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1 Introduction

Novikov’s conjecture on the Riemann-Schottky problem: the Jacobians of smooth
algebraic curves are precisely those indecomposable principally polarized abelian va-
rieties (ppavs) whose theta-functions provide solutions to the Kadomtsev-Petviashvili
(KP) equation, was the first evidence of nowadays well-established fact: connections
between the algebraic geometry and the modern theory of integrable systems is ben-
eficial for both sides.

The purpose of this paper is twofold. Our first goal is to present a proof of the
strongest known characterization of a Jacobian variety in this direction: an indecom-
posable ppav X is the Jacobian of a curve if and only if its Kummer variety K(X)
has a trisecant line [36, 37]. We call this characterization Welters’ (trisecant) con-
jecture after the work of Welters [64]. It was motivated by Novikov’s conjecture and
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Gunning’s celebrated theorem [25]. The approach to its solution, proposed in [36], is
general enough to be applicable to a variety of Riemann-Schottky-type problems. In
[24, 38] it was used for a characterization of principally polarized Prym varieties. The
latter problem is almost as old and famous as the Riemann-Schottky problem but is
much harder. In some sense the Prym varieties may be geometrically the easiest-to-
understand ppavs beyond Jacobians, and studying them may be a first step towards
understanding the geometry of more general abelian varieties as well.

Our second and primary objective is to take this opportunity to elaborate on
motivations underlining the proposed solution of the Riemann-Schottky problem, to
introduce a certain circle of ideas and methods, developed in the theory of soliton
equations, and to convince the reader that they are algebro-geometric in nature,
simple and universal enough to be included in the Handbook of moduli. The results
appeared in this article have already been published elsewhere.

Riemann-Schottky problem

Let Hg := {B ∈ Mg(C) |
tB = B, Im(B) > 0} be the Siegel upper half space. For

B ∈ Hg let Λ := ΛB := Zg+BZg and X := XB := Cg/ΛB. Riemann’s theta function

θ(z) := θ(z,B) :=
∑

m∈Zg

e2πi(m,z)+πi(m,Bm), (m, z) = m1z1 + · · ·+mgzg, (1.1)

is holomorphic and Λ-quasiperiodic in z ∈ Cg, so Θ := ΘB := θ−1(0) defines a
divisor on X . Moreover, (X, [Θ]) becomes a ppav, where [Θ] denotes the algebraic
equivalence class of Θ. Thus Hg/ Sp(2g,Z) ≃ Ag, the moduli space of g-dimensional
ppavs. In what follows we may denote (X, [Θ]) byX for simplicity. A ppav (X, [Θ]) ∈
Ag is said to be indecomposable if Θ is irreducible, or equivalently1 if there do not
exist (Xi, [Θi]) ∈ Agi with gi > 0, i = 1, 2, such that X = X1 × X2 and Θ =
Θ1 ×X2 +X1 ×Θ2.

LetMg be the moduli space of nonsingular curves of genus g, and let J :Mg →
Ag be the Jacobi map, i.e., for Γ ∈ Mg, J(Γ) is Pic

0(Γ) with canonical polarization
given by Wg−1 = {L ∈ Picg−1(Γ) | h0(L) = h1(L) > 0} regarded as a divisor on
Pic0(Γ), or more explicitly: taking a symplectic basis ai, bi (i = 1, . . . , g) of H1(Γ,Z)
and a basis ω1, . . . , ωg of the space of holomorphic 1-forms on Γ such that

∫
ai
ωj = δij ,

we define the period matrix and the Jacobian variety of Γ by

B :=

(∫

bi

ωj

)
∈ Hg and J(Γ) := (XB, [ΘB]) ∈ Ag ,

respectively. The latter is independent of the choice of (ai, bi).
J(Γ) is indecomposable and the Jacobi map J is injective (Torelli’s theorem).

The (Riemann-)Schottky problem is the problem of characterizing the Jacobi locus
Jg := J(Mg) or its closure Jg in Ag. For g = 2, 3 the dimensions of Mg and Ag

coincide, and hence Jg = Ag by Torelli’s theorem. Since J4 is of codimension 1 in
A4, the case g = 4 is the first nontrivial case of the Riemann-Schottky problem.

A nontrivial relation for the Thetanullwerte of a curve of genus 4 was obtained
by F. Schottky [53] in 1888, giving a modular form which vanishes on J4, and hence
at least a local solution of the Riemann-Schottky problem in g = 4, i.e., J4 is an

1 since principal polarization means parallel translation is the only way to deform Θ, translating
each component of Θ has the same effect as translating Θ as a whole.
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irreducible component of the zero locus S4 of the Schottky relation. The irreducibility
of S4 was proved by Igusa [27] in 1981, establishing J4 = S4, an effective answer to
the Riemann-Schottky problem in genus 4.

Generalization of the Schottky relation to a curve of higher genus, the so-called
Schottky-Jung relations, formulated as a conjecture by Schottky and Jung [54], were
proved by Farkas-Rauch [20]. Later, van Geemen [23] proved that the Schottky-Jung
relations give a local solution of the Riemann-Schottky problem. They do not give
a global solution when g > 4, since the variety they define has extra components
already for g = 5 (Donagi [18]).

More recent development on the Riemann-Schottky problem, as reviewed in [1,
6, 13], includes a completely new approach of Buser and Sarnak [9] which provides
an effective way to characterize non-Jacobians.

Fay’s trisecant formula and the KP equation

Over more than 120 year-long history of the Riemann-Schottky problem, quite a few
geometric characterizations of the Jacobians have been obtained. Following Mum-
ford’s review with a remark on Fay’s trisecant formula [47], and the advent of soliton
theory and Novikov’s conjecture [29, 30, 48], much progress was made in the 1980s
to characterizing Jacobians and Pryms using Fay-like formulas and KP-like equa-
tions. They are closely related to each other since Fay’s formula, written as a biliear
equation for the Riemann theta function, follows from a difference analogue of the
bilinear identity2

∮

k=∞

τ(t − [k−1])τ(t′ + [k−1])e
∑

(ti−t′i)k
i

dk = 0, (1.2)

which itself is equivalent to the KP hierarchy [10, 11]. Equation (1.2) can also be
regarded as a generating function for the Plücker relations for an infinite dimensional
Grassmannian.

Compared with Igusa’s work which studies the geometry of S4 and characterize
the Jacobian locus J4, in this approach Fay-like formulas or KP-like equations are
used to (in a sense) construct the curve Γ and thus characterize the Jacobian varieties.
Therefore this approach to the Riemann-Schottky problem is also related to the
Torelli theorem; however, the relation is only remote since the conditions like Fay’s
formula and the KP equation contain extra parameters like vector U (and the lack of
Prym-Torelli does not stop us from studying the Prym-Schottky problem using the
analogue of this approach).

Let us first describe the trisecant formula in geometric terms. The Kummer
variety K(X) of X ∈ Ag is the image of the Kummer map

K = KX : X ∋ z 7−→
(
Θ[ε, 0](z) | ε ∈ ((1/2)Z/Z)g

)
∈ CP

2g−1 (1.3)

where Θ[ε, 0](z) = θ[ε, 0](2z, 2B) are the level two theta-functions with half-integer

2 Here t = (t1, t2, . . . ) and t′ = (t′1, t
′
2, . . . ) are two sequences of formal independent variables

near zero, k is a formal independent variable near infinity, [k−1] = (1/k, 1/(2k2), . . . , 1/(nkn), . . . ),
and τ , the so-called tau-function, is a scalar-valued unknown function of the KP hierarchy. For a
quasiperiodic solution obtained from smooth curve Γ we have τ(t) = eQ(t)θ(

∑
tiUi + z,B(Γ)) for

some quadratic form Q(t), vectors Ui ∈ Cg and arbitrary z ∈ Cg . Also, Fay’s formula itself can in a
sense be obtained from (1.2) by specializing the time variables using the so-called Miwa variables.
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characteristics ε ∈ ((1/2)Z/Z)g, i.e., they equal θ(2(z + Bε), 2B) up to some expo-
nential factor so that we have

θ(z + w)θ(z − w) =
∑

ε∈((1/2)Z/Z)g

Θ[ε, 0](z)Θ[ε, 0](w) . (1.4)

We have K(−z) = K(z) and K(X) ≃ X/{±1}.
A trisecant of the Kummer variety is a projective line which meets K(X) at three

points. Fay’s trisecant formula states that if X = J(Γ), then K(X) has a family of
trisecants parametrized by 4 points Ai, 1 ≤ i ≤ 4, on Γ. Namely, identifying a point
on Γ with its image under the Abel-Jacobi map Γ→ Pic1(Γ) and taking r ∈ Pic−1(Γ)
such that 2r = A4 − A1 −A2 −A3, we have:

K(r +A1), K(r +A2) and K(r +A3) are collinear, (1.5)

i.e.,

K

(
A4 +A1 −A2 −A3

2

)
, K

(
A4 −A1 +A2 −A3

2

)
and

K

(
A4 −A1 −A2 +A3

2

)
are collinear

if we take the three occurrences of “division by 2” consistent with each other. In
what follows, the same remark applies if division by 2 in X appears more than once
in one formula, as in Theorems 1.25, 7.1.

Since we have K(−z) = K(z), condition (1.5) is symmetric in all the Ai’s. How-
ever, in its proof as well as its applications the four points tend to play different roles.
E.g., fixing the 3 points A1, A2, A3 we may regard it as a one-parameter family of
trisecants parametrized by A4 or r. Now drop the assumptions that X = J(Γ) and
Ai ∈ Γ ⊂ X : suppose X is a ppav such that (1.5) holds for some A1, A2, A3 ∈ X
and infinitely many (hence a one-parameter family of) r ∈ X . Gunning proved in
[25] that, under certain nondegeneracy conditions, X is then a Jacobian.

