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Real normalized differentials and compact cycles in the

moduli space of curves

I.Krichever ∗

Abstract

Using constructions of the Whitham perturbation theory of integrable system we
prove a new sharp upper bound of ⌊3g2 ⌋ − 2 on the dimension of complete subvarieties
of Mct

g .

1 Introduction

Widely accepted by experts, but still conjectural, a “geometric explanation” for curious
vanishing properties of the moduli space Mg,k of smooth genus g algebraic curves with
punctures is the existence of its stratification by a certain number of affine strata, or the
existence of a cover of Mg,k by a certain number of open affine sets (see [27] and references
therein).

Historically, Arbarello first realized that a stratification of Mg could be useful for a
study of its geometrical properties. He studied the stratification (known already to Rauch)
W2 ⊂ W3 ⊂ · · · ⊂ Wg−1 ⊂ Wg = Mg, where Wn is the locus of curves having a Weierstrass
point of order at most n (i.e. the locus of curves on which there exists a meromorphic function
with one pole of order at most n), and then conjectured that any compact complex cycle in
Mg of dimension g − n must intersect Wn. Since W2 is the locus of hyperelliptic curves,
which is affine, Arbarello’s conjecture would imply that: Mg does not contain complete
(complex) subvarieties of dimension greater than g − 2. This statement was later proved by
Diaz in [4] with the help of a variant of Arbarello’s stratification. Another modification of
Arbarello’s stratification was used by Loojenga, who proved that the tautological classes of
degree greater than g − 2 + k vanish in the Chow ring of Mg,k, and then conjectured that
Mg,k has a stratification with g − δk,o affine strata. His conjecture would be a consequence
of the existence of a Zariski open cover of Mg,k made by g − δk,0 affines. The existence of
such covers is conjectured by Hain and Looijenga [15]; for genus up to 5 affine stratifications
with the right number of strata were recently constructed by Fontanari and Looijenga [7],
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and covers — by Fontanari and Pascolutti [9], but no affine stratificaion, and not even a
conjectural cover, is known beyond genus 5.

In [13, 14] the author jointly with S. Grushevsky proposed an alternative approach for
geometrical explanation of the vanishing properties of Mg,k motivated by certain construc-
tions of the Whitham perturbation theory of integrable systems [18, 19], further developed
and clarified in [23, 24]. These constructions have already found applications in topologi-
cal quantum field theories (WDVV equations) and N = 2 supersymmetric gauge theories
[11] (see also [3] and references therein). The key elements of the alternative geometrical
explanation are:

(a) the moduli space M
(n )
g, k , n = (n1, . . . , nk) of smooth genus g Riemann surfaces Γ with

the fixed nα-jets of local coordinates in the neighborhoods of labeled points pα ∈ Γ is the
total space of a real-analytic foliation, whose leaves  L are locally smooth complex subvarieties
of real codimension 2g;

(b) on M
(n )
g, k there is an ordered set of (dimR  L) continuous functions, which restrict to

piecewise harmonic functions on the leaves of the foliation. Moreover, the first of these
functions restricted onto  L is a subharmonic function, i.e. it has no local maximum on  L
unless it is constant (if it is a constant then the next function is subharmonic, etc.).

The foliation structure arises through identification of M
(n )
g, k with the moduli space of

curves with a fixed real-normalized meromorphic differential. By definition a real normalized
meromorphic differential is a differential whose periods over any cycle on the curve are real.
The power of this notion is that on any algebraic curve and for each fixed set of ”singular
parts” at the marked labeled points there exists a unique real normalized differential having
prescribed singularities.

A new proof of Diaz’ theorem, proposed in [13], uses the foliation structure defined by the
real normalized differentials of the third kind, i.e. differentials with two simple poles. In [20]
the arguments of this proof were extended for the case of real normalized differentials of the
second kind (with no residues), and were used for the proof of Arbarello’s conjecture, which
had remained open until then. Highly non-trivial nature of the later problem has found its
explanation in recent paper [2] by Arbarello and Mondello, where it was proved that Wn is
almost never affine.

There are several partial compactifications of Mg,n for which analogs of vanishing results
for the case of smooth curves are known (see for example [4, 8, 26, 27] and references therein).
Possibly the most interesting among them is Mct

g , the moduli space of stable curves of
compact type, i.e. those stable curves where the Jacobian is compact; equivalently, whose
dual graph is a tree.

