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Real-normalized differentials: limits on stable curves

S. Grushevsky, I.M. Krichever, and C. Norton

Abstract. We study the behaviour of real-normalized (RN) meromorphic
differentials on Riemann surfaces under degeneration. We describe all pos-
sible limits of RN differentials on any stable curve. In particular we prove
that the residues at the nodes are solutions of a suitable Kirchhoff problem
on the dual graph of the curve. We further show that the limits of zeros
of RN differentials are the divisor of zeros of a twisted differential — an
explicitly constructed collection of RN differentials on the irreducible com-
ponents of the stable curve, with higher order poles at some nodes. Our
main tool is a new method for constructing differentials (in this paper,
RN differentials, but the method is more general) on smooth Riemann sur-
faces, in a plumbing neighbourhood of a given stable curve. To accomplish
this, we think of a smooth Riemann surface as the complement of a neigh-
bourhood of the nodes in a stable curve, with boundary circles identified
pairwise. Constructing a differential on a smooth surface with prescribed
singularities is then reduced to a construction of a suitable normalized
holomorphic differential with prescribed ‘jumps’ (mismatches) along the
identified circles (seams). We solve this additive analogue of the multi-
plicative Riemann–Hilbert problem in a new way, by using iteratively the
Cauchy integration kernels on the irreducible components of the stable
curve, instead of using the Cauchy kernel on the plumbed smooth surface.
As the stable curve is fixed, this provides explicit estimates for the differ-
ential constructed, and allows a precise degeneration analysis.
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Introduction

A smooth jet curve X is a Riemann surface C with distinct marked points
p1, . . . , pn ∈ C, and with prescribed singular parts σ1, . . . , σn of a meromorphic
differential at these points. If each prescribed residue rℓ at each pℓ is purely imag-
inary, and

∑
rℓ = 0, then there exists a unique meromorphic differential Ψ on C

with singular part σℓ at each pℓ, holomorphic on C \ {p1, . . . , pn}, and such that
all periods of Ψ are real. This differential is called the real-normalized (RN) mero-
morphic differential, and this paper is one in a series investigating its properties
and using it to study the geometry of the moduli space of curves. Here we focus on
the behaviour of the RN differential as the Riemann surface degenerates to a stable
singular curve.

The jump problem. Our main technical tool is a new analytic method for study-
ing the behaviour of differentials on Riemann surfaces under degeneration. This is
done by working explicitly in plumbing coordinates, and we need to introduce some
notation to describe it; this setup will be defined in full detail in § 4. Fix a nodal
curve C; its dual graph Γ has vertices, denoted by v, corresponding to irreducible
components Cv of the normalization of C, and (unoriented) edges, which we denote
by |e|, corresponding to nodes q|e| ∈ C. We will write e for edges of Γ together with
a choice of orientation. If an oriented edge e starts from a vertex v, we say that it
corresponds to a pre-image qe ∈ Cv of a node q|e| ∈ C. We write −e for the edge e
with the opposite orientation, |e| for the corresponding unoriented edge, and write
E and |E| for the sets of oriented and unoriented edges, respectively.

Plumbing gives a way to understand versal deformations of C in the Deligne–
Mumford compactification — that is, coordinates on M g,n transverse to the bound-
ary stratum containing C. To define plumbing coordinates s = (s1, . . . , s#|E|),
one fixes once and for all a local coordinate ze on the normalization of C near
each qe. Let Ĉs be the complement in C of the union of the disks {|ze| <

√
|s|e||}

around each qe. Then Ĉs is a Riemann surface with boundary components γe :={
|ze| =

√
|se|

}
. The compact Riemann surface Cs is obtained from Ĉs by identify-

ing each pair of boundaries γe and γ−e via the map Ie : ze 7→ s|e|/ze. The complex
structure on Cs is obtained by declaring a function on Cs to be holomorphic if it
is holomorphic outside all ‘seams’, and continuous on each seam γ|e| ⊂ Cs; Cs is
smooth if and only if each s|e| is non-zero.

Then a differential on Cs is the same as a differential on Ĉs such that its bound-
ary values on γe and γ−e match under the pullback by Ie; this is to say, there is
no ‘jump’ on the seam γ|e|. Our approach to constructing such a differential on
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Cs with prescribed singular parts is novel. We start with a collection of meromor-
phic differentials on the irreducible components Cv with prescribed singular parts.
Then, of course, the boundary values of this collection on the seams do not agree,
so there are non-zero ‘jumps’. We then construct explicitly a suitably normalized
collection of holomorphic differentials on Cv such that their jumps are precisely
equal to those of the original collection of meromorphic differentials. Subtracting
this collection of holomorphic differentials from the collection of meromorphic dif-
ferentials then gives a differential on Ĉs with no jumps, that is, a meromorphic
differential on the smooth surface Cs with prescribed singularities.

The problem of constructing a differential with prescribed jumps is an additive
analog of a well-known general problem, known variously as the Riemann–Hilbert
problem, or the Riemann boundary value problem. We use the name jump problem
for the version of the problem that is relevant for us. It is the question of con-
structing a suitably normalized differential on a Riemann surface with boundary,
with prescribed differences of boundary values on pairwise identified boundary cir-
cles. Equivalently, this is the problem of constructing a differential on a compact
Riemann surface, defined on the complement of a set of disjoint closed loops, with
prescribed jumps from one side of each loop to the other side. As a matter of
language, we will talk about the jump problem either on Ĉs or on Cs, as is more
convenient in each case.

Classically (see [19], [22]), the jump problem is solved by integrating the jumps
with respect to the suitably normalized Cauchy integration kernel on the surface,
that is, on Cs in our case. In this classical approach it appears very difficult to
determine the behaviour of the solution under degeneration, as the Cauchy ker-
nel varies with s, and degenerates as s → 0. The technical core of our paper is
a new method for solving the jump problem, which allows explicit estimates for the
solution under degeneration.

Instead, we view Ĉs as a subset of the normalization of C, and try to obtain the
solution of the jump problem by integrating with respect to the suitably normalized
Cauchy kernels of Cv, which are thus independent of s. We then compute the jumps
on the seams of Cs of the convolution of arbitrary initial data on the seams with the
Cauchy kernels on Cv. While the jumps on γ|e| of this convolution are of course not
equal to the initial data, the condition for the jumps to be equal to the prescribed
data amounts to an integral equation on the functions that are convolved with
the Cauchy kernels on Cv. We show that this integral equation can be solved, by
showing that the norm of the corresponding integral operator is sufficiently close
to 1, so that it can be formally inverted, as the sum of an iteratively defined series.

Our main technical result is this construction in plumbing coordinates, Propo-
sition 5.2, and the bound for it, Proposition 5.3. This allows us to construct and
estimate the RN differentials in an entire neighbourhood of C in the moduli space.

While we apply this machinery to study the limits of RN differentials and their
zeros, it can also be used, for example, to study the behaviour of a normalized basis
of holomorphic differentials. Hu and the third author [11] used our approach to the
jump problem to extend and re-prove the results of Yamada on degenerations of
period matrices.
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Limits of RN differentials. We use this explicit construction of RN differentials
to understand their degenerations, in plumbing coordinates. Our first result is on
limits of RN differentials with arbitrary residues. As our setup is real-analytic, we
state it for degenerating sequences (not families). Let {Xk} be a sequence of smooth
jet curves converging to a stable jet curve X, with underlying smooth curves Ck,
with plumbing coordinates sk, converging to a nodal curve C, whose dual graph
is Γ. The rough version of our first result is as follows.

Theorem 0.1 (Theorem 3.7 and Proposition 3.14). Let {Xk} be a sequence of
smooth jet curves converging to a stable jet curve X . The limit RN differential
Ψ := limk→∞Ψk exists if and only if the solutions of the flow Kirchhoff problem
on Γ, with inflows irℓ,k and resistances log |sk|, converge. If the limit Ψ exists, then
Ψ|Cv is the RN differential with prescribed singularities at those marked points pℓ

that lie on Cv , and with simple poles at the pre-images of the nodes, with residues
given by the limit of solutions of the flow Kirchhoff problem on Γ, with inflows irℓ

and resistances log |sk|.

Thus the existence of the limit RN differential is controlled by the existence
of the limit of solutions of a flow Kirchhoff problem on the dual graph of the
stable curve (see Definition 1.2 for the precise general statement of the Kirchhoff
problem). Surprisingly, it seems that the classical problem of determining and
parameterizing all possible limits of solutions of the flow Kirchhoff problem as
some resistances approach zero has not been addressed previously. In Lemma 1.13
we show that if the resistances (that is, in our case, log |sk|) converge in a suitable
iterated real oriented blowup S#|E|−1

+ of the non-negative sector of the real sphere
S#|E|−1 :=

(
R#|E|

>0 \ {0}
)
/R>0 (see Definition 1.10), then the solutions of the flow

Kirchhoff problem converge. We will call such degenerating sequences admissible,
and will show that in an admissible sequence the limit of solutions of the flow
Kirchhoff problem is given by the solution of what we call the multi-scale Kirchhoff
problem (Definition 1.11), with resistance given as a point in S#|E|−1

+ . The full
notation is rather involved, and we thus postpone the precise statement of the
theorem to § 3, where it appears as Theorem 3.7, stated using the notation on
the Kirchhoff problem, developed in § 1.

This theorem on limits of RN differentials is proven by applying the jump prob-
lem. We start with a collection of RN differentials on the irreducible components Cv

of the nodal curve C, whose residues at the nodes are given by solutions to the limit-
ing multi-scale flow Kirchhoff problem. We then construct the solution of the jump
problem with a normalization condition which ensures that all periods over cycles
which do not intersect a neighbourhood of the nodes are real. We finally find an
explicit perturbation of the residues, as a series expansion in plumbing parameters
(see (6.11)), such that the resulting differential is actually RN. The final part of
the argument relies on the estimates for the solution of the jump problem ensuring
these terms disappear in the limit.

Limits of zeros of RN differentials. The zeros of differentials play a crucial
role in various questions on moduli. In Teichmüller dynamics one studies the
orbits on the stratum: the moduli of Riemann surfaces together with a holomor-
phic differential with a prescribed configuration of zeros. For possible applications
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to Teichmüller dynamics, and for applications of common zeros of RN differen-
tials to cusps of plane curves in our upcoming work [10], it is natural to study
the limits of zeros of differentials under degeneration. The difficulty is that the
limit differential Ψ may be identically zero on some irreducible component Cv.
Algebro-geometrically, one approaches this by considering aspects of limit linear
series —which, however, are not yet fully developed for an arbitrary stable curve,
though see [18] for recent progress. In [2] the problem is dealt with by deforming, in
plumbing coordinates or using flat surface constructions, differentials on irreducible
components of the stable curves that have zeros as prescribed.

Our approach to locating the zeros of RN differentials is again via the jump
problem, with a further improvement resulting from starting from a better approx-
imation of the solution. Indeed, to determine limits of RN differentials, we started
with a collection of RN differentials on Cv that we postulate the limit to be, and
then construct the differentials in a neighbourhood by using the jump problem. In
doing this, we could be starting with an identically zero differential on some Cv,
if that is what the limit RN differential on Cv is. Instead, we now start with
a collection of non-identically zero RN differentials on Cv which provide a better
approximation to the full RN differential on Cs. The key estimate (8.19) implies
that the solution of the jump problem posed with these improved approximations
vanishes to higher order than scaling required to determine the first non-zero term,
and thus the location of the zeros in the limit.

As before, we then need to obtain a bound showing that the solution of the
jump problem is smaller than the original RN differentials, and thus disappears in
the limit. For this to be the case, we need to ensure that the suitably rescaled RN
differentials locally near qe and q−e are such that the singular part of the differential
on one side cancels the lowest order terms of the (holomorphic) differential on the
other. This is the concept of so-called balanced differentials, developed in § 8.

We will call a sequence of degenerating smooth jet curves jet-convergent if the
singular parts at the nodes of the differentials constructed using this balanced condi-
tion converge, after suitable rescaling (see Definition 8.8 for the precise statement).
As the limits of differentials are unchanged under rescaling, it will follow that the
limits of zeros of RN differentials exist in jet-convergent sequences, and are the zeros
of the originally taken collection of not identically zero RN differentials on Cv.

A rough statement of our main result on limits of zeros is thus the following.

Theorem 0.2 (Theorem 8.12 and Corollary 8.20). Any admissible sequence {Xk}
of smooth jet curves converging to a stable jet curve X has a jet-convergent sub-
sequence. For any jet-convergent sequence the limits of zeros of RN differentials
exist. These limits of zeros are the divisor of zeros on X of a twisted RN differen-
tial constructed from the jet-convergent subsequence. In particular, the residues of
the twisted RN differential arise from a suitable force Kirchhoff problem.

By a twisted RN differential here we mean a collection of non-trivial RN dif-
ferentials Φv on the irreducible components {Cv}, with prescribed singularities at
pℓ, and with higher order poles at some pre-images of the nodes. The divisor of
zeros of such a twisted differential is the set of all its zeros, with multiplicity, away
from the nodes, together with the set of nodes counted with suitable multiplicities.
The precise statement of these results requires developing the notion of balanced
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differentials, and related machinery, and obtaining the necessary bounds for the
solution of the jump problem. This is done in § 8, where the precise version of our
main result is given as Theorem 8.12.

Since our construction approximates the RN differential on any jet curve in the
neighbourhood of a given stable jet curve, it describes all possible limits of zeros,
and thus in fact constructs a compactification of the moduli space of jet curves on
which the limits of zeros of RN differentials exist. This compactification can be
described as a suitable real blowup, and merits an independent study.

Related work. The question of describing the closures of strata of Riemann sur-
faces together with a meromorphic differential is currently under intense investiga-
tion, for instance, in [6], [4], [5], and [2], and the answer there is also in terms of
twisted meromorphic differentials on the stable curve.

However, our analytic approach via the jump problem is completely different
from the methods employed there and, in particular, allows us to describe the
RN differential with arbitrary precision on any smooth jet curve in a plumbing
neighbourhood. As a byproduct we get for example an explicit description of the
residues in the limit via the Kirchhoff problem.

History of the project. The integral F := Im
ˆ

Ψ of the RN differential is

a single-valued harmonic function on C \ {p1, . . . , pn}. In this guise, as harmonic
functions which are potentials of the electromagnetic field created by point charges
at the marked points, the RN differentials with simple poles have been studied
since at least the time of Maxwell. A variant of the general notion of RN differ-
entials already appears in [20], while their study in full generality was initiated by
the second author in [12] and [13], where the relationship with the Whitham per-
turbation theory of soliton equations was also established. In [8] and [9] the first
and second author applied RN differentials to obtain a new proof of the theorem of
Diaz on complete complex subvarieties of the moduli space of curves Mg, and estab-
lished a relationship with the loci of spectral curves of the elliptic Calogero–Moser
system, while in [14] the second author used RN differentials to prove a conjecture
of Arbarello on subvarieties of Mg.

The rough version of the results of this paper, with an approach not using the
jump problem, and not yielding the full statement of Theorem 8.12, appeared in
the third author’s Stony Brook PhD dissertation [17] defended in August 2014.
We then developed the current approach to the problem using our solution of the
jump problem. The current paper, and our proof, are completely independent
of the concurrent and independent progress on the compactifications of strata of
differentials with prescribed zeros, in [6], [4], [5], and [2].

Structure of the paper. First, in § 1 we give the statement of the Kirchhoff
problem on a general graph, and investigate the properties of its solutions, proving
that they are a priori bounded, and constructing the blowup S#E−1

+ such that con-
vergence of resistances there implies convergence of solutions of the flow Kirchhoff
problem. This section is elementary and does not deal with Riemann surfaces and
differentials. The setup and the lemmas from it are essential to stating the main
results of the paper.
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In § 2 we recall the notation for the spaces of jet curves and RN differentials.
In § 3 we develop the notation for degenerating sequences and give the precise
statement of the main Theorem 3.7 on limits of RN differentials. In § 4 we recall
the plumbing coordinates and the notation. Section 5 contains the technical core of
our construction: we pose the jump problem, and use Cauchy kernels independent
of plumbing parameters to construct an almost real-normalized (ARN) solution,
with a bound on its norm. In § 6 we use the ARN solution of the jump problem
to construct the RN differential explicitly in plumbing coordinates, as the sum of
a recursively defined series, and effectively bound the terms of these series. In § 7 we
determine the behaviour of this construction of the RN differential in a degenerating
sequence, proving the main theorem, Theorem 3.7, on limit RN differentials.

In § 8 we introduce the notion of two differentials balancing (canceling up to
order m under the map z 7→ sz−1) at a node to construct a better approximation
to the RN differential recursively. Starting from a collection of balanced differentials
on Cv, we show that the ARN solution of the corresponding jump problem is smaller
than the differentials themselves, and thus in the limit the balanced differentials
dominate — this yields the main Theorem 8.12 on limits of zeros of RN differentials.

In the appendix (§ 9) we formalize this notion of a collection of differentials on Cv

that are close to a differential on the plumbed surface, by introducing the notion of
an mth order approximation. While this setup is not necessary for our main proofs,
the method can be used to study the behaviour of degenerating differentials with
arbitrary precision, as will be investigated elsewhere.

The second author thanks Columbia University for hospitality in January–March
2016, when much work on this paper was done. We are grateful to Scott Wolpert
for carefully reading the third author’s PhD dissertation, and for many useful dis-
cussions and comments on the topics surrounding plumbing.

1. Limits of solutions of the Kirchhoff problem

In this section we pose the Kirchhoff problem on an arbitrary graph, in the
generality that we require, and investigate the limits of its solutions. This setup
will be used to state our main results.

Notation 1.1. We denote by Γ a graph, which is a collection of vertices v ∈ V (Γ),
and a collection of edges |e| ∈ |E|(Γ), allowing loops and parallel edges. We further
denote by E(Γ) the set of oriented edges e, writing −e for the same edge as e,
but with the opposite orientation, and writing |e| = |−e| for the corresponding
unoriented edge. Our graphs also have legs, that is, half-edges attached to some
vertices. For an oriented edge e we denote by v(e) the vertex that is its target, and
for a vertex v we denote by Ev the set of all edges pointing to it, that is,

Ev = {e ∈ E(Γ) : v(e) = v}.

We denote by #E, #|E|, and #V the cardinalities of the corresponding sets. We
will use the underline for the elements of #E-dimensional or #|E|-dimensional
vector spaces, for example c will mean the collection of numbers ce for all e ∈ E
and ρ will mean the collection of numbers ρ|e| (we will specify in each case whether
the oriented or unoriented edges are taken).
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Definition 1.2 (Kirchhoff problem). The general Kirchhoff problem for a graph Γ
is the following. As initial data, to every leg ℓ one assigns a real number fℓ ∈ R,
thought of as the in/outflow of current, and to every unoriented edge |e| of Γ, one
assigns a positive real number ρ|e| ∈ R+, thought of as resistance. In addition,
one chooses a class in the first cohomology group of the graph, E ∈ H1(Γ, R),
thought of as the electromotive force.

The Kirchhoff problem is then to find for each oriented edge e ∈ E(Γ) a real
number ce (the electrical current) such that the set of all ce satisfies the following
three conditions:

(0) ce = −c−e for any e ∈ E(Γ);
(1) the total current flow at any vertex is zero: for any v ∈ V (Γ),∑

e∈Ev

ce = −
∑′

fℓ, (1.1)

where the sum on the right is taken over the half-edges ℓ incident to v;
(2) for any oriented cycle of edges γ ⊂ Γ the total voltage drop is equal to the

electromotive force along the cycle:∑
e∈γ

ceρ|e| = Eγ := ⟨E , γ⟩. (1.2)

In modern terminology, the Kirchhoff problem is to find a 1-form on the graph
with prescribed periods over cycles. In physics, this is the problem of determining
the flow of the electrical current. Physically, it is classically known that the current
flows, and in a unique way.

