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Abstract. We develop the spectral theory of n-periodic strictly triangular difference operators

L = T−k−1 +
∑k

j=1 a
j
iT

−j and the spectral theory of the “superperiodic” operators for which

all solutions of the equation (L + 1)ψ = 0 are (anti)periodic. We show that, for a superperiodic
operator L of order k+1, there exists a unique superperiodic operator L of order n− k− 1 which
commutes with L and show that the duality L↔ L coincides, up to a certain involution, with the
combinatorial Gale transform recently introduced in [21].

Key words: spectral theory of linear difference operators, commuting difference operators, frieze
patterns, moduli spaces of n-gons, Gale transform.

1. Introduction

In recent years, the theory of linear difference equations of the form

Vi = a1iVi−1 − a2iVi−2 + · · · + (−1)k−1a k
i Vi−k + (−1)kVn−k−1 (1)

with real periodic coefficients

aji = aji+n ∈ R, i ∈ Z, 1 � j � k ,

all of whose solutions are n-(anti)periodic, that is, such that

Vi+n = (−1)kVi, (2)

has seen a burst of interest due to connections with the theory of n-gons in projective space
(extensively studied in [5], [7], [9], and [11]) and the theory of SLk+1-frieze patterns (created by
Coxeter and Conway in [3] and [4] and subsequently developed in [1], [2], [19], [20], [22], [26], and
[27]). Frieze patterns are a particular case of more general patterns arising in the theory of bilinear
discrete Hirota equations (see [31] and the references therein).

Our study was motivated by the recent work [21], where it was shown that the moduli space
Ek+1,n of Eqs. (1) satisfying the constraint (2) is isomorphic, as an algebraic variety, to the moduli
space Fk+1,n of SLk+1-frieze patterns of width w = n − k − 2 and that, if n and k + 1 are

coprime, then both spaces are isomorphic to the moduli space Ck+1,n of n-gons in RP
k . The main

result of [21] is a description of the combinatorial Gale transform, which is the duality between
the spaces Ek+1,n and En−k−1,n analogous to the classical Gale duality on the moduli spaces of
point configurations. The former and the latter are induced by the duality of the Grassmannians
Gr(k + 1, n) and Gr(n− k − 1, n).

Recall that if V̂ is an n× (k+1) matrix of rank k+1 representing a point of Gr(k+1, n), then

the dual point is represented by an n × (n − k − 1) matrix Ŵ such that Ŵ T V̂ =0. The space of
n-gons in P

k is the quotient of the Grassmannian by the torus action: Ck+1,n � Gr(k+1, n)/Tn−1

[9]. The points of Grassmannians representing dual n-gons are related by Ŵ TDV̂ = 0, where D is
a nonsingular diagonal n× n matrix.

∗The research was carried out at the RAS Institute for Information Transmission Problems at the expense of a
grant from the Russian Science Foundation (project no. 14-50-00150).
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If vectors V (j) form a basis of the solutions of Eq. (1), then the matrix V̂(i) := (V
(j)
i+1, V

(j)
i+2, . . . ,

V
(j)
i+n) determines an embedding (depending on the choice of i) of Ek+1,n into the Grassmannian

Gr(k+ 1, n). As shown in [21] (Proposition 4.3.1), the defining property of the combinatorial Gale
dual equations is the relation

Ŵ T
(i)ε̂ V̂(j) = 0, i− j = n− k − 1 (modn), (3)

where ε̂ is the diagonal matrix (1,−1, 1, . . . ).
The simplest example of a combinatorial Gale transform is related to Gauss’ pentagramma

mirificum [8]. This is a duality between 5-periodic difference equations of the third and the second
order. More precisely, duality means that if all solutions of the equation

Vi = aiVi−1 − biVi−2 + Vi−3, ai = ai+5, bi = bi+5, (4)

are 5-periodic, then all solutions of the equation

Wi = aiWi−1 −Wi−2

are 5-antiperiodic: Wi = −Wi+5 . In terms of n-gons, this transformation sends projective equiva-
lence classes of pentagons in P

2 to those in P
1 . In terms of frieze patterns, this is a duality between

5-periodic Coxeter friezes and 5-periodic SL3-friezes.
The first goal of this work is to introduce a spectral parameter into Eq. (1) and develop the

Block–Flouque spectral theory of the corresponding difference operators. We emphasize that the
idea to introduce a spectral parameter into (1) is not new by itself. In [24] the spectral parameter
s was introduced into Eq. (4) as

Vi = saiVi−1 − s−1biVi−2 + Vi−3, ai = ai+5, bi = bi+5, (5)

and used for constructing a complete set of integrals in involution for the pentagram map defined
in [29]. The algebraic-geometric integrability of the pentagram map was proved in [30] by using the
Lax operator with spectral parameter gauge equivalent to (5) (for Liouville–Arnold integrability, see
[25]). In a similar way the spectral parameter was introduced into higher-order linear equations for
proving the algebraic-geometric integrability of higher pentagram maps ([12], [13]; see also [18]). An
approach to introduce the spectral parameter into Eq. (1) by using cluster algebras was proposed
in [6] and [10]; for the SL3-case, it turned out to lead to an equation equivalent to Eq. (5).