An easy corollary of Diaz’ bound on the dimension of compact cycles in the moduli space
of smooth curves is the statement (which is also due to Diaz [4]) that there is no compact
cycle in Mct

g of dimension greater that 2g − 3. In fact, a stronger result is true. In [16]
Keel and Sadun proved that for g ≥ 3 there do not exist complete complex subvarieties of
Mct

g of dimension greater than 2g− 4. The proof in [16] for arbitrary g is by easy induction
arguments starting from the base case of g = 3. The proof of the base statement that there
does not exist a compact threefold in Mct

3 is of a different nature. Keel and Sadun obtained
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it as a corollary of their remarkable vanishing result: there does not exist a complete complex
subvariety of the moduli space Ag of principally polarized abelian varieties of codimension
g.

The seemingly humble improvement in [16] of the previous bound is quite significant in
relation to Faber’s conjectures [6] or, more precisely, in relation to their analog for Mct

g (see
extensive discussion in [16]). In this connection, our main result looks even more striking:

Theorem 1.1. For g ≥ 2 there do not exist complete complex subvarieties of Mct
g of dimen-

sion greater than ⌊3g
2
⌋ − 2.

It is known that Mct
2 contains a complete curve, and that Mct

3 contains a complete
surface. Therefore, the bound above is sharp for g = 2, 3.

Formally it is sharp for all g because of the following trivial reason (pointed out to
the author by Sam Grushevsky). The complete subvarieties of maximal dimension in the
boundary of Mct

g can be constructed explicitly. Let X1, X2 be complete subvarieties in Mct
i

and Mct
g−i, respectively. Choosing a point on each curve and attaching two curves at the

corresponding points one gets a complete subvariety X of Mct
g . If i = 1, the dimension of

this subvariety equals dimX2 + 1. For 1 < i < g − 1 it is equal to dimX1 + dimX2 + 2.
Gluing together n copies of a complete curve in Mct

2 one gets a complete cycle in Mct
2n of

dimension 3n − 2. Gluing a complete surface in Mct
3 and n − 1 copies of a complete curve

in Mct
2 one gets a complete cycle in Mct

2n+1 of dimension 3n− 1.

A direct induction show that it is sufficient to prove the statement of the theorem under
the assumption that X ⊂ Mct

g has nontrivial intersection with Mg, i.e. throughout the paper
it is always assumed that the generic curve in X is smooth.

It is not clear to the author if the bound in Theorem 1.1 is sharp for g ≥ 4 under the
assumption that a generic curve in X is smooth. In fact, we conjecture a much stronger
bound:

Conjecture 1.2. Let X be a complete complex subvariety in Mct
g , having non-empty inter-

section with Mg. Then for g ≥ 1 it is of dimension at most g − 1.

Acknowledgments. The author would like to thank Sam Grushevsky for the numerous
valuable comments, clarifications, and suggestions.

2 Necessary facts and constructions

Let (Γ, p−, p+) be a smooth genus g algebraic curve with two marked points. Non-degeneracy
of the imaginary part of the Riemann matrix (the matrix of B- periods of the basis of
holomorphic differentials dual to an arbitrary chosen basis of cycles on Γ with the canonical
intersection matrix) implies that on Γ there exists a unique meromorphic differential Ψ with
residues ∓ i at simple poles at p± and having real periods over any cycle on Γ. Globally it can
be seen as the real analytic section Ψ over Mg,2 of the bundle of meromorphic differentials
with two simple poles (with residues ∓i).
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Remark 2.1. The real normalized differentials of the third kind per se are not new. They
were probably known to Maxwell (the real part of such differential is a single valued harmonic
function on Γ equal to the potential of electromagnetic filed on Γ created by charged particles
at the marked points); they were used in the, so-called, light-cone string theory [10], and
played a crucial role in joint works of S. Novikov and the author on Laurent-Fourier theory
on Riemann surfaces and on operator quantization of bosonic strings [21, 22].

Identification of Mg,2 with the moduli space of smooth Riemann surfaces Γ with fixed real
normalized differential Ψ having two simples poles with residues ∓ i allows us to introduce
on Mg,2 a foliation structure.

Definition 2.2. A leaf  L of the foliation on Mg,2 is defined to be the locus along which the
periods of the corresponding differential Ψ remain constant.