Fact 1.3. For any connected graph Γ, if the sum of all fℓ is equal to zero, the
general Kirchhoff problem has a unique solution.

We think of the Kirchhoff problem as a system of non-homogeneous linear equa-
tions on c = {ce}, with the right-hand side given by the flows fℓ and electromotive
force E . As such, its solution is linear in the initial data, and is given as the sum
of the solutions of the problem with only f ’s or only E present; we study these two
special cases separately.

Definition 1.4. The flow Kirchhoff problem is the special case of the general Kirch-
hoff problem when the electromotive force E is zero.

The (electromotive) force Kirchhoff problem is the special case of the general
Kirchhoff problem when all the in/outflows are zero, that is, when all fℓ = 0.

Remark 1.5. The solution of the flow Kirchhoff problem is unchanged if ρ = {ρ|e|}
is rescaled by some µ ∈ R+, while {fℓ} are unchanged. Thus it is natural to think
of the initial data of the flow Kirchhoff problem as a point Pρ ∈ S

#|E|−1
>0 , where we

denote by S
#|E|−1
>0 := R#|E|

+ /R+ the positive octant of the real sphere.
The solution of the force Kirchhoff problem is homogeneous under rescaling

resistances: if all resistances ρ|e| are rescaled by µ ∈ R+ while E is unchanged, then
c is rescaled by µ−1. Therefore, if thinking of the initial data as Pρ ∈ S

#|E|−1
>0 ,

then the solution is also only defined as a projective point.
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One crucial feature of our setup is that since all resistances are positive reals,
the currents solving the Kirchhoff problem can be a priori bounded. As hinted at
by the homogeneity, it is natural to expect a bound for the flow Kirchhoff problem
independent of ρ, and a bound for the force problem that is linear in 1/ρ. We
prove these two a priori bounds —which we could not find in the literature— by
elementary arguments.

Lemma 1.6. For a given graph Γ and given inflows {fℓ}, for any edge e of Γ the
solution ce of the corresponding flow Kirchhoff problem satisfies

|ce| 6
1
2

∑
ℓ

|fℓ| (1.3)

for any resistances ρ ∈ R#|E|
+ .

Proof. We prove the statement by induction on the number k of vertices of Γ. If
k = 1, then every edge e is a loop, and thus by condition (2) of the Kirchhoff
problem (that is, equation (1.2)) ce = 0, so that the inequality is trivially satisfied.
Suppose now that the statement holds for any graph with k vertices. For a graph
with k+1 vertices we claim that there must exist a vertex v such that ce > 0 for any
e ∈ Ev. Indeed, suppose for contradiction that such a vertex did not exist. Then
starting from an arbitrary vertex we follow some edge originating from it such that
the current is negative, get to another vertex, and repeat. Then eventually we must
return to a vertex that we have already visited, and thus we will have constructed
an oriented cycle of edges in Γ such that ce < 0 for any edge in the cycle. However,
since all the ρ|e| are positive real numbers, the sum

∑
ceρ|e| over this cycle would

be negative, contradicting condition (2) of the flow Kirchhoff problem, as there is
no force on the right-hand side there.

Thus there exists a vertex v ∈ V (Γ) such that ce > 0 for any e ∈ Ev. Condi-
tion (1) of the Kirchhoff problem (that is, equation (1.1)) at v then gives∑

e∈Ev

|ce| =
∑

e∈Ev

ce = −
∑

ℓ : pℓ∈Cv

fℓ. (1.4)

Since the sum of all inflows equals zero we have

−
∑

ℓ : pℓ∈Cv

fℓ = −1
2

( ∑
ℓ : pℓ∈Cv

fℓ −
∑

ℓ : pℓ /∈Cv

fℓ

)
6

1
2

∑
ℓ

|fℓ|.

Hence the inequality (1.3) holds for any e ∈ Ev.
The currents {ce : e /∈ Ev} are a solution of the flow Kirchhoff problem on the

graph Γ′ whose vertices are V (Γ)\v, and with additional legs obtained by replacing
each oriented edge e ∈ Ev by a leg attached to v(−e), with inflow ce in that new leg.
By the inductive assumption for the graph Γ′ we have for any e ∈ Γ′ the inequality

|ce| 6
1
2

( ∑
ℓ : pℓ /∈Cv

|fℓ|+
∑

e∈Ev

ce

)
.

Combining this with (1.4) implies (1.3) for all edges of the original graph Γ. �
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The bound for solutions of the force Kirchhoff problem is as follows.

Lemma 1.7. For a given graph Γ and given electromotive force E , for any edge e

of Γ the solution ce of the force Kirchhoff problem for any resistances ρ ∈ R#|E|
+

satisfies

|ce| 6
N |E |

min|e|∈|E| ρ|e|
, (1.5)

where |E | denotes the maximum value of E on simple loops in Γ, and N is the rank
of H1(Γ).

Proof. We will prove the lemma by induction on N . If N = 0 then there are no
cycles and it is easy to see that in this case all currents ce are zero. In order to prove
the induction step, first note that by condition (1) of the force Kirchhoff problem,
in the absence of in and outflows, for any vertex v ∈ V (Γ) there must exist some
edge e+ such that ce+ > 0. As in the proof of the previous lemma, in going along
such edges we must eventually return back to a vertex already passed, and the first
time we do so, we have constructed a simple oriented loop γ ⊂ Γ such that ce′ > 0
for any e′ ∈ γ. Hence for any e0 ∈ γ we have the estimate

ce0ρ|e0| 6
∑
e′∈γ

ce′ρ|e′| = Eγ 6 |E |, (1.6)

which is stronger than the required bound (1.3).
Consider the graph Γ′ obtained from Γ by cutting the edge e0 and attaching to

the vertices v(e0) and v(−e0) new legs with inflows ce0 and c−e0 , respectively. The
solution of the force Kirchhoff problem on Γ restricted to all edges of Γ′ coincides
with the solution c̃e of the general Kirchhoff problem on Γ′ with the same force
as before on all cycles that did not pass through e0, and with these inflows in the
two new legs. Since the general Kirchhoff problem is the linear combination of
the flow and force Kirchhoff problems, we can write c̃e = c′e + c′′e , where c′e and
c′′e are the solutions of the corresponding flow and force problems. For c′e we can
use the previous lemma, while for c′′e we use the inductive assumption, obtaining
respectively the bounds

|c′e| 6 ce0 and |c′′e | 6
(N − 1)|E |

min|e|∈|E| ρ|e|
. (1.7)

Combining these estimates with (1.6) implies the needed bound (1.5). �

Remark 1.8. We note that as resistances ρ|e| go to infinity, the bound for solutions
of the force problem goes to zero, which implies that for the general Kirchhoff
problem the limit of solutions is given by the solutions to the corresponding flow
Kirchhoff problem. This explains why only the solution of the flow Kirchhoff prob-
lem appears in our statement of Theorem 3.7 on limits of RN differentials, while
the force Kirchhoff problem is used to construct the RN differential explicitly in
plumbing coordinates, in § 6, essentially as corrections to the solution of the flow
Kirchhoff problem.
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Remark 1.9. If c is the solution of the flow Kirchhoff problem, then every vertex v
can be assigned a voltage potential Vv ∈ R such that Ohm’s law

Vv(e) = Vv(−e) + ceρ|e|

holds for any edge e. The voltage potential on a connected graph is unique up
to a global additive constant, while its existence is equivalent to condition (2) of
the Kirchhoff problem. The voltage potential then induces a full (non-strict) order
on the vertices of the graph, which it is natural to call the chronological order
(motivated by construction of operator quantization of bosonic string in [15]).

This order is very different from the one considered in [2] and the order of
vanishing stratification that we introduce in Definition 8.8 below. The chronological
order is a weak full order on the set C(0) of non-null irreducible components — that
is, on what would be the set of top level components in the terminology of [2]. The
chronological ordering is only present in our RN setup, when all the currents are
real.

We now investigate the limits of solutions of the Kirchhoff problem as resistances
vary. The flow Kirchhoff problem is a system of non-homogeneous linear equations
on the currents c with coefficients ρ, invariant under scaling ρ by R+. Therefore,
the solution of the flow Kirchhoff problem depends continuously on Pρ. Given
a sequence of resistances Pρ

k
that converges in S

#|E|−1
>0 , it thus follows that the

solutions of the corresponding flow Kirchhoff problems converge. Since S
#|E|−1
>0 is

not compact, we will also need to investigate when the solutions of the flow Kirchhoff
problems converge if Pρ

k
do not converge in S

#|E|−1
>0 . The simplest compactification

is S
#|E|−1
>0 — the closed octant of the sphere where the coordinates are required

to be non-negative. However, convergence of Pρ
k

in S
#|E|−1
>0 does not guarantee

convergence of the corresponding solutions of the Kirchhoff problem: to see this we
note that if for some oriented cycle of edges all resistances are zero, then an arbitrary
constant can be added to all the flows in the cycle. This indicates that convergence
of resistances in a certain blowup of S

#|E|−1
>0 is required to guarantee convergence

of solutions of the flow Kirchhoff problem. The necessary blowup is in fact the
real oriented blowup of the union of real coordinate planes intersected with the
non-negative sector of the real sphere. We refer to [7] for a detailed definition and
a survey of properties of the real oriented blowup of complex manifolds. For our
purposes we give a direct iterative definition, which will also allow us to write down
explicitly the analytic conditions for a sequence to converge in the blowup.

Definition 1.10. We denote by SN−1
>0 := (RN

>0 \ {0})/R+ the non-negative sector
of the real sphere. The positive blow-up of the sphere, denoted by SN−1

+ , is the
blowup

π : SN−1
+ → SN−1

>0

defined recursively in N as follows. We let S0
+ be a point. Given the definition

of Sj
+ for all 0 < j < N , we define SN

+ to be the result of blowing up every
coordinate subspace {0}j ×SN−j−1

>0 to Sj
+×SN−j−1

>0 (for all possible renumberings
of coordinates).
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Recursively, this means that SN−1
+ is the disjoint union over all subsets P ⊂

{1, . . . , N} of the products S#P−1
>0 × SN−#P−1

+ , where the sphere records those
coordinates that are non-zero, and the second factor records the corresponding
recursive blowup.

Explicitly, denote by ZN the set of all partitions of the set {1, . . . , N} into
numbered subsets: {P} ∈ ZN is a decomposition

{1, . . . , N} = P1 ⊔ · · · ⊔ Pl.

Then, as a set, SN−1
+ is the disjoint union over all {P} ∈ Zn of the products of

positive sectors of the sphere:

SN−1
+ =

⊔
{P}∈ZN

l∏
j=1

S
Nj−1
>0 , (1.8)

where Nj := #Pj . The topology on SN−1
+ is such that a point

Pρ = (x(1)
1 : · · · : x

(1)
N1

)× · · · × (x(l)
1 : · · · : x

(l)
Nl

) ∈
l∏

j=1

S
Nj−1
>0 ⊂ SN−1

+

is the limit as k →∞ of a sequence of points

(y1[k] : · · · : yN [k]) ∈ SN−1
>0

if and only if the following conditions hold:

lim
k→∞

(ya[k]x(j)
b − yb[k]x(j)

a ) = 0 for any a, b ∈ Pj , 1 6 j 6 l,

lim
k→∞

ya[k]
yb[k]

= 0 for any a ∈ Pj , b ∈ Pj′ , 1 6 j′ < j 6 l.
(1.9)

The case l = 1 and P1 = {1, . . . , N} corresponds to the open dense subset
SN−1

>0 ⊂ SN−1
+ . The contraction

π : SN−1
+ → SN−1

>0

is defined by sending Pρ to a point where all x
(j)
i for j > 1 are replaced by zeros,

while all x
(1)
i are unchanged. The map π is thus an isomorphism on SN−1

>0 , and we
think of SN−1

+ as a recursive real oriented blowup of SN−1
>0 (see, for instance, [1],

§ X.9, for a discussion of real oriented blowups). It can be seen that in fact SN−1
+ is

a real manifold with corners, but all that matters for us is that SN−1
+ is a compact

topological space containing SN−1
>0 as a dense open subset.

We will show that convergence of resistances in S#|E|−1
+ implies convergence

of solutions of the flow Kirchhoff problem, and that the limits of solutions are
solutions of the multi-scale Kirchhoff problem, which we now define. For a given
point Pρ ∈ S#|E|−1

+ , let

x := (xi1 : · · · : xi#P1
) ∈ S#P1

>0
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be the ‘largest factor’ in (1.8) corresponding to P1, and let Pρ′ ∈ S#|E|−#P1
+ corre-

spond to the product of all other factors, so that we think of Pρ ∈ S#|E|−1
+ as

x× Pρ′ ∈ S#P1
>0 × S#|E|−#P1

+ .

Definition 1.11. The multi-scale flow Kirchhoff problem on a graph Γ with inflows
{fℓ} and generalized resistance Pρ ∈ S#|E|−1

+ , is posed recursively as follows.
Let Γ1 be the graph obtained from Γ by contracting all edges |e| for |e| /∈ P1.

Let {ce}|e|∈P1 be the solution of the flow Kirchhoff problem on Γ1 with inflows fℓ

and resistances x.
Let Γ2 be the (possibly disconnected) graph whose edges are all edges |e| ∈

|E|(Γ)\P1 whose vertices are all the endpoints of such edges and whose legs are the
original legs that connect at these vertices, together with a new leg for each edge e
such that |e| ∈ P1 and v(e) ∈ V (Γ2). Then on every connected component of Γ2 we
pose recursively the multi-scale flow Kirchhoff problem with the inflows being {fℓ}
for the original legs attached to Γ2 and ce for each new leg, and with resistances
Pρ′ (note that condition (1) for the flow Kirchhoff problem on Γ1 ensures that the
sum of the inflows for every connected component of Γ2 is then equal to zero).

The solution to the multi-scale flow Kirchhoff problem on Γ is then defined to be
the union of {ce : |e| ∈ P1} and of the recursively defined solution of the multi-scale
flow Kirchhoff problem on each connected component of Γ2.

Remark 1.12. In terms of stable curves, if Γ is the dual graph of a stable curve C,
then Γ1 is the graph of the smoothing of C at all the nodes except those indexed
by P1, while Γ2 is the graph of the partial normalization of all the nodes except
those indexed by P1.

We now prove that if resistances converge in S#|E|−1
+ , then solutions of the flow

Kirchhoff problem converge to the solution of the multi-scale Kirchhoff problem.

Lemma 1.13. For a fixed graph Γ, if a sequence of inflows fℓ,k converges to fℓ

and for a sequence of non-zero resistances {ρ
k
} the projectivized resistances Pρ

k
∈

S
#|E|−1
>0 converge to some Pρ ∈ S#|E|−1

+ , then the solutions ck of the flow Kirchhoff
problems with resistances ρ

k
and inflows fℓ,k converge. Moreover, the limit of ck

is the solution of the multi-scale Kirchhoff problem with inflows fℓ and generalized
resistance Pρ .

Proof. We will prove the lemma by induction on the number of levels of the
multi-scale problem (that is, on the number l of factors in (1.8)). If Pρ

k
converge to

some Pρ ∈ S
#|E|−1
>0 , then the statement is obvious, since the flow Kirchhoff prob-

lem is simply a system of non-degenerate linear equations, and solutions depend
continuously on the parameters ρ

k
and inflows fℓ,k.

Now suppose that π(ρ) = (x, 0), where x corresponds to the P1 factor, and denote
by |x| the minimal absolute value of coordinates of x. Then by rescaling each ρ

k
by

a suitable positive real number, we can assume that ρ
k

= (xk, ρ′
k
) converge to (x, 0),

while Pρ
k

converge to Pρ. Then for k sufficiently large we know that the absolute
value of each coordinate of xk is bounded below by |x|/2, while for any t > 0 there
exists a sufficiently large K such that for any k > K the absolute value of each
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coordinate of ρ′
k

is less than t. Given any simple oriented loop γ ⊂ Γ, let γ1 ⊂ Γ1 be
the loop obtained by contracting those edges that are not in P1. Then equation (2)
in the flow Kirchhoff problem on Γ is∑

e∈γ1

ce,kxe,k +
∑

e′∈γ\γ1

ce′,kρe′,k = 0. (1.10)

Let {c̃e,k : e ∈ E(Γ1)} be the solution of the flow Kirchhoff problem on Γ1 with
inflows fℓ,k and resistances xk. Then condition (2) of the Kirchhoff problem gives∑

e∈γ1

c̃e,kxe,k = 0. (1.11)

From (1.10) and (1.11) it follows that∑
e∈γ1

(ce,k − c̃e,k)xe,k = −
∑

e′∈γ\γ1

ce′,kρe′,k. (1.12)

The set (ce,k − c̃e,k) for e∈E(Γ1) is the solution of the general Kirchhoff problem
on Γ1 with the electromotive force defined by the right-hand side of (1.12) and in-
flows at every vertex v ∈ Γ1 such that v = v(e), |e| /∈ P1, equal to

∑
e/∈P1, v(e)=v ce,k.

Let d′e,k and d′′e,k be the solutions of the corresponding flow and force problems.
Since

|ce,k| 6
1
2

∑
ℓ

|fℓ,k|,

we can use (1.3) and (1.5) to conclude that there is a constant M such that for any
e ∈ E(Γ1)

|ce,k − c̃e,k| < Mt|x|−1. (1.13)

Since t > 0 could be chosen arbitrary, and the rest of the right-hand side is a con-
stant, this implies that, as k → ∞, the solutions ce,k and c̃e,k on the edges of Γ1

have the same limit. By the inductive assumption, the solutions of the Kirchhoff
problem on Γ2 converge to the solutions of the multi-scale problem on Γ2 with the
additional inflows equal c̃e∈Γ1 . �

2. Notation for RN differentials and moduli of jet curves

We follow the (slightly adjusted, in anticipation of [10]) notation and the real-
normalized differentials setup of [8] and [9], which we now review.

Definition 2.1. The singular part of a meromorphic differential at a point p on
a Riemann surface C is the equivalence class of meromorphic differentials ω in
a neighbourhood of p, with the equivalence ω ∼ ω′ if and only if ω′−ω is holomor-
phic at p.

Definition 2.2. For m1, . . . ,mn ∈ Z>0 we let M m1,...,mn
g,n be the moduli space of

smooth genus g complex curves C with n distinct labelled marked points p1, . . . , pn

together with a singular part σℓ of a meromorphic differential with pole of order
exactly mℓ + 1 at each point pℓ, such that each residue rℓ is purely imaginary, and
the sum of all residues is equal to zero.
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We similarly denote by M 6m1,...,6mn
g,n the moduli space where each σℓ is a sin-

gular part of order up to mℓ + 1, and at least one of the singular parts is non-zero,
with the same condition on the residues.

We call points of M m1,...,mn
g,n or of M 6m1,...,6mn

g,n smooth jet curves.

We will always denote jet curves by X, with C denoting the underlying smooth
curve. To keep the notation manageable, we will always suppress the marked points
in our notation for curves and families of curves.

The reason for the name of a jet curve is that the datum of a singular part is
equivalent to the datum of a jet of a local coordinate in which the meromorphic
differential can be written in the standard form as (z−m + rz−1) dz.

We think of M m1,...,mn
g,n ⊂ M 6m1,...,6mn

g,n as fibrations over Mg,n with fibers∏
ℓ

(Cmℓ \ Cmℓ−1)× Rn−1 and (C
∑

mℓ × Rn−1) \ {0, 0}

respectively.
As easily follows from the positive-definiteness of the imaginary part of the period

matrix, for any X ∈ M 6m1,...,6mn
g,n there exists a unique meromorphic differential

ΨX ∈ H0
(
C, KC +

∑
(mℓ + 1)pℓ

)
with prescribed singular parts σℓ at pℓ, with residues rℓ ∈ iR at pℓ and with all
periods real.

