
Fig. 1, which is

⎛
⎜⎜⎝
0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎞
⎟⎟⎠ ,

is degenerate. This means that this arc diagram cannot appear as the result of cutting
a (genus 1) surface endowed with a real-normalized differential having a single pole
of order 2.

(In fact, the statement proved in [4,29] is more general. It asserts that the number
of connected components of the result of regluing the horizontal line is one more than
the corank of the adjacency matrix of the intersection graph. This statement describes
the number of poles of the meromorphic differential form obtained from dz on the
Riemann surface, which results from the gluing of C along the cuts. All the resulting
poles but one are of order 1; they correspond to compact connected components of
the reglued horizontal line. The last pole, which corresponds to the segment of the
reglued horizontal line containing both infinite rays, is of order 2.)

Now, the set of non-degenerate arc diagrams with 2g arcs is in a one-to-one
correspondence with the set of connected components in the space of generic real-
normalized differentials: Any two cut diagrams whose arc diagrams coincide with a
given one can be connected by a smooth path in the set of cut diagrams having the
same arc diagram, while cut diagrams with different arc diagrams belong to different
connected components. Therefore, counting non-degenerate arc diagramswith 2g arcs
allows one to count connected components in the space of generic real-normalized
differentials.

Proposition 7 The number of connected components in the space of generic real-
normalized differentials with a single pole of order 2 and no other poles on genus g
surfaces is equal to

(4g − 1)!!
2g + 1

.
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Here, the double factorial (2m − 1)!! of a positive odd number denotes the product
of all odd numbers from 1 to (2m − 1), (2m − 1)!! = 1 · 3 · 5 · · · · · (2m − 1). The
sequence of these numbers starts with

1, 21, 1485, 225225, . . .

and coincides with the sequence λg(2g) in [15], which enumerates strata of maxi-
mal dimension 4g − 3 in the Strebel stratification of the combinatorial moduli space
Mcomb

g;1 = Mg;1 × R+.

4 Absolute period foliation of themoduli spaces of real-normalized
differentials

In this section, we introduce the absolute period foliation on the space of real-
normalized differentials with a single pole of order 2 and prove that the given period
lattice locus of this foliation is dense for almost each period lattice.

For a real-normalized meromorphic differential φ on a Riemann surface C , denote
by Lφ the additive subgroup in R consisting of the periods of φ (the integrals of the
1-form φ over closed curves in C not passing through its poles). For a generic differ-
ential φ, the subgroup Lφ coincides with the one consisting of Z-linear combinations
of the numbers pi − qi , i = 1, 2, . . . , 2g. Indeed, the homology classes of the closed
curves that are represented by arcs in the complement to the cuts in C connecting the
points pi to qi form a basis in H1(C;Z), and the integral of dz over such an arc is
independent of the choice of the arc, whence pi − qi . Note that each subgroup that
can be generated by 2g (or fewer) reals can appear in this way. Remark also that there
are two different types of these subgroups: Either such a subgroup is discrete, gener-
ated by a single element a ∈ R, a > 0, or it is dense in R. The subgroup Lφ ⊂ R

is dense iff φ has at least two incommensurable periods. In addition, we say that a
real-normalized differential φ on a genus g surfaceC is totally incommensurable if its
period subgroup Lφ ⊂ R cannot be generated by less than 2g reals, that is, if Lφ ⊂ R

is a free Z-module of rank 2g.
Denote byRg the space of real-normalized meromorphic differentials with a single

pole of order 2 on genus g surfaces. For each additive subgroup L ⊂ R generated by
at most 2g elements, consider the locus AL ⊂ Rg of the period foliation inRg , which
consists of the real-normalized differentials φ such that Lφ = L .

The following statement is easy to prove.

Proposition 8 For a dense period subgroup L ⊂ R, the locus AL ⊂ Rg is dense
inRg.