The foliation we define is real-analytic, but its leaves are complex (so the foliation is
real-analytic “in the transverse direction”). Indeed, locally in the neighborhood U of a curve
Γ0 one can always choose a basis of cycles on every curve Γ ∈ U , which continuously varies
with a variation of Γ. Therefore, locally a leaf  L is defined to be the locus where the integrals
of Ψ over the chosen basis of cycles A1, . . . , Ag, B1, . . . , Bg are equal to a1, . . . , ag, b1, . . . bg
— these are holomorphic conditions, and thus the leaf is a complex submanifold  L ⊂ Mg,2.
If a different basis of H1(Γ,Z) is chosen, the periods of Ψ over the basis are still fixed along
a leaf (though numerically different).

It is a basic fact of the Whitham theory proved in full generality (for real normalized
differentials having poles of arbitrary fixed order of poles at k punctures) in [23]

Theorem 2.3. A leaf  L is a smooth complex subvariety of real codimension 2g .

A set of holomorphic coordinates on  L is similar to the ones in the theory of Hurwitz
spaces. They are “critical” values of the corresponding abelian integral F (p), p ∈ Γ

F (p) = c +

∫ p

Ψ, (1)

which is a multivalued meromorphic function on Γ. The zero divisor of Ψ is of degree 2g.
At the generic point of  L, where all the zeros qs of Ψ are distinct, the coordinates on  L are
the values of F at these critical points:

ϕs = F (qs), Ψ(qs) = 0, s = 0, . . . , 2g − 1, (2)

normalized by the condition
∑

s ϕs = 0. Of course, these coordinates depend upon the path
of integration needed to define F in the neighborhood of qs. The normalization above is
needed to define in addition the common constant c in (1). At points of  L where the corre-
sponding differential has multiple zeros qs1 = . . . = qsr , the local coordinates are symmetric
polynomials σi(ϕs1, . . . , ϕsr), i = 1, . . . , r (it is assumed here that the paths of integration
for critical values ϕsk are chosen consistently; for more details see [23]).
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A direct corollary of real normalization is the statement that imaginary parts fs = ℑϕs

of the critical values are independent of paths of integration, and depend only on labeling of
the critical points. They can be arranged into decreasing order

f0 ≥ f1 ≥ · · · ≥ fd−1 ≥ f2g−1,

2g−1∑

j=0

fj = 0. (3)

Then fj is a well-defined continuous function on Mg,2, which restricted onto  L is a piecewise
harmonic function. Moreover, as shown in [13], the first function f0 restricted onto any leaf
 L is a subharmonic function, i.e. it is a function for which the maximum principle can be
applied: f0 has no local maximum on  L unless it is constant (if f0 is a constant, then f1 is
subharmonic, and so on).

Subfoliations. For further use let us introduce additional foliation structures on Mg,2.

Definition 2.4. A leaf l ⊂  L of the foliation on Mg,2 is defined to be the locus along
which the periods and a subset of marked n critical values ϕs1, . . . , ϕsn of the corresponding
differential Ψ remain constant.

Of course, the numerical values ϕsj depend upon a choice of a path of integration needed
to define the abelian integral F in the neighborhood of qsj , but the condition that they remain
constant along l is independent. Hence, locally l is a well-defined complex subvariety of real
codimension 2g + 2n in Mg,2, which at the same time can be seen as complex subvariety of
complex codimension n of the corresponding leaf  L of the big foliation. It is smooth when
the corresponding zeros are simple, and singular otherwise.

3 Extension to the boundary

Our next goal is to extend the notion of real normalized differentials to the case of stable
curves of compact type, and to describe the asymptotic behavior of their critical values near
the boundary divisors.

The line bundle of meromorphic differentials with two simple poles, i.e. the bundle with
fiber KΓ + p+ + p− over a smooth curve, extends to a bundle globally over the Deligne-
Mumford compactification Mg,2 — the fiber over a stable curve Γ is ωΓ + p+ + p−, where
ωΓ is the relative dualizing sheaf. Recalling the definition of the relative dualizing sheaf,
analytically this means that limits of meromorphic differentials with prescribed poles at pi
are meromorphic differentials with poles at the points p± and possibly with simple poles at
the nodes, with the residues from the two components canceling.