The spectral parameter s in (5) reflects the scaling invariance of the pentagram map (see [24]).
In this paper we consider a different spectral problem. Namely, let Dk+1,n be the (affine) space of
monic “strictly” triangular n-periodic difference operators with complex (or real) coefficients:

{

L ∈ Dk+1,n

∣
∣
∣ L = T−k−1 +

k∑

j=1

ajiT
−j, aji = aji+n

}

. (6)

Here and below, T is the shift operator acting on infinite sequences ψ = {ψi}, i ∈ Z, i.e., (Tψ)i =
ψi+1 . It will also be assumed, unless stated otherwise, that the leading coefficient of L does not
vanish:

a1i �= 0.

Note that, for E = −1, the gauge transformation

V = εψ, ε := {εi = (−1)i} (7)

transforms the equation

Lψ = Eψ (8)

for the eigenvectors of L into Eq. (1).
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Remark 1.1. Similarly, the spectral parameter can be introduced into Eq. (1) as the coefficient
of the last term on the right-hand side of the equation, but the two ways of introducing the spectral
parameter are in fact equivalent due to the involution on Dk+1,n :

L �−→ Lσ := T−k−1(L∗ + 1)− 1, (9)

where L∗ is the formal adjoint operator

L∗ = T k+1 +

k∑

j=1

T jaji = T k+1 +

k∑

j=1

aji+jT
j.

Under the gauge transformation (7) the constraint (2) defining the special triangular operators
L ∈ Ek+1,n ⊂ Dk+1,n takes the form: All solutions Ψ of the equation (L + 1)Ψ = 0 have the
monodromy property

Ψi = (−1)n+kΨi−n. (10)

For brevity, throughout the rest of the paper, the operators L ∈ Ek+1,n will be called superperiodic.

Remark 1.2. Note that the choice of the multiplier μ = (−1)n+k in (10) can be seen as
the choice of a normalization in the following slightly more general setting. For a pair of complex
numbers (e, μ), consider the (affine) space of triangular n-periodic operators of order k + 1 such
that all solutions of the equation (L− e)Ψ = 0 are Bloch solutions with the same multiplier μ:

E e,μ
k+1,n = {L ∈ Dk+1,n | (L− e)Ψ = 0⇒ μΨi = Ψi−n}. (11)

The same argument as in [21] shows that this space is nonempty if and only if

μk+1 = (−1)knen. (12)

Indeed, the operator L is monic. Therefore, if Ψ(j) is a basis in the space of solutions of (11),

then detΦ(i) = (−1)ke−1 detΦ(i−1) , where Φ(i) := {Ψ(j)
i−s}j=0,...,k

s=0,...,k . The monodromy operator T−n

restricted to the space spanned by Ψ(j) is the scalar μ. Therefore, the last relation implies (12).
Obviously, over the complex numbers, all admissible pairs (e, μ) are in the same orbit of the

scaling transformation (e, μ) → (ck+1e, cnμ), c ∈ C. Over the reals, it can be directly verified
that if n and k + 1 are coprime, then the parity of nk coincides with the parity of k and any
real admissible pair can be obtained by a real scaling from the pair (−1, (−1)n+k) determining
superperiodic operators.

The scaling transformation introduced above reflects the scaling transformation of operators

τc : Dk+1,n �−→ Dk+1,n, τc(L) = ck+1CLC−1, (13)

where C is the diagonal operator and (Cψ)i = ciψi . Note that the multiplication by ck+1 of the
gauge transformed operator CLC−1 is introduced in order to make the operator τc(L) monic.

In the theory of ordinary linear differential operators it is well known that if the kernel of an
operator B is a subspace of the kernel of another operator A, kerB ⊂ kerA, then the latter is
divisible by the former, i.e., there exists an operator C such that A = BC . This is also true for
difference operators. It is easy to show that if an operator is superperiodic, then so is its adjoint.
As a consequence, we obtain that the original defining characterization of superperiodic operators
is equivalent to the following operator condition.

Lemma 1.3. Let L ∈ Dk+1,n be a n-periodic triangular operator of order k + 1. Then it is

superperiodic if and only if the operator T−n − (−1)n+k is right and left divisible by L + 1, i.e.,
there exist operators Lr and Ll in Dn−k−1,n such that

T−n − (−1)k+n = (Ll − (−1)k+n)(L+ 1) = (L+ 1)(Lr − (−1)k+n). (14)
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In Section 3 we show that if the period n and the order k+1 of L are coprime, then the Bloch
solutions of (8), i.e., solutions that are eigenvectors for the monodromy operator T n,

wψi = ψi−n, (15)

coincide with the discrete analogue of the Baker–Akhiezer function defined on the spectral curve
of L. This Bloch spectral curve is different from the spectral curves arising in the theory of the
pentagram map but is relevant to the combinatorial Gale transform, as will be seen in what follows.

More precisely, using the identification of the Bloch solutions of (6) with the discrete Baker–
Akhiezer function, we establish a connection of the spectral theory of triangular operators with
the theory of rank-1 commuting difference operators developed in [15] and [23], and through this
connection we clarify the defining constraint on the operators L ∈ Ek+1,n and the combinatorial
Gale duality.

The appearance of commuting operators in the theory of superperiodic difference operators is
a direct corollary of our first main result.