Gunning’s work was extended by Welters who proved that a Jacobian variety can
be characterized by the existence of a formal one-parameter family of flexes of the
Kummer variety [63]. A flex of the Kummer variety is a projective line which is
tangent to K(X) at some point up to order 2. It is a limiting case of trisecants when
the three intersection points come together.

In [2] Arbarello and De Concini showed that the assumption in Welters’ charac-
terization is equivalent to a singly infinite sequence of partial differential equations
contained in the KP hierarchy, and proved that only a first finite number of equa-
tions in the sequence are sufficient, by giving an explicit bound for the number of
equations, N = [(3/2)gg!], based on the degree of K(X).

Novikov’s conjecture

The second author’s answer to Novikov’s conjecture [58] illustrated how the soliton
theory itself can provide natural, useful algebraic tools as well as powerful analytic
tools to study the Riemann-Schottky problem, as immediately noticed by van der
Geer [62], when only an early version of [58] was available:

An algebraic argument based on earlier results of Burchnall, Chaundy and the
first author [8, 29, 30] characterizes the Jacobians using a commutative ring R of
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ordinary differential operators associated to a solution of the KP hierarchy. A simple
counting argument then shows that only the first 2g + 1 time evolutions in the
hierarchy are needed to obtain R. Indeed, suppose X = C

g/Λ appears as an orbit of
the first 2g + 1 KP flows represented by a “linear motion” φ : C2g+1 → Cg followed
by the projection Cg → X . Then K := kerφ is (g + 1)-dimensional, and if (ci) ∈ K
then

∑
i ci∂L/∂ti = 0, hence by the definition of the KP hierarchy Q =

∑
i ciPi

commutes with L. Any two such Q’s commute with each other [55], so the C-algebra
R′ generated by all such Q’s is commutative. A simple counting shows that R
contains an ordinary differential operator of every order n ≥ 2g + 2, which implies
that R′ is maximally commutative and hence R′ = R, from the way of constructing
it. Applying Burchnall et al’s theory to R to recover the spectral curve Γ etc., we
observe that X ≃ J(Γ). The 2g + 1 KP flows yield a finite number of differential
equations for the Riemann theta function θ of X , to characterize a Jacobian. As for
the number of equations, an easy estimate shows that 4g2 is enough, although more
careful argument should yield a better bound. Note that this is much smaller than
Arbarello et al’s estimate.

The analytic tools comes into play when one studies Novikov’s conjecture, that
just the first equation (N = 1!) of the hierarchy, i.e., the KP equation (1.12),
suffices to characterize the Jacobians: in [58] various tools obtained from analytic
considerations on the KP equation and family of its solutions were combined with
the algebraic arguments explained above to prove the conjecture. Even Arbarello and
De Concini’s geometric re-proof of Novikov’s conjecture [3] used the hardest analytic
ingredient of [58] as it is, since it had no geometric alternative until Marini’s work
[46] in 1998. Analytic tools are also essential in the proofs of Welters’ conjecture and
its Prym analogue presented in this paper, as condition (C) in each of Theorems 1.6,
1.19, 1.25, 7.1. Note that (1.10), from which condition (C) in Theorem 1.6 follow,
comes from a generalization of Calogero-Moser system.

Novikov’s conjecture does not give an effective solution of the Riemann-Schottky
problem by itself: since it states that X is a Jacobian if and only if

u = −2(∂2x ln θ(Ux + V y +Wt+ Z) + c)

satisfies (1.12) for some U , V , W and c, we must eliminate those constants from
(1.12) in order to obtain an effective solution. It is hard to do this explicitly.

Welters’ conjecture

Novikov’s conjecture is equivalent to the statement that the Jacobians are charac-
terized by the existence of length 3 formal jet of flexes. In [64] Welters formulated
the question: if the Kummer variety K(X) has one trisecant, does it follow that X
is a Jacobian ? In fact, there are three particular cases of the Welters conjecture,
corresponding to three possible configurations of the intersection points (a, b, c) of
K(X) and the trisecant:

(i) all three points coincide (a = b = c);

(ii) two of them coincide (a = b 6= c);

(iii) all three intersection points are distinct (a 6= b 6= c 6= a).
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Of course the first two cases can be regarded as degenerations of the general case (iii).
However, when the presense of only one trisecant is assumed, all three cases are inde-
pendent and require separate treatment. The proof of case (i) of Welters’ conjecture
was obtained by the first author in [36]:

Theorem 1.6 An indecomposable principally polarized abelian variety (X, θ) is the
Jacobian variety of a smooth algebraic curve of genus g if and only if there exist
g-dimensional vectors U 6= 0, V, A , and constants p and E such that one of the
following three equivalent conditions are satisfied:

(A) the equality (
∂y − ∂

2
x + u

)
ψ = 0 , (1.7)

where

u = −2∂2x ln θ(Ux+ V y + Z), ψ =
θ(A + Ux+ V y + Z)

θ(Ux + V y + Z)
ep x+E y, (1.8)

holds, for an arbitrary vector Z;

(B) for all theta characteristics ε ∈ (12Z/Z)
g

(
∂V − ∂

2
U − 2p ∂U + (E − p2)

)
Θ[ε, 0](A/2) = 0

(here and below ∂U , ∂V are the derivatives along the vectors U and V , respectively).

(C) on the theta-divisor Θ = {Z ∈ X | θ(Z) = 0}

[(∂V θ)
2− (∂2Uθ)

2]∂2Uθ+2[∂2Uθ∂
3
Uθ−∂V θ∂U∂V θ]∂Uθ+[∂2V θ−∂

4
Uθ](∂U θ)

2 = 0 (mod θ)
(1.9)

The direct substitution of the expression (1.8) in equation (1.7) and the use of the
addition formula for the Riemann theta-functions shows the equivalence of conditions
(A) and (B) in the theorem. Condition (B) means that the image of the point A/2
under the Kummer map is an inflection point (case (i) of Welters’ conjecture).

Condition (C) is the relation that is really used in the proof of the theorem.
Formally it is weaker than the other two conditions because its derivation does not
use an explicit form (1.8) of the solution ψ of equation (1.7), but requires only
an existence of a meromorphic solution: consider a holomorphic function τ(x, y)
of a complex variable x depending smoothly on a parameter y, and assume that
in a neighborhood of a simple zero η(y) of function τ (that is, τ(η(y), y) = 0 and
∂xτ(η(y), y) 6= 0) equation (1.7) with potential u = −2∂2x ln τ has a meromorphic
solution ψ. Then the equation

η̈ = 2w, (1.10)

holds, where the “dots” denote derivatives in y, and w is the third coefficient of the
Laurent expansion of the function u at the point η, i.e.,

u(x, y) =
2

(x− η(y))2
+ v(y) + w(y)(x − η(y)) + · · · .

Equations (1.10) was first derived in [4] where the assertion of the theorem was proved
under the assumption3 that the closure of the group in X generated by A coincides

3under different additional assumptions the corresponding statement was proved in the earlier
works [33, 46]
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with X . Expanding the function θ in a neighborhood of a point z ∈ Θ := {z | θ(z) =
0} such that ∂Uθ(z) 6= 0, and noting that the latter condition holds on a dense subset
of Θ since B is indecomposable, it is easy to see that equation (1.10) is equivalent to
(1.9).

Equation (1.7) is one of the two auxiliary linear problems for the KP equation.
Namely, the compatibility condition of (1.7) and the second auxiliary linear equation

(
∂t − ∂

3
x +

3

2
u∂x + w

)
ψ = 0 (1.11)

is equivalent to the KP equation [19, 65]:

3

4
uyy =

∂

∂x

(
ut −

1

4
uxxx −

3

2
uux

)
. (1.12)

For the first author, the motivation to consider not the whole KP equation but just
one of its auxiliary linear problem was his earlier work [33] on the elliptic Calogero-
Moser (CM) system, where it was observed for the first time that equation (1.7) is
all what one needs to construct the elliptic solutions of the KP equation. Moreover,
the construction of the Lax representation with a spectral parameter and the corre-
sponding spectral curves of the elliptic CM system proposed in [33] can be regarded
as an effective solution of the inverse problem: how to reconstruct the algebraic curve
from the matrix B if its Kummer variety admits one flex with the vector U (in the
assumption of the Theorem) which spans an elliptic curve in the abelian variety X .
Briefly, that solution of the reconstruction problem can be presented as follows:

If the vector U spans an elliptic curve E ⊂ X, then the equation

θ(Ux+ V y + Z) = 0 (1.13)

for a generic Z has g simple roots xi(y) depending on y (they are just intersection
points of the shifted elliptic curve E + V y + Z ⊂ X with the theta-divisor Θ ⊂ X).
These roots define g × g matrix L(y, z) with entries given by

Lii(t, z) =
1

2
ẋi, Lij = Φ(xi − xj , z), i 6= j, (1.14)

where

Φ(x, z) :=
σ(z − x)

σ(z)σ(x)
eζ(z)x, (1.15)

with ζ and σ the standard Weierstrass functions.
The spectral curve Γcm of the CM system is the normalization at the point k =

∞, z = 0 of the closure in P1 × E of the affine curve given in C × (E \ 0) by the
characteristic equation

R(k, z) = det(kI + L(y, z)) = 0 . (1.16)

Under the assumptions of the theorem, the CM curve Γcm does not depend on y and
is the solution of the inverse problem.