Remark 3.1. In general if one takes a family of meromorphic differentials on smooth Rie-
mann surfaces (i.e. takes a section over Mg,n), we expect that the limit may have simple
poles at the nodes. Moreover, the theory of limit linear series on reducible curves is ex-
tremely complicated, see for example [5], and to determine all possible limits of sections on
reducible nodal curves, one may need to twist the bundle by some multiples of the connected
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components of the nodal curve. It turns out that this does not happen for the differentials
of the second kind with real periods. More precisely, in [13] it was shown that the limit of
the real normalized differentials having one pole of the second order at a marked point p0
at a stable curve Γ is the unique meromorphic differential that is identically zero on all con-
nected components of the normalization Γ̃ (geometrically Γ̃ is obtained from Γ by detaching
the attached nodes) except the one containing p0. On that component ΨΓ is the unique
differential with real periods and prescribed singular part at the double pole at p0.

In full generality limits of real normalized differentials (having poles of arbitrary orders
at several points and non-zero residues) at reducible stable curves are not well understood
yet, and deserve a more systematic study. For our further purposes, we need only to consider
limits of real normalized differentials with two simple poles at stable curves of compact type,
which admits a simple description.

Let Mct
g,2 be the moduli space of stable curves of compact type with two labeled points

p±. Throughout the paper a pair of labeled points on a stable curve of compact type such
that tthe preimages of these points under the normalization map are on the same irreducible
component of the normalization is called an irreducible pair of labeled points. (a pair of
points on a smooth curve is always irreducible).

The dual graph of a stable curve Γ of compact type is a tree. Therefore, there exists a
unique oriented path in the dual graph connecting the two irreducible components containing
two marked points. (The positive orientation of the path is the orientation from p− towards

p+). Let Γα, α = 1, . . . , k, be connected components of the normalization Γ̃, corresponding
to vertices of that path, ordered according to this orientation. On each of the curves Γα

there are two points pα
± that are preimages of nodes or the initial marked points p±. More

precisely, on Γ1 the two parked points are the first initially marked point p 1
− = p− and the

preimage p 1
+ of the node connecting Γ1 with Γ2. The preimage of the same node on Γ2 is the

marked point p 2
−. Continuing this labeling of points, we end up by identifying p k

+ with p+.

Let M
ct,(k)
g,2 be the locus where the path in the dual graph connecting the irreducible

components containing p+ and p− has k vertices. Detaching the nodes corresponding to
edges of the path one gets an ordered set of stable curves with irreducible pairs of labeled
points, i.e.

M
ct,(k)
g,2 =

k∏

α=1

M
ct,( 1)
gα,2 . (4)

(the product at the right hand side is ordered).

Lemma 3.2. The real analytic section Ψ over Mg,2 of the bundle of meromorphic differ-
entials with two simple poles (with residues ∓i) extends to a real analytic section of the
extension of this bundle, ωΓ + p− + p+ over Mct

g,2. For a stable curve (Γ, p±) the section ΨΓ

is the unique meromorphic differential that is identically zero on all connected components
of the normalization Γ̃ except at the chain of components Γj connecting p±. On Γj ΨΓ is the
unique real normalized differential with simple poles at pα

± and residues ∓ i.

For the proof it is enough to consider the closure of the section Ψ in the total space of
the bundle ωΓ + p− + p+ over Mct

g,2 , and notice that on connected components of Γ̃ the real
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normalization uniquely defines preimages of limiting differential ΨΓ under the normalization
map. Real analyticity of the extended section is a direct corollary of the fact that Torelli map
(Riemann matrix of B-periods of normalized holomorphic differentials) extends analytically
onto Mct

g .

From the analyticity of the Torelli map it follows that periods of the real normalized
differentials Ψ on smooth curves, regarded as locally defined functions on Mg,2, extend
analytically to Mct

g,2, as “periods” of the section of ωΓ + p+ + p−, but the differentials of the
periods are linearly independent only on part of the boundary of Mct

g,2. Namely, they are
linearly independent on the divisors corresponding to singular curves whose dual graph is
just the path connecting the components of Γ̃ containing marked points (i.e. Γ̃ is a ”chain”
of curves Γα in Lemma 3.2, and does not contain components on which the limit of Ψ is
identically zero). Therefore, the foliation structure on Mg,2 extends smoothly only through
the later part (called below the regular part) of the boundary.