Definition 2.3. For any X ∈ M 6m1,...,6mn
g,n we call Ψ = ΨX the associated

real-normalized (RN for short) differential.

Remark 2.4. The datum of a real-normalized differential is equivalent to the datum
of the harmonic function

F (p) := Im
ˆ p

Ψ

on the punctured Riemann surface C \ {p1, . . . , pn}, defined up to an additive con-
stant. Indeed, given any such harmonic function F , the RN differential is given by
d(F ∗ + iF ), where F ∗ denotes the harmonic conjugate function to F .

Notation 2.5. From now on, we will fix g, n and m1, . . . ,mn, with all mℓ > 0,
and write simply M for M 6m1,...,6mn

g,n .

Since in the Deligne–Mumford compactification the marked points on stable
nodal curves are not allowed to coincide with the nodes, the holomorphic fibra-
tion M → Mg,n extends to a holomorphic fibration over the Deligne–Mumford
compactification M g,n, which we denote by M . We will call X ∈ M stable jet
curves.

3. Statement of results: limits of RN differentials

Our first goal is to give the precise statement of the theorem on limits of RN
differentials — this will be Theorem 3.7, which is the precise version of Theorem 0.1.
As the RN differential does not depend holomorphically on the moduli, we work
with sequences of smooth curves degenerating to a stable curve, rather than with
algebraic families of smooth curves degenerating to a stable one.
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Notation 3.1. For a stable curve

(C, p1, . . . , pn) ∈ M g,n,

its dual graph Γ has vertices v that correspond to normalizations Cv of irreducible
components of C, edges |e| that correspond to nodes q|e| of C, oriented edges e that
correspond to pre-images qe of the nodes (as points on the normalization C̃ of C),
and legs ℓ that correspond to the marked points pℓ, attached to the vertex v such
that pℓ ∈ Cv. So Ev is the set of all pre-images of the nodes that are contained
in Cv, and qe and q−e are the two pre-images on C̃ of a node q|e| of C.

Notation 3.2. From now on, we always work with a sequence {Xk} ⊂ M of
smooth jet curves such that Xk converge as k → ∞ to some stable jet curve
X ∈ ∂M . We denote by {Ck} ⊂ Mg,n the underlying sequence of smooth curves
with distinct marked points (which, recall, we suppress in notation systematically),
which then must converge to the stable curve C ∈ ∂M g,n underlying the stable jet
curve X.

The limit
Ψ := lim

k→∞
ΨXk

,

if it exists, will be called the limit RN differential in such a sequence. By abuse of
notation we will speak of the singularities of differentials at points pℓ ∈ Ck without
labelling the dependence of pℓ on k. We will write Ψk for ΨXk

.

If the limit RN differential Ψ exists in a given sequence, then

Ψ ∈ H0
(
C, ωC

(∑
(mℓ + 1)pℓ

))
.

This is to say, Ψ has prescribed singularities at every point pℓ ∈ C, and has at most
simple poles at the nodes of C, with opposite residues. By abuse of notation, we
denote by Ψv the pullback to the normalization Cv of the restriction of Ψ to the
corresponding irreducible component of C. Thus each Ψv is determined uniquely
by its residues at qe for all e ∈ Ev, and its singular parts at those pℓ that are
contained in Cv.

In [8], § 5, we showed that limits of RN differentials whose only singularity is one
double pole do not develop residues at the nodes of the stable curve. The proof
applies verbatim to the case of RN differentials with a single pole of arbitrary order,
and by R-linearity (of the dependence of the RN differential on its singular parts)
it further extends to the general case of any differential without residues, that is,
‘of the second kind’ in classical terminology, giving the following result.

Theorem 3.3 (see [8]). If all the residues rℓ(Xk) are zero, then the limit RN dif-
ferential Ψ exists in any degenerating sequence {Xk} → X , and on any Cv the
restriction Ψv of the limit RN differential is an RN differential on Cv with prescribed
singular parts at those marked points pℓ that lie on Cv , and no other singularities,
including at the nodes.

Remark 3.4. This statement is a priori surprising, as for example it follows that the
limit RN differential of the second kind is identically zero on any Cv that contains
no marked points. This is clearly false for general rℓ, as one sees by considering the
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case of n = 2, with two simple poles that are on different components of the stable
curve: then by the residue theorem there must appear a simple pole at some node
between these components.

For limits of RN differentials ‘of the third kind’ — that is, with arbitrary residues
rℓ — one can easily see that the residues of the limit RN differential may depend on
the degenerating sequence, and our main theorem on limit RN differentials is a nec-
essary condition for the existence of a limit RN differential, and the determination
of its residues. Such an explicit construction is not available in the literature for
the closures of the strata studied in [6], [4], [5], and [2].

We work in plumbing coordinates near the boundary of the moduli space, which
are recalled and discussed in detail in § 4. To state the results, recall that the
plumbing parameter s|e| corresponds to locally opening up the node q|e| ∈ C given
in local coordinates by xy = 0 to xy = s|e|. The plumbing parameters for every
node, together with the coordinates on the moduli space where C̃ lives give local
coordinates near the boundary point C of M g,n. Since M is a bundle over M g,n,
local coordinates near X ∈ ∂M are given by the local coordinates on M g,n near C,
together with local coordinates for the fiber of M → M g,n.

Definition 3.5. The log-plumbing coordinates of a smooth point C ′ in a neigh-
bourhood of C ∈ ∂M g,n are given by the point

ρ(C ′) := {− log |s|e||} ∈ R#|E|
+ .

The projectivized log-plumbing coordinates of C ′ are given by the point

Pρ(C ′) ∈ R#|E|
+ /R+ = S

#|E|−1
>0 .

Recall that in § 1 we proved that convergence of projectivized resistances in the
blowup S#|E|−1

+ of S
#|E|−1
>0 implies convergence of solutions of the flow Kirchhoff

problem; we thus make the following definition.

Definition 3.6. A sequence {Ck} ⊂ Mg,n converging to C ∈ ∂M g,n is called
admissible if there exists a limit

Pρ := lim
k→∞

Pρ(Ck) ∈ S#|E|−1
+ as k →∞

of the projectivized log-plumbing coordinates Pρ(Ck) of Ck. The point Pρ is then
called the rates of degeneration of the sequence {Ck}.

Our main result on limit RN differentials is that their residues are given by limits
of solutions of the flow Kirchhoff problem, which by Lemma 1.13 is the solution of
the multi-scale Kirchhoff problem.

Theorem 3.7. Let {Xk} ⊂ M be a sequence of smooth jet curves converging to
a stable jet curve X . Then the limit RN differential Ψ = limk→∞ΨXk

exists if
and only if the solutions ce,k of the flow Kirchhoff problems with inflows irℓ,k and
resistances ρ

k
converge. If the limit RN differential exists, then on any Cv the

limit Ψv is the RN differential with prescribed singularities at the marked points pℓ

contained in Cv , and with simple poles of residue i times the limit of the solutions
of the flow Kirchhoff problem.
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This theorem will be proven in § 7. Since we have studied the limits of solutions
of the Kirchhoff problem in § 1, Lemma 1.13 implies the following.

Corollary 3.8. If the sequence {Xk} is admissible with rates of degeneration Pρ ∈
S#|E|−1

+ , then the limit RN differential Ψ exists, and its residues are given by the
solution of the multi-scale Kirchhoff problem with generalized resistances Pρ, for
each e ∈ Ev .

Remark 3.9. For the case of limit RN differentials of the second kind, all fℓ are
zero, and thus for any Pρ

k
the set of all currents ce = 0 is the unique solution of

the flow Kirchhoff problem, so that the solutions converge for any sequence, and
in the limit all currents are still equal to zero. In particular, in this case the limit
is the same in all admissible sequences; indeed, while convergence of resistances in
S#|E|−1

+ implies convergence of solutions of the Kirchhoff problem, many such limits
may be the same. We do not claim that S#|E|−1

+ is the minimal blowup of S
#|E|−1
>0

onto which the solutions of the flow Kirchhoff problem extend continuously.

Remark 3.10. The special case of this theorem when C has geometric genus zero
(that is, each Cv is a rational curve) and the rates of degeneration lie in S

#|E|−1
>0

(that is, no blowup to S#|E|−1
+ is necessary) was studied by Lang [16], who obtained

for this case a version of this theorem from a completely different viewpoint and
with very different methods.

Remark 3.11. For degenerating algebraic 1-parameter families such as used in [2],
each plumbing coordinate se has the form tne for some integer ne > 0, and thus any
subsequence of such a family is admissible, with rates of degeneration Pn ∈ S

#|E|−1
>0 .

In particular, for such an algebraic family, there is no need to blow up the sphere.

Remark 3.12. The meaning of condition (1) of the Kirchhoff problem in terms of
differentials is clear: it serves to ensure that the residue theorem is satisfied for
each Ψv. The meaning of condition (2) is less transparent. In fact if a collection
of RN differentials Ψ on the components Cv were to have arbitrary residues at the
nodes, then the imaginary parts of its periods over cycles passing through the nodes
will diverge logarithmically, as computed in Lemma 6.5. Condition (2) is precisely
to guarantee that the logarithmic divergences cancel, so that the imaginary parts
of periods of the limit RN differential on the singular stable curve C are finite.

Since the space S#|E|−1
+ is compact, it follows that all possible limit RN differ-

entials on C are obtained in this way.

Lemma 3.13. Any sequence of smooth jet curves {Xk} converging to a stable jet
curve X ∈ ∂M contains an admissible subsequence.

Proof. The space S#|E|−1
+ is compact, and thus the sequence {Pρ(Ck)} ⊂ S#|E|−1

+

must contain a convergent subsequence, which by definition corresponds to an
admissible sequence of smooth curves. �

Proposition 3.14. Let {Xk} ⊂ M be a sequence of smooth jet curves converging
to a stable jet curve X . If the limit RN differential exists, then it is given by
a collection of RN differentials on Cv with prescribed singularities at pℓ and with
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the residue at qe being i times the solution of the multi-scale flow Kirchhoff problem
for some Pρ ∈ S#|E|−1

+ .

Proof. By Lemma 3.13, the sequence {Xk}must contain an admissible subsequence,
with resistances converging to some Pρ ∈ S#|E|−1

+ . By Lemma 1.13, in such a subse-
quence there exists a limit of solutions of the flow Kirchhoff problem, and it is given
by the solution of the multi-scale Kirchhoff problem with resistances Pρ. Finally,
by Theorem 3.7, the convergence of solutions of the flow Kirchhoff problem implies
the existence of the limit RN differential in this subsequence, of the form claimed.
Since the limit RN differential is assumed to exist for all of the original sequence,
it must be of the form claimed. �

This completes the statement of our results on limits of RN differentials. The
full details and statements of our results on limits of zeros of RN differentials will be
given in § 8, after the main technical tool of solving the jump problem is introduced.

4. Plumbing setup for Riemann surfaces

We now recall the full details of the plumbing construction discussed in the
introduction, and we fix the notation that will be used throughout the rest of
the paper and in all the proofs.

Definition 4.1 (standard plumbing). Let q1, q2 ∈ C (with C a possibly discon-
nected Riemann surface) be two distinct points. Let z1, z2 be local coordinates
on C near q1, q2 such that zj(qj) = 0 and furthermore sufficiently small so that
the inverse maps z−1

j embed the unit disk into C as disjoint neighbourhoods Vj :=
{|zj | < 1} ⊂ C of qj . Then for any s ∈ C with |s| < 1 we denote by

Uj = Us
j := {|zj | <

√
|s |} ⊂ Vj

the corresponding disks and denote by

γj := ∂Uj

their boundary circles, which we orient negatively with respect to Uj . The standard
plumbing Cs with parameter s is the Riemann surface

Cs := [C \ (U1 ⊔ U2)]/(γ1 ∼ γ2),

where γ1 is identified with γ2 via the diffeomorphism I(z1) := s/z1. The structure of
a Riemann surface on Cs is defined by saying that a function on Cs is holomorphic,
if it is holomorphic on the complement of the seam γ (the image of γ1 and γ2) and
continuous along the seam.

Definition 4.2 (plumbing coordinates on moduli). Local plumbing coordinates
on M g,n near a stable curve C ∈ ∂M g,n are defined as follows. Let C̃ be the
normalization of C, which is a smooth (possibly disconnected) Riemann surface
with marked points pℓ, and also with all the pre-images of the nodes as marked
points.

We think of C̃ as a point in a suitable Cartesian product of moduli spaces of
curves with marked points. Let u = (u1, . . . , ux) be some local coordinates on this
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product of moduli spaces; we write C̃u for the (possibly disconnected) curve in this
moduli space with coordinates u, so that all the coordinates of C̃ are ui = 0. Choose,
for all sufficiently small u, a holomorphically varying family of local coordinates ze

in the neighbourhood on C̃u of every pre-image qe of every node of Cu, scaled (by
dividing by a large real number) to be sufficiently small so that the unit disks in
these coordinates are all disjoint on C̃u.

Then u together with a set of plumbing parameters

s := {s|e|} ∈ ∆#|E|,

for ∆ ⊂ C a sufficiently small disk, give local coordinates on M g,n near C (see [3]).

Remark 4.3. Different versions of plumbing are available in the literature. First of
all, one usually considers the neighbourhoods Vj = {|zj | < ε} in the local coordi-
nates, for some sufficiently small ε; by rescaling zj by a real number this is of course
equivalent to our setup.

The plumbing that we use, by identifying the boundaries of two cut out disks
directly, is perhaps the earliest one, going back to [3]. It is clearly seen to be
equivalent to cutting out closed disks of radii |s| around qj , and then identifying
two boundary annuli in this open Riemann surface: if one has identified along the
annuli, then one can alternatively cut the glued surface along the middle circle of
the resulting glued annulus, and switch to our viewpoint.

In [1], [21], and [2], plumbing using a plumbing fixture is performed — which is
the analytic description of the algebraic versal deformation coordinates. This third
kind of plumbing can also easily be seen to be equivalent to the original version
that we use, by cutting the plumbing fixture xy = t along the circle |x| = |y|.
The advantage of the approach using a fixed plumbing fixture is the ability to see
explicitly the algebraic structure of the degenerating family of Riemann surfaces
as the node forms, and to interpret plumbing coordinates as versal deformations of
nodal curves.

Remark 4.4. The version of plumbing that we use is most suited to understanding
limits of 1-forms under degeneration. Indeed, in our setup if {Ck} is a sequence of
smooth Riemann surfaces converging to C, then each Ck is obtained by identifying
the boundaries of a subset of C. Thus we can interpret a sequence Φk of mero-
morphic differentials on Ck as a sequence of differentials on a sequence of growing
subsets of C, tending to all of C as k → ∞. Therefore, the limit limk→∞Φk, if
it exists, automatically makes sense as a collection of meromorphic differentials Φv

on the irreducible components Cv of C.

To keep the notation manageable, we will write C̃ := C̃u,0 for the normalization
of a nodal curve, and will consistently drop u when no confusion is possible. We
write C̃ as the union of its connected components

C̃ =
⋃

Cv

indexed by vertices v ∈ V (Γ) of the dual graph Γ of C. Recall that we write e for
an oriented edge of Γ and |e| for the unoriented edge. We write

qe ∈ Cv(e), v(e) := target(e),
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for the corresponding pre-image qe of the node q|e| = qe ∼ q−e of C. To simplify
notation we will also write se = s−e = s|e|. We then write

Ĉs := C̃ \
⋃
e

Use
e

for the closed Riemann surface with boundary obtained by removing these open
disks from C̃. Identifying for each |e| ∈ |E|(Γ) the boundaries γse

e and γse
−e of Ĉs via

the map Ie sending ze to se/ze gives precisely the plumbed Riemann surface Cu,s.
When speaking of a 1-form ω on C̃ or on Ĉ, we mean a collection of 1-forms ωv on
the set of connected components of C̃ or of Ĉ.

Since M is the total space of a fibration over M g,n, local coordinates on it near
some X ∈ ∂M are given by u, s, together with some local coordinates w for the
fiber of the fibration. We will thus write a stable jet curve with these coordinates
as Xw,u,s, with Cu,s as the underlying stable curve.

A meromorphic differential Φ on Ĉs (which is, recall, the shorthand for a collec-
tion of meromorphic differentials Φv on Ĉv

s ) glues to define a meromorphic differ-
ential on Cs if and only if

Φv(e)
∣∣
γe

= I∗e
(
Φv(−e)

∣∣
γ−e

)
(4.1)

for all e.

Remark 4.5. Of course not every differential Φ on Ĉs satisfies (4.1) and glues to
a differential on Cs. One standard setup is for differentials with simple poles at
pre-images of the nodes, with opposite residues. Choosing the coordinate ze near
qe such that locally Φv(e) = aedze/ze, with ae = −a−e, and performing plumbing
in these coordinates, one constructs a glued differential on Cs. More generally, one
can choose standard coordinates associated to a differential to glue a zero of order k
to a pole of order k +2 with no residue, as discussed and applied in [6], [4], and [2].
As a result, and with much further work to deal with the residues appearing, one
constructs a meromorphic differential on some smooth Riemann surface Cs near C,
in plumbing coordinates. However, since the local coordinates ze depend on the
differential, it is hard to ensure from this viewpoint that all suitable differentials
on all smooth Riemann surfaces in a neighbourhood can be obtained in this way.

Our approach is direct and analytic. We start with any collection of fixed local
coordinates ze near qe (for any u), and thus with fixed plumbing coordinates on the
moduli space. Given any Φ on Ĉs, we will subtract from it another differential ω

on Ĉs such that their difference satisfies (4.1), and thus defines a differential on Cs.
The condition for ω must then be that its ‘jumps’ on γe are the same as for Φ, and
we construct it by explicitly solving the jump problem.

5. The jump problem

Given a compact Riemann surface with a collection of closed loops in it, the jump
problem is the problem of constructing a holomorphic differential on the comple-
ment of these loops, such that it extends continuously to each loop from the two
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sides, and its boundary values there differ by a prescribed jump. Equivalently, we
think of the jump problem as posed on a Riemann surface with boundary, where the
boundary components are identified pairwise, and the solution of the jump problem
is a differential on the interior that extends continuously to the boundary, and such
that the differences of its boundary values are the prescribed ‘jumps’. The classical
approach to solving the jump problem is surveyed in [22] and explained in full detail
in [19]. The jump problem is solved by integrating the jumps with respect to the
Cauchy kernel on the Riemann surface.

We are interested in constructing RN differentials in plumbing coordinates, and
thus in solving the jump problem on Cs. Since the Cauchy kernel on Cs depends
on s, determining the behaviour of the solution of the jump problem under degen-
eration as s → 0 is hard and has not been accomplished in the literature. Instead,
we use the Cauchy kernel on the normalization C̃ of the nodal curve, to construct
differentials on C̃ with prescribed jumps along the seams, considered as closed loops
on C̃. By an explicit control of the constructed solution of the jump problem in
small neighbourhoods of the nodes, we can then correct this solution, in an iterative
way, to eventually construct the desired solution of the jump problem on Cs. As
this only uses the Cauchy kernel on C̃, which is independent of s, we can determine
the behaviour of the solution under degeneration. Our interest in the current paper
is in solving the jump problem to construct RN differentials; our method was then
used by Hu and the third author in [11] to study a normalized basis of differentials,
which turns out to be easier as holomorphic dependence on parameters can be used.

Throughout this section, we will only work on smooth jet curves, that is, all se

are always assumed to be non-zero. For convenience, we write

|s| := max
e
|se|.

