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ABSTRACT. New reductions of the 2D Toda equations associated with lower-triangular difference
operators are proposed. Their explicit Hamiltonian description is obtained.
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1. Introduction

A recent burst of interest in the theory of linear difference operators was motivated by the
connection between these operators and the theory of discrete-time integrable systems of new type
(the pentagram map and its higher-dimensional generalizations), which have turned out to be
closely related to representation theory (the Coxeter friezes), and the theory of cluster algebras.

The pentagram map is defined for n-gons in RP? as follows: each vertex v; of an n-gon
(v1,...,v,) is mapped to the intersection point of the two diagonals (v;—1,v;+1) and (v, viy2).
If n and k + 1 are coprime, then, as shown in [12], the moduli space of n-gons in RP* is isomor-
phic, as an algebraic variety, to the space &1, of n-periodic linear difference equations

Vi=a"Vi =PV g4+ (D) aPVi + ()M (1.1)
whose all solutions are (anti)periodic:
Vien = (-1)"V;. (1.2)

In [5] such equations were called superperiodic.

More generally, Eqgs. (1.1) without constraints (1.2) correspond to the so-called twisted n-gons
in RP®, that is, sequences of vj € RP*, J € Z, for which there is a projective linear transformation
M of RP* such that Vjyn = Muvj.

In [12] it was shown that the pentagram map is a discrete integrable system, i.e., it preserves a
certain natural structure of a Poisson manifold on the space of n-periodic lower-triangular operators
(1.1) of order 3, and a complete set of integrals of motion in involution for the pentagram map was
constructed. The algebraic-geometric integrability of the pentagram map was proved in [13].

In [11] an explicit construction of a duality between the spaces £j41, and &,__1, was pro-
posed, which is a generalization of the classical Gale duality for n-gons. In [5] this duality was
connected with the theory of commuting difference operators, and a spectral theory of strictly
lower triangular difference operators

k
L=T"1453 "1, o) =af) (1.3)
j=1

was developed. Here T' is the shift operator: T1; = 1;41. Throughout the paper it is assumed that
the leading coefficient of L is non-zero:
agl) £ 0. (1.4)
The spectral theory of triangular difference operators is of interest in its own right. Our point
of departure in this paper is the simple observation that the spectral theory of triangular operators
is naturally connected with a special reduction of the 2D Toda hierarchy.
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Remark 1.1. For definiteness, in this paper we consider only the case of lower-triangular
reductions, since the involution L — L*, where

k k
X k+1 i (4 k+1 i) g
=T 4 3 ria) = 7 N ) (1.5)
j=1 J=1
is the formal adjoint operator, establishes an equivalence of the cases of lower- and upper-triangular

operators.
Recall that the 2D Toda equation

66277()02. — PiTPIHl _ pPi-17 i (1.6)
is a consistency condition for the two linear problems

{35\1’1' = V; + U4, - (1.7)
877\11i = Ci‘lli-l—h C; = ePiTPitl,

The full 2D Toda hierarchy is an infinite system of equations for a function ¢; = o; (t{,t7,t3,t5,...)
depending on one discrete variable i and two sets of continuous variables ¢, which are usually
referred to as the times of the hierarchy. In what follows, the times tf and t] are identified with
¢ and 7. The hierarchy equations are a consistency condition for the system of linear problems

OV = L0, (1.8)
where the L are difference operators of the form
m . )
L =" alo T (1.9)
j=0
with leading coefficients
af;z:l’_) =1, agz’ﬂ = efi™Pitm, (1.10)

It is easy to check that the consistency of the second equation in (1.7) with (1.8) implies

(07_) (07+) — O

UG =0-0i,  a, =0 (1.11)

Remark 1.2. Importantly, the hierarchy of any soliton equation regarded as a linear space of
commuting vector fields is well defined. However, as a rule, there is no canonical choice of “times”
(or, equivalently, of a canonical basis of commuting vector fields). The condition that the operators
L are upper- (lower-)triangular operators of order m fixes this ambiguity only partially. This
constraint determines times up to linear triangular transformations £ = t + Z# <m cftff. We
consider this issue in more detail in Sections 2 and 3 below.

Let us fix one of the times of the hierarchy, ¢, (or, more generally, a linear combination of
the first k£ + 1 times), and consider the solutions of the hierarchy that do not depend on it, i.e.,
such that

8t;+l<pz- =0. (1.12)
The space of such solutions can be identified with the space of auxiliary operators L. . Note
that from (1.11) it follows that under constraint (1.12) the operator L = L, , becomes strictly
lower-triangular, i.e., takes the form (1.3).

The restriction of the hierarchy flow associated with a time ¢ to the space of solutions station-
ary with respect to ¢, ; can be seen as a finite-dimensional system admitting the Lax representation

0, L = [Ly,, L. (1.13)
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For & = tf, the auxiliary operator has the form L] = v; + T~ with v; = O pi, and (1.13) is
1) = e¥i~%i-1 gnd Q(J)7 j=2,... Jk:

equivalent to the following system of equations for a, ;

gea? =97V — oD 4 Dy — i), G=2,.. 0k (114
0= az(li)1 - az('k) + (Vi = Vick—1), Vi = Ogp;. '
Similarly, for n = tf, we obtain the system
0ya? = ciallV — i a9 =1,k (1.15)

where af;l) = e¥i7%i-1 and ¢; = e¥iT P+,

The main goal of this paper is to construct a bi-Hamiltonian theory of systems (1.14) and (1.15).
We show that the space of strictly lower-triangular difference operators L admits two different
structures of a Poisson manifold and specify the corresponding Hamiltonians.