Without an assumption on U the proof of Theorem 1.6 is much more complex
and less effective. The ultimate goal is to construct, under the assumption that
the condition (C) is satisfied, a ring of commuting ordinary differential operators,
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because, as shown in [8], a pair of commuting differential operators L1, L2 satisfies an
algebraic relation R(L1, L2) = 0. This is the key moment, when an algebraic curve
emerges in the proof. It then remains only to show that the corresponding curve is
the solution of the inverse problem.

The first step in the proof is to introduce in the problem a formal spectral param-
eter. It is analogous to the introduction of the spectral parameter in the Lax matrix
for the elliptic CM system. This parameter k appears in the notion of a formal wave
solution of equation (1.7).

The wave solution of (1.7) is a solution of the form

ψ(x, y, k) = ekx+(k2+b)y

(
1 +

∞∑

s=1

ξs(x, y) k
−s

)
. (1.17)

The aim is to show that under the assumptions of the theorem there exists a unique,
up to multiplication by a constant factor c(k), formal wave solution such that

ξs =
τs(Ux+ V y + Z, y)

θ(Ux+ V y + Z)
. (1.18)

where τs(Z, y), is an entire function of Z.
As it was stressed above, strictly speaking the KP equation and the KP hierarchy

are not present in the assumptions of the theorem, but the analytical difficulties in
the construction of the formal wave solutions of (1.7) can be traced back to those in
the second author’s proof [58] of Novikov’s conjecture.

The main idea of proof in [58] is to show that if τ0 = ecx
2/2θ(Ux+V y+Wt+Z)

satisfies the KP equation in Hirota’s form4

(D4
x + 3D2

y − 4DxDt)τ0 · τ0 = 0,

so that u = −2∂2xτ0 satisfies the KP equation (1.12), then it can be extended to
a τ -function of the KP hierarchy, as a global holomorphic function of the infinite
number of variables t = (ti) = (t1, t2, t3, . . . ), with t1 = x, t2 = y, t3 = t. Local
existence of τ directly follows from the KP equation. The global existence of the
τ -function is crucial. The rest is a corollary of the KP theory and the theory of
commuting ordinary differential operators developed by Burchnall-Chaundy [8] and
the first author [29, 30].

The core of the problem is that there is a homological obstruction for the global
existence of τ . It is controlled by the cohomology groupH1(Cg\Σ,V), where singular
locus Σ is defined as ∂U -invariant subset of the theta-divisor Θ and V is the sheaf of
∂U -invariant meromorphic functions on C

g \Σ with poles along Θ. The hardest part
of [58], as clarified in [3], is the proof that the locus Σ is empty 5.

The coefficients ξs of the wave function are defined recurrently by the equation
2∂Uξs+1 = ∂yξs − ∂

2
Uξs + uξs. It turned out that equation (1.9) in the condition (C)

of the theorem are necessary and sufficient for the local existence of meromorphic
solutions. The global existence of ξs is controlled by the same cohomology group
H1(Cg \ Σ,V) as above. Fortunately, in the framework of our approach there is

4 We define P (Dx, . . . )f · f := P (∂x′ , . . . )(f(x+ x′, . . . )f(x− x′, . . . ))|x′=···=0 for a polynomial
or a power series P ; a Hirota equation is an equation of the form P (Dx, . . . )f · f = 0; see [11, 58].

5The first author is grateful to Enrico Arbarello for an explanation of these deep ideas and a
crucial role of the singular locus Σ, which helped him to focus on the heart of the problem.
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no need to prove directly that the bad locus is empty. The first step is to construct
certain wave solutions outside the bad locus. We call them λ-periodic wave solutions.
They are defined uniquely up to ∂U -invariant factor. The next step is to show
that for each Z /∈ Σ the λ-periodic wave solution is a common eigenfunction of
a commutative ring AZ of ordinary difference operators. The coefficients of these
operators are independent of ambiguities in the construction of ψ. For the generic
Z the ring AZ is maximal and the corresponding spectral curve Γ is Z-independent.
The correspondence j : Z 7−→ AZ and the results of the works [8, 29, 30, 48], where
a theory of rank 1 commutative rings of differential operators was developed, allows
us to make the next crucial step and prove the global existence of the wave function.
Namely, on (X \Σ) the wave function can be globally defined as the preimage j∗ψBA

under j of the Baker-Akhiezer function on Γ and then can be extended on X by
usual Hartogs’ arguments. The global existence of the wave function implies that
X contains an orbit of the KP hierarchy, as an abelian subvariety. The orbit is
isomorphic to the generalized Jacobian J(Γ) = Pic0(Γ) of the spectral curve ([58]).
Therefore, the generalized Jacobian is compact. The compactness of J(Γ) implies
that the spectral curve is smooth and the correspondence j extends by linearity and
defines the isomorphism j : X → J(Γ).

The proof of Welters’ conjecture was completed in [37]. First, here is the theorem
which treats case (ii) of the conjecture:

Theorem 1.19 An indecomposable, principally polarized abelian variety (X, θ) is
the Jacobian of a smooth curve of genus g if and only if there exist non-zero g-
dimensional vectors U 6= A (mod Λ), V , such that one of the following equivalent
conditions holds:

(A) The differential-difference equation

(∂t − T + u(x, t))ψ(x, t) = 0, T = e∂x (1.20)

is satisfied for

u = (T − 1)v(x, t), v = −∂t ln θ(xU + tV + Z) (1.21)

and

ψ =
θ(A + xU + tV + Z)

θ(xU + tV + Z)
exp+tE , (1.22)

where p,E are constants and Z is arbitrary.

(B) The equations

∂V Θ[ε, 0] ((A− U)/2)− epΘ[ε, 0] ((A+ U)/2) + EΘ[ε, 0] ((A− U)/2) = 0,

are satisfied for all ε ∈ (12Z/Z)
g. Here and below ∂V is the constant vector field on

C
g corresponding to the vector V .

(C) The equation

∂V [θ(Z + U) θ(Z − U)] ∂V θ(Z) = [θ(Z + U) θ(Z − U)] ∂2V V θ(Z) (mod θ) (1.23)

is valid on the theta-divisor Θ = {Z ∈ X | θ(Z) = 0}.
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Equation (1.20) is one of the two auxiliary linear problems for the 2D Toda lattice
equation

∂ξ∂ηϕn = eϕn−1−ϕn − eϕn−ϕn+1, (1.24)

which can be regarded as a partial discretization of the KP equation. The idea to
use it for the characterization of the Jacobians was motivated by [36] and the first
author’s earlier work with Zabrodin [45], where a connection of the theory of elliptic
solutions of the 2D Toda lattice equations and the theory of the elliptic Ruijsenaars-
Schneider system was established. In fact, Theorem 1.19 in a slightly different form
was proved in [45] under the additional assumption that the vector U spans an elliptic
curve in X .

The equivalence of (A) and (B) is a direct corollary of the addition formula for
the theta-function. The statement (B) is the second particular case of the trisecant

conjecture: the line in CP
2g−1 passing through the points K((A−U)/2) and K((A+

U)/2) of the Kummer variety is tangent to K(X) at the point K((A− U)/2).
The affirmative answer to the third particular case, (iii), of Welters’ conjecture is

given by the following statement.

Theorem 1.25 An indecomposable, principally polarized abelian variety (X, θ) is the
Jacobian of a smooth curve of genus g if and only if there exist non-zero g-dimensional
vectors U 6= V 6= A 6= U (modΛ) such that one of the following equivalent conditions
holds:

(A) The difference equation

ψ(m,n+ 1) = ψ(m+ 1, n) + u(m,n)ψ(m,n) (1.26)

is satisfied for

u(m,n) =
θ((m+ 1)U + (n+ 1)V + Z) θ(mU + nV + Z)

θ(mU + (n+ 1)V + Z) θ((m+ 1)U + nV + Z)
(1.27)

and

ψ(m,n) =
θ(A+mU + nV + Z)

θ(mU + nV + Z)
emp+nE , (1.28)

where p,E are constants and Z is arbitrary.

(B) The equations

Θ[ε, 0]

(
A− U − V

2

)
+ epΘ[ε, 0]

(
A+ U − V

2

)
= eEΘ[ε, 0]

(
A+ V − U

2

)
,

are satisfied for all ε ∈ (12Z/Z)
g.

(C) The equation

θ(Z+U) θ(Z−V ) θ(Z−U+V )+θ(Z−U) θ(Z+V ) θ(Z+U−V ) = 0 (mod θ) (1.29)

is valid on the theta-divisor Θ = {Z ∈ X | θ(Z) = 0}.

Under the assumption that the vector U spans an elliptic curve in X , Theorem 1.25
was proved in [39], where the connection of the elliptic solutions of BDHE and, the
so-called, elliptic nested Bethe Ansatz equations was established.
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Equation (1.26) is one of the two auxiliary linear problems for the so-called bilinear
discrete Hirota equation (BDHE):

τn(l+ 1,m)τn(l,m+1)− τn(l,m)τn(l+1,m+1)+ τn+1(l+ 1,m)τn−1(l,m+1) = 0
(1.30)

At the first glance all three nonlinear equation: the KP equation, the 2D Toda
equation, and the BDHE equation, look quite unlikely. But in the theory of integrable
systems it is well-known that these fundamental soliton equations are in intimate
relation, similar to that between all three cases of the trisecant conjecture. Namely,
the KP equation is as a continuous limit of the BDHE, and the 2D Toda equation
can be obtained in an intermediate step.