Lemma 3.2 implies that the functions fj on Mg,2 (imaginary parts of the critical values)
extend as continuous functions through the part of the boundary corresponding to singular
curves with an irreducible pair of labeled points. (Recall, that the later means that the
preimages of these points under normalization belong to the same connected component Γ0).
In the neighborhood of such a point of the boundary the 2g-tuple of functions fj splits into
a set of 2gs-tuples corresponding to each irreducible component of the normalization. The
first 2g0-tuple corresponding to the principal component containing the marked points, and
is of the form fi, 0 +c, where fi,0 in the limit tend to the imaginary parts of the critical values
Ψ0 on Γ0. At the boundary the values of functions in each of the other tuples coincide and
are equal to Φ0(qs) + c, where Φ0 is the imaginary part of F0, normalized by the condition∑

j fj,0 = 0, and qs is the preimage of the node connecting components Γ0 and Γs. The
constant c is defined by the normalization condition on the singular curve Γ:

gc +
∑

s

gsΦ0(qs) = 0. (5)

In general the functions fj have no finite limit at boundary points where the preimages of
marked points belong to different irreducible components of the normalization. An explicit
description of the asymptotic behavior of fj under corresponding degenerations is revealed
by the following gluing construction.

Consider first degenerations to a singular curve with two labeled points such that the
path in the dual tree connecting irreducible components with preimages of the labeled points
contains only two vertices (the case k = 2 above).

Let Γ1,Γ2 be stable curves of compact type with fixed irreducible pairs of points p 1
± and

p 2
±, respectively, and let Ψ1 and Ψ2 be the corresponding real normalized differentials. In the

neighborhood of p 1
+, where Ψ1 has residue −i, the imaginary part Φ1 of the abelian integral

F1 tends to +∞. In the neighborhood of p 2
− the imaginary part Φ2 of the abelian integral

F2 tends to −∞. Let us fix a complex parameter t and define the neighborhood U t
1 ⊂ Γ1 of

p 1
+ and the neighborhood U t

2 ⊂ Γ2 of p 2
− by the inequalities:

q1 ∈ U t
1

∣∣ Φ1(q1) > −
1

2
ln | t| ; q2 ∈ U t

2

∣∣ Φ2(q2) <
1

2
ln | t| (6)
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If | t| is sufficiently small, then the boundaries ∂U t
i are circles which can be identified via the

implicit equation

F2(q2) = F1(q1) + ln t, q1 ∈ S1 = ∂U t
1 , q2 ∈ S1 = ∂U t

2 . (7)

Using this identification we define a new stable algebraic curve of compact type with an
irreducible pair of labeled points, first, topologically gluing the complements Γi \ U

t
i along

the boundary circles. The complex structure on Γt = (Γ1 \ U t
1 ) ∪S1 (Γ2 \ U t

2 ) is defined in
a conventional way: locally holomorphic functions in the neighborhood of a point on the
circle S1 are continuous functions that are holomorphic outside of the circle (with respect
to complex structures on Γi). The differential Ψt that is equal to Ψ1 on Γ1 \ U

t
1 and Ψ2 on

Γ2 \ U t
2 is continuous across S1, therefore, it is the real normalized differential on Γt with

simple poles at p− = p 1
− and p+ = p 2

+. As t → 0, the curve Γt degenerates to the singular
curve Γ0 with irreducible components Γi.

The zeros of Ψt are the zeros of Ψ1 on (Γ1 \ U t
1 ) and the zeros of Ψ2 on (Γ2 \ U t

2 ). By
continuity, a branch F1 + c of the abelian integral Ft of Ψt on the first part of Γt extends as
F2−ln t+c. If the abelian integrals F1, F2 are normalized so that the imaginary parts fj,1 and
fj,2 of their critical values satisfy the conditions

∑
j fj,1 =

∑
j fj,2 = 0, then the normalization

condition for critical values of Ft defines the constant c above: (g1 + g2) c = g2 ln t. Hence,
the tuple of functions fj in the neighborhood of the singular curve Γ0 splits into two tuples
of the form

fj, 1 +
g2

g
ln | t| ; fj, 2 −

g1

g
ln | t| , g = g1 + g2. (8)

Similarly, taking a set (Γα, p
α
±), α = 1, . . . , k, of stable curves of compact type with irre-

ducible pairs of labeled points and taking a set of sufficiently small complex parameters
t = (t1, . . . , tk−1) one can construct a stable curve Γt with an irreducible pair of marked
points. The corresponding (k − 1)-parametric family at t = (0, . . . , 0) degenerates to the

singular curve Γ0. Therefore, in the neighborhood of a point of the stratum M
ct,(k)
g,2 the tuple

of functions fj splits into k tuples of function having the form

fj,α + c−
α−1∑

s=1

ln | ts|,
∑

j

fj, α = 0 . (9)