For k =1, systems (1.14) and (1.15) have the simplest and most interesting form:
Ogpi—1 — Ogpiqp1 = €¥i7Pim1 — ePitl™9i, (1.16)
Oppi — Oppi—1 = e¥im17 ¥t — eg¥im2m¥i, (1.17)
A posteriori, in these cases, one of our main results can easily be verified. Namely, it is easy to check

that systems (1.16) and (1.17) are Hamiltonian with respect to the form w = Y"1 | dy; A dpit1,
Vi = Yi+n, and the corresponding Hamiltonians are

n n
H™ = Zeﬂoi_ﬁoi—l’ HT = Z 6%01'—2—%01" ©0i = Pitn, (1.18)
1=1 i=1

respectively. But even in this simple case, the second Hamiltonian structure of Egs. (1.16) and
(1.17) is far from obvious. In the last section we prove that under the (one-to-one for odd n)
change of variables e?~%i-1 = x; — x;,_9 + €1 Eqgs. (1.16) take the form of Hamiltonian equations
with respect to the form w = Z?:l dx; N dxi—1,x; = ®i1y, with Hamiltonian

n
H = Zx?(wi_l — $i+1).
=1

2. Preliminaries

In this section we give the necessary facts from the spectral theory of strictly lower-triangular
operators and describe the construction of algebraic-geometrical solutions of the 2D Toda hierarchy.

2.1. The spectral theory of lower-triangular difference operators. In the modern ap-
proach to the spectral theory of periodic difference operators a central role is played by the notion
of a spectral curve associated with an n-periodic difference operator L. By definition, the points of
the spectral curve parameterize the Bloch solutions of the equation

L = By, (2.1)
i.e., the solutions of (2.1) that are eigenfunctions for the monodromy operator
T ") = wi. (2.2)

Let L(E) be the solution space of Eq. (2.1). This is a linear space of dimension equal to the order
of L. The monodromy operator preserves L(FE) and, hence, defines a finite-dimensional operator
T~"(E) on this space. The pairs of complex numbers (w, E) for which there exists a common
solution of Egs. (2.1) and (2.2) are determined by the characteristic equation

R(w,E) =det(w-1—-T""(FE)) =0.
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The polynomial R(w,E) can also be obtained as the characteristic polynomial of the finite-
dimensional operator L(w) being the restriction of L to the space T (w) := {¢ | w;tn = i }:

R(w,E) =det(E-1— L(w)) =0, L(w) == Ll7y)- (2.3)

The family of algebraic curves that arise as spectral curves depends on the choice of a family of
difference operators. It was shown in [5] that, in the case of strictly lower-triangular difference
operators L, the characteristic polynomial has the form
R(w,E) = w*t — E" + Z rijw B9 =0, (2.4)
>0, 520, ni+(k+1)j<n(k+1)
where 719 = [, a} # 0 (by virtue of assumption (1.4)).
If n and k + 1 are coprime, then the affine curve defined in C? by (2.4) is compactified by one
point p_, at which the functions w(p) and E(p) naturally defined on T" have poles of orders n and

k + 1, respectively. In other words, if one chooses a local coordinate z in a neighborhood of p_ so
that w = z7", then the Laurent expansion of £ has the form

o0
E =,k <1 + Z eszs>, w=2z". (2.5)
s=1

As shown in [5], the specific form of Eq. (2.4) allows one to single out another marked point p
on I', namely, the preimage of F = 0 with w = 0. It turns out that at this point £ = E(p) has a
simple zero, and the functions w = w(p) have a zero of order n:

1
w=—FE" <1 + E wSE8> (2.6)
71,0
s=1

Analytic properties of the Bloch solution in a neighborhood of the marked points are described by
the following two statements.

Lemma 2.1 [5]. Let L be an operator of the form (1.3) whose order and period are coprime.
Then there is a unique formal series E(z) of the form (2.5) such that the equation L = E1) has
a unique formal solution of the form

O gf; (=) (27)

with periodic coefficients &5 (i) = &5 (i +n) normalized by the condition & (0) = 0.
For further use, we briefly outline the proof.

Proof. The substitution of (2.7) and (2.5) into the equation Ly = E1 gives a system of
difference equations for the unknown constants es and the unknown functions £,(i) of the discrete
variable i. The first of them is the equation

e+ & () —& (i —k—1) =al. (2.8)

The periodicity constraint on & uniquely determines

ey =n""! Z agk) (2.9)
i=1

and reduces the difference equation (2.8) of order k + 1 to the first-order difference equation

mes + & (1) —& (i — 1) Z a, ](k+1 (2.10)

where m is an integer such that 1 < m < n and m(k+ 1) = 1 (modn). Equation (2.10) and the
initial condition &; (0) = 0 uniquely determine &; (i).
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For arbitrary s, the equation determining e; and &£, has the form

e+ & (1) & =k —1) = Quler, . es 1361, Eoral)), (2.11)
where Q; is a function linear in ey and &y, s’ < s, and polynomial in al(.j ) The same argument as
above shows that it has a unique periodic solution, which proves the lemma. O

Lemma 2.2 [5]. The equation L) = EvY has a unique formal solution of the form
Vi(B) = P B (1 + Zs:u)ES), ol = e, (2.12)
s=1

normalized by the condition £F(0) = 0.

Proof. The substitution of (2.12) into (2.1) gives a system of nonhomogeneous first-order
difference equations for the unknown coefficients £ . For s = 1, we have

EH) — &5 (i — 1) = eri2 ¥, (2.13)

For any s, the equations have the similar form
)~ &1 = P&, 61 0)); (2.14)
together with the initial conditions, these equations recursively define the £ (i) for all 4. O

The uniqueness of the formal solution (2.12) implies the following assertion.
Corollary 2.3. The formal series (2.12) is a Bloch solution, i.e., it satisfies (2.2) with

w(E) = _y(E) = r] jE" <1 +) wE> (2.15)

s=1

From Lemma 2.1 it follows that the components 1;(p), p := (w, E) € T', of the Bloch solution
1 (p) considered as functions on the spectral curve have a zero of order i at the marked point p_.
Lemma 2.2 implies that 1;(p) has a pole of order i at the marked point py.

It can be proved in a standard way that, in this case, 1; is a meromorphic function on I' having
(for generic operators) g poles v1,...,74 not depending on i outside the marked points p+ (see [1]
for details). These analytic properties are determining for the discrete Baker—Akhiezer function
introduced in [2].

The identification of the Bloch functions of periodic difference operators with the discrete
Baker—Akhiezer function is key for establishing a connection between the spectral theory of lower-
triangular operators, the theory of commuting difference operators (see [2]), and the theory of
algebraic-geometric solutions of the 2D Toda hierarchy.