The jump problem is an additive analogue of the (multiplicative) Riemann–
Hilbert problem posed on a Riemann surface Ĉu,s with #E boundary components.
The initial data for the jump problem is a set φ of complex-valued smooth 1-forms
φe on γe, which we call jumps. The jumps are required to satisfy

φe = −I∗e (φ−e) and
ˆ

γe

φe = 0 for all e ∈ E.

Definition 5.1. The jump problem is to find a holomorphic 1-form ω on the interior
of Ĉu,s that extends continuously to every boundary component γe of Ĉu,s, and such
that the boundary extensions have jumps φe, that is, satisfy for any e the equation

ω|γe
− I∗e (ω|γ−e

) = φe.

Equivalently, the jump problem is the problem of constructing differentials
on Cu,s continuous away from the seams γ|e| and with prescribed differences of
boundary values on the two sides of each seam.

The solution of the jump problem is never unique: the pullback to Ĉu,s of any
holomorphic differential on Cu,s has zero jumps, and can be added to any solution
to produce another solution. Our main technical tool is an explicit construction of
a suitably normalized solution, which we will call ARN, with explicit bounds for it.
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Proposition 5.2. There exists a constant t independent of u, such that for any
|s| < t and any φ, the jump problem has a unique solution ω on Ĉu,s satisfying

(a)
ˆ

γe

ω = 0 for any node e;

(b)
ˆ

γ

ω ∈ R for any cycle γ ∈ H1(C̃u, Z).

The solution ω is given explicitly as the sum ξ+χ, with ξ and χ being the restrictions
to Ĉu,s of the integrals (5.7) and (5.18), where the smooth real 1-forms he and ge

on γe are defined as the sums of the series (5.26).

We will call this ω the almost real-normalized (ARN ) solution of the jump prob-
lem. Note that the condition (b) on γ is equivalent to taking γ ∈ H1(Cu,s, Z) not
intersecting any of the seams.

The importance of the proposition is the explicit construction, which will even-
tually allow us to give estimates for the ARN solution as the curve degenerates.

Proof. The proof of this proposition will occupy the bulk of this section.
1) Uniqueness of the ARN solution. Suppose that ω1 and ω2 were two different

ARN solutions of the jump problem with the same initial data. Then ω := ω1−ω2

would have zero jumps, and would thus be a holomorphic 1-form on Cu,s with zero
integral over any seam γe, and with real integrals over any path contained in Ĉv

u,s.
To deduce that ω is identically zero we use the Stokes’ theorem on each Ĉv

u,s,
and then sum over the components (a similar method will be used again later on).
Choose an arbitrary point p0 ∈ Cv; then

F v(p) := Im
ˆ p

p0

ω|Cv

is a single-valued real harmonic function on Ĉv
u,s, since all the periods of ωv are

real. The harmonic conjugate function

F v∗(p) = Re
ˆ p

p0

ω

is multiple-valued, but locally defined up to an additive constant, and thus we can
still write ωv = dF v∗ + i dF v. We use Stokes’ theorem to compute the L2-norm
of ωv on Cv:

i

2

ˆ
Ĉv

u,s

ωv ∧ ω̄v =
i

2

ˆ
Ĉv

u,s

(dF v∗ + i dF v) ∧ (dF v∗ − i dF v)

=
ˆ

Ĉv
u,s

dF v∗ ∧ dF v = −
∑

e∈Ev

ˆ
γe

F v dF v∗, (5.1)

where we have used the fact that F v is a well-defined single-valued function on Ĉv
u,s

and that the boundary of Ĉv
u,s is the collection of γe for all e ∈ Ev.
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We now take the sum of these equalities over all v; the summands on the right
come in pairs {e,−e}. Since ω is a holomorphic differential on the plumbed sur-
face Cu,s, the restrictions F v(e)|γe

and I∗e (F v(−e)|γ−e
) on any seam differ by some

constant of integration Ce, while the restrictions of the differentials dF v(e)∗|γe
and

dF v(−e)∗|γ−e
are equal under pullback by Ie. We thus compute
ˆ

γe

F v(e) dF v(e)∗ +
ˆ

γ−e

F v(−e) dF v(−e)∗ = Ce

ˆ
γe

dF v(e)∗ ,

where we recall that the map Ie : γe → γ−e is orientation-reversing. Sinceˆ
γe

ωv(e) = 0 by the definition of the ARN solution, it follows that also

ˆ
γe

dF v(e)∗ = 0,

and thus, finally, the sum of (5.1) for all v vanishes. Altogether it then follows that
ˆ

Cu,s

ω ∧ ω̄ = 0,

which implies that ω is identically equal to zero.
2) Construction of the ARN solution. We first recall the notion of Cauchy

kernels, then use appropriate versions of the kernel to essentially deal with the
real and imaginary parts of the initial data, and then construct the ARN solution
by explicitly writing the inverse of the relevant integral operator as the sum of a
convergent series.

3) The Cauchy kernels. Recall that for a genus g compact Riemann surface C
with a symplectic basis {Ak, Bk} of H1(C , Z), the normalized basis of the space of
holomorphic differentials on C is prescribed by the condition

ˆ
Ak

ωj = δj,k.

Denote by τj,k =
ˆ

Bk

ωj the period matrix of C , and by θ(z) = θ(τ, z) the corre-

sponding theta function. We denote by A the Abel map of C to Cg sending q0 to
zero, and denote the corresponding Riemann constant by κ. Then for any suffi-
ciently general collection of fixed g points q0, . . . , qg−1 ∈ C the normalized Cauchy
kernel is defined as

KC (p, q) :=
1

2πi
dp log

θ(A(p)−A(q)− Z)
θ(A(p)− Z)

, (5.2)

where

Z :=
g−1∑
j=1

A(qj) + κ

and by dp we mean the exterior differential with respect to p, for q fixed, so that the
result is a differential form in p. For q fixed, KC is then a meromorphic differential
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in the variable p with simple poles with residues ±(2πi)−1 at p = q and at p = q0,
respectively. For p fixed, KC is a multi-valued meromorphic function of q with the
only pole at q = p.

The Cauchy kernel KC is normalized in the sense that all its A-periods are zero:
ˆ

p∈Ak

KC (p, q) = 0.

On the sphere, the Cauchy kernel becomes simply

KP1(p, q) =
1

2πi

dp

p− q
.

The Cauchy kernel is used to solve the jump problem, as we now recall (see [19]).
Given a smooth closed simple curve γ ⊂ C and a smooth 1-form φ on γ, the Cauchy

integral transform
ˆ

q∈γ

KC (p, q)φ(q) defines a holomorphic 1-form in the variable p,

for p /∈ γ (the holomorphicity for p ̸= q0 follows from the holomorphicity of the
kernel KC in p, so that we can then differentiate under the integral sign, while
the holomorphicity at p = q0 follows from the fact that the residue of the Cauchy

kernel is independent of q, while
ˆ

γe

φ = 0). The Sokhotski–Plemelj formula is the

statement that the boundary values of this expression for z ∈ γ are

lim
p′→p∈γ

ˆ
q∈γ

KC (p′, q)φ(q) = ±1
2
φ(p) +

 
q∈γ

KC (p, q)φ(q), (5.3)

where we used the classical notation
 

for the Cauchy principal value of the sin-

gular integral. Locally the neighbourhood of γ ⊂ C looks like an annulus with γ
being the middle circle, and then the limit is taken for p′ lying in a fixed component
of the complement of γ in this annulus. The sign in the Sokhotski–Plemelj formula
is the orientation of the contour γ as the boundary component of the correspond-
ing half of the annulus. The Sokhotski–Plemelj formula implies that the integral
transform with respect to the normalized Cauchy kernel solves the jump problem.

To continue the construction of the RN differential, instead of the A-normalized
Cauchy kernel we will now introduce the suitably real-normalized Cauchy kernel,
defined as follows:

Kre
C (p, q) := KC (p, q)−

g∑
k=1

αk(q)ωk(p), (5.4)

where αk are the coordinates of the vector α(q) := (Im τ)−1 Im A(q). For q fixed,
Kre

C is also a meromorphic differential in p with simple poles at p = q and p = q0

with residues ±(2πi)−1. For p fixed, Kre
C is a single-valued real-analytic function

of the variable q, away from q = p. It can easily be checked from the monodromy
properties of the theta function that all periods of Kre

C are real:
ˆ

p∈γ

Kre
C (p, q) ∈ R ∀γ ∈ H1(C , Z).
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Similarly, we introduce

K im
C (p, q) := iKC (p, q)− i

g∑
k=1

βk(q)ωk(p), (5.5)

where βk are the coordinates of the vector β(q) := (Im τ)−1 Re A(q). For q fixed,
K im

C is a meromorphic differential in p with simple poles at p = q and p = q0 with
residues ±(2π)−1. For p fixed, K im

C is a multi-valued real-analytic function of q
away from q = p. We note that

Im
ˆ

p∈γ

K im
C (p, q) ∈ Z ∀γ ∈ H1(C , Z).

Analogues of the Sokhotski–Plemelj formula hold for Kre and K im. For these ana-
logues, in the right-hand side of (5.3) the Cauchy principal value of the integral
transform of φ with respect to Kre

C or K im
C , correspondingly, should be taken, while

for K im
C , φ is also multiplied by i. To prove this, note that Kre

C and K im
C differ from

KC by adding some differential ω(p, q) which is holomorphic in p (while K im further
multiplies by i), so that the Cauchy principal value of the integral transform of φ
with respect to this added holomorphic differential is simply the value of the inte-

gral, which thus contributes
ˆ

q∈γ

ω(p, q)φ(q) on both sides of the Sokhotski–Plemelj

formula (5.3).
4) The integral transform with respect to Kre. We now apply the Cauchy kernels

to obtain a solution of the jump problem, using Kre and K im to ensure the ARN
condition.

For any set h = {he} of real-valued smooth 1-forms on {γe} such that he =
−I∗e (h−e) for any e and all periods are zero, that is,

ˆ
q∈γe

he(q) = 0, (5.6)

we define for p ∈ Cv the Cauchy integral transform

ξv(p) :=
∑

e∈Ev

ˆ
q∈γe

Kre
Cv (p, q)he(q). (5.7)

We emphasize that the formula above is an integral transform on the normalization
Cv of the irreducible component of Cu,0. In particular the kernel Kre

v is independent
of s. A priori, ξv can have a pole at p = q0. However, since the residue of Kre

v at
p = q0 is equal to −1/(2πi) for any q, the residue of ξv at p = q0 is equal to

− 1
2πi

∑
e∈Ev

ˆ
q∈γe

he(q),

which vanishes by (5.6). We thus view ξv as a collection of holomorphic differentials
ξe on each Ue for e ∈ Ev, and the holomorphic differential ξ̂v on Ĉv

s . We observe
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that for any closed path γ ⊂ Ĉv the integral
ˆ

p∈γ

ξ̂v =
∑

e∈Ev

ˆ
p∈γ

ˆ
q∈γe

Kre
Cv (p, q)he(q)

=
∑

e∈Ev

ˆ
q∈γe

(ˆ
p∈γ

Kre
Cv (p, q)

)
he(q)

is real, since
ˆ

p∈γ

Kre
Cv (p, q) ∈ R, and he is real-valued.

We now study the singular part of the kernel in more detail. For e, e′ ∈ Ev,
e ̸= e′, we write ze = ze(p) ∈ Ve and we′ = we′(q) ∈ Ve′ for the local coordinates in
these disks, and we write

Kre
v (ze, we′) dze := Kre

v (p, q) . (5.8)

For p, q ∈ Ve, let Kre
v be the holomorphic part of Kre

v :

Kre
v (ze, we) dze := Kre

v (p, q)− dze

2πi(ze − we)
. (5.9)

We define the integral operator K re by

(K reh)e(ze) := dze

∑
e′∈Ev(e)

ˆ
we′∈γe′

Kre
v(e)(ze, we′)he′(we′). (5.10)

Since each Kre
v is holomorphic in ze, the operator K re sends a collection h of

real-valued 1-forms on the set of seams γe to a collection of holomorphic 1-forms
on the disks Ve — again, holomorphicity is simply due to the fact that each Kre

v is
holomorphic in ze. By definition, for any ze ∈ Ve we have

ξv(ze) = (K reh)e(ze) + dze

ˆ
we∈γe

he(we)
2πi(ze − we)

. (5.11)

The integral in this expression is singular, and its boundary values for ze ∈ γe are
given by the Sokhotski–Plemelj formula (5.3):

ξ̂v(ze) = (K reh)e(ze) +
1
2
he(ze) + dze

 
we∈γe

he(we)
2πi(ze − we)

(5.12)

and

ξe(ze) = (K reh)e(ze)−
1
2
he(ze) + dze

 
we∈γe

he(we)
2πi(ze − we)

. (5.13)

Since ξe is holomorphic on Ue, its integral over γe = ∂Ue vanishes by the residue
theorem. Using assumption (5.6), we thus obtain

ˆ
p∈γe

ξ̂v(p) =
ˆ

p∈γe

ξe(p) +
ˆ

p∈γe

he(p) = 0. (5.14)
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To use this for solving the jump problem on Ĉs, we need to compare ξ̂v(e)|γe
to

I∗e (ξ̂v(−e))|γe . Using I∗e (h−e) = −he and recalling that I∗e is orientation-reversing,
we compute

dze

2πi
·
 

we∈γe

he(we)
ze − we

− d(sz−1
e )

2πi
·
 

we∈γe

he(we)
sz−1

e − sw−1
e

=
dze

2πize

ˆ
we∈γe

he(we) = 0 (5.15)

for the jump of the singular integral in (5.12). Using again that he = −I∗e (h−e), we
can write the jump of ξ̂ at a point ze ∈ γe as(

ξ̂v(e) − I∗e (ξ̂v(−e))
)
(ze) =

(
he + (K reh)e − I∗e ((K reh)−e)

)
(ze). (5.16)

We define the matrix-valued (with indices e ∈ E) operator K re by

(K reh)e := (K reh)e − I∗e
(
(K reh)−e

)
(5.17)

and then reinterpret equation (5.16) as saying that the jump of ξ̂ across γe is equal
to [(I + K re)h]e, where I is the identity matrix.

5) The integral transform with respect to K im. We now perform an analogous
construction starting from K im, to deal with the imaginary part of the jumps while
preserving the reality of the periods. For any set g of real-valued smooth 1-forms
ge on the seams γe such that

ge = −I∗e (g−e) and
ˆ

γe

ge = 0,

for any e, we define the Cauchy integral

χv(p) :=
∑

e∈Ev

ˆ
q∈γe

K im
v (p, q)ge(q). (5.18)

Recall that, unlike Kre
v , the kernel K im

v is a multi-valued function of q. However,
we claim that χv is well-defined. Indeed, the difference of any two values of K im

v

is some holomorphic differential ω(p, q), and from the definition of K im
v it follows

that for any q

Im
ˆ

p∈γ

ω(p, q) ∈ Z for any cycle γ ⊂ Cv.

Thus for γ fixed and q varying, Im
ˆ

p∈γ

ω(p, q) ∈ Z is locally constant in q, and so

Im
ˆ

p∈γ

∂qω(p, q) = 0 for any γ.

But then ∂qω(p, q), considered as a function of p, is a holomorphic real-normalized
differential — which is thus identically zero, so that ω(p, q) is independent of q. It
then follows that ˆ

q∈γe

ω(p, q)ge(q) = ω(p)
ˆ

q∈γe

ge(q) = 0.

Hence, finally, the multivaluedness of K im
v cancels in the definition of χv(p).
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We again think of each χv as a collection of holomorphic 1-forms χe on each
disk Ue for e ∈ Ev, and a holomorphic 1-form χ̂v on Ĉv

s . The Sokhotski–Plemelj
formula in this case yields for ze ∈ γe

χ̂v(ze) = (K img)e(ze) +
i

2
ge(ze) + dze

 
we∈γe

ige(we)
2π(ze − we)

(5.19)

and
χe(ze) = (K img)e(ze)−

i

2
ge(ze) + dze

 
we∈γe

ige(we)
2π(ze − we)

. (5.20)

Similarly to the case of K re, this implies
ˆ

γe

χv = 0 for any e ∈ Ev, analogously

to (5.14). Moreover, although the periods of K im
v are not real, the period of χ̂v

over any cycle γ ⊂ Ĉv is real by the same argument as above: the imaginary part
of any period of K im

v is an integer. This integer is then independent of q, and thus

when it is multiplied by ge(q), the integral over γe vanishes since
ˆ

q∈γe

ge(q) = 0.

Similarly to (5.16), we compute the jump of χ̂ at ze ∈ γe to be(
χ̂v(e) − I∗e (χ̂v(−e))

)
(ze) =

(
ige + (K img)e − I∗e (K img)−e

)
(ze), (5.21)

and we interpret the right-hand side as the operator iI + K im applied to g.
6) The ARN solution as a recursively defined series. We now combine the pieces

above to construct the ARN solution of the original jump problem on Cu,s, with
initial data φ. The jumps of ξ̂ and χ̂ are given by (5.16) and (5.21). Therefore,
ω := ξ̂ + χ̂ is the ARN solution of the jump problem on Cu,s with initial data φ if
the jumps are correct, that is, if h and g satisfy the linear integral equation

φ = (I + K re)h + (iI + K im)g. (5.22)

To keep track of the reality of h and g, we write out the real and imaginary parts
of this equation separately, so it becomes(

Re φ
Im φ

)
= (I + K )

(
h
g

)
, (5.23)

where

K :=
(

Re K re Re K im

Im K re Im K im

)
(5.24)

is now a real matrix-valued integral operator. Thus, finally, our goal is to show that
for any given φ the linear integral equation (5.22) has a solution h, g. If the norm
of the operator K is sufficiently small, then the inverse of the operator I + K is
given by the sum of the convergent series I +

∑∞
l=1(−K )l, so that (5.23) is solved

by the convergent series

h :=
∞∑

l=0

(−1)lh(l) and g :=
∞∑

l=0

(−1)lg(l) (5.25)
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with the leading terms h0 := Re φ and g0 := Im φ, and the higher order terms
defined recurrently by

h(l) + ig(l) := K reh(l−1) + K img(l−1). (5.26)

7) Bounds for the terms of the series. To complete the construction of the ARN
solution, it thus remains to show that the series (5.25) with terms defined by (5.26)
are indeed convergent. For this, we estimate the norm of the integral operator K .
The explicit recursive bounds that we obtain for the terms of the series (5.26) will
be crucial in our further analysis of the behaviour the ARN solution as s → 0,
yielding eventually Proposition 5.3, going beyond proving the convergence of the
series (5.26).

We define the L∞-norm of a collection of 1-forms φe = φ̃e dze on the seams by

|φ|s := max
e

sup
ze∈γse

e

∣∣∣∣ 2πφe

d log ze

∣∣∣∣ = max
e

(
2π

√
|se| sup

ze∈γse
e

|φ̃e|
)

(5.27)

and our goal is to bound |h(l) + ig(l)|s for the terms recursively defined by (5.26).
Since Kre(p, q) is a real-analytic function of q, there exists a constant M1 such

that
|Kre

v (ze, we′)−Kre
v (ze, 0)| < M1|we′ | (5.28)

holds for all v, all e, e′ ∈ Ev, and any ze ∈ Ve and we′ ∈ Ve′ . Since Kre(p, q) depends
real-analytically on the moduli coordinate u, the constant M1 can be chosen to be
the same for all u in some neighbourhood of u = 0. As we emphasized above and

proved in equation (5.14),
ˆ

p∈γe

(K reh)e(p) = 0 for any h such that
ˆ

p∈γe

he(p) = 0

for any e. A similar analysis applies to K img, and it thus follows from the recurrent
definition (5.26) that

ˆ
p∈γe

h(l)
e (p) =

ˆ
p∈γe

g(l)
e (p) = 0 for all e and l.