Indeed, if a subgroup L with at most 2g generators as a Z-module is dense in R,
then the subset in R

2g consisting of vectors (a1, . . . , a2g) such that the 2g-tuple
{a1, . . . , a2g} of their coordinates generate L is dense in R

2g . Now, if we take a
generic φ ∈ Rg and its cut representation, then in any neighborhood of this cut rep-
resentation we can find a cut representation of a generic 1-form having the same arc
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Fig. 2 The 3-caravan

diagram as φ, with the group of periods coinciding with L: It suffices to replace the
2g-tuple of absolute periods of φ by a sufficiently close generic 2g-tuple of numbers
generating the group L .

Theorem 9 For a totally incommensurable 1-form φ, the locus ALφ ⊂ Rg con-
tains at least as many connected components as the set of conjugacy classes
GL(2g,Z)/Sp(2g,Z). In particular, this locus consists of two connected components
for g = 1 and consists of infinitely many connected components for g > 1.

Thus, in contrast to the holomorphic case, where a typical isoperiodic locus is
connected, a typical isoperiodic locus in the space of real-normalized differentials
consists of infinitely many connected leaves.
Proof of Theorem 9. For a given cut diagram, when moving a pair of corresponding
cuts vertically (that is, changing the imaginary parts of the cutting points), we do
not change the subgroup Lφ of periods of the corresponding 1-form φ. Therefore,
each cut diagram can be connected by a continuous path inside a locus ALφ with
a cut diagram all whose cut points have the same imaginary part. Without loss of
generality, this imaginary part can be set equal to 0. Similarly, we can move any pair
of corresponding cuts horizontally, inside a given locus ALφ , while each cut is disjoint
from any other cut.

By a g-caravan, wewillmean the arc diagram formed by g consecutive pairs of arcs,
from left to right, such that the arcs in each pair intersect one another, while the arcs
in different pairs do not intersect, see Fig. 2. A cut diagram whose corresponding arc
diagram is a g-caravan will be called a g-caravan cut diagram, and the corresponding
cut surface is a g-caravan cut surface.

Now, we are going to prove

Proposition 10 For a totally incommensurable period subgroup Lφ , each generic cut
surface can be connected by a continuous path in the period locus ALφ to which it
belongs to a g-caravan cut surface.

Consider a cut diagram, with the imaginary part of all cut points being equal to 0.
Moving a pair of corresponding cuts horizontally, say, in the positive direction, we
remain in the same leaf of the period foliation, and this assertion remains true even if
the two cuts coincide (meaning, in particular, the cut surface fails to be generic). The
requirement that the 1-form φ is totally incommensurable guarantees that only one
pair of cuts, not two pairs, can meet simultaneously under a horizontal move of a pair
of cuts. As the pair of corresponding cuts moves further in the same direction, the cut
that has met another one switches to the pair of this other cut and continues moving,
see Fig. 3.

With this move, the arc diagram of the cut diagram changes undergoing the so-
called second Vassiliev move, which consists in sliding one end of an arc along the
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Fig. 3 A switch of a cut: As an outer arc of length a moves to the left, its right end meets the right end of
the inner arc, of length b, b < a, and switches to the left end of the inner arc; as a result, the length of the
first arc becomes a − b

other arc. In [3], it is shown that for any non-degenerate arc diagram of 2g arcs, there
is a sequence of second Vassiliev moves making it into the g-caravan. In our case, the
proof must be modified, because of the presence of a metric—distances between the
arcs’ ends, and we present a modification of the proof below.

Step 1. Take the arc with the leftmost end and start moving it to the left, while
preserving the positions of the arc ends belonging to all the other arcs, until the right
end of the arc meets an end of another arc. If the two arcs do not intersect one another
(that is, the right end of the first arc meets the right end of the second one), then apply
the second Vassiliev move for the first arc with respect to the second one (as in Fig. 3),
and repeat the process. Since the arc diagram is non-degenerate, finally we arrive at
the situation where the second arc intersects the first one. Starting from this point, we
will move the two intersecting arcs to the left as a whole aiming at isolating this pair
of arcs.