The correspondence

Lr—{T,D =~ + - +}, (2.16)

where I' is the spectral curve of the operator L and D is the pole divisor of the Bloch solution 1),
is usually referred to as the direct spectral transform.

This is a one-to-one correspondence between the open dense subsets of the space of operators
and those of the space of algebraic-geometric spectral data. The construction of the inverse spectral
transform is a particular case of the general construction of algebraic-geometric solutions of the 2D
Toda hierarchy.

2.2. Algebraic-geometric solutions of the 2D Toda hierarchy. Let I' be a smooth
algebraic curve of genus ¢ with fixed local coordinates z4 in neighborhoods of the two marked
points py € I" such that z4(py) =0, and let t = {tj[, j=1,2,...} be a set of complex parameters
(it is assumed that only finitely many of them are nonzero). Then, as shown in [3], the following
assertion is valid.
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Lemma 2.4. For a generic set of g points vy1,...,7,, there is a unique meromorphic function
U,(t,p), p €', such that

(i) outside the marked points py it has simple poles at s (provided that the ~s are distinct);

(ii) in neighborhoods of the marked points it has the form

Ut 2y) = 2FieEmtne” <Z§ i,t) zi> & =1 (2.17)

The function ¥; is a particular case of the so-called multi-point Baker—Akhiezer function (see,
e.g., [10]).

The uniqueness of the function ¥; implies the following result.

Theorem 2.5 [3]. Let V,(t,p) be the Baker—Akhiezer function corresponding to any set of
data {T,px,24571,--.,7g}. Then there exist unique operators L of the form (1.9), (1.10) with
@i(t) :==In&f () such that Egs. (1.8) hold.

Remark 2.6. By definition, the Baker—Akhiezer function depends on the choice of local coor-

dinates z4 in neighborhoods of the marked points p+. A change of the local coordinate corresponds
to a triangular transformation of the times ;' (cf. the remark in the introduction).

The algebraic-geometric solutions of the 2D Toda hierarchy can be explicitly expressed in
terms of the Riemann theta-function. Choosing a basis of cycles a; and b;, i = 1,...,g, on I with
canonical intersection matrix, i.e., so that a; o a; = b; 0 b; = 0 and a; o b; = ¢;;, we can define

(a) a basis of normalized holomorphic differentials w; for which fa]- wi = 0jj;

(b) the matrix B of their b-periods for which B;; = ¢, w; and the corresponding Riemann

J
theta-function
6() = 0(z|B) = ) SmimAmEmm =y
mezZ9

(c) the Abel transform A(p) under which the vector A(p) has coordinates Ay (p) = [ wy;

(d) the normalized Abelian differential dy of the third kind for which f on = 0 having
simple poles with residues F1 at p+ and the normalized Abelian differential de + of the second

kind having poles at p4 of the form dQ,, + = d(2™ + O(2+)) and normalized by the condition
4, A+ =0.

Lemma 2.7 [3]. The Baker—Akhiezer function is given by the formula
0(A(p) +iUo + 3 Um sty + Z) 0(A(p-) + Z) i)+ 5 Ut (p)
0(A(p-) +ilUo + X Up stim + 2) 0(A(p) + Z)
Here the summation is over all pairs of indices (m,=+) and
(a) Qo(p) and QU +(p) are the Abelian integrals Qo(p) = [P dQ and Qm 1(p) = [T dQ +

corresponding to the differentials introduced above and normalzzed so that, in a nezghborhood of p_,
they have the form

Qoz-) =Tnz- +0(:0), Qu(22) = 22"+ 0(2), Qi (2-) = O(=.);
(b) 2milUy and 2mwiU, ; are the vectors of their b-periods, i.e., the vectors with coordinates

1 1
Uk = dQ Uk = dQ 2.19
0 27’(‘2 b 05 m,+ 27’(‘2 b m, £ ( )

Wi(t,p) = (2.18)

(¢) Z is an arbitrary vector corresponding to the pole divisor of the Baker—Akhiezer function.

Note that from the bilinear Riemann relations it follows that Uy = A(p—) — A(p4+), and the
termwise comparison of the coefficients of the same powers on the left- and right-hand sides of
(2.18) imply the following result.
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Theorem 2.8 [3]. The algebraic-geometrical solutions of the 2D Toda lattice are given by the
formula

0((i = VU + 3. Uity + Z)
0(iUo + 3. Unstin + Z)
where Z = 7 + A(p_) is an arbitrary vector, the vectors Uy and Uy, + are defined in (2.19), and

the constants cy and cy, + are the leading coefficients of the expansions of the Abelian integrals in
a neighborhood of p4:

©i(t) = In +ico+ Y Cmti, (2.20)

Qo(z4) = —Inzp +co+ O(z4), (2.21)
Om4(24) = 20" +emy T O0(24), O —(24) = cm— + O(24).

From (2.20) it is easy to see that, in the general case, the algebraic-geometric solution is a
quasi-periodic function of all variables, including i. It is n-periodic in the discrete variable ¢ if the
vector nUp = n(A(p+)— A(p—)) is a vector in the lattice defining the Jacobian of the corresponding
curve I'. The last statement is equivalent to the following assertion.

Lemma 2.9. Let I' be a smooth algebraic curve on which a meromorphic function w with a
unique zero at some point p1 and a unique pole at another point p_ of order n is defined. Then the
Baker—Akhiezer function corresponding to the curve I', the points p+, and any divisor v satisfies
Eq. (2.2), and therefore the corresponding solution of the 2D Toda hierarchy is n-periodic.

To prove this statement, it is enough to check that the functions ¥;_,, and wW¥, have the same
analytical properties and hence coincide.

2.3. The dual Baker—Akhiezer function. For further use, we recall the important notion of
the dual Baker—Akhiezer function (a detailed discussion of the notion of dual functions is contained
in [10]).