The structure of the statements of the last two theorems, and the structure of
their proofs look almost literally identical to that in Theorem 1.6. To some extend
that is correct: in all cases the first step is to construct the corresponding wave
solution. The conditions (C) in all three cases play the same role. They ensure the
local existence of the wave function. The key distinction between the differential and
the difference cases arises at the next step. As it was mentioned above, in the case
of differential equations a cohomological argument [58, Lemma 12] can be applied
to glue local solutions into a global one. In the difference case there is no analog of
the cohomological argument and we use a different approach. Instead of proving the
global existence of solutions we, to some extend, construct them by defining first their
residue on the theta-divisor. It turns out that the residue is regular on Θ outside the
singular locus Σ. Surprisingly, it turns out that in the fully discrete case the proof
of the statement that the singular locus is in fact empty can be obtained at much
earlier stage than in the continuous or semi-continuous case. In part, it is due the
drastic simplification in the fully discrete case of the corresponding equation on the
theta-divisor (compare (1.29) with (1.9)).

Structure of the article

In the next section we introduce the basic concept of the algebro-geometric integra-
tion theory of soliton equation, that is the concept of the Baker-Akhiezer function,
which is defined by its analytic properties on an algebraic curve with fixed local co-
ordinates at marked points. The uniqueness of the Baker-Akhiezer function implies
that it is a solution of certain linear differential equations. The existence of the
Baker-Akhiezer function is proved by explicit theta-functional formula, which then
leads to explicit theta-functional formulae for the coefficients of the corresponding
equations. That proves “the only if” part in all the theorems above.

In section 3, we introduce the KP hierarchy in Sato’s form as a system of com-
muting flows on the space of formal pseudodifferential operators. Because, the flows
commute, the hierarchy can be reduced to the stationary points of one of the flows
(or their linear combination). That is a reduction from a spatially two-dimensional
system to a spatially one-dimensional system.6 Under this reduction, the KP hier-

6 Here the term “spatially two-dimensional (resp. one-dimensional) system,” also known as “sub-
subholonomic (resp. subholonomic) system” or “(2 + 1)-d (resp. (1 + 1)-d) system,” means the one
whose “general solution” depends on functions of two variables (resp. one variable), or equivalently,
on doubly infinite (resp. singly infinite) sequences of parameters in the formal power series set-up.
(The word “space” is associated to the notion of free parameters because in an initial value problem
of a partial differential equation the free parameters for a solution are given by its initial data, which
are given on a “space-like” hypersurface.) E.g., since initial data for the KP hierarchy, i.e., L|t=0
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archy defined first on “a space” of infinite number of functions of one variable (the
coefficients of a pseudodifferential operator) is equivalent to a system of commuting
flows on the space of finite number of functions of one variable. For the case of
stationary points of a linear combination of the first n flows of the KP hierarchy
these functions are coefficients of a differential operator Ln of order n. One may take
one step further and consider stationary points of two commuting flows. It turns
out that if the corresponding integers n and m are co-prime, then the corresponding
orbits of the whole hierarchy are finite-dimensional and can be identified with certain
subspaces of the finite-dimensional linear space of solutions to the system of ordinary
differential equations:

[Ln, Lm] = 0, Ln = ∂nx +

n−1∑

i=0

ui(x)∂
i
x, Lm = ∂nx +

m−1∑

j=0

vj(x)∂
j
x (1.31)

This is a setup explaining the role of commuting operators in the modern theory of
integrable systems.

As a purely algebraic problem it was considered and partly solved in the remark-
able works of Burchnall and Chaundy [8] in the 1920s. They proved that for any pair
of such operators there exists a polynomial in two variables such that R(Ln, Lm) = 0.
Moreover, they proved that if the orders n and m of these operators are co-prime,
(n,m) = 1, and the algebraic curve Γ defined in C2 by equation R(λ, µ) = 0 is
smooth, then the commuting operators are uniquely defined by the curve and a set
of g points on Γ, where g is the genus of Γ. In such a form, the solution of the
problem is one of pure classification: one set is equivalent to the other. Even the
attempt to obtain exact formulae for the coefficients of commuting operators had not
been made. Baker proposed making the programme effective by looking at analytic
properties of the eigenfunction ψ. The Baker program was rejected by the authors
of [8] consciously (see the postscript of Baker’s paper [5]) and all these results were
forgotten for a long time.

The theory of commuting differential operators and its extension to the difference
case is presented in Section 4. The outline of the proof of the trisecant conjecture
is in Section 5. In Section 6 we present a solution of the characterization problem
for Prym varieties which was obtained by Grushevsky and the first author ([38, 24]).
The last Section 7 is devoted to a theory of abelian solutions of the soliton equation.
The notion of such solutions was introduced by the authors in [42, 43], where it was
shown that all of them are algebro-geometric. The theory of abelian solutions can be
regarded as an extension of the results above to the case of non-principally polarized
abelian varieties.

2 The Baker-Akhiezer functions – General scheme

Let Γ be a nonsingular algebraic curve of genus g with N marked points Pα and
fixed local parameters k−1

α (Q) in neighborhoods of the marked points. The basic

for L in (4.4), are given by a singly infinite sequence of one-variable functions {vs(x)}s=1,2,... or, by
expanding each vs(x) in a power series vs(x) =

∑
i vsix

i, a doubly infinite sequence of parameters
{vsi}s=1,2,...;i=0,1,..., the KP hierarchy is a “spatially two-dimensional system.” For 2 ≤ n ∈ Z the
n-reduction of the KP hierarchy (KdV if n = 2, Boussinesq if n = 3, etc.) is defined by imposing
the condition that Ln is a differential operator. Since, as an ordinary differential operator, Ln|t=0

depends on finite number of one-variable functions and hence on finite number of singly-infinite
sequences, it is a “spatially one-dimensional system.”
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scalar multi-point and multi-variable Baker-Akhiezer function ψ(t, Q) is a function
of external parameters

t = (tα,i), α = 1, . . . , N ; i = 0, . . . ;
∑

α

tα,0 = 0, (2.1)

only finite number of which is non-zero, and a point Q ∈ Γ. For each set of the
external parameters t it is defined by its analytic properties on Γ.

Remark. For the simplicity we will begin with the assumption that the variables
tα,0 are integers, i.e., tα,0 ∈ Z.

Lemma 2.2 For any set of g points γ1, . . . , γg in a general position there exists a
unique (up to constant factor c(t)) function ψ(t, Q), such that:

(i) the function ψ (as a function of the variable Q ∈ Γ) is meromorphic everywhere
except for the points Pα and has at most simple poles at the points γ1, . . . , γg ( if all
of them are distinct);

(ii) in a neighborhood of the point Pα the function ψ has the form

ψ(t, Q) = ktα,0

α exp

( ∞∑

i=1

tα,ik
i
α

)( ∞∑

s=0

ξα,s(t)k
−s
α

)
, (2.3)

where kα = kα(Q) is the reciprocal of a local parameter at Pα, i.e., k
−1
α ∈ mPα

\m2
Pα

.

From the uniqueness of the Baker-Akhiezer function it follows that:

Theorem 2.4 For each pair (α, n > 0) there exists a unique operator Lα,n of the
form

Lα,n = ∂nα,1 +

n−1∑

j=0

u
(α,n)
j (t)∂jα,1, (2.5)

(where ∂α,n = ∂/∂tα,n) such that

(∂α,n − Lα,n) ψ(t, Q) = 0. (2.6)

The idea of the proof of the theorems of this type proposed in [29], [30] is universal.
For any formal series of the form (2.3) their exists a unique operator Lα,n of the

form (2.5) such that

(∂α,n − Lα,n) ψ(t, Q) = O(k−1
α ) exp

( ∞∑

i=1

tα,ik
i
α

)
. (2.7)

The coefficients of Lα,n are universal differential polynomials with respect to ξs,α.
They can be found after substitution of the series (2.3) into (2.7).

It turns out that if the series (2.3) is not formal but is an expansion of the
Baker-Akhiezer function in the neighborhood of Pα the congruence (2.7) becomes an
equality. Indeed, let us consider the function ψ1

ψ1 = (∂α,n − Lα,n)ψ(t, Q). (2.8)

It has the same analytic properties as ψ except for the only one. The expansion of
this function in the neighborhood of Pα starts from O(k−1

α ). From the uniqueness of
the Baker-Akhiezer function it follows that ψ1 = 0 and the equality (2.6) is proved.
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Corollary 2.9 The operators Lα,n satisfy the compatibility conditions

[
∂α,n − Lα,n, ∂α,m − Lα,m

]
= 0. (2.10)

Remark. The equations (2.10) are gauge invariant. For any function c(t) operators

L̃α,n = cLα,nc
−1 + (∂α,nc)c

−1 (2.11)

have the same form (2.5) and satisfy the same operator equations (2.10). The gauge
transformation (2.11) corresponds to the gauge transformation of the Baker-Akhiezer
function

ψ̃(t, Q) = c(t)ψ(t, Q) (2.12)

In addition to differential equations (2.6) the Baker-Akhiezer function satisfies an
infinite system of differential-difference equations. Recall that the discrete variables
tα,0 are subject to the constraint

∑
α tα,0 = 0. Therefore, only the first (N − 1)

of them are independent and tN,0 = −
∑N−1

α=1 tα,0. Let us denote by Tα, α =
1, . . . , N−1, the operator that shifts the arguments tα,0 → tα,0+1 and tN,0 → tN,0−1,
respectively. For the sake of brevity in the formulation of the next theorem we
introduce the operator TN = T−1

1 .