Theorem 1.4. If n and k + 1 coprime, then
(i) the operators Lr and Ll defined by relations (14) for a superperiodic operator L coincide,

i.e., Lr = Ll ;
(ii) the involution (9) transforms the operator L := Lr = Ll into an operator gauge equivalent

to the operator G (L) Gale dual to L:

G (L) = εL σε−1. (16)

The statement (i) of the theorem and Eqs. (14) imply the following assertion.

Corollary 1.5. The operators L and L commute with each other:

[L,L ] = 0.

As we see, the existence of a commuting operator is a necessary condition for a periodic trian-
gular operator to be superperiodic. It turns out that this condition is necessary and sufficient for
operators that can be obtained from superperiodic operators by the scaling transformation (13).

Theorem 1.6. Suppose that, for an operator L ∈ Dk+1,n with 2(k + 1) < n, (n, k + 1) = 1,
there exists a commuting operator K ∈ Dn−k−1,n . Then, in general position,

(i) the operator L is superperiodic up to the scaling transformation (13) with some constant c,
i.e., τc(L) ∈ Ek+1,n ;

(ii) there is a unique polynomial P such that the operator L = K + P (L) is superperiodic up
to the scaling transformation (13).

Here “general position” means “for a Zariski open set of parameters.” The precise meaning will
be given in the proof of the theorem in Section 4.

2. The Discrete Baker–Akhiezer Function

To begin with, let us recall basic facts of the theory of commuting rang-1 difference operators.
Let Γ be a smooth algebraic curve of genus g. Fix two points p± ∈ Γ and let D = γ1 + · · ·+ γg

be a generic effective divisor on Γ of degree g. By the Riemann–Roch theorem one computes
h0(D + i(p+ − p−)) = 1 for any i ∈ Z and generic D. Let ψi(p), p ∈ Γ, denote the unique section
of this bundle. This means that ψi is the unique, up to a constant factor, meromorphic function
such that (away from the marked points p±) it has poles only at γs , and the multiplicity of each
such pole is not greater than the multiplicity of γs in D, while at the point p+ (p−) the function
ψi has a zero (respectively, a pole) of order i.

If we fix local coordinates z in neighborhoods of the marked points, then the Laurent series for
ψi(p) at these points have the form

ψi = z±i

( ∞∑

s=0

ξ±s (i)z
s

)

, z = z(p), p→ p±.
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The function ψ := ψi(p) of the discrete variable i and the point p of the curve Γ is called the discrete
Baker–Akhiezer function [15]. Throughout the paper it will be assumed that ψ is normalized by
the condition ξ+0 = 1. Notice that, under the change of local coordinate z → z̃ = cz + O(z2) near
the marked point p+ , the normalized Baker–Akhiezer function transforms into

ψ̃i(p) = ciψi(p) (17)

(compare with the scaling transformation (13)).
Let A (p+, p−) be the ring of meromorphic functions on Γ that are holomorphic away from

the marked points p± . The uniqueness of the Baker–Akhiezer function easily implies the following
assertion.

Lemma 2.1 [15]. For each A ∈ A (p+, p−), there exists a unique difference operator

LA =

k+∑

j=−k−

ajiT
−j ⇐⇒ (LAψ)i =

k+∑

j=k−

ajiψi−j

such that

LAψ = Aψ. (18)

Here k± are the orders of the poles of A at p± .
Corollary 2.2. The operators LA commute with each other, i.e., [LA, LB ] = 0.

The coefficients of the operator LA are determined recursively from the system of equations
obtained by substituting the Laurent expansion of ψ and A near the marked points. For example,
if A = c0z

−k+ + c1z
−k++1 + . . . is the expansion of A near the points p+ , then

a
k+
i = c0, a

k+−1
i = c0(ξ

+
1 (i− k+)− ξ+1 (i))− c1, . . . .

Similarly, if A = c−0 z
−k− + . . . is the expansion of A near p− , then

a
−k−
i =

c−0 ξ
−
0 (i)

ξ−0 (i+ k−)
, . . . . (19)

Remark 2.3. For further use note that if A is in the subring A+(p+, p−) ⊂ A (p+, p−) of
meromorphic functions on Γ that have a pole only at p+ and vanish at p− , then the operator LA is
strictly lower triangular. In this case, the formula (19) for the leading coefficient a1i takes the form

a1i = exi−xi−1+l, xn := ln ξ−0 (i), l := ln c−0 .

Remark 2.4. The correspondence described above extends to the case of singular curves. More
precisely ([15], [23]), there is a natural correspondence

A ←→ {Γ, p±,F} (20)

between commutative rings A of ordinary linear difference operators containing a pair of monic
operators of coprime orders and sets of algebraic-geometric data {Γ, p±,F}, where Γ is an algebraic
curve with a pair of distinguished smooth points and F is a torsion-free rank-1 sheaf on Γ such
that

h0(Γ,F (ip+ − ip−)) = h1(Γ,F (ip+ − ip−)) = 0.

The correspondence becomes one-to-one if the rings A are considered modulo conjugation A ′ =
gA g−1 , g = {gi} (in its final form the correspondence (20) is due to Mumford).

The discrete Baker–Akhiezer function and, therefore, the coefficients of the corresponding dif-
ference operators can be expressed in terms of the Riemann theta-function

θ(z) := θ(z|B) =
∑

m∈Zg

e2πi(m,z)+πi(Bm,m), z ∈ C
g,
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determined by the matrix B of b-periods of the normalized holomorphic differentials dωj on Γ:

Bj,k =

∮

bk

dωj, δj,k =

∮

ak

dωj .