For a nonspecial divisor D = 71 + --- + 74 of degree g on a smooth algebraic curve I' of genus
g with two marked points, one can define the dual effective divisor DT = ’yf + +’y;' of degree g
as follows: for the given D, there exists a unique meromorphic differential df) having simple poles
with resides +1 at the marked points that is holomorphic everywhere except at these points and
has zeros at s (d€2(7ys) = 0). The zero divisor of df? is of degree 2¢g. Hence, in addition to zeros
at 7s, the differential dQ has zeros at g other points v (dQ2(vF) = 0). In other words, the divisor
D™ is defined by the equation D + D' = K +py +p_ € J(I'), where K is the canonical class, i.e.,
the equivalence class of the zero divisor of the holomorphic differential on I'.

The function ¥ (t,p) dual to the Baker—Akhiezer function W;(¢,p) corresponding to a divisor
D is determined by the following analytical properties: (i) outside the marked points py it is
meromorphic and has simple poles at v} (if 75 are distinct); (ii) in neighborhoods of the marked
points it has the form

o0
UH(t, 24) = 2Eie(Sm 02" <Zx§t(i,t) i> v =1 (2.22)
s=1

It follows from this definition that the differential \I/;"\Ilde is a meromorphic differential on T,
which may have poles only at the marked points p1. Moreover, for i > j (i < j), it is holomorphic
at py (p—). Since the sum of residues of a meromorphic differential equals zero, we have

res U W, dQ) = £, 5, (2.23)

P+

which implies that U satisfies the equation

k 1
(UFL) = U, + a0 M | = By (2.24)
adjoint to (2.1) and the equation
0 Ut =0t L. (2.25)
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The theta-functional formula (2.20) for the dual Baker—Akhiezer function has the form
0(A(p) — iUo = Y Umaty, + Z7) 0(A(p-) + Z7) =i ()= 65 U 4 (p)
0(A(p-) —ilUo = > U st + Z) 0(A(p) + Z+) ’

where Z + ZT = K + A(p4) + A(p—). The analytical properties of ¥ easily imply the following
assertion.

U (tp) = (2.26)

Lemma 2.10. Under the assumptions of Lemma 2.9 the dual Baker—Akhiezer function satisfies
the equation

Uh =wl . (2.27)

Remark 2.11. As mentioned above, the construction of an inverse spectral transform can be
regarded as a special case of the construction of the algebraic-geometric solutions of a 2D Toda
hierarchy. Indeed, let T' be the curve determined by an equation of the form (2.4); then a simple
comparison of analytical properties shows that the Bloch function of the operator L coincides with
the Baker—Akhiezer function depending on an infinite set of variables when all continuous times
vanish: 1; = \Ilz(tf =0).

3. The Hamiltonian Theory of Reduced Systems

The systems of equations (1.14) and (1.15) were defined as special reductions of the 2D Toda
hierarchy. Therefore, the solutions of the corresponding equations are given by (2.18), where the
Riemann theta-function corresponds to any curve defined by Eq. (2.4).

In this section we develop a Hamiltonian theory of this reduced system, following the general
scheme proposed in [7] and [8]. According to this scheme, on the space of operators L, which is
identified with the phase space of the system, one can define a family of two-forms by

wl® = —% za: Tes E~ T (w) 6L A dh(w)) dS, (3.1)

where § F'(L) stands for the variation of a function F' on the space of operators (the Baker—Akhiezer
function with fixed eigenvalue w and fixed normalization is such a function) and the summation
is over the set of those points p, on the corresponding spectral curve at which the expression on
the right-hand side a priori has poles, namely, the marked points p., at which the Baker—Akhiezer
function and its dual have poles, and, for ¢ > 0, of the zeros py, £ = 1,...,k, of the function
E = E(p) at which w = w(p) does not vanish, i.e., E(p;) =0 and w(pe) # 0.

3.1. The differential d€2. Our first goal is to derive a closed expression for the differential
dQQ specified above via its analytic properties in terms of the Bloch eigenfunctions ¢ and the dual
functions ™.

Suppose that the coefficients of the operator are n-periodic. Following the same line of reason-
ing as in [4], consider the differential di) with respect to the spectral parameter. It satisfies the
nonhomogeneous linear equation

(L—E)dy = dE, (3.2)
which is the differential of Eq. (2.1). Differentiating Eq. (2.2), we see that di satisfies the mon-
odromy relation

w d; + dwip; = dip;_y,. (3.3)

Let us denote the mean of a function f; on the interval [ +1 < i <Il+n by (f); := ZiJr?H fi

in the case of n-periodic functions, where this mean does not depend on [, we shall use the short
notation (f). From (3.2) it follows that

k—i—l l+n

E@Fdp) + dE () = (L dy)), Z S aufdiy. (3.4)

] 1i=l+1
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Equation (2.24) implies

k+1 I+n k-l—l l+n+j
E(pTdip), Z S all it dui = - Z S© aPuf ;. (3.5)
] 1i=l+1 ] 1i=l+1+j5
Substituting (3.5) into (3.4) and using (3.3), we obtain
k+1 I+
E(pty) = Z S aPgty ;. (3.6)
] 1i=l+1

Note that the left-hand side of (3.6) does not depend on [. Hence the right-hand side of (3.6) is
independent of [ as well. Averaging over [, we obtain the equation

4B {9 ) = St (L)), (37)
where
K+l
D=3 jal 1 (3.8)
j=1

is the difference analogue of the first descendant of a differential operator introduced in [4].

From (3.7) it follows that the zeroes of dw coincide with the zeroes of the meromorphic function
(1pt4p) and the zeros of dE coincide with the zeros of (¢ (L™M4)). Hence the following lemma is
valid.

Lemma 3.1. The differential

dw dE
dQ) = = 3.9
() (LD o
is holomorphic outside the marked points p+, has zeros at the poles of 1 and 1", and has simple
poles with resides +1 at p4.

Lemma 3.1 allows us to regard (3.9) as an explicit expression for the differential df2, which
we introduced by specifying its analytical properties in the definition of the dual Baker—Akhiezer
function.