Theorem 2.13 For each pair (α, n > 0) there exists a unique operator L̂α,n of the
form

L̂α,n = T n
α +

n−1∑

j=0

v
(α,n)
j (t)T j

α, v
(N,n)
0 (t) = 0. (2.14)

such that (
∂α,n − L̂α,n

)
ψ(t, Q) = 0. (2.15)

The proof if identical to that in the differential case. The operators L̂α,n are defined
by congruence insuring that the resulting function satisfies all the condition of the
Baker-Akhiezer function plus vanishing of one of the leading coefficients. After that
the uniqueness of the Baker-Akhiezer function implies that the congruence is in fact
the equality.

Corollary 2.16 The operators L̂α,n satisfy the compatibility conditions

[
∂α,n − L̂α,n, ∂α,m − L̂α,m

]
= 0. (2.17)

It should be emphasized that the algebro-geometric construction is not a sort of
abstract “existence” and “uniqueness” theorems. It provides the explicit formulae
for solutions in terms of the Riemann theta-functions. They are the corollary of the
explicit formula for the Baker-Akhiezer function:

Theorem 2.18 The Baker-Akhiezer function is given by the formula

ψ(t, P ) = c(t) exp
(∑

tα,iΩα,i(P )
) θ(A(P ) +

∑
Uα,itα,i + Z)

θ(A(P ) + Z)
, (2.19)

Here the sum is taken over all the indices (α, i > 0) and over the indices (α, 0) with
α = 1, . . . , N − 1, and:
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a) Ωα,i(P ) is the abelian integral, Ωα,i(P ) =
∫ P

dΩα,i, corresponding to the unique
normalized,

∮
ak
dΩα,i = 0, meromorphic differential on Γ, which for i > 0 has the

only pole of the form dΩα,i = d
(
kiα +O(1)

)
at the marked point Pα and for i = 0

has simple poles at the marked point Pα and PN with residues ±1, respectively;
b) 2πiUα,j is the vector of b-periods of the differential dΩα,j, i.e.,

Uk
α,j =

1

2πi

∮

bk

dΩα,j ;

c) A(P ) is the Abel transform, i.e., a vector with the coordinates A(P ) =
∫ P

dωk

d) Z is an arbitrary vector (it corresponds to the divisor of poles of Baker-Akhiezer
function).

Notice, that from the bilinear Riemann relations it follows that the expansion of the
Abel transform near the marked point has the form

A(P ) = A(Pα)−

∞∑

i=1

1

i
Uα,ik

−i
α (2.20)

Example 1. One-point Baker-Akhiezer function. KP hierarchy

In the one-point case the Baker-Akhiezer function has an exponential singularity at
a single point P1 and depends on a single set of variables ti = t1,i. Note that in this
case there is no discrete variable, t1,0 ≡ 0. Let us choose the normalization of the
Baker-Akhiezer function with the help of the condition ξ1,0 = 1, i.e., an expansion of
ψ in the neighborhood of P1 equals

ψ(t1, t2, . . . , Q) = exp

( ∞∑

i=1

tik
i

)(
1 +

∞∑

s=1

ξs(t)k
−s

)
. (2.21)

Under this normalization (gauge) the corresponding operator Ln has the form

Ln = ∂n1 +

n−2∑

i=0

u
(n)
i ∂i1. (2.22)

For example, for n = 2, 3 after redefinition x = t1 we have L2 = ∂2x − u, L3 =
∂3x −

3
2u∂x − w with

u(x, t2, . . .) = 2∂xξ1(x, t2, . . .), (2.23)

Therefore, if we define y = t2, t = t3, then u(x, y, t, t4, . . .) satisfies the KP equation
(1.12).

The normalization of the leading coefficient in (2.21) defines the the function
c(t) in (2.19). That gives the following formula for the normalized one-point Baker-
Akhiezer function:

ψ(t, Q) = exp
(∑

tiΩi(P )
) θ(A(P ) +

∑
Uiti + Z) θ(Z)

θ(
∑
Uiti + Z) θ(A(P ) + Z)

, (2.24)

(shifting Z if needed we may assumed that A(P1) = 0). In order to get the explicit
theta-functional form of the solution of the KP equation it is enough to take the
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derivative of the first coefficient of the expansion at the marked point of the ratio of
theta-functions in the formula (2.24).

Using (2.20) we get the final formula for the algebro-geometric solutions of the
KP hierarchy [30]

u(t1, t2, . . .) = −2∂
2
1 ln θ(

∞∑

i=1

Uiti + Z) + const. (2.25)

Example 2. Two-point Baker-Akhiezer function. 2D Toda hierarchy

In the two-point case the Baker-Akhiezer function has exponential singularities at
two points Pα, α = 1, 2, and depends on two sets of continuous variables tα,i>0. In
addition it depends on one discrete variable n = t1,0 = −t2,0. Let us choose the
normalization of the Baker-Akhiezer function with the help of the condition ξ1,0 = 1,
i.e., in the neighborhood of P1 the Baker-Akhiezer function has the form:

ψ(n, tα,i>0, Q) = kn1 exp

( ∞∑

i=1

t1,ik
i
1

)(
1 +

∞∑

s=1

ξ1,s(n, t)k
−s
1

)
, (2.26)

and in the neighborhood of P2

ψ(n, tα,i>0, Q) = k−n
2 exp

( ∞∑

i=1

t2,ik
i
2

)( ∞∑

s=0

ξ2,s(n, t)k
−s
1

)
, (2.27)

According to Theorem 2.4, the function ψ satisfies two sets of differential equations.
The compatibility conditions (2.10) within the each set can be regarded as two copies
of the KP hierarchies. In addition the two-point Baker-Akhiezer function satisfies
differential difference equation (2.14). The first two of them have the form

(∂1,1 − T + u)ψ = 0, (∂2,1 − wT
−1)ψ = 0, (2.28)

where
u = (T − 1)ξ1,1(n, t), w = eφn−φn−1 , eφn(t) = ξ2,0(n, t) (2.29)

The compatibility condition of these equations is equivalent to the 2D Toda equation
(1.24) with ξ = t1,1 and η = t2,1. The explicit formula for φn is a direct corollary of
the explicit formula for the Baker-Akhiezer function. The normalization of ψ as in
(2.26) defines the coefficient c in (2.19)

ψ = exp
(
nΩ1,0 +

∑
tα,iΩα,i(P )

) θ(A(P ) + nU +
∑
Uα,itα,i + Z) θ(Z)

θ(nU +
∑
Uα,itα,i + Z) (θ(A(P ) + Z)

, (2.30)

If we denote x = 0, t = t1,1 and set t1,i>1 = t2,i>0 = 0, then up to a constant in
(x, t) factor the formula (2.30) coincides with (1.22). Expanding ψ at P1 we get the
formula for the coefficient u in in the first linear equation (2.29), which coincides
with (1.21). That proved “the only if” part of Theorem 1.19.

Example 3. Three-point Baker-Akhiezer function

Starting with three-point case, in which the number of discrete variables is 2, the
Baker-Akhiezer function satisfies certain linear difference equations (in addition to
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the differential and the differential-difference equations (2.6), (2.15)). The origin of
these equations is easy to explain. Indeed, if all the continuous variables vanish,
tα,i>0 = 0, then the Baker-Akhiezer function ψn,m(P ), where n = −t1,0, m = −t2,0,
is a meromorphic function having pole of order n+m at P3 and zeros of order n and
m at P1 and P2 respectively, i.e.,

ψn,m ∈ H
0(D + n(P3 − P1) +m(P3 − P2)), D = γ1 + · · ·+ γg (2.31)

The functions ψn+1,m, ψn,m+1, ψn,m are all in the linear space H0(D + (n + m +
1)P3−nP1−mP2). By Riemann-Roch theorem for a generic D the latter space is 2-
dimensional. Hence, these functions are linear dependent, and they can be normalized
such the the linear dependence takes the form (1.26). The theta-functional formula
for the Baker-Akhiezer function directly implies formulae (1.27), (1.28) and proves
“the only if” part of Theorem 1.25.

For the first glance it seems that everything here is within the framework of
classical algebraic-geometry. What might be new brought to this subject by the
soliton theory is understanding that the discrete variables tα,0 can be replaced by
continuous ones. Of course, if in the formula (2.19) the variable tα,0 is not an integer,
then ψ is not a single valued function on Γ. Nevertheless, because the monodromy
properties of ψ do not change if the shift of the argument is integer, it satisfied the
same type of linear equations with coefficients given by the same type of formulae.
It is necessary to emphasize that in such a form the difference equation becomes
functional equation.
Remark. In the four-point case there is three discrete variables n, m, l. In each two
of them the Baker-Akhiezer function satisfies a difference equation. Compatibility of
these equations is the BDHE equation (1.30).