Lemma 2.5 [15]. The Baker–Akhiezer function is given by the formula

ψi(p) = ri
θ(A(p) + iU + Z)θ(A(p+) + Z)

θ(A(p+) + iU + Z)θ(A(p) + Z)
eiΩ0(p). (21)

Here
(a) Ω0(p) is the Abelian integral

∫ p
dΩ0 corresponding to the unique normalized (by

∮
ak
dΩ0 = 0)

meromorphic differential on Γ which has simple poles at the marked point p± with residues ±1,
respectively ;

(b) A(p) is the Abel transform, i.e., a vector with coordinates A(p) =
∫ p
dωk;

(c) U is the vector A(p+)−A(p−);
(d) Z is an arbitrary vector (it reflects the arbitrariness in the choice of the divisor of poles of

the Baker–Akhiezer function).

From (21) it easily follows that the coefficients of the commuting difference operators LA are
quasi-periodic functions of the variable i. The operators with periodic coefficients are singled out
by the following constraints on the algebraic-geometric data.

Lemma 2.6. Suppose that on Γ there exists a meromorphic function w = w(p) which is
holomorphic away of the marked point p+ , where it has a pole of order n, and has a zero of order
n at the marked point p− . Then the coefficients of the operators LA are n-periodic.

Proof. The function w, if exists, is unique up to multiplication by a constant. If the first
jet of a local coordinate near the point p+ is fixed, then w can be normalized by the condition
w = z−n + O(z−n+1). The uniqueness of ψi implies then that relation (15) holds. Hence the LA

are n-periodic.

Real operators. The formula (21) for generic i ∈ C defines ψi(p) as a multivalued function
on Γ. A single-valued branch of it can be defined on Γ with a cut between the marked points which

does not intersect the chosen basis of a- and b-cycles. The coefficients aji of the corresponding
operators can be seen as meromorphic functions of the complex variable i. The spectral data
corresponding to operators with real (for i ∈ R) coefficients are singled out as follows.

Lemma 2.7. Suppose that on an algebraic curve Γ with two marked points p± there exists an
antiholomorphic involution τ for which the marked points are fixed, i.e., τ(p±) = p± . Then the
Baker–Akhiezer function ψ corresponding to a real divisor D = τ(D) satisfies the relation

ψ(p) = ψ̄(τ(p)) (22)

(provided that the coordinate z in a neighborhood of p+ used for the normalization of ψ is also
real : z̄ = τ∗z).

Equation (22) implies that if the function A is real, i.e., A = Ā(τ(p)), then the corresponding
operator LA has real coefficients. Still these coefficients may be singular functions of the variable
i ∈ R. In the framework of the finite-gap theory there are two basic types of conditions sufficient
for the regularity of the corresponding operators. Let us present one of them, which is relevant to
the case under consideration.

Recall that an antiholomorphic involution τ of a genus-g smooth algebraic curve Γ has at most
g + 1 fixed ovals. The curves having the maximum number of fixed ovals, A0, . . . , Ag , are called
M -curves.

Lemma 2.8. Let Γ be an M -curve with two marked points p± ∈ A0 , and let D be a set of g
points γs ∈ As , s = 1, . . . , g . Then, for any real function A = Ā(τ(p)) ∈ A (p+, p−), the coefficients
of the operators LA corresponding to the Baker–Akhiezer function constructed from D are real and
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nonsingular. Moreover, their leading coefficients a
−k−
i are sign definite:

a
k+
i = c0, sgn(a

−k−
i ) = sgn c−0 .

The proof of the lemma is standard in finite-gap theory (see, for example, the proof of a similar
statement for the difference Schrödinger operator in [16]).

In what follows, we shall use one more basic concept of algebraic-geometric integration theory.

The dual Baker–Akhiezer function. The concept of the dual Baker–Akhiezer function ψ+

is universal and is at the heart of the notion of Hirota’s bilinear form of soliton equations. In the
discrete case, the dual Baker–Akhiezer function corresponds to the dual divisor D+ = γ+1 +· · ·+γ+g ,
which is defined by the equation

D +D+ = K + p− + p+ ∈ J(Γ),
where K is the canonical class. In other words, the points of D and D+ are zeros of the meromorphic
differential dΩ with simple poles at p± with residues ±1, respectively. The dual Baker–Akhiezer
function is then defined by the following analytic properties:

(i) the function ψ+
i (as a function of the variable p ∈ Γ) is meromorphic everywhere except at

the points p± and has at most simple poles at the points γ+1 , . . . , γ
+
g (if all of them are distinct);

(ii) in a neighborhood of the points p± the function ψ has the form

ψ+
i = z∓i

( ∞∑

s=0

χ±
s (i)z

s

)

, z = z(p), p→ p±, χ+
0 = 1.

In fact, this is the same Baker–Akhiezer-type function, and therefore it admits an explicit theta-
function expression of the same type:

ψ+
i (p) = r+i

θ(A(p)− iU − Z −A(p+)−A(p−)) θ(A(p−) + Z)

θ(A(p−) + iU + Z) θ(A(p)− Z −A(p+)−A(p−)) e
−iΩ0(p).