Examples. For £ =1,

dE dw
dQ = = , 3.10
(af oo, + 2 i) PO WTY) .
and for k£ = 2,
dQ = dE __dw (3.11)

@Oyt |+ 20Dy g + 30 ig)  wtY)

3.2. Symplectic leaves and the Darboux coordinates. We emphasize that the form w(?)
is not closed, and it is degenerate on the space of all operators L. It becomes closed after be-
ing restricted to certain subvarieties. As we shall see below, only the forms w® and w® are
nondegenerate on the corresponding subvarieties. Thus, on the space of operators L, there exist
two structures of a Poisson manifold. The existence of such structures reflects the bi-Hamiltonian
nature of integrable systems.

In the framework of the approach of [7] and [8] the constrains defining the symplectic leaves in
each of the Poisson structures are equivalent to the condition that the form w® does not depend
on the choice of the normalization of the Bloch eigenvector ¢. The change of normalization is
equivalent to the transformation v; — ;h, wf — wf h~=1, where h = h(w) is a scalar function.
Under this transformation the differential on the right-hand side of (3.1) is mapped to

E~ (T (w) 6L A 5p(w)) dQ + B+ (w) 6L (w)) A 8 InhdS. (3.12)
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Hence the form w® is normalization independent when the last term in (3.12) is holomorphic near
the points p,. It follows from the equation

(L—E)op(w) =—(0L — 6E(w))y (3.13)
and the definition of the adjoint operator that
(WT((OL = 0E)W)) = (7 (E — L))dy) = 0. (3.14)

Using (3.9), we obtain the following statement.

Lemma 3.2. The restriction of the form w® given by (3.1) to a subvariety of the space of all
operators on which the differential E~'6E(w)dInw is holomorphic in neighborhoods of the points
Do 18 normalization independent.

Example. For i = 0, the summation in (3.1) is over the marked points py. At the point p
(where w = 0) the function E has a zero. Therefore, the form Edlnw has a pole only at p_, and
hence it has zero residue at p_. Thus, in (2.5) we have e;11 = 0.

In a neighborhood of p_, where the function E has a pole of order k+ 1, the form dFE(w)dIn w
has a pole of order k + 2 with zero residue. Hence, for the subvariety Af defined for any set
c¢=(c1,...,ck) of constants as

Ag:={LeA;|es(L)=cs,s=1,...,k}, (3.15)
where the eg = es(L) are the coefficients of expansion (2.5), the following assertion is valid.
Corollary 3.3. The form w©) restricted to the subvariety A§ is normalization independent.

Example. The form E~'§E(w)dInw is holomorphic in a neighborhood of the marked point
p—. Since the sum of its residues equals zero, it follows that this form is holomorphic at the point p
if it is holomorphic at the points py, £ = 1,..., k. Using the chain rule, we see that the variation of
E(w) with fixed w is related to the variation of w(FE) with fixed E by dE(w) dw + dw(E)dE = 0.
Hence 6 In E(w) dInw is holomorphic at the points p; (the preimages of F = 0 at which w # 0) if
ow(pe) = 0. The last condition holds on the subvariety

{1: = {L € Af | ’I"Z',()(L) =c¢,1=1,... ,k}, (3.16)
where ¢ = (c1,...,¢) is a k-tuple of constants and the r;o(L) = ;0 are the coefficients of the
polynomial det L(w) = w* ™1 + 2% 7w’

Corollary 3.4. The form w) restricted to the subvariety A§ is normalization independent.

Remark 3.5. For i > 1, the subvariety A§, on which the restriction of w@ is normalization

independent, is described by a system of i(k + 1) — 1 equations:
A ={LelAj|ws=crs,s=1,...,0 ws=c5,s=2,...,1}, (3.17)

where the wy s are the coefficients of the expansion

o0
w— Z wy B (3.18)
s=0

of w at the preimages py of E = 0 on I' at which w(ps) # 0, the wy are the coefficients of
the expansion (2.15) of w at py, and the ¢; s and ¢, are constants. Hence A is of dimension
(n—1)k —i+ 1. Recall that the dimension of a family of curves I' defined by equations of the form
(2.4) equals k(n + 1)/2 (the number of the coeflicients 7;;). For generic values of the coefficients
ri;j, the curve I' is smooth and has genus g = k(n — 1)/2. Therefore, the correspondence (2.16)
restricted to AY identifies the latter with the total space of Jacobian bundles over the space of the
corresponding spectral curves. For ¢ > 1, the dimension of a fiber is higher than the dimension of
the base. Hence the form w(® restricted to A§ is degenerate for 7 > 1.
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3.3. The Darboux coordinates. For completeness, we describe a construction of the Darboux
coordinates for the restriction @® of w(® to the subvariety AS e,

5 = w®| . (3.19)

Theorem 3.6. Let 5 be the poles of the Baker—Akhiezer function. Then

o) = % S B (1)E () A SInw(y,). (3.20)

s=1

Remark 3.7. The meaning of the right-hand side of this formula is as follows. By definition,
on each spectral curve meromorphic functions F and w are given. The values E(v;) and w(~s) of
these functions at the points ~s define a set of functions on the space of operators L. The wedge
product of their differentials is a two-form on our phase space.

Proof. The idea of the proof of formula (3.20) is very general and does not rely on the specific
form of L. We follow the proof of Lemma 5.1 in [6] (see also [9]).

The differential whose residues determine w(? according to (3.1) is a meromorphic differential
on the spectral curve I'. Therefore, the sum of its residues at the point p, is equal to the negative
sum of the other residues on I'. The differential has poles of two types. The poles of the first type
are the poles 5 of ¢. They are simple in general position. Note that d¢) has a pole of order 2 at
vs. Taking into account the fact that df) has a zero at ., we obtain

it _ BT (yteLy)
r’yeSsE (YT OL A 0vp) dQ O
The last equality follows from Eq. (3.14), which is merely the standard formula for the variation of
an eigenvalue of an operator.
The poles of the second type of the differential on the right-hand side of (3.1) are the zeros g;
of the differential dw. Indeed, in a neighborhood of ¢; the local coordinate on the spectral curve is
w — w(g;) (in general position, where the zero is simple). Varying the Taylor expansion of 1 in
this coordinate, we obtain

(vs) A dInw(ys) = %E‘i('ys)éE(ys) AdInw(vs). (3.21)