3 Dual Baker-Akhiezer function

The concept of the dual Baker-Akhiezer function ψ+(t, P ) is universal and is at the
heart of Hirota’s bilinear form of soliton equations, and plays an essential role in our
proof of Welters’ conjecture. It is necessary to emphasize that, although the concept
is universal, the definition of the dual Baker-Akhiezer function depends on a choice
of dual divisor D+ = γ+1 + · · ·+ γ+g . As it will be shown later the notion of duality
between divisors of ψ and ψ+ reflects a choice of one of the variables tα,0 or tα,1. In
all the cases the pole divisor D+ of the dual Baker-Akhiezer function is defined by
the equation

D +D+ = K + κ ∈ J(Γ) (3.1)

where K is a canonical class and κ is a certain degree 2 divisor, that encodes the
type of duality. Depending on its choice, the dual Baker-Akhiezer function is then
defined by the following analytic properties:

i) the function ψ+ (as a function of the variable P ∈ Γ) is meromorphic everywhere
except for the points Pα and has at most simple poles at the points γ+1 , . . . , γ

+
g (if

all of them are distinct);
(ii) in a neighborhood of the point Pα the function ψ has the form

ψ(t, Q) = k−tα,0 exp

( ∞∑

i=1

−tα,ik
i
α

)( ∞∑

s=0

ξ+α,s(t)k
−s
α

)
, kα = kα(Q). (3.2)
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In fact it is the same Baker-Akhiezer type function and, therefore, admits the same
type of explicit theta-function formula:

ψ+(t, P ) = c+(t) exp
(
−
∑

tα,iΩα,i(P )
) θ(A(P )−

∑
Uα,itα,i − Z + κ̂)

θ(A(P ) − Z + κ̂)
. (3.3)

The basic type of duality and their meaning are explained below in two examples.

Example 1. One-point case. Duality for a continuous variable

The notion of dual Baker-Akhiezer function in the one point case was first introduced
in [10]. In this dual divisor is defined by (3.1) where κ = 2P1. In other words, for
a generic effective degree g divisor D there exists a unique meromorphic differential
dΩ with pole of degree 2 at P1, dΩ = d(k1 + O(1)) having zeros at the points γs; in
addition it has g more zeros that are denoted by γ+1 , . . . , γ

+
g .

The functions ψ and ψ+s have essential singularities, their product or products
of their derivatives are meromorphic functions on Γ. Moreover, from the definition
of the duality it follows that after multiplication by corresponding differential dΩ
one gets a meromorphic differential on Γ with the only pole at P1. That proves the
following statement.

Lemma 3.4 Let ψ and ψ+ be the Baker-Akhiezer function and its dual. Then the
following equations hold:

resP1

(
ψ+(∂jxψ)

)
dΩ = 0, j = 0, 1, . . . . (3.5)

Equations (3.5) allows to express the coefficients ξ+s of the expansion of the dual
function ψ+ at P1 as universal differential polynomials in terms of the coefficients
ξs′ of the Baker-Akhiezer function. The first such equation is ξ1 + ξ+1 = 0. Another
corollary of (3.5) is infinite number of bilinear identities for the theta-function, that
one obtains after substitution of (2.19), (3.3) into (3.5). These identities are usually
called Hirota’s bilinear equations.

Corollary 3.6 Let ψ be the Baker-Akhiezer function and Li be the linear operator
of the form (2.22) such that (∂n−Ln)ψ = 0. Then the dual Baker-Akhiezer function
is a solution of the formal adjoint equation

ψ+(∂n − Ln) = 0 (3.7)

Recall that the right action of a differential operator is defined as a formal adjoint
action, i.e., f+∂i = −∂if

+ (and the left-hand side of this formula should not be
confused with the more common differentiation-followed-by-multiplication construc-
tion for a differential operator). The proof of the corollary will be given in the next
section.

Example 2. Two-point case. Duality for a discrete variable

In the two-point case, in which there is one discrete variable n, the dual divisor D+

is defined by (3.1) with κ = P1 + P2, i.e., γs and γs′ are zeros of a differential dΩ
having simple poles at the marked points P1 and P2. Without loss of generality we
may assume that at these points it has residues ∓1.
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Lemma 3.8 Let ψ and ψ+ be the Baker-Akhiezer function and its dual. Then the
following equations hold:

resP1

(
ψ+(T iψ)

)
dΩ = 0, i = 1, 2 . . . . (3.9)

By definition of the duality, the differential on the left-hand side of (3.9) has pole
only at P1. Hence its residue vanishes. Note also that the differential ψ+ψdΩ has
poles at P1 and P2. The constant c

+ in the normalization of the dual Baker-Akhiezer
function is chosen such that

resP1

(
ψ+ψ

)
dΩ = 1. (3.10)

Corollary 3.11 Let ψ be the Baker-Akhiezer function and let L̂n be the linear op-
erator of the form

L̂i = T i +

n−1∑

j=0

v
(n)
j T j (3.12)

such that (∂1,i − L̂n)ψ = 0. Then the dual Baker-Akhiezer function is a solution of
the formal adjoint equation

ψ+(∂1,i − L̂i) = 0 (3.13)

As in the case of differential operators, here and below the right action of a difference
operator is defined as formal adjoint action, i.e., f+T = T−1f+.

4 Integrable hierarchies

In its original form equations (2.10), (2.17) is just an infinite system of partial differ-
ential equation for an infinite number of coefficients of all the operators, depending
on infinite number of independent variables called “times”. Of course, restricting to
a finite number of variables one gets an equation or a finite number of equations for a
finite number of variables. Some of them are fundamental equations of mathematical
physics, and as such deserve special interest. That is true for all three basic equations
mentioned above, that is KP, 2D Toda and BDHE. Our next goal is to present the
hierarchies of these equations in the form of commuting flows on a certain “phase
spaces” that are spaces of pseudodifferential or pseudodifference operators. This form
is due to Sato and his coauthors [11].

KP hierarchy

Let O be a linear space of a formal pseudodifferential operators in the variable x,
i.e., formal series

D =
∞∑

s=−N

vs(x)∂
−s
x (4.1)

By definition the coefficient v1 at ∂−1
x in (4.1) is called the residue of D

v1 := res∂ D. (4.2)
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The commutator relations ∂x · v(x) = vx(x) + v(x)∂x and ∂−1
x · v(x) = v(x)∂−1

x −
vx(x)∂

−2
x + vxx(x)∂

−2
x define on O a structure of associative ring. For any pseudo-

differential operator D its differential part is defined as the unique differential oper-
ator such that D − D+ = D− = O(∂−1

x ), i.e., for D as in (4.1) its differential part is
equal to

D+ =

0∑

s=−N

vs(x)∂
−s
x (4.3)

The KP hierarchy is defined on the space P of monic pseudodifferential operators of
order 1, i.e., of the operators of the form

L = ∂x +

∞∑

s=1

vs(x)∂
−s
x (4.4)

Proposition 4.5 The equations

∂iL = [Li+,L] (4.6)

define commuting flows on the space P.

Proof. The left-hand side of equation (4.6) is a pseudodifferential operator ∂iL =∑
s≥1(∂ivs)∂

−s of order at most −1. Therefore, (4.6) is well-defined if and only if
the right-hand side is a pseudodifferential operator of order at most −1. To show
this, notice, that the identity [Li,L] = 0 implies [Li+,L] = −[L

i
−,L]. Be definition

Li− is an operator of order at most −1. Hence, [Li−,L] is also of order at most −1.
For the proof of the second statement of the proposition it is necessary to show

that equations (4.6) imply the equation

[∂i − L
i
+, ∂j − L

j
+] = ∂iL

j
+ − ∂jL

i
+ + [Lj+,L

i
+] = 0 (4.7)

The left-hand side of (4.7) is a differential operator. Therefore, in order to show
that it vanish, it is enough to show that it is a pseudodifferential operator of order
at most −1. From (4.6) it follows that ∂iL

j = [Li+,L
j ] Then using the the identity

[Li,Lj ] = 0 we have

∂iL
j
+ = [Li+,L

j ]− ∂iL
j
− = [Lj ,Li−] +O(∂−1

x ) = [Lj+,L
i
−] +O(∂−1

x ) (4.8)

Similarly,
[Li+,L

j
+] = [Lj+,L

i
−]− [Lj+,L

i
−] +O(∂−1

x ) (4.9)

Substituting (4.8), (4.9) into (4.7) completes the proof of the proposition.
The operator L2+ has the form ∂2x − u(x, y), with u = −2v1 where v1 is the

coefficient at ∂−1
x of L, i.e., v1 = res∂ L. Equations (4.7) with j = 2 have the form

∂tmu = [∂y − ∂
2
x + u,Lm+ ] = −[∂y − ∂

2
x + u,Lm− ] = 2∂xFm , (4.10)

where
Fm := res∂ L

m.

20



Important remark At first glance the system (4.10) looks like a system of com-
muting evolution equations, but it is not. The right-hand side of (4.10) are universal
differential polynomials in vi. In general there is no way to reconstruct from one
function u(x, y) an infinite set of functions vi(x) of one variable. It can be done
only under ceratin assumptions. In [41] that was done in the case when u(x, y) is a
periodic function of the variables x and y. To some extend the main part in the proof
of the first case of Welter’s conjecture can be seen as the proof of the equivalence of
(4.6) and (4.10) in the case when u is as in the statement of Theorem 1.6.

For further use let us present some other basic notations and construction. The
first one is the notion of wave function.

Lemma 4.11 Let L be a monic pseudodifferential operator of the form (4.4). Then
the equation Lψ = kψ has a unique solution of the form

ψ = ekx
(
1 +

∞∑

s=1

ξs(x)k
−s

)
(4.12)

normalized by the condition ξs(0) = 0.

The proof is elementary. Substituting (4.12) into the equation gives a system of
equations having the form pxξs = Rs(vk, ξ

′
s) with k, s

′ < s. Therefore, they uniquely
define ξs,if the initial conditions are fixed.

The wave function is then define the wave operator

Φ = 1 +

∞∑

s=1

ϕs(x)∂
−s
x (4.13)

by the equation ψ = Φekx. Notice, that the last equation implies

L = Φ · ∂x · Φ
−1 (4.14)

The formal dual wave function is given by the formula

ψ+ = e−kx

(
1 +

∞∑

s=1

ξ+s (x)k
−s

)
:= e−kxΦ−1 (4.15)

is a solution of the formal adjoint equation ψ+L = kψ+

The defining property of the dual wave function are equations that we proved for
the dual Baker-Akhiezer function in the previous section. Namely,

Lemma 4.16 Let ψ be a wave function and ψ+ its dual. Then the equations

resk(ψ
+(∂nxψ)) dk = 0, n = 0, 1, . . . (4.17)

hold.