The constant c, defined by the normalization condition, is given by

c =
1

g

k−1∑

s=1

(
∑

α<s

gα) ln | ts|, g =
k∑

α=1

gα. (10)

4 Proof of the main theorem.

For motivation of further arguments, let us briefly outline the key steps of the proof of
Diaz’ theorem in [13]. The fiber of the forgetful map Mg,2 → Mg over the point Γ is
Γ × Γ \ diagonal, and thus non-compact. A partial compactification of Mg,2 is the square
of the universal curve C2

g which is the moduli space of curves with two labeled points (not
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necessarily distinct). The fiber of the map C2
g → Mg over Γ is Γ × Γ, and thus is compact.

From the point of view of the Deligne-Mumford compactification, if the two marked points
coincide, we attach a nodal CP1 at this point. The real normalized differential defined on
Mg,2 has zero limit on the diagonal Cg = Mg,1 ⊂ C2

g . Indeed, if the points p± coincide,
then the corresponding differential Ψ becomes a holomorphic differential. Since in the limit
Ψ is still real-normalized, in the limit it becomes identically zero on Γ, and the associated
functions fj all become zero.

Let X be a compact cycle in Mg. Its preimage Z under the forgetful map C2
g 7−→ Mgis

compact. The function f0, as a continuous function, achieves its supremum on Z. It is easy
to see that the function f0 is not identically zero on the preimage Y of X under the forgetful
map Mg,2 → Mg, Y ⊂ Z ⊂ C2

g (see details in [13]). Thus f0 achieves its supremum at a
point in Y (Recall that f0 ≡ 0 on the diagonal Cg). Let  L be the leaf of the big foliation
passing through that point. At this point the function f0 restricted onto  L ∩ Y has a local
maximum. Then, it must be a constant on  L ∩ Y .

Let Y0 ⊂ Y be the compact set, where f0 takes its maximum value. On the compact set
the second function f1 must achieve its supremum. The above discussion shows that Y0 is
foliated by leaves  L ∩ Y (i.e. that for any leaf  L intersecting Y0,  L ∩ Y =  L ∩ Y0). On these
leaves the second function f1 is subharmonic, i.e. it must be a constant. Continuing the
induction step we get that all functions fs are constants on  L ∩ Y . If fs = ℑϕs is constant,
then ϕs is also (locally) constant on  L ∩ Y . Since the functions ϕs are local coordinates on
 L,  L ∩ Y must be zero-dimensional. However, if X is of dimension greater that g − 2, then
 L ∩ Y is at least one-dimensional. The contradiction completes the proof of Diaz’ theorem.

Consider now a complete cycle X ⊂ Mct
g such that its intersection X0 = X ∩ Mg is

not empty, i.e. the generic curve in X is smooth. For a fixed non-zero real number a the
locus Ya defined to be the union of level sets {Ya, j | fj = a} of the functions fj restricted onto
the preimage Y ⊂ Mg,2 of X0 under the forgetful map, i.e. Ya = ∪jYa, j. In other words,
Ya is the locus where at least one of the functions fj takes value a. Similarly, a joint level
YA, A = (a1 < a2 < . . . < an) is defined to be the locus where a set of n functions fj take
fixed values, i.e. YA = ∩n

i=1Yai .

Lemma 4.1. If X is of dimension at least g + n− 1, then the closure Y A of the joint level
set YA, (|A| = n) in Mct

g,2 intersects the boundary, i.e. Y A ∩ ∂Mct
g,2 6= ∅ ⊂ Mct

g,2.

Proof. Suppose that the closure of YA does not intersect the boundary. Then YA is compact.
On a compact set the continuous function f0 achieves its maximum at some point (Γ, p±).
By definition of YA at this point fji = ai for at least one ji. Consider the leaf λ of the
subfoliation passing through (Γ, p±) along which the periods and the corresponding critical
values φji, ℑφji = ai, remain constant. If the zero qji is simple, then λ is smooth at (Γ, p±).
The function f0 has local maximum at this point on λ ∩ Y . Hence, f0 is constant on λ ∩ Y .
Continuing arguments along the same line as in the proof of Diaz’s theorem above, one gets
that all the other functions fj are constant on λ∩Y , as well. Hence, λ∩Y is zero-dimensional.
But if X is of dimension at least g + n− 1, then λ∩ Y is at least one-dimensional. Thus we
have arrived at a contradiction.