S = ;w sw(qy) + O(1). (3.22)

w

Therefore, d7) has a simple pole at g;. Similarly,

dE
OF = o dw(gj)- (3.23)

Relations (3.22) and (3.23) imply

i  BiytoLdy)  SEdnw
r(;ejsE (¥ 5L/\5w>d§2—rqejs YA IR

Due to the skew-symmetry of wedge product, we can replace dL in (3.24) by (JL — JE). Then,
using the identities ¢*(0L — dF) = 6¢*(E — L) and (E — L)dy = —dFE1, we obtain

i E~H{6¢t) E~ (gt o)
res E7 (T 6L A 6¢) dd = —res ——— L NSE dlnw = res ————~
B wToLn oY) & o) T
to obtain the last equality, we used the identity (¢)"¢)(g;) = 0 (which follows, as mentioned above,

from (3.7)). By the definition of the subvariety on which w is normalization independent (see
Lemma 3.2) the form on the right-hand side of (3.25) has no poles at the points p,. It has poles

(3.24)

NOEdInw;  (3.25)
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only at ¢; and at . Hence, after restriction to such a subvariety, we obtain

VoY) AL
Zres ¢+1/1 ANOE dlnw Zres w0 ASE dlnw
= % Y ET(1)8E(vs) A S Inw(ys). (3.26)

Relations (3.21), (3.25), and (3.26) directly imply (3.20). This completes the proof of the the-
orem. 0

3.4. The Hamiltonians. The next step in the construction of a Hamiltonian theory for systems
admitting the Lax representation is to show that the substitution of the vector field 9, defined
by the Lax equation into the form w(® restricted to the subvariety on which it is normalization
independent yields an exact 1-form, i.e., @ (8, X) = 6H®(X). This means that on a subvariety
on which the form & is nondegenerate the vector field 0; is Hamiltonian with Hamiltonian H .

Below we apply the general scheme to Eqs. (1.14) and (1.15) and compute the corresponding
Hamiltonians. Let 0; be the vector field defined by the Lax equations; then

oL =[M, L], o) = My —f, (3.27)

where f is a meromorphic function on the spectral curve.

Remark 3.8. The appearance of the term with f in the expression for 0% is due to the fact
that in the definition of the form w( it is assumed that the normalization of the Bloch function
¥ is time independent: o = 1. If the dependence of the operator L on t is determined by the
Lax equation, then the time dependence of the pole divisor D(t) of 1)(t) becomes linear after the
application of the Abel transform. This follows form the relation

Pilt,p) = Wit p) Vg (L, p), (3.28)

where U is the Baker—Akhiezer function given by (2.18). Equation (1.8) implies (3.27) with f(¢,p) =
O In Wy(t,p). The function f has poles at the marked points py and can be represented in the form

my
f=Y ¢tz +0(1), (3.29)

s=1
where c;t are constants, which in fact parameterize the commuting flows of the hierarchy, and m4

are the positive and negative orders of the operator M.
Theorem 3.9. The restrictions of the vector-field 0.+ defined by the Lax equation (1.13) to

the subvarieties AS, i = 1,2, are Hamiltonian with respect to the forms &9 with Hamiltonians

HY = resz ™E(2) dIn z = e, (3.30)
m p—

Ht(}) =resz "InE(z)dlnz, (3.31)
m p—

where E(z) is the series (2.5) with coefficients defined in Lemma 2.1, and
o1 —m—i
HY = Zres B lnw(E)dE,  i=0,1, (3.32)
tm  n py
where w(E) is defined in (2.15).
Proof. The substitution of (3.27) and (3.9) into (3.1) gives

dlnw

GO0 ) = —5 S tes((u (M. LI60) — (0 OLOY = ) i

Pa

(3.33)
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Using the equation (L — E)dyp = —(0L — 0E)1), we see that the differential on the right-hand
side of (3.33) is equal to

dlnw
BT
The second term has poles only at the points p,. Hence the sum of its residues at these points is
equal to zero. The first term is equal to

— SRS + (M - £))0)5E

5 (0 (MOE + SLF)) — (67 (5L M + M SL)y) (3.34)

dlnw
nE (Ytap)
From the definition of f in (3.27) it follows that (T (M — f)1)) is holomorphic at p,. Since the
restriction of E7'0EdInw to A{ is holomorphic at the marked points p,, it follows that the second
term in (3.35) restricted to A§ has no residues at p,. Recall that the function f has poles only at

the points pi. Using the identity dE(w)dlnw = —dInw(E)dE for the residue at py, we finally
obtain the equation

(3.35)

(i 1 — 1 i
S0y, )= =res f(E)dInw(E)E™ dE — —res f(w)E~ (w)§ E(w) d1In w. (3.36)
n p+ n p—
Recall that the choice of the basis vector fields 0, + of the hierarchy depends on the choice of local
coordinates in neighborhoods of the marked pomt p+. As follows from the proofs of Lemmas 2.1
and 2.2, the most natural choice is z = w™ /™ at p_ and z = F at p+. In this case, the functions fm
corresponding to ¢ = ¢ have poles at p+ of the forms ff = E=™+O(E) and f,, = 2™+ 0(2), 2 =

w= /" respectively. Therefore, (3.36) implies &) (Oti , o) = 5Ht(i). The theorem is proved. O

4. Special Coordinate Systems. Examples

We begin this section by introducing special systems of coordinates on the space of lower-

(d) -

triangular operators in which w®, ¢ = 1,2, have local densities, i.e., coordinates x;”” in which w®

have the form w = ) fl(jllj ! 533( 20 5$(J 1), where the summation is over the set of all pairs of indices

i, i1 such that |i —i1| < d; for some mteger dy not depending on the period n of the operator. It

Jl

is also assumed that the coefficients f are functions of parameters xg 2) such that i — 9| < do

for some number ds not depending on n

Remark 4.1. Note that in the natural coordinates on the space of lower-triangular operators,

()

which coincide with the coefficients a;”’ of these operators, the forms have no local densities.