Lemma 2.9. Let ψ and ψ+ be the Baker–Akhiezer function and its dual. Then

resp+(ψ
+
i ψj) dΩ = δi,j , i, j ∈ Z. (23)

By the definition of duality, the differential on the left-hand side of (23) for i �= j has a pole
only at one of the marked points p± . Hence, its residue vanishes. The differential ψ+

i ψi dΩ has
poles at p+ and p− with residues ±1, respectively. This completes the proof of the lemma.

Corollary 2.10. Let ψ be the Baker–Akhiezer function, and let LA be the linear operator
determined by (18) with this ψ . Then the dual Baker–Akhiezer function is a solution of the formal
adjoint equation

ψ+LA = Aψ+.

Recall that the right action of a difference operator is defined as the formal adjoint action, i.e.,
f+T = T−1f+.

3. The Bloch–Floquet Theory of Triangular Periodic Difference Operators

Let us briefly recall the conventional setting of the spectral theory of periodic difference opera-
tors. Consider an n-periodic linear difference operator L. The monodromy operator T−n preserves
the (k + 1)-dimensional space L (E) of solutions of the equation Lψ = Eψ. Let T−n(E) be the
restriction of T−n to L (E). The common eigenvalues of L and the monodromy operator satisfy
the algebraic equation

R(w,E) = det(w · 1− T−n(E)) = 0.

The same equation can be obtained by considering the n-dimensional space T (w) of solutions of
Eq. (15) and denoting the restriction of L to T (w) by L(w). Then

R(w,E) = det(L(w)− E · 1) = 0.

Our first observation, which turns out to be crucial for the further considerations, is as follows.
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Lemma 3.1. If n and k+1 are coprime, then the spectral curve of an operator L ∈ Dk+1,n is
defined by an equation of the form

R(w,E) = wk+1 − En +
∑

i>0, j�0, ni+(k+1)j<n(k+1)

rijw
iEj = 0 (24)

with

r := r1,0 =

n∏

j=1

a1j . (25)

Remark 3.2. Lemma 3.1 asserts that the Newton polygon of R is the triangle with vertices
(0, n), (k + 1, 0), and (1, 0) and gives the explicit form of the coefficients corresponding to the
vertices. Before presenting a proof of the lemma, let us elaborate on the specifics of the algebraic
curves defined by Eq. (24).

From (24) it follows that the affine curve defined by the equation R(w,E) = 0 at infinity is
compactified by one smooth point p+ . At this point the function w = w(p), p ∈ Γ, has a pole of
order n and E = E(p) has a pole of order k + 1. Notice that (24) implies also that if w = 0, then
E = 0. Moreover, if r �= 0, then one branch of the multivalued function w(E) defined by (24) near
the origin is of the form

w = r−1En

(

1 +

∞∑

s=1

vsE
s

)

.

Hence the curve Γ has another marked smooth point p− at which w has a zero of order n and E
has a simple zero. The degrees of the zero and pole divisors are equal; therefore, w does not vanish
on Γ \ p− .

Let Sk+1,n be the family of curves Γ defined by equations of the form (24). Its dimension (the
number of parameters, that is, of the coefficients rij ) equals k(n + 1)/2. For generic values of rij ,
the curve Γ is smooth and has genus g = k(n − 1)/2. Let Pk+1,n be the Jacobian bundle over an
open subspace of smooth curves in Sk+1,n. A generic point {Γ,D} ∈Pk+1,n of this bundle defines
a unique Baker–Akhiezer function ψ and, hence (by Lemma 2.1), the operator LE corresponding
to the function E = E(p). This function has a pole of order k + 1 at p+ and vanishes at p− .
Hence LE is strictly lower triangular. Moreover, Corollary 2.6 implies that LE is n-periodic. The
established correspondence

P0
k+1,n ⊂Pk+1,n �−→ Dk+1,n (26)

of an open domain will be referred to as the inverse spectral transform.

Example. For k = 1 and n = 2m+1, the family S is the family of hyperelliptic curves defined
by the equation

w2 +Qm(E)w − E2m+1 = 0,

where Qm is a polynomial of degree m.

Proof of Lemma 3.1. By definition, the polynomial R is of degree k+1 in w and of degree n
in E . The matrix L(w) has k + 1 nonzero diagonals below the main diagonal and k + 1 diagonals
in the upper right corner. The entries of the latter contain w as a multiplier. Hence R(0, E) = En ,
and the summation in (24) is over i > 0. The coefficient r1,0 is the product of the entries of the
first above the main diagonal and the coefficient of w in the lower left corner of the matrix. This
proves (25).

It remains only to prove that the summation in (24) is over the pairs of indices (i, j) such that
ni+ j(k + 1) < n(k+1). For further use, we present the proof of this statement, which goes along
the same lines as in the theory of commuting differential operators (see details in [17]).

Lemma 3.3. Let L be in Dk+1,n . If n and (k + 1) are coprime, then there exists a unique
formal series

E(z) = z−(k+1)

(

1 +

∞∑

s=1

esz
s

)

(27)
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such that the equation Lψ = Eψ has the unique formal solution

ψi(z) = zi
(

1 +
∞∑

s=1

ξ+s (i)z
s

)

(28)

with periodic coefficients
ξ+s (i) = ξ+s (i+ n) (29)

normalized by the condition ξ+s (0) = 0.