On multiplying (5.28) by h
(l)
e′ and integrating over γe′ the contribution from K(ze, 0)

vanishes, so that for any ze ∈ Ve we obtain∣∣∣∣ˆ
w′e∈γe′

Kre(ze, we′)h
(l)
e′ (we′)

∣∣∣∣ < M1

√
|se| sup

we′∈γe′

∣∣∣∣ 2πih
(l)
e′

d log we′

∣∣∣∣
6 M1

√
|s| |h(l)|s. (5.29)

By recalling the definition of K re, the bound above implies the same bound for it;
the bound for K im is obtained analogously. Adding these inequalities and applying
them recursively with respect to l, it follows that there exists a constant M2 such
that

|h(l) + ig(l)|s < (M2

√
|s|)l|φ|s (5.30)

for any l. Thus for
√
|s| < (2M2)−1 the terms of the series h and g are bounded by

the geometric sequence with ratio less than 1/2. Since the sum of such a geometric
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series is less than 2, for further use we record that we have proven the crucial
inequality

|h + ig|s < 2|φ|s (5.31)

for any |s| < (2M2)−2. To finish the proof of convergence we note that in particular
the sum of the left-hand sides of (5.30) for all l converges, and thus the convergent
series (5.25) give a solution of the linear integral equation (5.23). Therefore, the sum
of the corresponding Cauchy integrals ξ̂ + χ̂ gives the ARN solution of the original
jump problem with initial data φ, finally proving Proposition 5.2. �

Our main interest is the behaviour of the ARN solution as s → 0, and the setup
is as follows. Let

f = {fe} = {f̃e(ze) dze}

be a collection of holomorphic 1-forms defined on the unit disks Ve. Then for any
|s| < 1 we consider the jump problem with initial data

{φe} :=
{
(fe − I∗e f−e)|γse

e

}
.

Note that by the residue theorem,
ˆ

γe

fe = 0 for any e, so this φe can be used as

initial data for the jump problem. The fact that φe is the restriction to the seam
of a holomorphic 1-form will allow us to explicitly compute the Cauchy principal
value appearing in the Sokhotski–Plemelj formula, while we will crucially use the
fact that our Cauchy kernels Kre

v and K im
v are taken on Cv, and are independent

of s.
We define the L∞-norm of f by

|f | := 2π max
e

sup
|ze|=1

∣∣∣∣ fe

d log ze

∣∣∣∣ = 2π max
e

sup
|ze|=1

|f̃e|. (5.32)

The Schwarz lemma on the disk Ue = {|ze| <
√
|se|} implies

|f |s :=
∣∣ f |γse

e

∣∣ 6 |f | (
√
|s|)ord f , (5.33)

where we have written ord f := mine(ordqe
fe). We further write, for any irreducible

component Cv,
|s v| := max

e∈Ev

|se|.

We finally denote the usual L2-norm of a differential on Ĉv
s by

∥ω∥2
Ĉv

s

:=
i

2

ˆ
Ĉv

s

ωv ∧ ωv.

Our main bound is then the following.

Proposition 5.3 (a bound for the ARN solution). For a fixed f and any suffi-
ciently small |s|, let ωs be the ARN solution of the jump problem with initial data

{φe} :=
{
(fe − I∗e f−e)|γse

e

}
.
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Then there exists a constant M independent of sufficiently small u and s such that
for any irreducible component Cv the following inequality holds:

∥ωs∥Ĉv
s

6 M |f | (
√
|sv|)ord f+1. (5.34)

Since Cv
1 := Cv \

⋃
e∈Ev

Ve is a compact set on which L2- and L1-norms can be
bounded in terms of each other, we have the following.

Corollary 5.4. For any fixed path γ ⊂ Cv
1 there exists a constant Mγ such that

the following inequality holds for all sufficiently small u:∣∣∣∣ˆ
γ

ωs

∣∣∣∣ 6 Mγ |f | (
√
|sv|)ord f+1.

To prove Proposition 5.3 we first obtain a pointwise bound.

Lemma 5.5. In the setup as above, there exists a constant M3 independent of u and
s such that for any ze ∈ γse

e and with the ARN solution written as ωv
s = ω̃v(ze) dze ,

the following inequality holds:

|ω̃v(ze)| < M3|f | (
√
|sv|)ord f . (5.35)

Proof. To obtain this bound, we return to the details of the construction of the ARN
solution; using the fact that the initial data is the restriction of a holomorphic 1-form
will eventually allow us to evaluate the singular integral by the residue theorem.
Writing the ARN solution for any ze ∈ Ve as the sum of (5.11) and the similar
formula for χ gives

ωv(ze) = (K reh)e(ze) + (K img)e(ze) +
dze

2πi

ˆ
we∈γe

he(we) + ige(we)
ze − we

.

The first two summands are holomorphic functions of ze ∈ Ve (see the discussion
after formula (5.10)). For the singular integral, recall that h and g are given by the
sums of the series (5.25), with the terms defined recursively by(

h(l) + ig(l)
)
e

=
(
K reh(l−1) + K img(l−1)

)
e

=
(
K reh(l−1) + K img(l−1)

)
e
− I∗e

((
K reh(l−1) + K img(l−1)

)
−e

)
,

where we have recalled the definition of the operator K re in formula (5.17) (and
K im is similar). In this recursive definition we clearly see a holomorphic form on Ve

and a pullback of a holomorphic form on V−e under I∗e . To make use of this, we
define the series

ϕe :=
∞∑

l=0

(−1)lϕ(l)
e

with the first term ϕ
(0)
e = fe and the further terms simply being the holomorphic

forms appearing in the recursion above:

ϕ(l)
e := K reh(l−1) + K img(l−1)

= dze

∑
e′∈Ev

ˆ
we′∈γe′

[
Kre

v (ze, we′)h
(l−1)
e′ (we′) + Kim

v (ze, we′)g
(l−1)
e′ (we′)

]
.

(5.36)
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Now ϕ
(0)
e is a holomorphic form on Ve, and so is every ϕ

(l)
e ; moreover, equation (5.30)

gives a bound on |ϕ(l)
e | for l > 1, which shows that for |s| sufficiently small the series

defining ϕe converge uniformly— and thus their sum ϕe is also a holomorphic 1-form
on Ve. Moreover, the bound (5.30) combined with the Schwarz inequality (5.33)
implies that

|ϕ|s < 2|f |s 6 2|f | (
√
|sv|)ord f . (5.37)

Finally, we rewrite the ARN solution as

ωv(ze) = (K reh)e(ze) + (K img)e(ze)

+
dze

2πi

ˆ
|we|=

√
|se|

ϕe(we)− I∗e (ϕ−e)(we)
ze − we

, (5.38)

and now estimate each term in this formula. Since ϕe is holomorphic, by the residue
theorem we compute the singular integral to be

dze

2πi

ˆ
|we|=

√
|se|

ϕe(we)− I∗e (ϕ−e)(we)
ze − we

= −I∗e (ϕ−e)(ze) (5.39)

for any |ze| >
√
|se|. Indeed, since each ϕe is holomorphic for we ∈ Ve, the first

term in (5.38) has no residues in the disk |we| <
√
|se|. The second term is equal

to (recall that Ie is orientation-reversing)

dze

2πi

ˆ
|w−e|=

√
|se|

ϕ−e(w−e)
ze − sew

−1
−e

= − dze

2πize

ˆ
|w−e|=

√
|se|

w−eϕ−e(w−e)
sez

−1
e − w−e

=
se dze

z2
e

ϕ̃−e(sez
−1
e ) = −I∗e (ϕ−e). (5.40)

Equation (5.40) extends continuously to |ze| =
√
|se|. Thus equation (5.37) implies

that the singular integral in (5.38) is bounded by 2|f | (
√
|sv|)ord f , which is the

order of the bound that we want.
On the other hand, we have the bound (5.29) for the norm of K re, and an

analogous bound for the norm of K im. Then combining the bound (5.31) with the
Schwarz inequality gives

|K reh + K im g|s 6 M ′ (
√
|sv|)ord f+1,

which is of smaller order than the bound for the singular integral. We have thus
obtained bounds for both summands, giving ωv in formula (5.38), and the lemma
is proven. �

Now we are ready to prove the bound for the L2-norm of ω.

Proof of Proposition 5.3. As in the proof of uniqueness of the ARN differential,
we use the Stokes’ theorem expression (5.1) for the L2-norm of ωv. For a given e,
we thus need to compute

ˆ
ze∈γe

F v(e)(ze) dF v(e)∗(ze) =
ˆ

γe

F v(e)(ze) · (ωv(ze) + ω̄v(ze)). (5.41)



298 S. Grushevsky, I.M. Krichever, and C. Norton

Recall that since
ˆ

ze∈γe

ωv(e)(ze) = 0, it follows that this integral does not depend

on the choice of the constant of integration for the definition of F v(e), so we can
pick any point z0

e ∈ γe and replace F v(e)(ze) on the right-hand side of (5.41) by
F v(e)(ze)− F v(e)(z0

e). From Lemma 5.5 we have the pointwise bound

|ω̃v| 6 M3|f | (
√
|s|)ord f

for some constant M3 independent of u and s. As the length of the arc from z0
e to

ze is at most 2π
√
|se|, it follows by integrating ω̃ that

F v(e)(ze)− F v(e)(z0
e) 6 2πM3|f | (

√
|s|)ord f+1.

We thus obtain
ˆ

ze∈γe

F v(e)(ze) dF v(e)∗(ze) 6 2πM3|f | (
√
|s|)ord f+1

ˆ
γe

|2ωv(ze)|.

Lemma 5.5 again gives a pointwise bound for the integrand, while integrating over
the seam introduces another factor of 2π

√
|se|, so that by summing over all e we

finally obtain

∥ωv∥2 6 4π2M2
3 |f |

(√
max
e∈Ev

|se|
)2 ord f+2

·#Ev. (5.42)

Thus, finally, there exists a constant M such that inequality (5.34) holds. �

6. The RN differential in plumbing coordinates

In this section we construct explicitly the RN differential on any smooth jet curve
Xw,u,s in plumbing coordinates. The construction starts with a collection of RN
differentials on Cv with prescribed singular parts at pℓ and with residues at the
nodes given by a solution of the flow Kirchhoff problem. Note that this differential
is strictly speaking not real-normalized: already for the case of an irreducible nodal
curve and a differential with no residues, when there are no residues in the limit
either, the period over a loop passing through a node is equal to the integral of
the RN integral on the normalization from one pre-image of the node to the other,
which may not be real.

We then use the ARN solution of the jump problem with the initial data matching
the jumps of this collection of differentials on Cv to construct a differential on Cu,s.
Since the ARN solutions have zero periods, the resulting differential will not be
real-normalized. We thus proceed recurrently, using RN differentials with residues
solving the force Kirchhoff problem with the electromotive force being equal to the
imaginary part of the periods of the differential constructed at the previous step.
The bound of the ARN solution of the jump problem from Proposition 5.3 is used
crucially to show that this construction converges.

We continue to use the notation for plumbed surfaces and the jump problem as
in the previous section.
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Notation 6.1. For a fixed smooth jet curve Xw,u,s, given any collection of real
numbers c = {ce}e∈E(Γ) satisfying conditions (0) and (1) of the Kirchhoff problem,
we denote by

Φ(c) = {Φv(c)}v∈V (Γ)

the collection of RN differentials on Cv
u with prescribed singular parts σℓ and pre-

scribed residues rℓ (encoded by the coordinate w) at the marked points pℓ, with
residue ice at the pre-image qe of every node, and holomorphic elsewhere.

Lemma 6.2. For any c satisfying conditions (0) and (1) in the Kirchhoff problem,
let

fe(c) := Φv(e)(c)
∣∣
Ve
− ice

ze
dze

be the collection of holomorphic differentials on Ve . Let ω(c) = {ωv(c)} be the ARN
solution on Ĉu,s to the jump problem with initial data (fe(c)− I∗e f−e(c))|γse

e
. Then

the collection of differentials

Ψv(c) := Φv(c)− ωv(c) (6.1)

is the unique meromorphic differential on Cu,s with singularities σℓ and residues
rℓ at pℓ prescribed by the coordinate w , and holomorphic elsewhere, such thatˆ

γe

Ψ(c) = 2πce for any e and
ˆ

γ

Ψ(c) ∈ R for any cycle γ ∈ H1(Ĉu,s, Z).

Again, recall that the last condition is equivalent to
ˆ

γ

Ψ(c) ∈ R

for any γ ∈ H1(Cu,s, Z) not intersecting the seams. As in the previous section, we
will drop w and u in the notation from now on.

Proof. Since

I∗e

(
ic−e

z−e
dz−e

)
= − ic−e

ze
dze =

ice

ze
dze,

the jumps of ω(c) on the seams are equal to those of Φ(c), and thus by construc-
tion the differential Ψ(c) on Ĉs has no jumps. Thus Ψ(c) defines a meromorphic
differential on Cs with prescribed singularities at pℓ, and holomorphic elsewhere

(the simple pole of Φv(e)(c) at qe is cut out by plumbing). Since
ˆ

γe

ωv(e)(c) = 0

for any e, by definition of the ARN solution the residue theorem on Ue yields
ˆ

γe

Ψ(c) = −2πi Resqe Φv(c) = 2πce

(for the sign, recall that γe is oriented as the boundary of Ĉv(e)). Since Φv(c) is
real-normalized on Cv, while the period of ωv(c) over any cycle on Ĉv

s is real, it
follows that the integral of Ψ(c) over any cycle on Ĉs is also real.

The uniqueness of Ψ(c) follows from the uniqueness of the ARN solution of
the jump problem. Indeed, if Ψ′ is another such differential, then Ψ(c) − Ψ′ is
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a holomorphic differential on Cs with zero periods over the seams, and with real
periods over all cycles not intersecting the seams. Hence it is the ARN solution of
the jump problem with zero initial data, which must then be identically zero. �

Notation 6.3. The construction above can be applied to the case when there are
no prescribed singularities. In this case suppose that c′ = {c′e} satisfy conditions (0)
and (1) of the Kirchhoff problem with no inflow, that is, when all fℓ are equal to
zero. We denote by Ω(c′) the differential constructed on Cs by the above procedure.

Then Ω(c′) is the unique holomorphic differential on Cs such that
ˆ

γe

Ω(c′) = 2πc′e

for any e and
ˆ

γ

Ω(c′) ∈ R for any γ ∈ H1(Ĉs, Z).

From uniqueness it follows that

Ψ(c + c′) = Ψ(c) + Ω(c′) (6.2)

for any such c and c′, since the right-hand side is a differential on Cs satisfying the
same conditions as the left-hand side. This relation will be used in the next section.

Consider the RN differential ΨX = Ψw,u,s on Xw,u,s: it has prescribed singular-
ities at pℓ, is holomorphic elsewhere, and its periods over all cycles are real. There-

fore, by the uniqueness of the latter, Ψw,u,s is equal to Ψ(c), for ce :=
1
2π

ˆ
γe

Ψw,u,s.

Thus constructing the RN differential ΨX is equivalent to determining c (depending
on w, u, and s) such that ΨX = Ψ(c). We will construct c recursively, starting with
the solution of the flow Kirchhoff problem, and then recursively solving the force
Kirchhoff problem, with the force being the imaginary parts of the periods of the
previous term in the series. The difficulty is that the periods over the paths pass-
ing through the nodes may diverge. We first show that they have well-controlled
logarithmic divergences.

Notation 6.4. For any closed path γ on C, let γ̂s be the collection of paths that
are the intersections γ ∩ Ĉv

s (conveniently, in our plumbing setup Ĉv
s is a subset

of Cv for any s). These γ̂s do not form a closed path on Cs, as the point γ∩γe may
not be the pre-image of γ ∩ γ−e under the identification Ie. We choose a starting
point on γ arbitrarily, and then denote by γe1 , . . . , γeN

(possibly with repetitions)
the set of seams that γ intersects (oriented so that γ crosses from γej

to γ−ej
), and

denote by Cvj the component of C that γ lies on after crossing γej
. Let then γ̂j

s be
the segment of γ contained in Cvj and going from γej−1 to γej

. Let δj be an arc
of γej

connecting the point γ ∩ γej
to I−1

ej
(γ ∩ γ−ej

). Finally, let γs be the closed
path on Cs obtained by traversing {γ̂1

s , δ1, . . . , γ̂
N
s , δN} in this order.

Lemma 6.5. For any closed path γ on C and any c satisfying conditions (0)
and (1) in the Kirchhoff problem, there exist constants Πγ(c) (independent of s,
but depending on w and u) and M5(c) (independent of w , u, and s) such that∣∣∣∣Im ˆ

γs

Ψ(c)−
N∑

j=1

cej
log |sej

| −Πγ(c)
∣∣∣∣ 6 M5(c)

√
|s| (6.3)

for any sufficiently small w , u, and s.
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Furthermore, the constant Πγ(c) only depends on the class of γ in the cohomology
of the dual graph Γ of C .

We note that for each j there are two choices of δej , by going in opposite direc-

tions around γej ; however, since Im
ˆ

γe

Ψ(c) = 0 by definition, the imaginary part

of the integral of Ψ(c) is the same for either choice.
For the second statement, note that there is a map H1(C, Z) → H1(Γ, Z). This

map is obtained by ‘extending’ every node of C to a segment, and then contracting
every irreducible component of C to a point. Geometrically, the image of γ in
H1(Γ, Z) simply encodes the sequence in which γ passes through the nodes of C.

Proof of Lemma 6.5. We recall from Lemma 6.2 that

Ψ(c) = Φ(c)− ω(c),

and we start by estimating the periods of Φ(c). We break each path γj
s into three

parts: γ1 contained in Vej−1 and connecting a boundary point of Uej−1 to the
boundary of Vej−1 , a similar path γ2 contained in Vej , and the path γ3 connecting
a boundary point of Vej−1 to a boundary point of Vej . Since the neighbourhoods

Ve are independent of s,
ˆ

γ3

Φ(c) is independent of s. For γ2, we write

Φ(c) =
icej

zej

dzej
+ Φ′(c)

in Vej
, where Φ′(c) denotes the regular part. Integrating the singular part over

γ2, which goes from some z′ ∈ ∂Vej
(that is, |z′| = 1) to some z ∈ ∂Uej

(that is,
|z| =

√
|sej |) yields

Im
ˆ

γ2

−ice

zej

dzej
= −ce log

∣∣∣ z

z′

∣∣∣ = −ce log
√
|sej

|.

To estimate
ˆ

γ2

Φ′(c), we can add to γ2 a path connecting z to 0. The resulting

path does not depend on s, and thus the integral of Φ′(c) over it is independent of s.
Since Φ′(c) is regular in Vej

, its norm there is bounded, and thus the integral of Φ′(c)
over a path in Vej connecting z to 0 is bounded by a constant times |z| =

√
|sej |.

We thus see that there exist constants α and β independent of s (but depending
on c, and on w, u) such that∣∣∣∣Im ˆ

γ2

Φ(c)− α− cej
log

√
|sej

|
∣∣∣∣ < β

√
|sej

|.

An analogous estimate holds for Im
ˆ

γ1

Φ(c), where we note that the path is now

oriented from the boundary of Uej−1 to the boundary of Vej−1 , but also that the
residue is equal to ic−ej−1 = −icej−1 .
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Combining γ1, γ2, and γ3 together, we thus finally see that there exist a constant
Πj

γ(c) independent of s (and depending smoothly on w and u) and a constant M6(c)
independent of w, u, and s such that∣∣∣∣Im ˆ

γ̂j
s

Φvj (c)− 1
2
cej−1 log |sej−1 | −

1
2
cej log |sej | −Πj

γ(c)
∣∣∣∣ < M6(c)

√
|s| (6.4)

for all w, u, s sufficiently small.