4.1. The form w(®. We identify coordinates in which the form w(®) has local densities with
the set of the first &k coefficients of the expansion (2.7) of the Bloch solution at the marked point p_.
Relations (2.8) and (2.11) for s = 1,...,k can be regarded as the definition of the map

(& (i), es} — (a3, (4.1)

where the functions &; (i) are defined up to a common shift & (i) — &, (i) + ¢;. This shift can be
fixed by the normalization condition £; (0) = 0.

The form w(® in definition (3.1) is the average over ¢ of an expression depending on &; (i — j),
j=0,...,k, and the first £k — 1 coefficients of the expansion at p_ of the function

T
(Yt
where 17 is the dual Baker—Akhiezer function (2.22). The coefficients of ¥} can be found recursively
from the relations

vi =

(4.2)

I‘GSl/};kll}i_j dlnz = 507]', (43)
.
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which follow from (2.23) and (3.9). The expressions for these coefficients in terms of £, are local.
Therefore, the statement that w(®) has local densities in the new coordinates is an obvious corollary
of the definition.

Example with k = 1. The natural coordinates on the space of n-periodic lower-triangular
operators L = ;7! +T~2 of order 2 are their coefficients a;. The special coordinates x; := &; (i)
are defined up to a common shift and a constant e;. The expression for the natural coordinates in
terms of the new ones is given by (2.8):

a; = x; — Ti_o + eq. (4.4)

The substitution of the expansion of 1 and ™ into (3.1) gives the following expression for the
restriction of w(® to the symplectic leaf e; = const at k = 1:

1
(,Au(o) = 5 (dai AN d.%‘,;_1> = <d$z VAN d.%‘,;_1>, (4.5)

where, as before, (-) denotes the mean value of the periodic expression in brackets over the period.

Remark 4.2. Above we denoted the variation on the phase space (the space of parameters)
by ¢ in order do distinguish it form the differential d, which is taken with respect to the spectral
parameter. After taking the residues of the differential, here and in what follows, we use only the
notation d, i.e., set dx; := dx;.

According to Theorem 3.9, Eqgs. (1.16) restricted to the symplectic leaf (a;) = (e®i~%i-1) =
e1 = const are Hamiltonian with respect to & with Hamiltonian Ht(g) := e3. In order to write

1
this expression explicitly in terms of the new coordinates, we use Egs. (2.11). For s =2 and k =1,
we have
& (1) —& (1 —2)+er&i(i)” +e2=a;&y (i —1). (4.6)
From (4.4) it follows that
& (i) =& (1 —2) +ea = xjwimg — Ti—1xi—2 + e1(Tim1 — x4). (4.7)

Taking the mean of Eq. (4.7), we obtain ez = 0 (recall that in the proof of Lemma 3.2 it was shown
that ex41 = 0 for any k). For s =3 and k =1, Eq. (2.11) has the form

63_ (Z) - 63_ (Z — 2) + 6162_ (’L) +e3 = (ILZfQ_ (Z — 1) = (xl — X9 + 61)62_ (Z — 1) (48)

Averaging (4.8), we obtain the following explicit expression for the Hamiltonian of Eq. (1.16) in
terms of the new coordinates:
Hy) = e = (@i = 2i-2)65 (i = 1) = (0il&3 (1= 1) = & (14 1)) = @i — @) (49)
1
the last equality follows from (4.6).
Example with k = 2. The expressions for the coefficients of a lower-triangular operator of
order 3 in terms of the coordinates z; := £ (i) and y; := &, (i) are given by (2.8) and (2.9):

al(-2) =x; — Ti—3 + €1, (4.10)
a§1) =Yi — Yi-3 T €1%; + €2 — a§2)$1—2
=Y — Yi—3 — (xl — xi_g)xi_g +e1 (xl — xi_g) + es. (4.11)
The substitution of the expansions of ¢» and %™ into (3.1) gives
1 . .
w® = §<da§1)/\ dri—1 + da§2)/\ (x1 (1) dxi—o 4 d&5 (i — 2))), (4.12)
where x; is the first coefficient of the expansion of ¢ at the marked point p_. Equation (4.3)
with j = 1 implies x (i) = —x;_;. Straightforward computations yield the following expression for

the form w(©® restricted to a leaf along which e; and es are constant:
L/‘.\)(O) = <dyz VAN (dacz-_l — d.Z‘H_Q) + d(aci_lx,;_Q) AN d$2> +e1 <d.7)z A dxz-_1>. (4.13)
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Equation (1.16) with k& = 2 restricted to a leaf where e; and es are constant is Hamiltonian with
respect to the form (4.13) with Hamiltonian Ht@ = ey4. Straightforward but lengthy computations

1
give the following expression for the Hamiltonian H := ey:

H = (yi-1(yi — yi—3)) + (@izic1xi—a(xi—1 — x;)) + €1<(96Z2(£U7;—1 — Tiq1))

+ea(wio1(y — wio1)) + Wi(2F 0 — 2 ) — TigaTipr + 2iamisy). (4.14)

4.2. The form w®. The choice of a system of coordinates in which the form w(® has local
density is suggested by the very definition (3.1), which involves the values of 1; at the marked
points p, € I' that are the preimages of E = 0, at which w(py) # 0.

Let & = {qbf} be a k X n matrix of rank k,ie.,i=1,...,nand £ =1,...,k. We say that two
matrices are equivalent and write @ ~ @' if & = P\, where A = diag(Ay,...,\;). The space of
equivalence classes [@] := (®/ ~) can be seen as the space of (ordered) sets of k distinct points in
(n — 1)-dimensional projective space: [¢] € P*~ 1.

Consider the space of pairs {[®],W}, where W = {wi,...,wi} is a set of nonzero numbers
(wg # 0). The symmetric group Sy acts on the space of such pairs by simultaneous permutations
of rows of the matrix @ and coordinates of the vector W.