The proof is a direct corollary of the identity

resk
(
e−kxD1

) (
D2e

kx
)
dk = res∂ (D2D1) , (4.18)

which holds for any pair of pseudodifferential operators (for details see [11, 15]).
In the same way one can show that the product of the wave function and its dual

is a generating series for the right-hand sides of the hierarchy (4.10).
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Lemma 4.19 The coefficients of the expansion

ψ+ψ = 1 +

∞∑

s=2

Jsk
−s (4.20)

are given by Jn+1 = Fn = res∂ L
n.

Proof. From the definition of L it follows that

resk
(
ψ+(Lnψ)

)
dk = resk

(
ψ+knψ

)
dk = Jn+1. (4.21)

On the other hand, using the identity (4.18) we get

resk(ψ
+Lnψ) dk = resk

(
e−kxΦ−1

) (
LnΦekx

)
dk = res∂ L

n = Fn. (4.22)

The lemma is proved.

2D Toda hierarchy

In the two-point case there are two sets of continuous variables and one discrete
variable which we denote by x. It is instructive enough to consider the hierarchy of
equations corresponding to one set of continuous times associated with one marked
point. In this subsection we present the definition of the hierarchy of the differential-
difference equations (2.17) in the form of the commuting flows on the space P of the
pseudodifference operators of the form

L = T +

∞∑

s=0

ws(x)T
−s, T = e∂x (4.23)

In the ring of the pseudodifference operators

D =

∞∑

s=−N

vs(x)T
−s (4.24)

the notion of the residue as follows:

resT D := v0 (4.25)

For any pseudodifferential operator D its positive part is defined as the difference
operator such that D− := D −D+ = O(T−1, i.e., if D is as in (4.24), then

D+ :=

−1∑

s=−N

ws(x)T
−s (4.26)

Proposition 4.27 The equations

∂iL = [Li+,L] (4.28)

define commuting flows on the space P.
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The proof of the first statement goes along the same lines as in the case of KP
hierarchy. The proof of the second statement that (4.28) implies

[∂i − L
i
+, ∂j − L

j
+] = 0 (4.29)

is also identical. The first operator L+ is of the form L+ = T − u with u = w0. The
equation (4.28) for i = 1 gives ∂tu = −w1, where w1 = resT LT . Here and below
t = t1. For further use, let us present the equation

∂tFm = (1− T )F 1
m, (4.30)

where
Fm = resT L

m, F 1
m = resT L

mT,

which directly follows from the comparison of residues of two side of the equality
∂tL

m = [L+,Lm]. The commutativity equations (4.29) imply that the evolution of
u with respect to all the other times

∂tmu = −(T − 1)F 1
m = −∂tFm (4.31)

As in the KP case, in general the last equations can not be regarded as well-defined
hierarchy on the space of one function u(x, t) because the definition of Fm involves
other coefficients of L. The main part of the proof of the second case of Welters’
conjecture can be seen as a reconstruction of L in terms of u under the assumption
of Theorem 1.19.

We conclude this section by providing a necessary definitions and identities, which
are just discrete analog of that above. Namely, the wave function is a solution of the
equation Lψ = kψ of the form

ψ = kx
(
1 +

∑

s

ξs(x)k
−s

)
(4.32)

It defines a unique wave operator by the equation

ψ = Φkx, Φ = 1 +

∞∑

s=1

ϕs(x)T
−s. (4.33)

Then, the dual wave function is defined by the left action of the operator Φ−1:
ψ+ = k−xΦ−1. Recall that the left action of a pseudodifference operator is the formal
adjoint action under which the left action of T on a function f is (fT ) = T−1f .

Lemma 4.34 The coefficient of the product

ψ+ψ = 1 +

∞∑

s=1

Js(Z, t) k
−s (4.35)

are equal to Jn = Fn = resT L
n.

Proof. From the definition of L it follows that

resk
(
ψ+(Lnψ)

)
k−1dk = resk

(
ψ+knψ

)
k−1dk = Jn. (4.36)
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On the other hand, using the identity

resk
(
k−xD1

)
(D2k

x) k−1dk = resT (D2D1) (4.37)

which is the 2D Toda analogue of (4.18), we get

resk(ψ
+Lnψ)k−1dk = resk

(
k−xΦ−1

)
(LnΦkx) k−1dk = resT L

n = Fn. (4.38)

Therefore, Fn = Jn and the lemma is proved.

5 Commuting differential and difference operators.

In the previous section hierarchies of the KP and 2D Toda equations were defined as
systems of commuting flows on the spaces of pseudodifferential or pseudodifference
operators, respectively. Consider now the subspace On ⊂ O of operators whose n-th
power is a differential (difference) operator Ln, i.e., L

n = Ln or equivalently Ln− = 0.
The latter directly implies that ∂tnL = 0. In other words the subspace On is the
subspace of stationary points of the n-th flow of the hierarchy. It has finite functional
dimension and can be simply identified with the space of all monic differential (dif-
ference) operators because any such operator Ln uniquely defines the corresponding

pseudodifferential L = L
1/n
n . The subspace On is invariant with respect to all the

other flows. Their restriction on On is a closed system of evolution equations on
a space of finite-number of unknown functions and can be represented in the form

∂iLn = [L
i/n
n,+, Ln]. For n = 2 the corresponding reduction of the KP hierarchy is

equivalent to the hierarchy of the KdV equation 4ut = 6uux + uxxx. An attempt to
find explicit periodic solutions of the KdV equation had led Novikov in to the idea to
consider further reduction to stationary points of one of the “higher” KdV flows. In
terms of the original KP hierarchy that is a subspace stationary for two flows of the
hierarchy (or two linear combinations of basic flows). The corresponding subspace
is the space of differential order n monic ordinary differential operator Ln such that
there exists operator Lm commuting with Ln of order m (not multiple of n), i.e.,
the space of solutions of a system (1.31). As it was mentioned in the introduction,
the problem of classification of commuting ordinary differential operators as pure
algebraic problem was consider in remarkable works by Burchnall and Chaundy [8].

Briefly the key points of their proof of the statement that a pair of such operators
is always satisfy algebraic relation

R(Ln, Lm) = 0. (5.1)

are the following. The commutativity of Ln and Lm implies that the space V (λ) of
solutions of the ordinary linear equation Lny(x) = λy(x) is invariant with respect to
the operator Lm. The matrix elements Lij

m of the corresponding finite dimensional
linear operator Lm(λ)

Lm|V (λ) = Lm(λ) : V (λ) 7−→ V (λ) (5.2)

in the canonical basis ci(x, λ, x0) ∈ L(λ), ci(x, λ, x0)|x=x0
= δij , are polynomial

functions in the variable λ. They depend on the choice of the normalization point
x = x0, i.e., L

ij
m = Lij

m(λ, x0). The characteristic polynomial

R(λ, µ) = det(µ− Lij
m(λ, x0)) (5.3)
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is a polynomial in both variables λ and µ and does not depend on x0.
According to the property of characteristic polynomials we have

R(Ln, Lm)y(x, λ) = 0.

Notice, that R(Ln, Lm) is an ordinary differential operator. Therefore, if it is not
equal to zero then its kernel is finite dimensional. Hence, the last equation valid for
all λ implies (5.1), and the first statement of [8] is proved.

The equation R(λ, µ) = 0 defines affine part of an algebraic curve. Let us
show that it is always compactified by one smooth point P0. Indeed the equation
Lnψ = knψ has always a unique formal wave solution, i.e., a solution of the form
(4.12) normalized by the conditions ξs(0)=0. Moreover, any solution of the latter
equation of the form ekx · (Laurent series in k−1) is equal to ψ(x, k)c(k), where c(k)
is a constant Laurent series. The operator Lm commutes with Ln, therefore Lmψ is
also a solution to the same equation. Hence, there exists a Laurent series

am(k) = km +
∞∑

s=−m+1

am,sk
−s (5.4)

such that Lmψ = a(k)ψ(x, k), i.e., ψ is a formal common eigenfunction of the oper-
ators Ln, Lm. That implies the following expansion of the characteristic equation at
infinity λ→ infty:

R(λ, µ) =
n−1∏

i=0

(µ− a(ki)), kni = λ. (5.5)

Now we are ready to explain a role of the condition under which Burchnall and
Chaundy where able to make the next step. Namely, the condition that orders of
operators are co-prime. The leading coefficient of a(k) is km. Hence, if (n,m) = 1
then in the neighborhood of the infinite (and, therefore, almost everywhere else) the
operator Ln(λ) has n-distinct eigenvalues, and is diagonalizable, i.e., for each generic
point P = (λ, µ) ∈ Γ there is a unique eigenfunction ψ(x, P ;x0) of the operators
Ln, Lm normalized by the condition ψ(x0, P ;x0) = 1. It can be written as

ψ(x, P ;x0) =

n−1∑

i=0

hi(P, x0)ci(x, λ;x0), h0(P, x0) = 1, (5.6)

where ci are canonical basis of solution to the equation Lny = λy defined above
and hi are coordinates of the eigenvector of the matrix Lm(λ). They are rational
expressions in λ and µ, and, therefore are meromorphic functions of P ∈ Γ (if Γ
is smooth, otherwise they become meromorphic on an normalization of Γ). The
functions ci, as solutions of the initial value problem, are entire function of the
variable λ. Hence, ψ in an affine part of Γ is a meromorphic function with poles
that are independent of x (but depend on the normalization point x = x0). If Γ is
smooth than their number is equal to the genus g of Γ. By definition of the canonical
basis we have that ψx(x, P )ψ

−1(x, P )|x=x0
= h1(P, x0). The asymptotic of h1 can be

easy found using the formal wave solution. It equals h1 = k + (O(k−1)). Therefore

ψ = exp
(∫

x0
h1(x, P )dx

)
has at P0 exponential singularity and is a Baker-Akhiezer

function (with the shift of x by x0).
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Theorem 5.7 [8, 29, 30, 48] There is a natural correspondence

A ←→ {Γ, P0, [k
−1]1,F} (5.8)

between regular at x = 0 commutative rings A of ordinary linear differential opera-
tors containing a pair of monic operators of co-prime orders, and sets of algebraic-
geometrical data {Γ, P0, [k

−1]1,F}, where Γ is an algebraic curve with a fixed first
jet [k−1]1 of a local coordinate k−1 in the neighborhood of a smooth point P0 ∈ Γ and
F is a torsion-free rank 1 sheaf on Γ such that

H0(Γ,F) = H1(Γ,F) = 0. (5.9)

The correspondence becomes one-to-one if the rings A are considered modulo conju-
gation A′ = g(x)Ag−1(x).