We now estimate
ˆ

γj
s

ω(c). By Corollary 5.4,
∣∣∣ˆ

γ3

ω(c)
∣∣∣ is bounded by a constant

times |f |
√
|s|, which is the size of the bound we want. Corollary 5.4 does not apply

to
ˆ

γ1

ω(c) and
ˆ

γ2

ω(c), as these paths depend on s. However, γ2 is contained

in Vej
, and formula (5.38) with the singular integral computed in (5.39) expresses

ω|Vej
as the sum of a holomorphic form on Vej

and −f−e(sez
−1
e ). Similarly to

the case of Φ′(c), the integral of the holomorphic form has the form required,

while −
ˆ z

z′
f−e(sez

−1
e ) =

ˆ se/z′

se/z

f−e(z−e) is also the integral of a holomorphic

form on V−e from a point se/z of absolute value
√
|se| to the point se/z′ of absolute

value |se|. Thus the same argument applies, and altogether
ˆ

γ2

ω(c) differs from

some constant α′ by less than β′
√
|sej

|, for some other constant β′. The integralˆ
γ1

ω(c) is completely analogous, so in the end we obtain the bound

∣∣∣∣Im ˆ
γ̂j

s

ωvj (c)− Ej(c)
∣∣∣∣ < M7(c)

√
|s| (6.5)

with some constant Ej independent of s (but depending on w and u) and M7

independent of w, u, and s.
To estimate the integral of Ψ(c) over the segments δj , we first note that

Im
ˆ

δj

icej d log zej = 0

for the singular part of Φ(c). Then
ˆ

δj

Φ′(c) is bounded by a constant independent

of s times the L2-norm of Φ′(c) on Vej
(which is also a constant independent of s)

times the length of δj , which is at most 2π
√
|sej

|. Similarly, Im
ˆ

δj

ω(c) is bounded

by a constant independent of s times
√
|sej

|, since ω(c) restricted to the seam is
the sum of a form holomorphic on Ve and a pullback of the form f−e holomorphic
on V−e, restricted to the seam.

Thus, altogether the lemma follows by subtracting equation (6.5) from equa-
tion (6.4) and summing over all j (notice that each ej appears twice in the sum
and thus the two fractions 1/2 in front of cej

log |sej
| appearing in (6.4) for γ̂j and

γ̂j+1 add up to the coefficient 1 in (6.3)).
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To prove that Πγ(c) only depends on the class of the image of γ in H1(Γ, Z), we
note that on each Cv the differential Ψ(c) is real-normalized, so that

Im
ˆ

γv

Ψ(c) = 0

for any closed loop γv ∈ H1(Cv, Z). Therefore, Πγ(c) = Πγ′(c) for any paths
γ and γ′ that only differ on Cv, which is exactly to say that Π only depends
on γ ∈ H1(Γ, Z). �

Remark 6.6. The above proof uses details of the estimates of the ARN solution.
Obtaining similar results using the classical approach to the jump problem, with
the Cauchy kernel KCs

on a varying Riemann surface, appears to be much harder.

We now construct the RN differential Ψw,u,s on any smooth jet curve explicitly,
as Ψ(c), with c defined as the sum of a series. We let c(0)(s) := {c(0)

e (s)} be the
solution of the flow Kirchhoff problem on the dual graph of Cu,0 with inflows irℓ,
and resistances ρ|e|(s) = − log |se| being the log-plumbing coordinates. While our
construction depends on w, u, and s — and here we write this out explicitly — note
that the Kirchhoff problem and its solution are independent of u. We only work
with smooth curves here, that is, all the se are non-zero.

A priori, by Lemma 6.5 the imaginary parts of the integrals of Ψ(c(0)) may have
logarithmic divergences. However, the sum of these logarithmic divergences on
a closed path ∑

c(0)
e log |se| = −

∑
c(0)
e ρ|e|

is precisely the left-hand side of equation (1.2) (condition (2)) of the Kirchhoff
problem. Since c(0) is the solution of the flow Kirchhoff problem, this sum is equal
to zero, as there is no electromotive force. Hence the corresponding logarithmic
divergences cancel, so that we have∣∣∣∣Im ˆ

γs

Ψ(c(0))−Πγ(c(0))
∣∣∣∣ < M(c(0))

√
|s|, (6.6)

with the constant M independent of w, u, and s and Πγ independent of s. To
deal with those periods of Ψ(c(0)) that have a non-zero imaginary part, we introduce
the correction c(1)(s) to be the solution of the force Kirchhoff problem on the dual
graph of Cu,0, with electromotive force

E (0)
γs

:= − Im
ˆ

γs

Ψ(c(0)). (6.7)

Recall that by (6.2)

Ψ(c(0)(s) + c(1)(s))−Ψ(c(0)(s)) = Ω(c(1)(s)),

where Ω is defined in Notation 6.3. Lemma 6.5 also applies to bound the periods
of Ω(c(s)), where we change notation to emphasize that the constants here are for
the holomorphic differential,∣∣∣∣Im ˆ

γs

Ω(c(1)(s))−
∑

e : qe∈γ

c(1)
e log |se| − Π̃γ(c(1))

∣∣∣∣ 6 M̃(c(1))
√
|s|.
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Therefore, altogether we can estimate the imaginary parts of periods:∣∣∣∣Im ˆ
γs

Ψ
(
c(0)(s) + c(1)(s)

)
− Π̃γ(c(1))

∣∣∣∣ 6 M̃(c(1))
√
|s|. (6.8)

We therefore proceed recursively, defining for any l > 1 the electromotive force

E (l)
γs

:=
∑

e : qe∈γ

c(l)
e log |se| − Im

ˆ
γs

Ω(c(l)) (6.9)

and letting c
(l+1)
e (s) be the solution of the force Kirchhoff problem with electromo-

tive force E
(l)
γs , so that the estimate analogous to (6.8) holds:

∣∣∣∣Im ˆ
γs

Ψ
( l∑

i=0

c(i)(s)
)
− Π̃γ(c(l))

∣∣∣∣ 6 M̃(c(l))
√
|s|. (6.10)

Thus once we show that c
(l)
e (s) converge to zero as l →∞, since Π̃γ(c(l)) and M̃(c(l))

depend continuously on c(l) and vanish for c = 0 (the differential Ω(0) vanishes as
it is the ARN solution of the jump problem with zero jump), it will follow that the
imaginary parts of the periods of Ψ

(∑∞
l=0 c(l)

)
are equal to zero —provided that

the sum of the series converges, which we will now prove.

Proposition 6.7. For any stable jet curve X there exists t ∈ R+ such that for any
s satisfying |s| < t the series

ce(s) :=
∞∑

l=0

c(l)
e (s) (6.11)

with terms recursively defined above, converge and the differential Ψ(c) is the RN
differential on Xw,u,s .

Proof. Since Ω(c) depends linearly on c, the map sending c(l) to E (l) is a linear map
of finite-dimensional real vector spaces. Denoting by M the norm of this linear map,
it follows that |E (l)| 6 M |c(l)|, where |c| := maxe |ce|. By construction, c(l+1)(s)
is the solution of the force Kirchhoff problem with electromotive force E (l). The
a priori bound for the solutions of the force Kirchhoff problem given by Lemma 1.7
yields

|c(l+1)(s)| 6 (− log |s|)N |E (l)| 6 MN(− log |s|)|c(l)(s)| (6.12)

(where we recall that N is the rank of H1(Γ) and is thus some constant). Hence
for |s| < t = e−MN the terms c(l) are bounded by a geometric series with ratio less
than 1. Therefore, the individual terms go to zero, while the sum of the series (6.11)
converges, and as explained above, this implies that Ψ(c) constructed from the sum
of these series is an RN differential. �
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7. The limit RN differential: proof of Theorem 3.7

We now prove the main result on limits of RN differentials. The proof will
crucially use the a priori bounds on solutions of the Kirchhoff problem given by
Lemmas 1.6 and 1.7, which in particular imply that the residues of RN differentials
are a priori bounded uniformly in a neighbourhood of any given stable curve.

Proof of Theorem 3.7. Let {Xk} be a sequence of smooth jet curves converging to
a stable jet curve X. Let c

(0)
k be the solution of the flow Kirchhoff problem with

resistances ρ|e|,k = − log |se,k| and inflows fℓ,k, which we assume to converge to
some limit c(0). Let Ψk denote the RN differential on Xk, which by Proposition 6.7
is equal to Ψk(ck), where ck is the sum of the series constructed there, of which
c
(0)
k is the first term. As in the proof of uniqueness of the ARN solution, and as

in the beginning of the proof of Proposition 5.3, we apply Stokes’ theorem as in
formula (5.1) for the norm of Ψk−Ψk(c(0)

k ). As before, we now sum the results over
all e, and look at the pairs of terms corresponding to e and −e. Since all periods

of Ψk are real, it follows that Fk = Im
ˆ

Ψk is a single-valued global function on Cs,

and thus its values on γe and the pullback of its values on γ−e under Ie are equal.
On the other hand,

Fk(c(0)
k ) = Im

ˆ
Ψk(c(0)

k )

is multi-valued on Cs, as the integrals over cycles intersecting the seams may not
be real. Thus the difference of the values of Fk(c(0)

k ) on Ĉv(e) restricted to γe,
and on Ĉv(−e) restricted to γ−e and pulled back under Ie, is equal to the imaginary
part of the integral of Ψk(c(0)

k ) over some cycle γX
e on Cs intersecting γe. Therefore,

altogether we see that

∥Ψk −Ψk(c(0)
k )∥2 =

∑
e

ˆ
γe

(
Fk − Fk(c(0)

k )
)
d
(
F ∗k − F ∗k (c(0)

k )
)

=
∑

e

∣∣∣∣Im ˆ
γX

e

Ψk(c(0)
k )

∣∣∣∣ · ∣∣∣∣ˆ
γe

d
(
F ∗k − F ∗k (c(0)

k )
)∣∣∣∣

= π
∑

e

∣∣ce,k − c
(0)
e,k

∣∣ · ∣∣∣∣Im ˆ
γX

e

Ψk(c(0)
k )

∣∣∣∣, (7.1)

where we recall that by Lemma 6.5 the period over γX
e only depends on the class

of this cycle in H1(Γ, Z), that is, only on the sequence of nodes that the path
passes through. We now take k sufficiently large so that wk, uk, and sk (which
all converge to zero as k → ∞) are sufficiently small for all the bounds in all the
previous results to apply.

The integral on the right-hand side in the last line of (7.1) is by definition −E
(0)

γX
e ,k

used in the construction of the RN differential in the previous section. The class γX
e

does not depend on s, and thus by the proof of Proposition 6.7 we have∣∣E (0)

γX
e ,k

∣∣ < MγX
e
|c(0)

k |.
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We now let ck = {ce,k} be those constructed in the previous section, that is,
these are given by the sums of the series for Xk, and such that Ψk = ΨXk

(ck).
Then by construction and (6.12) we have the estimate

|ce,k − c
(0)
e,k| =

∣∣∣∣ ∞∑
l=1

c
(l)
e,k

∣∣∣∣ 6 − |c(0)|
log |sk|

.

Since |c(0)| is uniformly bounded by (1.3) for all w, u, and s sufficiently small (this
is a crucial use of the a priori bounds for solutions of the Kirchhoff problem!) —and
thus for all k sufficiently large, altogether (7.1) implies the bound

∥Ψk −Ψk(c(0)
k )∥ < M(− log |sk|)−1/2 (7.2)

for some constant M independent of sufficiently large k.
Recalling from Lemma 6.2 that Ψk(c(0)

k ) − Φk(c(0)
k ) is the ARN solution of the

jump problem, the norm of which is bounded by Proposition 5.3, we obtain

∥Ψk(c(0)
k )− Φk(c(0)

k )∥Cv
s

< M1|sk|1/2 (7.3)

for some constant M1. Thus, finally, the convergence of c
(0)
k implies the convergence

of Φk(c(0)
k ), which depend on them continuously, and then the two bounds above

imply the convergence of
Ψk = ΨXk

(ck),

which is to say that the limit RN differential exists.
Now for the second part of the statement, if the sequence {Xk} is admissible,

then by Lemma 1.13, c
(0)
k converge to the solution c(0) of the multi-scale Kirchhoff

problem with generalized resistance

Pρ = lim Pρ
k
∈ S#|E|−1

+ .

By the above argument the RN differentials Ψk then converge to Φ(c(0)). �

8. Limits of zeros of RN differentials

In this section we finally state and prove our main result describing limits of
zeros of RN differentials. We will show that if the limits of zeros of ΨXk

exist as
a collection of points on C with multiplicities, then these limits are the divisor of
zeros of a suitable ‘twisted’ collection of RN differentials on the components Cv,
which may have higher order poles at some of the nodes where we specify that the
residues are given by the series (6.11). This twisted differential Φ arises as the limit
of restrictions of Ψk to Cv, scaled by some sequence of positive reals µk depending
on v.

Suppose that Xk is a sequence of smooth jet curves such that Ck converge to
a stable curve C, and that in this sequence the limit of the divisors of zeros of Ψk

exists as a collection of points of C with multiplicities. Since the space of singular
parts σℓ, considered up to scaling all of them at once by R+, is compact, there
exists a subsequence in which the singular parts {σℓ,k}, considered up to scaling
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by R+, converge. Since the zeros of a differential are preserved under such scal-
ing, we can further rescale all singular parts in the sequence so that the singular
parts themselves converge (not just up to scaling). Hence without loss of generality
we can assume that the sequence of smooth jet curves Xk converges to a stable jet
curve X. Furthermore, since every such convergent sequence contains an admissible
subsequence, without loss of generality for the rest of this section we will fix once
and for all an admissible sequence {Xk} = {Xwk,uk,sk

} converging to X. By The-
orem 3.7 there exists a limit RN differential Ψ on C, and our goal is to investigate
the limits of zeros of Ψk on those components Cv where Ψ is identically zero.

Notation 8.1. By a subcurve D of a stable curve C we mean the combinatorial
data of a subset of the set of irreducible components Cv of C. Geometrically,
we think of D as the union of the corresponding components, which in particular
may be disconnected. The data of a subcurve D ⊂ C then also defines subcurves
Du ⊂ Cu,0 of nearby stable curves. We will call two subcurves of C disjoint if no
irreducible component of C is contained in both of them. In particular, subcurves
that we call disjoint may still intersect at the nodes.

Given a subcurve D ⊂ C, we let ID be the set of internal nodes of D, that is, the
set of e ∈ E(Γ) such that qe, q−e ∈ D. We denote by ED the set of nodes where D
meets its complement, that is, the set of e ∈ E(Γ) such that qe ∈ D but q−e /∈ D.

Definition 8.2. Given a sequence of meromorphic differentials νk on smooth curves
{Ck} converging to C, and a sequence of positive reals µk, we say that there exists
a scale-µ limit of νk on a subcurve D ⊂ C if for any Cv ⊂ D there exists a not
identically zero meromorphic differential νv on Cv such that for any compact set
K ⊂ Cv \

⋃
e∈Ev

{qe}, the sequence of differentials µkνk|K converges to νv|K .
More generally, given a decomposition

D = D(0) ∪D(1) ∪ · · · ∪D(L)

into disjoint subcurves, and given sequences of positive reals µ
(0)
k , . . . , µ

(L)
k , we say

that there exists a multi-scale-µ limit of νk on D if for any 0 6 λ 6 L there exists
a scale-µ(λ) limit of νk on D(λ). We denote the collection of limits νv for all Cv ⊂ D
by Pµ

Dν.

Of course there is never a unique choice of a sequence µk such that the scale-µ
limit exists; any other sequence µ′k such that there exists a finite non-zero limit
of µk/µ′k yields the same notion of existence of scaled limits. For multi-scale limits
we will thus always number the subcurves D(λ) in such a way that

lim
k→∞

µ
(λ′)
k

µ
(λ)
k

= 0 for any λ′ < λ

(if some such limit is finite, then we consider the union of D(λ) and D(λ′) as one
subcurve). We think of the multi-scale limit Pµ

Dν as a collection of meromorphic
differentials on all Cv ⊂ D such that on each subcurve D(λ) the collection of dif-
ferentials Pµ(λ)

D(λ)ν is defined up to rescaling all of it by a positive real constant.
In this terminology, the main theorem will consist of arguing that any admis-

sible sequence has a subsequence such that for this subsequence one can define
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a stratification C = C(0) ∪ · · · ∪ C(L) and sequences µ
(0)
k , . . . , µ

(L)
k such that there

exists a multi-scale-µ limit Pµ
CΨ of Ψk. The proof will use auxiliary RN differentials

constructed on plumbed subcurves; to define them, we introduce more notation.

Notation 8.3. For our fixed admissible sequence {Xk}, given a subcurve D ⊂ C,
we denote by Dk the (possibly disconnected) smooth curve obtained by taking the
union of all irreducible components of Cuk,0 that are contained in D, and plumbing
them at every internal node e ∈ ID, with plumbing parameter se,k. Denote by Ψ+

Dk

the RN differential on Dk, whose only singularities are:
(a) σℓ,k at all the points pℓ ∈ Dk, and
(b) simple poles at external nodes e ∈ ED, with residue ice,k(

where we recall that the ck are such that Ψk = ΨXk
(ck), which is to say that

2πce,k =
ˆ

γe

Ψk

)
.

Given a subcurve D ⊂ C, we will also consider the differential on the comple-
mentary subcurve D′ := C \D, defined similarly, except that the singularities at
the external nodes in ED′ = −ED will be prescribed by ‘balancing’ the jets of Ψ+

Dk

at the nodes e ∈ ED.

Notation 8.4. Given a meromorphic differential νv on Cv and given e ∈ Ev, we
write

me := ordqe νv

(which is negative if νv has a pole at qe) and denote by uj,e the coefficients of the
Laurent expansion of νv near qe, so that

νv|Ve
=:

∞∑
j=me

uj,ez
j
e dze.

We fix once and for all a positive integer m, which will eventually be assumed to be
sufficiently large. We then denote by Je(νv) the sum of the first order polar part
and the holomorphic m-jet of the differential νv near qe, that is, we define

Je(νv) :=
m−1∑
j=−1

uj,ez
j
e dze

(the inclusion of u−1,ez
−1
e dze in the jet is for convenience, so that the notation

below is simplified; by abuse of notation we will keep calling Je the m-jet).

Notation 8.5. Given a subcurve D ⊂ C, with complementary subcurve D′, the
balancing differential is the RN differential Ψ−Dk

on D′
k, whose only singularities are:

(a) σℓ,k at all the points pℓ ∈ D′
k, and

(b) σ−e,k := I∗−e(Je(Ψ+
Dk

)) at each external node e ∈ ED′ = −ED.
Explicitly, this is to say that the singular part σ−e,k of Ψ−Dk

at q−e is

σ−e,k = −
(

se

m−1∑
j=−1

sj
euj,e,kz−j−2

−e

)
dz−e, (8.1)
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where uj,e,k are the coefficients of the m-jet Je(Ψ+
Dk

), and we recall that u−1,e,k =
ice,k by the definition of Ψ+

Dk
.

From now on we will denote by

SD,k := ({σℓ,k}pℓ∈D′ ; {σ−e,k}e∈ED
) (8.2)

the collection of all prescribed ‘balancing’ singular parts of Ψ−Dk
. Thus Sd,k is

a point in the vector space

C(m+1)#ED+
∑

pℓ∈D′ (ml+1)
,

and we denote by PSD,k the corresponding point in the sphere, which is its quotient
by R+. In particular, PSD,k only makes sense if at least one prescribed singular
part of Ψ−Dk

is non-zero.