Proof. The substitution of (28) and (27) into the equation Lψ = Eψ gives a system of difference
equations for the unknown coefficients es and ξs of the series. The first of them is the equation

e1 + ξ+1 (i)− ξ+1 (i− k − 1) = aki . (30)

The periodicity constraint (29) uniquely defines e1 = n−1
∑n

i=1 a
k
i and reduces the difference equa-

tion (30) of order k + 1 to a difference equation of order 1, namely,

mes + ξ+1 (i)− ξ+1 (i− 1) =
m−1∑

j=0

aki−j(k+1), (31)

where m is the positive integer smaller than n such that m(k+1) = 1 (modn). Equation (31) and
the initial condition ξ+1 (0) = 0 uniquely define ξ+1 (i).

For arbitrary s, the defining equation for es and ξ+s has the form

es + ξ+s (i) − ξ+s (i− k − 1) = Qs(e1, . . . , es−1; ξ1, . . . , ξs−1),

where Qs is an explicit function linear in es′ and ξs′ , s
′ < s, and polynomial in aji . The same

argument as above shows that this equation has a unique periodic solution. This proves the lemma.

By definition, the series E(z) is formal. It turns out that it is a convergent series and coincides
with the Puiseuz series of the function E regarded as an analytic function on the algebraic curve
determined by Eq. (24) near infinity. More precisely, an argument identical to that in [14] (see
details in [17]) proves the following lemma.

Lemma 3.4. Let E(z) be the formal series defined in Lemma 3.3; then the characteristic
polynomial R(w,E) is equal to

R(w,E) =

n∏

j=1

(E − E(zj)), z−n
j = w. (32)

The right-hand side of (32) is a symmetric function of the variables zj . Hence, a priori, it is a
polynomial in the variable E and a (formal) Laurent series in w−1 . Equation (32) states that this
is a polynomial in w. It also implies that the degree in z of all terms in R(w,E) except wk+1 and
En is strictly less than n(k + 1). This proves Lemma 3.1.

In a similar way we describe the Bloch solution near the second marked point.

Lemma 3.5. If L is a strictly lower triangular operator (not necessarily periodic), then the
equation Lψ = Eψ has a unique formal solution of the form

ψi(E) = exiEi

(

1 +
∞∑

s=1

ξ−s (i)E
s

)

, exi−xi−1 := a1i , (33)

normalized by the condition ξ−s (0) = 0.

Proof. The substitution of (33) into (8) gives a system of equations for the unknown coeffi-
cients ξ−s . They are nonhomogeneous first-order linear difference equations

ξ−s (i) − ξ−s (i− 1) = qs(ξ
−
1 , . . . , ξ

−
s−1),

which, together with the initial conditions, recursively define the ξ−s (i) for all i.

The uniqueness of the formal solution (33) implies the following assertion.
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Corollary 3.6. If L ∈ Dk+1,n , then the formal series (33) is the Bloch solution, i.e., it satis-
fies (15) with

w(E) = ψn(E) = En
∞∑

s=0

wsE
s.

The coordinates of the Bloch solution ψi = ψi(p), p = (w,E) ∈ Γ, normalized by the condi-
tion ψ0 ≡ 0 are rational functions of w and E . A standard argument of the theory of finite-gap
integration shows that the poles of ψi do not depend on i. In order to find the degree of the
pole divisor D, it is enough, as usual, to consider the matrix F (E) with entries F ij = ψi(pj(E)),
0 � i � k, where the pj(E) = (wj , E), 1 � j � k + 1, are the preimages of E on Γ under the
projection map p ∈ Γ → E(p) ∈ C. The matrix F depends on the ordering of the preimages, but
the function f(E) = det2 F (E) does not, i.e., f is a rational function of E . It has double poles at
the projections of the poles of ψ (if they are distinct) and a pole of order 2k at E = 0. If Γ is
smooth, then f has zeros at the images of the finite branching points of the cover E : Γ→ C. The
multiplicity of the zero of f then equals the multiplicity of the branching. The infinity point p+ is
a branching point of the cover Γ → C of multiplicity k. From (28) it follows that at E = ∞ the
function f has a zero of order k. The degrees of the pole and zero divisors of a rational function
coincide. Hence 2 degD+2k = ν , where ν is the total multiplicity of the branch points. The cover
Γ→ C is of degree k + 1. Hence, by the Hurwitz formula, the genus of Γ (if it is smooth) is equal
to 2g = ν − 2k. Therefore, degD = g, and we have proved that the Bloch solutions on smooth
spectral curves coincide with the discrete Baker–Akhiezer function.

Remark 3.7. The coefficients rij of the characteristic equation (24) are polynomial functions of
the coefficients of the operator L ∈ Dk+1,n . The straightforward proof that they are independent is
highly nontrivial, and the author is not aware of any universal approach to this problem except the
combined use of the direct and inverse spectral transforms. Under this approach, in order to prove
their independence, it is enough to show that the image of the correspondence Dk+1,n → Sk+1,n

contains at least one smooth spectral curve. This is established by constructing the inverse map (26).

Summarizing the results presented above, we obtain the following statement.

Theorem 3.8. If n and k + 1 are coprime, then the map (26) is a one-to-one correspondence
between a Zariski open subset of the Jacobian bundle over the family of spectral curves given by
(24) and an open subset in the space Dk+1,n of n-periodic lower triangular difference operators of
order k + 1.