Step 2. Now, we have two intersecting arcs, one of them with the leftmost end, and
such that the left end of the second arc is the left neighbor of the right end of the first
arc. We will refer to the interval between the left ends of the first and the second arcs
as the left interval, and to the interval between their right ends as the right interval. As
we move two intersecting arcs with neighboring ends to the left, an end of another arc
can meet either the left or the right end of the second arc.

2.1. Consider first the case where the arc end met is in the left interval. In this case,
we apply the second Vassiliev move to the third arc by sliding its end along the second
arc, see Fig. 4. As a result, the number of arc ends in the left interval decreases by one,
while the number of arc ends inside the right interval remains unchanged.

2.2. Now, suppose the arc end met is in the right interval. If this is the right end of
the third interval, then we apply the second Vassiliev move by sliding the right end
of the second arc along the third arc. As a result, the number of arc ends in the right
interval decreases at least by two, while the number of arc ends inside the left interval
remains unchanged. If in c, this is the left end of the third interval (meaning that the
second and the third arcs intersect one another), then by sliding the left end of the third
arc first along the second arc, next along the first arc, we move this left end from the
right interval to the left one. As a result, the number of arc ends in the right interval
decreases by one, while the number of arc ends in the left interval increases by one,
see Fig. 5.

Thus, in each situation, we either decrease the total number of arc ends in both left
and right intervals or decrease the number of arc ends in the right interval. Hence,
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Fig. 4 Moving a pair of intersecting arcs, one of which has the leftmost end, to the left, for the case where
the first arc end met belongs to the left interval: a the second end of the arc met also belongs to the left
interval; b the second end of the arc met does not belong to the left interval, and the arc does not intersect
the second one; c the second end of the arc met does not belong to the left interval, and the arc intersects
the second one

Fig. 5 Moving a pair of intersecting arcs, one of which has the leftmost end, to the left, for the case where
the first arc end met belongs to the right interval: a the second end of the arc met also belongs to the right
interval; b the arc met intersects the second one

proceeding by induction we can isolate the configuration of the first and the second
arcs.

Now, isolating g pairs of pairwise intersecting arcs one by one, we obtain a g-
caravan cut surface connected by a continuous path to the cut surface we started with,
inside the leaf it belongs to. The proposition is proved.

To complete the proof of Theorem9, remark first that, for a totally incommensurable
1-form φ, any g-caravan in ALφ defines a basis in the Z-module Lφ , which consists of
the lengths of the arcs, numbered from left to right. Any two such bases are related by
a unique linear transform in GL(2g,Z). On the other hand, any g-caravan determines
a basis in the first homology of the underlying 2-dimensional surface with coefficients
in Z, and the transition matrix in this homology from one basis to another one belongs
to the group Sp(2g,Z). Hence, the set of connected components of the locus ALφ

is at least as large as the set GL(2g,Z)/Sp(2g,Z). Finally, for g = 1, any element
in Sp(2,Z) can be easily realized by a sequence of second Vassiliev moves.
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5 Stratification of themoduli spaces of real-normalized differentials:
a case study

In this section, we study the real stratification of the moduli space of real-normalized
differentials with a single pole of order 2 on stable elliptic curves (possibly singular),
the pole being a marked point on the curve.

Recall that meromorphic differentials with a single order 2 pole form a rank 2
vector bundle over Mg,1, with the fiber over a stable curve (C, p) being ωC + 2p,
where ω is the relative dualizing sheaf over Mg,1. The fiber of this bundle over the
singular genus g curve consists of meromorphic differentials over the normalization
of this curve, which is a smooth curve, having poles of order at most 1 at the two
preimages of each double point (node), with mutually canceling residues. In general,
taking an analytic section of this bundle over Mg,1, one expects that its limit over
a singular curve has simple poles at the nodes. It turns out that this does not happen
for real-normalized differentials of the second kind (i.e., having vanishing residues
at all poles), and, in particular, for real-normalized differentials with a single pole of
order 2. Recall that the space of real-normalized differentials with a single pole of
order 2 over genus g curves is naturally identified with the total space of the complex
line bundle L∨

1 over Mg;1.