Definition 8.6. Given a subcurve D ⊂ C, we call the admissible sequence {Xk}
jet-admissible on D if at least one singular part in SD is non-zero, and there exists
a limit PSD := limk→∞ PSD,k in the sphere.

We now define recursively a stratification of C and the corresponding multi-scale;
first we simplify the notation.

Notation 8.7. Given some disjoint subcurves C(0), . . . , C(λ) of C, we write

C(6λ) := C(0) ∪ · · · ∪ C(λ),

and denote by
C(>λ) := C \ C(6λ)

the complementary subcurve. We further write for brevity

S
(λ)
k = S

C
(6λ−1)
k

and E(λ) := EC(6λ) ,

and we write
Ψ(6λ)

k := Ψ+

C
(6λ)
k

and Ψ(>λ)
k := Ψ−

C
(6λ)
k

.

Definition 8.8. Suppose that for some λ > 0 the disjoint subcurves C(0), . . . , C(λ)

are already given. Suppose moreover that for some given multi-scale µ
(0)
k , . . . , µ

(λ)
k

there exists a multi-scale-µ limit Pµ
C(6λ)Ψ of the differentials Ψk on C(6λ). Suppose

furthermore that
lim

k→∞
µ

(λ)
k Ψk

∣∣
C

(>λ)
k

= 0.

We then say that {Xk} is jet-convergent at step λ if it is jet-admissible on C(6λ′)

for any λ′ < λ.
We call an admissible sequence jet-convergent if C(6L) = C for some λ = L. In

this case we call the decomposition C = C(0) ∪ · · · ∪ C(L) the order of vanishing
stratification.

Remark 8.9. The notion of order of vanishing stratification is closely related to the
notion of a weak full order induced by a level function, as defined in [2].
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The definition of jet-convergent sequences is motivated by the fact (which will
be proven below) that for any sequence jet-convergent at level λ, both the scale
µ(λ) and the scale-µ(λ) limit of the sequence of differentials on C(λ) are determined
uniquely by the behaviour at level λ− 1.

Indeed, by the definition of jet-admissibility, for a sequence that is jet-convergent
at step λ there must exist a sequence of positive reals µ

(λ)
k such that there exists

a non-zero limit
S (λ) := lim

k→∞
µ

(λ)
k S

(λ)
k . (8.3)

The fact that Xk is an admissible sequence means that Pρ
k

converge in S#|E|−1
+ ,

which implies that any subset of coordinates of Pρ
k

also converges in the corre-
sponding blowup of the sphere. Therefore, it follows that the sequence of smooth
curves C

(>λ−1)
k is also admissible. Denoting by X

(>λ−1)
k the smooth jet curve with

underlying curve C
(>λ−1)
k and with prescribed singular parts µ

(λ)
k S

(λ−1)
k , we see

that the sequence converges to a stable jet curve X(>λ−1) with singular parts S (λ).
Thus Theorem 3.7 implies that there exists a limit RN differential

Φ(λ) := lim
k→∞

µ
(λ)
k Ψ(>λ)

k . (8.4)

In our recursive construction of jet-convergent sequences the subcurve C(λ) ⊂
C(>λ−1) will be defined as the subcurve consisting of all irreducible components
of C on which the differential Φ(Λ) is not identically zero.

Then the proof of the main theorem on limits of zeros of RN differentials essen-
tially reduces to proving the equality

Φ(λ) = lim
k→∞

µ
(λ)
k Ψk (8.5)

on every irreducible component of the subcurve C(λ).
Assuming that this equality holds, we make the following definition.

Definition 8.10. For any component Cv ⊂ C(λ) we write

PΦv := PΦ(λ)
∣∣
Cv

and call the collection of all such {PΦv} the twisted limit differential on C. The
divisor of zeros of the twisted limit differential is defined to be the set of zeros of
all PΦv with multiplicities, away from all the nodes, together with every node q|e|
of C counted with multiplicity

ordqe
PΦv(e) + ordq−e

PΦv(−e) + 2,

and together with every marked point pℓ counted with multiplicity

mℓ + 1− ordpℓ
PΦv,

where Cv is the component containing pℓ.

Remark 8.11. By Theorem 3.7 the differential PΦv is an RN differential on Cv

whose singular parts are the scaled limits of the singular parts σ−e,k given by (8.1)
and of the singularities σℓ,k at the marked points pℓ that lie on Cv. Hence PΦv

may have higher order poles at the nodes.
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We are now ready to state the main theorem on the limits of zeros of RN differ-
entials. Until now the integer m in the definition of the balancing differential was
arbitrary. Now we will choose it to be sufficiently large, in order to guarantee exis-
tence of jet-convergent sequences (and to ensure that the inequality (8.19) holds).
We write

m0 := 2g − 2 +
∑

ℓ

(mℓ + 1).

Theorem 8.12. For any fixed m > 2m0 , any admissible sequence Xk contains
a jet-convergent subsequence. For any jet-convergent sequence of smooth jet curves
equality (8.5) holds, where Φ(λ) is defined by (8.4). For any jet-convergent sequence
the limits of zeros of Ψk on Ck exist and form the divisor of zeros of the twisted
limit differential, counted with multiplicities.

We will prove the theorem by induction on the number of levels of the order
of vanishing stratification. The base case of induction is L = 0, in which case
C = C(0), Ψk = Ψ(6λ)

k , and the limit RN differential Ψ does not vanish identically
on any irreducible component Cv of C. Therefore, the theorem in this case reduces
to showing that the limit RN differential Ψ is given by Φ = Φ(0), which is precisely
the statement of the theorem on limit RN differentials, Theorem 3.7, in this case.
Inductive assumption at step λ > 0: assume that for a sequence {Xk} that is
jet-convergent at step λ, equality (8.5) holds, where Φ(λ) is defined by (8.4); assume
moreover that if C(6λ) ( C, then the limit limk→∞ µ

(λ)
k Ψk

∣∣
C(>λ) is identically zero.

To deduce the inductive assumption at step λ+1 from the inductive assumption
at step λ, we will need the following two lemmas. First we prove a lemma showing
that multi-scale-µ(0)

k , . . . , µ
(λ)
k limits of Ψk|C(6λ) and Ψ(6λ)

k are equal.

Lemma 8.13. If the inductive assumption at step λ holds, then for any λ′ 6 λ the
following equality holds:

Φ(λ′) = lim
k→∞

µ
(λ′)
k Ψk

∣∣
Cv = lim

k→∞
µ

(λ′)
k Ψ(6λ)

k

∣∣
Cv .

Proof. By the inductive assumption, the multi-scale limit of Ψk|C(6λ) is equal to Φ,
and thus we need to show that the multi-scale limit of Ψ(6λ)

k is the same. Let υ
(λ)
k

be the ARN solution of the following jump problem on C(6λ): υ
(λ)
k has zero jumps

on the seams γe with e ∈ IC(6λ) , and on γe with e ∈ E(λ) it has a jump equal to(
Ψk − ice,kz−1

e dze)
∣∣
γe

. (8.6)

Formally it is a new type of jump problem since the collection of the initial data
are set not only on the seams at nodes of C(6λ) but also on the seams γe, e ∈ E(λ),
which are boundaries of the neighbourhoods U

se,k
e of the points qe ∈ C(6λ). Since

ˆ
γe

(Ψk − ice,k d log ze) = 0,

the solution of this jump problem is verbatim the same and is given by the Cauchy
integrals which now contain integration over γe, e ∈ E(λ). The same bounds hold,
that is, the L2-norm of υ

(λ)
k is bounded by the L∞-norm of the initial data, which
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is the L∞-norm of Ψk − ice,k d log ze on γe. Then by the assumption of the lemma
there exists a constant M such that

∥υ(λ)
k ∥

C
(6λ)
k

< M(µ(λ)
k )−1

√
|sk|. (8.7)

Consider the differential Ψ̃(6λ)
k which is equal to Ψk−υ

(λ)
k on C(6λ) \

⋃
e∈E(λ) U

se,k
e

and equals ice,k d log ze − υ
(λ)
k inside U

se,k
e . By the definition of υ

(λ)
k it has zero

jumps on all the seams including γe, e ∈ E(λ), that is, it is a meromorphic differ-
ential on C(6λ), has the same singularities as Ψ(6λ)

k , and is real-normalized. Hence
Ψ̃(6λ)

k = Ψ(6λ)
k . Then (8.7) implies that on any compact set K ⊂ Cv ⊂ C(λ′) not

containing nodes
lim

k→∞
µ

(λ′)
k

(
Ψk −Ψ(6λ)

k

)∣∣
K

= 0. �

We now obtain some bounds for the orders of zeros and poles of Φ(λ).

Lemma 8.14. Suppose the inductive assumption holds at step λ. For any e ∈ E(λ)

let me := ordqe
Φ(λ) . Then the following inequality holds:∑

e∈E(λ)

me 6 m0. (8.8)

Proof. Recall that Ψ(6λ)
k is a meromorphic differential on C

(6λ)
k whose only sin-

gularities are poles of orders mℓ + 1 at the marked points pℓ, and possibly simple
poles at E(λ). Thus the total number of zeros of Ψ(6λ)

k , counted with multiplicity,
is at most

2g(C(6λ)
k )− 2 +

∑
ℓ

(mℓ + 1) + #E(λ).

Furthermore, from Lemma 8.13 we know that

lim
k→∞

µ
(λ)
k Ψ(6λ)

k

∣∣
C(λ) = Φ(λ),

which is a differential that is regular at all qe for e ∈ E(λ). Since for k sufficiently
large the total number of zeros and poles of Ψ(6λ)

k within Ve, counted with multi-
plicities, is independent of k, and it is equal to me for the limit differential Φ(λ), it
follows that for any k sufficiently large Ψ(6λ)

k has me +1 zeros in Ve, and one simple
pole there. Therefore, altogether we obtain for the number of zeroes of Ψ(6λ)

k the
inequality ∑

e∈E(λ)

(me + 1) 6 2g(C(6λ)
k )− 2 +

∑
ℓ

(mℓ + 1) + #E(λ),

which gives the statement of the lemma upon canceling #E(λ) that appears on
both sides and noticing that g(C(6λ)

k ) 6 g(Ck). �

We are now ready to prove the main result of this section.
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Proof of Theorem 8.12. Assume that for an admissible sequence {Xk} the induc-
tive assumption is satisfied at step λ. Our first goal is to show that there exists a
subsequence for which we can choose a scale µ(λ+1), a differential Φ(λ+1), and a sub-
curve C(λ+1).

Indeed, consider the set of singular parts S
(λ)
k of differentials Ψ(>λ)

k . At the
points q−e, e ∈ E(λ), these singular parts are defined by the balancing condition

σ−e,k = I∗(Je(Ψ
(6λ)
k )).

By the inductive assumption, the differentials Ψ(6λ)
k multiplied by µ

(λ)
k converge

to Φ(λ). Lemma 8.14 then implies that the m-jet of Φ(λ) is non-zero, and thus
not all singular parts S

(λ)
k are zero. Thus the projectivization PS λ

k of this set of
singular parts is well defined. This projectivization is a point on a sphere, and since
the sphere is compact, there exists a subsequence of {Xk} such that PS λ

k converge
on the sphere. Then for this subsequence there exists a sequence of positive real
numbers µ

(λ+1)
k such that

S (λ+1) := lim
k→∞

µ
(λ+1)
k S

(λ+1)
k . (8.9)

Since Xk is an admissible sequence, the sequence Pρ
k

converges in S#|E|−1
+ , and

thus every subset of components of Pρ
k

also converges in the iterated real oriented

blowup of the corresponding sphere. Therefore, the sequence of jet curves C
(>λ)
k

is also admissible. Denote by X
(>λ)
k the smooth jet curve with underlying smooth

curve C
(>λ)
k and with prescribed singular parts µ

(λ+1)
k S

(λ+1)
k . This sequence of

jet curves must then converge to a stable jet curve X(>λ) with prescribed singular
parts S (λ+1). By Theorem 3.7 there exists a limit RN differential in this sequence,
and thus we can define Φ(λ+1) by equation (8.4), with λ replaced by λ + 1. We can
then finally define the subcurve C(λ+1) to be the union of all irreducible components
of C \ C(6λ) on which Φ(λ+1) is not identically zero.

Recall now that the equality limk→∞ µ
(λ)
k Ψk|C(>λ)

k

= 0 is also a part of the
inductive assumption; it immediately follows that

lim
k→∞

µ
(λ)
k S

(λ+1)
k = 0.

Since there exists a finite µ
(λ+1)
k -scaled limit S (λ+1) of the singular parts S

(λ+1)
k ,

as defined above, it follows that

lim
k→∞

µ
(λ)
k

µ
(λ+1)
k

= 0.

Thus, upon passing to a subsequence, we will from now on assume that {Xk} is
jet-admissible at step λ, that is, that equality (8.9) holds.

The following lemma proves the crucial part of the step of induction.

Lemma 8.15. If the inductive assumption at step λ holds, then on any compact
subset K ⊂ C(λ+1) that does not contain any nodes the differentials µ

(λ+1)
k Ψk

restricted to K converge to Φ(λ+1)|K .
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Before proving this essential lemma, we will analyze the behaviour of Φ(λ+1) in
a neighbourhood of a point q−e for e ∈ E(λ).

Lemma 8.16. Suppose the inductive assumption at step λ holds. Then there exists
a constant M such that for any e ∈ E(λ) and any k the inequality

µ
(λ+1)
k |se,k|me+1 < Mµ

(λ)
k (8.10)

holds.

Proof. Let uj,e := limk→∞ µ
(λ)
k uj,e,k be the limits of the scaled coefficients of the

Taylor expansions of Ψ(6λ)
k at qe if these exist. Since ordqe Φ(λ) = me by defini-

tion, the limit ume,e exists and is non-zero, while uj,e = 0 for any 0 6 j < me.
Jet-convergence at step λ means that there exists the scale-µ(λ+1) limit of the sin-
gular part σ−e,k. Hence for all e ∈ E(ℓ) and −1 6 j 6 m − 1 (where we write
u−1,e,k := −ice,k) there exist limits

lim µ
(λ+1)
k u−j−2,−e,k = − lim µ

(λ+1)
k sj+1

e,k uj,e,k

— where we have used the balancing condition. In particular, for j = me there
exists a finite limit

a := lim
k→∞

µ
(λ+1)
k sme+1

e,k ume,e,k (8.11)

of this sequence. Since the limit ume,e = limµ
(λ)
k ume,e,k also exists and is finite and

non-zero, the ratio of these two sequences, which is µ
(λ+1)
k sme+1

e,k (µ(λ)
k )−1, tends

to the finite non-zero limit a/ume,e and, in particular, is bounded above by some
constant M independent of k. �

We can extend this analysis to bound the pole order of Φ(λ+1) at q−e, which will
be used below. Recall that we have written me = ordqe

Φ(λ).

Lemma 8.17. Suppose the inductive assumption at step λ holds. Then for any
e ∈ E(λ)

ordq−e
Φ(λ+1) > −me − 2. (8.12)

Proof. Continuing in the setup of the proof of the previous lemma, note that since
there exists a scale-µ(λ) limit of Ψ(6λ)

k on C(λ), which by Lemma 8.13 is equal to
Φ(λ), it follows that for any integer j with me < j < m the coefficients µ

(λ)
k uj,e,k

are bounded independent of k. Hence there exist k0 and a constant M such that
for all k > k0 the inequality ∣∣∣∣ume,e,k

uj,e,k

∣∣∣∣ > M1 (8.13)

holds.
Suppose now for contradiction that the pole order of Φ(λ+1) at q−e is higher that

me + 2, that is, for some j with me < j < m the scale-µ(λ+1) limit of u−j−2,e,k is
non-zero. By the balancing condition this is equivalent to the limit

b := lim
k→∞

µ
(λ+1)
k sj+1

e,k uj,e,k
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being non-zero. Dividing equation (8.11) by this limit and using the bound (8.13)
yields for the absolute value

∣∣∣a
b

∣∣∣ = lim
∣∣∣∣µ(λ+1)

k sme+1
e,k ume,e,k

µ
(λ+1)
k sj+1

e,k uj,e,k

∣∣∣∣ = lim
∣∣∣∣ume,e,k

uj,e,k
sme−j

e,k

∣∣∣∣ > M1|se,k|me−j = ∞,

which is a contradiction. �

We can now show that the divisor of zeros of Φ indeed does not include nodes
with negative coefficients.

Corollary 8.18. The divisor of zeros of the twisted limit differential is a linear
combination of points of the nodal curve with non-negative coefficients.

Proof. By definition the statement means that we need to prove that

ordqe
Φv(e) + ordq−e

Φv(−e) > −2

for every node e. For a node e such that there exists λ such that Cv(e), Cv(−e) ⊂
C(λ), the twisted differential Φ(λ) is a limit RN differential and thus has at most
simple poles at the nodes, so the inequality is immediate. For the other nodes there
exists λ such that qe ∈ C(λ) while q−e /∈ C(6λ). In this case Lemma 8.17 gives
precisely the required inequality. �

We can now give the proof of the main technical lemma.

Proof of Lemma 8.15. Together, the differentials Ψ(6λ)
k and Ψ(>λ)

k define a dif-
ferential on the smoothing of Cuk,0 at all the nodes in E \ E(λ), which is then
real-normalized on all cycles not passing through nodes in E(λ). We thus consider
the jump problem with zero jumps at all seams corresponding to internal nodes
e ∈ IC(6λ) and e ∈ IC(>λ) and with the jump on the seam γe for any e ∈ E(λ) given
by

Ψ(6λ)
k

∣∣
γe
− I∗e

(
Ψ(>λ)

k

∣∣
γ−e

)
(8.14)

and let ω
(λ)
k be the ARN solution of this jump problem on Ck. Then the difference

ν :=
(
Ψ(6λ)

k ⊔Ψ(>λ)
k

)
− ω

(λ)
k

is a differential on C
(6λ)
k ⊔ C

(>λ)
k that also has no jumps on any seam γe for any

e ∈ E(λ). Therefore, ν is a well-defined differential on the plumbed curve Ck,
satisfying the following properties:

(a) its only singularities are at pℓ, with the singular parts prescribed by the
coordinates wk (the singularities at qe for e ∈ E(λ) are cut out by plumbing);

(b) ν has a real integral over any cycle on Ck not intersecting the seams γe

for e ∈ E(λ);
(c) by the definition of the residues of Ψ(6λ)

k at qe the integral of ν over any
seam γe for e ∈ E(λ) is equal to 2πce,k, which is the integral of Ψk over that seam
(the integral of the ARN solution over the seam is zero).

Therefore, Ψk − ν is a holomorphic differential on Ck such that all its periods
over the cycles not intersecting the seams γe with e ∈ E(λ) are real, and the
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periods over these seams are zero. Verbatim, the same argument that proves the
uniqueness of ΨX(c) by applying Stokes’ theorem shows that such a differential is
zero, and thus it follows that ν is equal to Ψk.

The advantage of this construction of Ψk over the one used in § 6 is that the
balancing condition (8.1) gives a much better upper bound for the initial data of
the jump problem whose solution is ω

(λ)
k . Indeed, for any e ∈ E(λ) let us define

holomorphic differentials fe,k on Ve and f−e,k on V−e by

fe,k := Ψ(6λ)
k

∣∣
Ve
− Je(Ψ

(6λ)
k ) =

∞∑
j=m

uj,e,kzj
e dze, (8.15)

where uj,e,k denote the coefficients of the Taylor series expansion of Ψ(6λ)
k at qe,

and respectively

f−e,k := Ψ(>λ)
k − σ−e,k =

∞∑
j=0

uj,−e,kzj
−e dz−e, (8.16)

where uj,−e,k denote the coefficients of the Laurent series expansion of Ψ(>λ)
k at q−e.