4. Superperiodic Difference Operators

In this section we consider the spectral theory of superperiodic operators. The spectral curve
Γspec of an operator L ∈ Ek+1,n is never smooth. The definition of Ek+1,n implies that the point

p0 = (w = (−1)n+k, E = −1) ∈ Γspec is a multiple point of order k + 1 (at which all sheets
of the cover E : Γspec → C intersect transversally). This condition requires the vanishing of the
coefficients of the Tailor expansion of R at p0 of degree less than k, which gives (k + 1)(k + 2)/2
linear equations on the coefficients of R. There is one relation between these equations, because
if w = (−1)n+k is a root of the equation R(w,−1) = 0 of multiplicity at least k, then it is of
multiplicity k + 1. Hence the space Sspec of the spectral curves of operators L ∈ Ek+1,n is of
dimension k(n+ 1)/2 − (k + 1)(k + 2)/2 + 1 = k(n− k − 2)/2.

Let Σk+1,n be the space of algebraic curves Γ obtained by a partial normalization π : Γ→ Γspec

of spectral curves resolving the multiple point p0 ; this means that the map π is one-to-one except
at k + 1 smooth point pj ∈ Γ, j = 1, . . . , k + 1, that are the preimages of p0 , i.e., π(p

j) = p0 . In
other words, a smooth curve Γ in Σk+1,n is characterized by the following properties:

(i) on Γ there exists a meromorphic function w having one pole at p+ of order n and having
a zero of order n at the other distinguished point p− ;

(ii) on Γ there exists a meromorphic function E having one pole at p+ of order k+1 and such
that the zeros pj of the function E +1 are distinct and, moreover, at pj the function w− (−1)k+n
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also vanishes:

E(pj) = −1, w(pj) = (−1)k+n, j = 1, . . . , k + 1.

Under the normalization π the arithmetic genus of Γspec decreases by k(k + 1)/2. Hence, for
an open set in Σk+1,n corresponding to spectral curves Γspec for which p0 is the only singularity,
the corresponding curve Γ is smooth and of genus g = k(n− 1)/2 − k(k + 1)/2 = k(n− k − 2)/2.

Consider the preimage π∗(ψ) (for which we will keep the same notation ψ) of the Bloch function
under the normalization map. It has the same expansions (28) and (33) at the marked points p± ∈ Γ.
The function E(p), p ∈ Γ, defines a cover Γ→ C which has k+1 sheets over the point E = −1. The
same counting as above gives that ψ has g poles on Γ. Hence we obtain the following statement.

Theorem 4.1. For a Zariski open set of operators L ∈ Ek+1,n , the corresponding Bloch solu-
tions ψ of the equation Lψ = Eψ are parameterized by the points p of a smooth algebraic curve
Γ ∈ Σk+1,n . Moreover, the function ψi(p) is the Baker–Akhiezer function.

Notice that the evaluation of (21) at the points pj ∈ Γ gives explicit theta-functional expressions

for the basis Ψ(j) := ψ(pj) of the solutions of the equation (L+ 1)Ψ = 0.

Corollary 4.2. The inverse and direct spectral transforms establish a one-to-one correspon-
dence

P ⇐⇒ Ek+1,n

between an open set in the Jacobian bundle P over the subspace of smooth curves in Σk+1,n and
an open set of superperiodic operators.

Now we are ready to prove Theorem 1.4.

Proof. Consider the function

G =
w − (−1)n+k

E + 1
+ (−1)n+k

on Γ ∈ Σk+1,n. At the zeros pj of the denominator the numerator vanishes as well. Hence G(p) is
holomorphic on Γ \ p+. At the marked point p+ the function G has a pole of order n − k − 1. It
vanishes at p− . By Lemma 2.1 there exists an operator L = LG ∈ Dn−k−1,n such that Lψ = Gψ,
where ψ is the Bloch solutions of the equation Lψ = Eψ. From the definition of G it follows that
the operator equation

T−n − (−1)k+n = (L − (−1)k+n)(L+ 1) = (L+ 1)(L − (−1)k+n)

holds. This proves the part (i) of the theorem.
The function w − (−1)k+n has n zeros on Γ, k + 1 of which are the points pj . Let qm , m =

1, . . . , n − k − 1, be the set of the remaining zeros. At these points G(qm) = (−1)k+n . Hence
L ∈ En−k−1,n.

In order to prove the last statement of the theorem, it remains only to prove relation (16). The
latter is a direct corollary of the following statement.

Lemma 4.3. Let Ψ̂(i) be the n× (k + 1) matrix with columns

(ψi+1(p
j), . . . , ψi+n(p

j)),

and let Ψ̂+
(i) be the (n− k − 1)× n matrix with rows

(ψ+
i+1(q

m), . . . , ψ+
i+n(q

m)),

where ψ and ψ+ are the Baker–Akhiezer function and its dual on Γ ∈ Σk+1,n and the points

{pj, qm} are zeros of the function w − (−1)k+n . Then the orthogonality relation

Ψ̂+
(i)Ψ̂(i) = 0 (34)

holds for all i.
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Proof. The relation (34) is a corollary of the orthogonality of the eigenvectors and covectors
of a linear operator which correspond to different eigenvalues:

E(qm)〈ψ+(qm), ψ(pj)〉 = 〈ψ+(qm), Lψ(pj)〉 = E(pj)〈ψ+(qm), ψ(pj)〉, (35)

where 〈 · , · 〉 stands for the pairing between vectors and covectors. By definition E(pj) = −1. The
function E is of degree k + 1. Hence it does not equal −1 at any other point of Γ. This implies
E(pj) �= E(qm). Thus, (35) holds only if

〈ψ+(qm)ψ(pj)〉 =
n∑

s=1

ψ+
i+s(q

m)ψi+s(p
j) = 0,

which is equivalent to (34).
For L ∈ Ek+1,n, Eq. (34) coincides with the duality relation (3) between solutions of the equa-

tions corresponding to the operators L = LE and εLσ
Gε

−1 . This proves the part (ii) of Theorem 1.4.