Now we are going to define a map from the corresponding quotient space to the space of
n-periodic operators L of the form (1.3):

{[®], W}/Sk — L. (4.15)

First, note that, given a set W = {wy,...,wx} of nonzero numbers, any k x n matrix ¢ can be
extended to a unique k X co matrix qbf, i € Z, such that d)f_n = wgqﬁf. Such an extension uniquely
determines an operator L of the form (1.3) such that, for any ¢, the sequence ¢* = {¢!} is a solution
of the equation

k
Lof =0 <= Y aPol j=—¢f . (4.16)
j=1
Indeed, for fixed i, (4.16) is a system of k nonhomogeneous linear equations for the unknown
coefficients of L. Applying Cramer’s rule, we obtain

al(j) _ sty i1, k=1, Pijm1s - ikl . (4.17)

|Giet1s s Dimjg1ls Piej Pij1,- - Dik]
Here and in what follows, we use the following notation: ¢; is the k-vector with coordinates
¢; = {#%}, and, for any set Vi,..., Vi of k-vectors, |Vi,...,V;| stands for the determinant of

the corresponding matrix, i.e., [V1,..., Vi| := det(V).

Recall that above we parameterized the leading coefficient agl)

e¥i~%i-1_ Relation (4.17) with j = 1 allows us to identify these variables with

by variables ; such that ot =

)

e Y= (—1)ik|¢i_1,...,...,(b,;_k‘ (418)
and represent Eq. (4.17) in the form
af) = (~1)PHLePi g1, dimgit, Gikot, it ik, (4.19)

Theorem 4.3. The map (4.15) defined by (4.18) and (4.19) is a one-to-one correspondence
between open domains. Under this correspondence Eqs. (1.14) and (1.15) restricted to leaves with
fized wy are Hamiltonian with respect to the form

k

~ 1 i— . ]

oM = §<d80z’—1 Adip; — (—1)07Dkepim E d%(]) Nldi—a,... 7¢i—k7d¢i—j\> (4.20)
=1

with Hamiltonians
(k)> and Ht = —<a§2)e%—2_%>, (4.21)

7

H = (a
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respectively.

Proof. The right-hand side of (4.17) is symmetric with respect to the simultaneous permu-
tations of rows of the matrices in the numerator and denominator. Hence the map (4.15) is well
defined on an open domain where the denominator does not vanish. The inverse map identifies w,
with nonzero roots of the polynomial R(w,0) = det L(w) defined in (2.3). In other words, wy is
the value of the function w(p) on the spectral curve I' of L at one of the preimages of E =0, i.e.,
pe: (we,0) € T'. Tt follows from this identification that ¢; is nothing but the value of the Baker—
Akhiezer function at py, i.e., d)f = 1i(pe). This proves the first statement of the theorem. O

Recall that, by definition, w®) is equal to the sum of resides at p4 and py of the form
k
1 i y _
5 59 A (o) B~ dInw (4.22)
=1

averaged over i. The Baker—Akhiezer function 1; and its dual w;r have, respectively, a zero and
a pole of order ¢ at p_. Since E has a pole of order k£ + 1 at p_, the form (4.22) is holomorphic
at p_. Hence it has no residue at p_. At p, the function E has a simple zero. Therefore, the form
E~'dlnw has a pole of order 2 at p,. At the same time, at p, the functions w;r and 1); have,
respectively, a zero and a pole of order i. Hence the terms with j > 1 in sum (4.22) are holomorphic
at p. From (2.12) and (2.22) it follows that

1 1 1

— —resdalM A WS )BT dInw = —=5(e¥P1) A e Fi5(e91) = ~Spiy Abp; . (4.23)
2n P+ v 2 2

Our next goal is to express ;" (p¢) in terms of #" = 1b(py) in order to obtain a closed expression

for w) in terms of ¢°.

Lemma 4.4. Let ry := resy, E~1dQ. Then

_1 €+k—1 det ;ﬁf,k
et ) = S (4.24)
1—=2y -y Pi—k—
where @z is the kx k matriz with columns (¢;—1,...,pi—k) and :ffk 1s obtained from @z by removing
the £th row and the last column.

Proof. By the definition of d2 the differential w;" Vi B ~1d§) is holomorphic outside the marked
points p4+ and the points py at which E vanishes. For 2 < j < k, it is holomorphic at p4. Hence
the sum of its residues at p; equals zero:

k
D eyl Y JETHAQ = 3 i (podi_; =0, =2k (4.25)
(=1 ¢

The differential w;" w,;_jE_ldQ is holomorphic at p_ and has a simple pole at p, with residue —1.
Hence

Zl;els Gk BTN =) raf (po) gy, = 1. (4.26)
I ‘

Equations (4.25) and (4.26) form a system of linear equations for the unknowns r,1);(ps). Cramer’s
rule implies (4.24). O

Note that, multiplying the right-hand side of (4.24) by dg¢f_ ; and then averaging over ¢, we can
identify the latter with the expansion of the determinant along the last column, i.e.,

_1 |¢i—2>“' 7¢i—k,d¢7j_j| _ (—1)k(i—1)+1
2 |pi—2, s Pimp—1] 2

|pi—2s .o Gik, dpi—j|eFi=1.

(4.27)
The right-hand side of (4.20) is equal to the sum of the right-hand side of (4.23) and the wedge

product of (4.27) and dal(-j). This proves (4.20).

k
1
—5 D> rewi (pe) ddf_; =
=1
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To complete the proof of the theorem, it remains to note that, according to Theorem 3.9, the
Hamiltonians of Eqgs. (1.14) and (1.15) are equal to
H™:=Hy_ = res InE(z)z %dz = e; = (agk)> (4.28)
1 =

and
HT :=H

0+
ty

1
== Inw(E)E2dE = 4.29
~ Ies Inw(E) wy, (4.29)

where w; is the first coefficient of expansion (2.15). According to Corollary 2.3,

ntinw =n"t(Iny_, — Intp) = (Y1 — ;). (4.30)
Therefore, from (2.12) and (2.13) we obtain
wi = (& (i = 1) = & (1)) = —(aPer2), (4.31)

which completes the proof of the theorem.
Example. For k = 1, Eq. (4.18) takes the form e=% = (—1)i¢;_;. In this case, we have

1 .
w®) = 3 (dpi—1 Ndp; — (—1)2_16%_1d(ei’0i_i’0i_1) Ndpi—1) = (dpi—1 A dp;). (4.32)
Note that, for £ = 1, the coefficient a§2) equals 1, and (4.21) takes the form (1.18).
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