Theorem 11 [11] Any bounded real analytic section of L∨
1 over Mg;1 extends to a

continuous section of the extension of this bundle toMg;1. The limit of the section over
a singular curve C is the unique meromorphic differential that is identically zero on
all connected components of the normalization of C except the one containing the pole
p. On that component, it is the unique differential with real periods and prescribed
singular part at p.

Remark Degenerations of real-normalized differential are described in full generality
in [13].

Now, let us return to elliptic curves. The stratification in question is defined by the
mutual positions of the zeroes of the differential φ with respect to the line field Iφ . A
meromorphic differential on an elliptic curve with a single pole, the order of which
is 2, has either two distinct zeroes of order 1, or a single zero of order 2. In addition,
one of the separatrices of the line field Iφ , or both of them, passing through a zero of
order 1 may contain the other zero of order 1.

On a singular elliptic curve, which is the rational curve with two points glued
together, the meromorphic differential φ with a single pole of order 2 and no other
poles has no zeroes. However, through each of the two glued points an integral curve
of the line field Iφ passes, and we shall consider the half of this integral curve entering
the point as the separatrix of this point.

From the point of view of the pole, there are four different cases depending on
the number of separatrices leaving the pole and entering the zeroes: There could be 4
separatrices (the principal stratum), 3 separatrices (the stratum in which one of the
simple zeroes belongs to a single separatrix entering the other simple zero, including
the case of double zero on a smooth curve), 2 separatrices (the stratum in which one of
the simple zeroes belongs to both separatrices entering the other simple zero, as well as
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Fig. 6 a A generic cut surface
inR0

1 and b a corresponding
element of the principal stratum

(a)

(b)

the stratum of generic real-normalized differentials on the singular elliptic curve) and
1 separatrix (the stratum consisting of singular curves for which a separatrix leaving
a preimage of a double point in the normalization of the singular curve contains its
other preimage).

In this way, the moduli space of nonzero real-normalized differentials R1 is split
into the following strata. The cut surfaces corresponding to each of the strata are shown
in Figs. 6, 7, 8 and 9.

Here, the identification of the cut surface with the cut diagram is established as
follows: Take an arbitrary point A on the cut surface not belonging to the cuts and
introduce the global coordinate by considering the function

∫ q
A φ of the varying point q

on the cut surface. This coordinate is defined uniquely up to shifts of the origin deter-
mined by the choice of the base point A. We fix this shift by requiring that the sum of
all cut ends is 0.

Proposition 12 The general stratum R1(4) is a contractible cone R3+ × R of dimen-
sion 4 over the 3-dimensional space R0

1(4) = R
3+.

The R+-cone structure of a general stratum is given by multiplication of a 1-form
by a positive real constant. The imaginary part of the coordinates of each copy of the
zeroes of φ in the cut diagram is the same; we call it the imaginary part of the zero.

To each general cut diagram, one can uniquely associate a cut diagram with 0
imaginary parts of the zeroes. This mapping defines a fibration of the spaceR1(4) of
general cut diagrams over the space R0

1(4) of general cut diagrams with 0 imaginary
parts of the zeroes.
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(a)

(b)

Fig. 7 a An element in R0
1(3) and b three pairs of equivalent cut diagrams in R1(3) associated with this

element

(a)

(b) (c)

Fig. 8 a An element in R0
1(2); b a cut diagram representing a smooth elliptic curve in R1(2) associated

with this element (left) and a generic cut diagram close to it (right), c (center) a cut diagram representing
a singular elliptic curve in R1(2) associated with this element (the dashed lines represent the separatrices
that are not cuts) together with two close generic cut diagrams (left and right)