Proof of Theorem 1.6. The direct spectral transform (20) for commuting difference operators
is constructed along the same lines as in the case of the direct spectral transform for periodic
operators. Let us briefly recall some necessary steps of the construction.

Let Dk+1 be the affine space of monic strictly triangular operators of order k+1 (not necessarily
periodic). Consider a pair L ∈ Dk+1 and K ∈ Dn−k−1 with [L,K] = 0. The restriction of the
operator K to the (k + 1)-dimensional space of solutions of the equation (L − E)ψ = 0 defines a
finite-dimensional linear operator K(E).

Lemma 4.4 [15]. If n and k + 1 are coprime, then the characteristic equation of the operator
K(E) has the form

R(κ,E) = κk+1 − En−k−1 +
∑

(i,j)∈I
ρijκ

iEj = 0, (36)

where the summation is over the set of pairs of nonnegative integers (i, j) such that 0 < i(n−k−1)+
j(k + 1) < (n− k − 1)(k + 1). For commuting pairs in general position (when the spectral curve Γ
defined by (36) is smooth), the common eigenfunction ψ of the commuting operators L and K , for
which Lψ = Eψ and Kψ = κψ , (κ,E) ∈ Γ, is the discrete Baker–Akhiezer function.

The number of coefficients in (36) is (k + 2)(n − k)/2 − 2. For the generic values of these
coefficients, the corresponding curve Γ is smooth and has genus g = k(n − k − 2)/2. The two
marked points on Γ are the infinity point p+ , where E and κ have poles of orders k + 1 and
n−k−1, respectively, and the point p− , where these two functions vanish. If Γ is smooth, then the
ring A+ of meromorphic functions on Γ having pole only at p+ and vanishing at p− is generated
by E and κ. If 2k + 2 < n, then the function E can be characterized as a generator of A+ with
the lowest order of the pole at p+ . This condition determines it uniquely up to multiplication by a
constant: E′ = ck+1E . The second generator κ of the ring is unique up to the transformations

κ′ = cn−kκ−
[n/(k+1)]−1∑

s=1

αsE
s,

which preserve the order of the pole at p+ and the form of Eq. (36).
As mentioned above, the generic pairs of commuting operators have quasi-periodic coefficients.

By the assumption of the theorem the operator L is n-periodic, i.e., [L, T−n] = 0. This implies
that the ring A+ contains a function w which has a pole of order n at p+ and a zero of order n
at p− . Because A+ is generated by E and κ, this function can be represented in the form

w = κE − eκ+Q(E), (37)

where e is a constant and Q is a polynomial of degree d such that d(k + 1) < n (recall that, by
assumption, 2(k + 1) < n) and vanishing at E = 0.

Relation (37) implies that the function w takes the same value μ := Q(e) at the zeros pj of
the function E − e. In general position these zeros are simple. Therefore, the evaluation of the
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Baker–Akhiezer at these points gives a basis of solutions of the equation (L− e)Ψ = 0 having the
same monodromy multiplier μ.

Remark 4.5. In the statement of the theorem, “general position” means precisely that {pj}
is a set of k + 1 distinct points.

The scaling of E and κ by a constant c corresponds to the scaling transformation (13) of
operators. By a proper choice of the scaling constant c the constant e in (37) can be transformed
into e = −1. Hence the operator L is superperiodic up to the scaling transformation. This proves
the first statement of the theorem.

To prove the second statement it is enough to note that the polynomial Q(E)−Q(e) is always
divisible by E − e, i.e., there is a unique polynomial P (E) without constant term, P (0) = 0, such
that Q(E)− μ = (E − e)(P (E) + e−1μ) holds. Then from (37) we obtain the equation

w(p)− μ = (E(p) − e)(λ(p) + e−1μ), λ(p) = κ+ P (E).

This implies that the operator L = K + P (L) is superperiodic up to the scaling transformation,
which completes the proof of the theorem.

Remark 4.6. Throughout the paper we considered mostly operators with complex coefficients,
but all constructions and results admit a simple real reduction. If the coefficients of the operator L
are real, then so are the coefficients of the characteristic polynomials. Therefore, complex conjuga-
tion defines an antiholomorphic involution τ of the corresponding spectral curves. Equation (22)
implies that the divisor D is invariant under the involution τ(D) = D. Hence the direct and
the inverse spectral transform establish one-to-one correspondence between the space of generic
operators with real coefficients and an open part of the space of a bundle over the space of real
spectral curves whose fiber is the real locus of the corresponding Jacobian. Note that the bundle
over the space of M -curves whose fiber is the real locus of the Jacobian (the divisors D described
in Lemma 2.8) corresponds to operators L with sign-definite coefficients a1j .
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