From the balancing condition (8.1) it follows that

Ψ(6λ)
k

∣∣
γe
− I∗e

(
Ψ(>λ)

k

∣∣
γ−e

)
= fe,k|γe

− I∗e (f−e,k|γ−e
).

Since fe,k is holomorphic in Ve and f−e,k is holomorphic in V−e, we can apply
Proposition 5.3 to bound the ARN solution ω

(λ)
k of the jump problem posed above.

Since Cv \ {Ve}e∈Ev is a compact subset of Cv \ {qe}e∈Ev , the sequence of dif-
ferentials µ

(λ)
k Ψ(6λ)

k on it converges. Thus each individual term of their Taylor
expansions also converges, and hence µ

(λ)
k fe,k, being the sum of all the terms of

the Taylor expansion starting from the mth term, converges on Cv \ {Ve}e∈Ev
. In

particular, µ
(λ)
k fe,k converge on the circle {|ze| = 1} = ∂Ve — which is where we

need to take the norm to apply the bound of Proposition 5.3. From (8.15) we see
that for any e ∈ E(λ) the differential µ

(λ)
k fe,k has a zero of order at least m at qe.

Therefore, there exists a constant M independent of sufficiently small w, u, and s
(so that it works for all sufficiently large k) such that

|fe,k|s < M
(
µ

(λ)
k

)−1 max
e∈E(λ)

|se,k|(m+1)/2.

We now recall that me 6 m0 < m/2 for any e by Lemma 8.14, so that |se,k|(m+1)/2

< |se,k|me+1/2 for any sufficiently large k. Using this inequality for the right-hand
side above and multiplying this bound by |µ(λ+1)

k | yields

µ
(λ+1)
k |fe,k|s < M max

e∈E(λ)
|se,k|1/2, (8.17)

by applying the bound for µ
(λ+1)
k /µ

(λ)
k given by Lemma 8.16.

We now bound f−e,k. By the assumption of jet-convergence at step λ the dif-
ferentials µ

(λ+1)
k Ψ(>λ)

k converge to Φ(λ+1). Since µ
(λ+1)
k f−e,k is the regular part
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of µ
(λ+1)
k Ψ(>λ)

k , these also converge, and thus there exists a constant M2 indepen-
dent of sufficiently small s and sufficiently large k such that

µ
(λ+1)
k |f−e,k|s < M2 max

e∈E(λ)
|se,k|1/2. (8.18)

Using for the initial data µ
(λ+1)
k (fe,k−I∗e (f−e,k)) of the jump problem the upper

bounds provided by (8.17) and (8.18), we finally get from Proposition 5.3 that there
is a constant M3 such that

µ
(λ+1)
k ∥ω(λ)∥Ck

< M3|sk|1/2. (8.19)

Since the limit of µ
(λ+1)
k Ψ(>λ)

k is finite and non-zero on any component Cv ⊂ C(λ+1),
it follows that for any compact set K ⊂ C

(>λ)
k we have

lim
k→∞

µ
(λ+1)
k Ψk

∣∣
K

= lim
k→∞

µ
(λ+1)
k

(
Ψ(>λ)

k − ω
(λ)
k

)
|K

= lim
k→∞

µ
(λ+1)
k Ψ(>λ)

k

∣∣
K

= Φ(λ+1)
∣∣
K

. �

This lemma completes the proof of the inductive step. Indeed, Lemma 8.15 shows
that if the inductive assumption holds at step λ, then there exists a scale µ

(λ+1)
k

such that the inductive assumption holds, for a suitable subcurve, also at step λ+1.
In particular we have proven the following.

Corollary 8.19. Any sequence {Xk} that is jet-convergent at step λ has a subse-
quence that is jet-convergent at step λ + 1.

Since the order of vanishing stratification is finite, to complete the proof of the
theorem it remains to determine the limits of zeros of Ψk. Away from the nodes
of C, the limits of zeros of Ψk are clearly the same as the limits of zeros of µ

(λ)
k Ψk,

which are simply the zeros of PΦ counted with multiplicities. We thus need to show
that a node q|e| is the limit of ordqe

Φv(e) + ordq−e
Φv(−e) + 2 zeros of Ψk, counted

with multiplicities.
Denote by Ke,k the compact set (Ve \ U

se,k
e ) ⊔ (V−e \ U

se,k

−e )/(γe ∼ γ−e), where
the seams are identified via Ie, as usual. The differentials dze in V−e \ U

se,k

−e and
se,kz−2

−e dz−e in V−e \ U
se,k

−e match each other on the seam γe and hence define
a holomorphic differential ζe,k on Ke,k that is nowhere zero. Hence the number
of zeros of the differential Ψk in Ke,k is equal to the number of zeros in Ke,k of
the function Ψk/ζe,k. By the argument principle the latter is equal to the inte-
gral of (2πi)−1 d log(Ψk/ζe,k) over the boundary ∂Ke,k, which is the union of the
circles |ze| = 1 and |z−e| = 1, with opposite orientations. On these circles PΨk con-
verges to PΦv(e) and PΦv(−e), respectively, and thus the integrals of d log(Ψk/ζe,k)
over them converge to the integrals of d log(Φv(e)/dze) and d log(z2

−eΦ
v(−e)/dz−e),

respectively. Thus the total number of zeros of Ψk within Ke,k, for k sufficiently
large, is equal to the total number of zeros and poles of Φv(e) in Ve plus the total
number of zeros and poles of z2

−eΦ
v(−e) in V−e, all counted with multiplicity. Since

the only zeros or poles of Φ in these neighbourhoods are at the origins, the statement
about the multiplicity of the zero at q|e| follows.
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The computation of the multiplicity of pℓ as a limit of zeros of Ψk is straightfor-
ward — the point pℓ is a smooth point of the component Cv that contains it, and
thus the multiplicity of it as the limit of zeros of Ψk is precisely the difference of
the pole orders of Ψk and Φ at pℓ.

Our main theorem, Theorem 8.12 on limits of zeros of RN differentials, is thus
proven. �

Corollary 8.20. Suppose that for a sequence of smooth jet curves {Xk} converging
to a stable jet curve X the limit of the zeros of the RN differentials Ψk exists. Then
the limits of zeros are the divisor of zeros of the twisted limit differential for some
jet-convergent sequence.

Proof. As argued in the proof of Proposition 3.14, the compactness of S#E−1
+ implies

that any sequence {Xk} has an admissible subsequence. Furthermore, Corol-
lary 8.19 shows that there exists a jet-convergent subsequence of this admissible
subsequence. By Theorem 8.12 the limit of zeros of the RN differentials corre-
sponding to this jet-convergent subsequence is the divisor of zeros of the twisted
limit differential in this subsequence. Since the limit of zeros exists for the whole
sequence, it must then be equal to the limit of zeros for this subsequence. �

9. Appendix: m-balanced approximation

As we see in the proof of the main theorem, Theorem 8.12 on limits of zeros of
RN differentials, the main motivation for introducing the balancing condition (8.1)
for the jet of the differential at qe and the singular part at q−e is to ensure that the
jump is sufficiently small, so that Proposition 5.3 applies, and yields a bound for
the ARN solution. The bound shows that for s sufficiently small this ARN solution
is smaller than the differentials themselves. In this appendix we develop this idea
into a general notion of m-balanced approximations. The balancing construction
used in the previous section will correspond to the case m = 0 of this more general
construction. While not used for the proof of our main results, the notion of
m-balanced approximations for m > 0 gives a general framework for future works
aimed at understanding more precisely the asymptotic behaviour of meromorphic
differentials under degeneration.

For a fixed m ∈ Z>0, we continue with the notation of the previous section.
Denote by W the set of all collections of RN meromorphic differentials Φ = {Φv}
on Cv that have poles of order up to mℓ+1 at each marked point pℓ, are holomorphic
away from the marked points and the pre-images of the nodes, and have poles of
order at most m + 1 at the pre-images of all nodes, with opposite residues at qe

and q−e for any node e. We note that W is a finite-dimensional vector space, and
for further use we denote by W0 ⊂ W the vector subspace of those differentials
that are regular at all pℓ and have zero residue at any node (while still allowed to
have higher order poles there). For Φ ∈ W we denote by uj,e the coefficients of
the Laurent series of Φv(e) at qe, by σe the singular part, and by Je the m-jet
of the holomorphic part of Φv(e) plus the polar term of order −1.

For a jet curve X = Xw,u,s we continue to denote by c = c(X) the sum of
the series as constructed in Proposition 6.7, that is, the values such that ΨX =
ΨX(c(X)). The m-balanced approximation is then defined as follows.
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Definition 9.1. For a given X and for a fixed integer m > 0, an element

ΦX [m] = {Φ[m]v} ∈ W

is called an m-balanced approximation if the following conditions hold.
(a) At each point pℓ the singular part of Φ[m] is as prescribed by the coordi-

nates w.
(b) At any pre-image qe of any node, the residue of Φ[m]v(e) is equal to

Resqe
Φ[m]v(e) = ice.

(c) At any pre-image q−e of any node, the singular part σ−e of Φ[m]v(−e) is
equal to the pullback under I∗e of the m-jet Je of Φ[m]v(e) at qe:

σ−e = I∗e (Je(Φ[m]v(e))),

which is the balancing condition explicitly written in equation (8.1).

We note that condition (c) prescribes both σ−e in terms of the jet of Φ[m]v(e) and,
by choosing q−e instead, also the singular part σe in terms of the jet of Φ[m]v(−e).
Therefore, the existence of m-balanced approximations cannot be argued by con-
structing them starting from some component, and then proceeding to define them
explicitly on the adjoining component. We thus first need to prove that the
m-balanced approximations exist. To prove this, one could first argue unique-
ness as we do below, and then deduce the existence by noting that the conditions
imposed on an m-balanced approximation are a system of non-homogeneous linear
equations on the singular parts, which must then have a solution. However, for
possible applications it is important to be able to compute the m-balanced approx-
imation, and we thus give a proof by an explicit construction of the approximation
as the sum of a recursively defined series.

Proposition 9.2. For any fixed m there exists a constant tm such that for any
|w|, |u|, |s| < tm there exists a unique m-balanced approximation ΦX [m].

Proof. Similarly to the construction of the RN differential in plumbing coordinates,
we will prove the existence by constructing the approximation as the sum of a series
ΦX [m] =

∑∞
l=0 Φ(l), now with the first term Φ(0) := Φ(c(X)).

The further terms Φ(l) for l > 1 will lie in W0, so that adding them to Φ(0) does
not change the singular parts of Φ at pℓ or the residues at the nodes. To define Φ(l)

we introduce a linear operator R : W → W0, which we think of as ‘balancing’ the
singular parts. An element of W0 is prescribed by its singular parts at each qe, and
we define R(Φ) by prescribing its singular parts at each q−e to be

se

m−1∑
j=0

sj
euj,ez

−j−2
−e dz−e, (9.1)

where the uj,e are the coefficients of the jet Je of Φ (note that this formula prescribes
a singular part without residue, as required for an element of W0).

We introduce a norm on W by taking the maximum of norms of the singular
parts. Let the linear operator R′ : W → W0 be defined by prescribing the singu-
lar parts to be

R′(σ)−e = s−1
e R(σ)−e.
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Since it depends smoothly on u and the collection of singular parts R(σ) is obtained
by multiplying the collection of singular parts R′(σ)−e by the diagonal matrix of se,
it follows that there exists a constant Mm such that for any Φ ∈ W we have

|R(Φ)| < |s| |R′(Φ)| 6 Mm |s| |Φ|. (9.2)

We now define the terms of the series by setting Φ(l+1) := R(Φ(l)) for any l > 0,
so that the above bound (9.2) shows that

|Φ(l+1)| 6 Mm |s| |Φ(l)| (9.3)

for any l. Thus, for |s| < M−1
m the norms of the terms are bounded by a geometric

sequence with ratio less than 1, and thus the series converges.
To prove uniqueness of the approximation, suppose that Φ′ is the difference of

any two m-balanced approximations. Then Φ′ ∈ W0 is a collection of RN dif-
ferentials holomorphic at all the marked points and satisfying all the balancing
conditions (9.1). But then R(Φ′) = Φ′ by definition, and thus it follows that
|Φ′| 6 Mm |s| |Φ′|, which for |s| < M−1

m is a contradiction unless Φ′ is zero. �

By using techniques similar to the proof of Lemma 8.14 it can be shown that
for m > 2m0 each meromorphic differential Φ[m]v of an m-balanced approximation
is not identically zero. To prove this, one proceeds inductively by the number
of components of C and uses estimates similar to those in Lemma 8.14 to show
that each m-jet Je(Φ) is not identically zero — which then implies that no singular
part σ−e is identically zero, and thus no RN differential Φ[m]v is identically zero.

Furthermore, consider the jump problem with initial data

Φ[m]v(e)
∣∣
γe
− I∗e

(
Φ[m]v(−e)

∣∣
γ−e

)
.

Let ωX [m] be the ARN solution of this jump problem, so that ΦX [m]−ωX [m] then
glues to define a differential on C, which is then easily seen to be equal to ΨX . The
balancing condition then shows that the first m terms of the initial data of the jump
problem cancel (as in equations (8.15) and (8.16) in the proof of Theorem 8.12),
and thus gives a bound for the ARN solution. As a result, one obtains the following.

Lemma 9.3. For any w , u, and s sufficiently small there exists a constant M such
that for any compact set K ⊂ Cv \

⋃
e∈Ev

{qe} the inequality

∥ΨX − ΦX [m]∥K < M |s|(m+1)/2 (9.4)

holds.

This lemma says that on those components Cv where the limit RN differen-
tial Ψ is not identically zero (that is, on C(0)), ΦX [m] approximates ΨX up to
order |s|(m+1)/2. In the same spirit as before, we can also approximate ΨX |C(>0)

with the same precision, by using the order of vanishing stratification.
More precisely, suppose that Xk is a jet-convergent sequence, as defined in Defi-

nition 8.8, with multi-scale µ(0), . . . , µ(L). We define a new sequence of differentials
as follows.
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Notation 9.4. For any 0 6 λ 6 L we denote by Ψk[m](6λ) and Ψk[m](>λ) the
RN differentials on C

(6λ)
k and C

(>λ)
k , respectively, whose only singular parts are as

follows:
• at every point pℓ ∈ C(6λ), the differential Ψk[m](6λ) has singular part σℓ,k;
• at every qe, e ∈ E(λ), the differential Ψk[m](6λ) has singular part σe,k[m] of

order at most m + 1, with residue ice,k;
• at every q−e, e ∈ E(λ), the differential Ψ(>λ)

k has singular part σ−e,k[2m] of
order at most 2m + 1;

• the following enhanced balancing condition holds:

σe,k[m] + J [2m]
e (Ψk[m](6λ)) = I∗e

(
σ−e,k[2m] + J

[m]
−e (Ψk[m](>λ))

)
, (9.5)

where J
[m]
e ( · ) is the polar term of order −1 plus the m-jet of the regular

part of the corresponding differential.

What the enhanced balancing condition says is that σe,k[m] is the singular part
that is m-balanced with the m-jet of Ψk[m](>λ) at q−e, while σ−e,k[2m] is the
singular part that is 2m-balanced with the 2m-jet of Ψk[m](>λ) at qe. Viewed this
way, the original balancing condition (8.1) requires 0-balancing in one direction,
and m-balancing in the other direction.

The existence of such a pair of differentials Ψk[m](6λ) and Ψk[m](>λ) requires
a proof, since unlike the case of Ψ(6λ)

k , which is defined directly, and unlike the
case of Ψ(>λ)

k , which is defined by prescribing its singular parts, the differentials
Ψk[m](6λ) and Ψk[m](>λ) must satisfy the enhanced balancing condition, which
restricts the singularities of both of them. However, arguing the same way as
in the proof of existence of m-balanced approximations, one can prove that such
differentials exist. Essentially the argument again boils down to noticing the extra
powers of se,k appearing in front of the singular parts σe,k[m] and σ−e,k[2m], which
imply the uniqueness of solution. Then since the enhanced balancing condition
is a non-homogeneous system of R-linear equations, it follows that this system is
non-degenerate and has a solution. Similarly to our proof of Proposition 9.2, one can
construct these differentials explicitly as sums of recursively defined series —which
essentially amounts to inverting a linear operator as a recursively defined series
with terms decaying as powers of s.

Definition 9.5. For a given jet-convergent sequence Xk, we let Φk[m](λ+1) be the
m-balanced approximation of Ψk[m](>λ) on C

(>λ)
k . We then call the collection of

differentials Φk[m](λ+1) on C(λ+1) the m-balanced approximation on Xk.

The use of the enhanced balancing condition is to guarantee a still better bound
on the initial data in the suitable jump problem, and the name of m-balanced
approximation is justified by the following main result about it.

Proposition 9.6. For any jet-convergent sequence Xk , any λ > 0, and any Cv ⊂
C(λ+1) , the following inequality holds:

µ
(λ+1)
k ∥Ψk − Φk[m](λ+1)∥Cv < M1|sk|(m+1)/2.
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The proof is completely parallel to the proof of Theorem 8.12, and since we
do not require Proposition 9.6 for the proof of our main result, Theorem 8.12,
we do not give the full details of the proof, just indicating the outline, for possible
future applications.

Idea of the proof. Mimicking the proof of Theorem 8.12, one first needs to prove the
statement analogous to Lemma 8.13, showing that the multi-scale-µ limits of Ψk

and Ψk[m](6λ) are the same. The proof is by using the ARN solution of the jump
problem and noticing that the presence of positive powers of se,k in each singular
part σe,k of Ψk[m](6λ) at qe for e ∈ E(λ), as given by the enhanced balancing
condition, ensures that in the limit as k →∞ these singular parts go to zero. One
then shows, similarly to the main part of the proof of Theorem 8.12, that the RN
differential Ψk is equal to

Ψk =
(
Ψk[m](6λ) ⊔Ψk[m](>λ)

)
− ωk[m](λ),

where ω[m](λ) is the ARN solution of the jump problem with zero jumps at all
seams corresponding to internal nodes e ∈ IC(6λ) and e ∈ IC(>λ) , and with the
jump on seam γe for any e ∈ E(λ) given by

Ψk[m](6λ)
∣∣
γe
− I∗e

(
Ψ[m](>λ)

k

∣∣
γ−e

)
. (9.6)

Identically to the arguments in the proof of (8.19), one can verify that the enhanced
balancing condition (9.5) indeed gives the extra mth power of se,k in the bounds for
the initial data for this jump problem, so that both upper bounds (8.17) and (8.18)
are improved by an extra factor of |se,k|m. Thus another application of the bound
for the ARN solution of the jump problem, given by Proposition 5.3, guarantees
that there exists a constant M such that for any Cv ⊂ C(λ+1) the inequality

µ
(λ+1)
k ∥ω[m](λ)∥Cv < M |sk|(m+1)/2

holds. The proposition thus follows. �

By taking the limit as k → ∞, the proposition of course implies that in any
jet-convergent sequence the scale-µ(λ) limit of Φk[m](λ) on C(λ) is equal to the
twisted differential Φ(λ) that appears in Theorem 8.12. Moreover, the bound
in Proposition 9.6 then shows that the collection of differentials Φk[m](λ) for all
0 6 λ 6 L gives an approximation to Ψk which, after scaling by the corresponding
scale µ(λ), is still within |s|m. This information allows the study of differentials Ψk

in a degenerating sequence of jet curves with arbitrary precision; in more general-
ity, the method of considering m-balanced approximations can also be applied to
studying degenerations of other kinds of differentials on sequences of degenerating
Riemann surfaces.
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(1971), 113–179; English transl., È. I. Zverovich, “Boundary value problems in the
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