Fig. 9 A cut diagram
representing a singular elliptic
curve inR1(1) endowed with a
meromorphic differential such
that the separatrix passing
through one of the singular
points contains the other one

123



Real-normalized differentials with a single order 2 pole Page 17 of 19 36

Now, let a, b, c denote the real parts of the relative periods between the two zeroes,
a > 0, b > 0, c > 0. These values can be arbitrary, whence the space R0

1(4) is
naturally identified with R

3+, so that R1(4) is an R-fibration over R3+.
Now, let’s turn to the case of three separatrices. The stratum R0

1(3) is the one
consisting of real-normalized meromorphic differentials having a single zero, one of
order 2. Its complement R1(3) \ R0

1(3) consists of real normalized differentials with
two zeroes, each of order 1, one of which belongs to exactly one of the separatrices
entering the second zero.

Proposition 13 The stratumR0
1(3) has dimension 2 and is homeomorphic toR

2+. The
stratumR1(3) is a disjoint union of three copies of R2+ × R+ of dimension 3 and the
stratumR0

1(3).

Once again, the R+-cone structure is defined by multiplication of a 1-form by a
positive real constant. The space R0

1 consisting of cut diagrams with zero imaginary
parts of all the three cut points is the positive real quadrant R2+, the coordinates
a > 0, b > 0 being the two φ-periods. The three 3-cells R3+ attached to R0

1, together
formingR1, are shown in Fig. 7.

In all the three pairs, we choose the left cut diagram as the canonical representative
of the pair. It is distinguished from the other one by the requirement moving from
left to right along the low horizontal line, when meeting a double cut we jump to the
nearest pair cut.

The following proposition describes the way the stratum R1(4) is attached to the
stratumR1(3). This description can be given on the level of the strataR0

1(4) andR0
1(3),

respectively.

Proposition 14 The stratumR0
1(4) is triply attached to the stratumR0

1(3), depending
on around which of the cuts at the double zero contains two simple zeroes, when
perturbed.

Now, if we have two separatrices, then none of them is really “separating” at infinity,
meaning that the integral

∫ q
P φ considered as a function in the varying point q of the

curve is continuous. We shall denote the corresponding separatrices (or their parts) by
dashed lines.

Proposition 15 The stratum R0
1(2) consists of singular elliptic curves endowed with

a meromorphic differential dz having a pole of order 2 and no other poles, with
two real points with opposite coordinates glued together. It is one-dimensional and
homeomorphic to the positive half-line R+. Its complement in R1(2) consists of two
connected components. The first one of these connected components consists of smooth
elliptic curves endowed with a meromorphic differential having two distinct zeroes,
one of which belongs to both separatrices of the vector field Iφ entering the second
zero and is homeomorphic to R+ × R+. The second connected component consists
of singular elliptic curves endowed with a meromorphic differential dz, which has a
single pole of order 2 and no other poles, with two distinct points having opposite
coordinates whose real part is nonzero glued together and homeomorphic to two
copies of R+ × R+.
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Indeed, if an elliptic curve is singular, then the integral of the differential form φ

defines a coordinate on the rational curve, which is the normalization of the elliptic
one. This coordinate is well defined up to a shift, and this shift can be chosen so as
to make the sum of the coordinates of the two points glued together equal to 0. If
these coordinates are real, then we obtain a point in R0

1(2). If the original elliptic
curve is smooth and one of the zeroes of the meromorphic differential belongs to both
separatrices of the second zero, then both the curve and the differential are totally
determined by two positive real numbers, both being the periods of φ.

Proposition 16 The stratum R0
1(1) is empty. The stratum R1(1) consists of singular

elliptic curves endowed with a meromorphic 1-form φ having a single pole of order 2
and no other poles such that the coordinates of the two preimages of the double point
under normalization have coinciding real parts. The stratumR1(1) is one-dimensional
and is homeomorphic to R+.
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