9



Only a slight modification of the previous arguments is needed in the case when the zeros
qji of the differential Ψ are not simple at the point where f0 achieves its maximum on YA.
(These arguments are similar to the ones already used in analogous situation in [13].) In
the neighborhood of that point the set qj,si of (unlabeled) zeroes that become the multiple
zero in the limit varies holomorphically. Therefore, locally the functions φji =

∑
s ϕj,si

are
holomorphic on  L. Locally the level sets l′ of these function are smooth, and can be used
instead of l in the argument above.

The following statement is at the heart of the rest of the proof. Its geometric meaning
seems highly non-trivial: if a complete cycle X ⊂ Mct

g is of dimension at least g, then there
is an irreducible component of the intersection X ∩ ∂Mct

g which is contained in the locus of
singular curves whose normalization has at least three connected components. Notice that
the locus of such stable curves is of codimension 2 in Mct

g , while a connected component of
the intersection of X with boundary is of codimension 1 in X .

Recall that M
ct,(k)
g,2 is the locus where the path in the dual graph connecting irreducible

components containing the labeled points has k vertices.

Lemma 4.2. The locus Y ∞
A ⊂ ∂Mct

g,2 of limiting points of the joint level set YA, as f0 → ∞,

does not intersect the strata M
ct,(k)
g,2 with k = 1, 2.

Proof. The proof of the lemma is an easy corollary of the description of asymptotic behavior
of the critical values near the boundary. Equation (5) implies that in the neighborhood of

any point of Mct,(1)
g,2 the function f0 is bounded. Therefore, Y ∞

A ∩Mct,(1)
g,2 = ∅. The arguments

showing that Y ∞
A ∩ M

ct,(2)
g,2 = ∅ are just opposite: from (8) it follows that none of the

functions fj have a finite limit at points of the strata M
ct,(2)
g,2 , i.e. none of the functions fj

takes prescribed value a near any point of the strata.

The formulae (9) and (10) describe the asymptotic behavior of fj in the universal family
depending on k − 1 complex parameters. The limiting behavior along a one-parametric
family is given by the same formulae with ts being holomorphic functions of the parameter
t in the neighborhood of t = 0, i.e. in the leading order ln | ts(t)| = νs ln | t|, where νs are
positive integers. Then, from (9) and (10) it follows that only one tuple (corresponding to
one value of 1 < α0 < k in the decomposition (4)) of critical values functions might have a
finite limit. All other critical values fj tend to ±∞. Along each leaf  L of the big foliation
the degeneration with f0 → ∞ is a one-parametric complex family. Hence, each connected
component of the locus Y ∞

A is contained in the stratum of the boundary of the form

Mct
g
−
,2 ×M

ct,(1)
g0,2 ×Mct

g+,2, g− + g0 + g+ = g, g± > 0, g0 > 0, . (11)

The first and the last factor of the decomposition (11) combine factors in (4) where the
critical values tend to −∞ or +∞, respectively.

The locus Y ∞
A is not complex, but the condition that under degeneration f0 → ∞, there

is a subset of n critical values functions having finite (but not fixed) limits is open complex
condition. Therefore, the locus Y ∞

n = ∪A, |A|=nY
∞
A is complex of complex codimension 1 in

Y (provided that it is not empty).

10



Now we are ready to complete the proof of the main theorem by induction. The base of
the induction is the case g = 2. The corresponding statement that Mct

2 does not contain a
complete surface is well-known. Nevertheless, it is instructive to get it as a direct corollary
of the lemmas above.

Suppose that X is a complete surface in Mct
2 . Then, by Lemma 4.1 the locus Y ∞

a is not

empty. On the other hand, by Lemma 4.2 it is empty, because M
ct,(k)
2,2 with k = 1, 2 are the

only stratum of the boundary.

Suppose now that X is a complete cycle in Mct
g of dimension g + n − 1. Consider a

connected component of the closure Y ∞
n in one of the strata (11). Let Zn be the image of

Y ∞
n under the projection (forgetful map) of the strata (11) onto the middle factor. It is a

complete cycle in Mct
g0, 2

. The intersection of its open part with leaves of the big foliation on
Mg0,2 is at least n-dimensional (parameters ai in the definition of level set above). This is
impossible for g0 = 1, while for g0 ≥ 2 by the induction assumption we have 2n ≤ g0 ≤ (g−2).
Therefore, dimX = g + n− 1 ≤ 3g

2
− 2. Thus, the main theorem is proved.
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