Note that in [29, 30, 8] the main attention was paid to the generic case of the com-
mutative rings corresponding to smooth algebraic curves. The invariant formulation
of the correspondence given above is due to Mumford [48].

The algebraic curve Γ is called the spectral curve of A. The ring A is isomorphic
to the ring A(Γ, P0) of meromorphic functions on Γ with the only pole at the point
P0. The isomorphism is defined by the equation

Laψ0 = aψ0, La ∈ A, a ∈ A(Γ, P0). (5.10)

Here ψ0 is a common eigenfunction of the commuting operators. At x = 0 it is a
section of the sheaf F ⊗O(−P0).
Remark. As we have seen above, the construction of the correspondence (5.8)
depends on a choice of initial point x0 = 0. The spectral curve and the sheaf F are
defined by the evaluations of the coefficients of generators of A and a finite number
of their derivatives at the initial point. In fact, the spectral curve is independent on
the choice of x0, but the sheaf does depend on it, i.e., F = Fx0

.
Using the shift of the initial point it is easy to show that the correspondence (5.8)

extends to the commutative rings of operators whose coefficients are meromorphic
functions of x at x = 0. The rings of operators having poles at x = 0 correspond to
sheaves for which the condition (5.9) is violated.
Remark. In their original paper Burchnall and Chaundy stressed that there is no
approach to a classification of commutative differential operators whose ordered are
not co-prime. The classification of commutative rings of ordinary differential opera-
tors was completed in [32], where it was shown that a maximal ring A of commuting
differential operators is uniquely defined by an algebraic curve with marked point,
the first jet of local coordinate at the marked point, and if the curve is smooth by
the rank k and degree rg vector bundle. In addition it depends on r − 1 arbitrary
functions of one variable. Here k is the rank of A defined as the greatest common
divisor of the orders of commuting operators.

Commuting difference operators

A theory of commuting difference operators containing a pair of operators of co-prime
orders was developed in [48, 31]. It is analogous to the theory of rank 1 commuting
(Relatively recently this theory was generalized to the case of commuting difference
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operators of arbitrary rank in [40].) For further use we present here the classification
of commutative differential operators of the form

Ln = T n +

n−1∑

s=1

ui(x)T
i (5.11)

Theorem 5.12 ([48, 31]) Let A be a maximum commutative ring of ordinary differ-
ence operators of the form (5.11) containing a pair of operators of co-prime orderes.
Then there is an irreducible algebraic curve Γ, such that the ring AZ is isomorphic
to the ring A(Γ, P+, P−) of the meromorphic functions on Γ with the only pole at a
smooth point P+, vanishing at another smooth point P−. The ring is uniquely defined
by a torsion-free rank 1 sheaves F on Γ such that

h0(Γ,F(nP+ − nP−)) = h1(Γ,F(nP+ − nP−)) = 0. (5.13)

The correspondence becomes one-to-one if the rings A are considered modulo conju-
gation A′ = g(x)Ag−1(x).

Remark. As in the continuous case the construction of the correspondence depends
on a choice of initial point x0 = 0. The spectral curve and the sheaf F are defined
by the evaluations of the coefficients of generators of A at a finite number of points
of the form x0 + n. In fact, the spectral curve is independent on the choice of x0,
but the sheaf does depend on it, i.e., F = Fx0

.
Using the shift of the initial point it is easy to show that the correspondence (5.8)

extends to the commutative rings of operators whose coefficients are meromorphic
functions of x. The rings of operators having poles at x = 0 correspond to sheaves
for which the condition (5.13) for n = 0 is violated.

6 Proof of Welters’ conjecture

As it was mentioned in the introduction the proof of all the particular cases of Welters’
trisecant conjecture uses different hierarchies: the KP, the 2D Toda, and BDHE. In
each case there are some specific difficulties but the main ideas and structures of the
proof are the same. In all the cases the first step is to construct the wave solution.
It is necessary to emphasize that it is not a wave solution to the ordinary pseudo-
differential or pseudodifference operators discussed in Section 4. The corresponding
wave solutions are defined as formal solutions to a partial differential equation. In
this case there is no way to define such a solution in a unique way without additional
assumption on a global structure of the coefficients of the equation. As an instructive
example we present in this section the proof of the first particular case of Welters’
conjecture, namely, the proof of Theorem 1.6.

First, we prove the implication (A)→ (C). Let τ(x, y) be a holomorphic function
of the variable x in some open domain D ∈ C smoothly depending on a parameter
y. Suppose that for each y the zeros of τ are simple,

τ(xi(y), y) = 0, τx(xi(y), y) 6= 0. (6.1)

Lemma 6.2 ([4]) If equation (1.7) with the potential u = −2∂2x ln τ(x, y) has a mero-
morphic in D solution ψ0(x, y), then equations (1.10) hold.
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Proof. Consider the Laurent expansions of ψ0 and u in the neighborhood of one of
the zeros xi of τ :

u =
2

(x− xi)2
+ vi + wi(x− xi) + . . . ;

ψ0 =
αi

x− xi
+ βi + γi(x− xi) + δi(x− xi)

2 + . . . .
(6.3)

(All coefficients in these expansions are smooth functions of the variable y). Substi-
tution of (6.3) in (1.7) gives a system of equations. The first three of them are

αiẋi + 2βi = 0; α̇i + αivi + 2γi = 0; β̇i + viβi − γiẋi + αiwi = 0. (6.4)

Taking the y-derivative of the first equation and using two others we get (1.10).
Let us show that equations (1.10) are sufficient for the existence of meromorphic

wave solutions, i.e., solutions of the form (1.17).

Lemma 6.5 Suppose that equations (1.10) for the zeros of τ(x, y) hold. Then there
exist meromorphic wave solutions of equation (1.7) that have simple poles at xi and
are holomorphic everywhere else.

Proof. Substitution of (1.17) into (1.7) gives a recurrent system of equations

2ξ′s+1 = ∂yξs + uξs − ξ
′′
s (6.6)

We are going to prove by induction that this system has meromorphic solutions with
simple poles at all the zeros xi of τ .

Let us expand ξs at xi:

ξs =
rs

x− xi
+ rs0 + rs1(x− xi) , (6.7)

where for brevity we omit the index i in the notations for the coefficients of this ex-
pansion. Suppose that ξs are defined and equation (6.6) has a meromorphic solution.
Then the right-hand side of (6.6) has the zero residue at x = xi, i.e.,

resxi
(∂yξs + uξs − ξ

′′
s ) = ṙs + virs + 2rs1 = 0 (6.8)

We need to show that the residue of the next equation vanishes also. From (6.6) it
follows that the coefficients of the Laurent expansion for ξs+1 are equal to

rs+1 = −ẋirs − 2rs0, (6.9)

2rs+1,1 = ṙs0 − rs1 + wirs + virs0 . (6.10)

These equations imply

ṙs+1 + virs+1 + 2rs+1,1 = −rs(ẍi − 2wi)− ẋi(ṙs − virss+ 2rs1) = 0, (6.11)

and the lemma is proved.
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λ-periodic wave solutions

Our next goal is to fix a translation-invariant normalization of ξs which defines wave
functions uniquely up to a x-independent factor. It is instructive to consider first the
case of the periodic potentials u(x+ 1, y) = u(x, y) (see details in [41]).

Equations (6.6) are solved recursively by the formulae

ξs+1(x, y) = cs+1(y) + ξ0s+1(x, y) , (6.12)

ξ0s+1(x, y) =
1

2

∫ x

x0

(∂yξs − ξ
′′
s + uξs) dx , (6.13)

where cs(y) are arbitrary functions of the variable y. Let us show that the period-
icity condition ξs(x + 1, y) = ξs(x, y) defines the functions cs(y) uniquely up to an
additive constant. Assume that ξs−1 is known and satisfies the condition that the
corresponding function ξ0s is periodic. The choice of the function cs(y) does not affect
the periodicity property of ξs, but it does affect the periodicity in x of the function
ξ0s+1(x, y). In order to make ξ0s+1(x, y) periodic, the function cs(y) should satisfy the
linear differential equation

∂ycs(y) +B(y) cs(y) +

∫ x0+1

x0

(
∂yξ

0
s (x, y) + u(x, y) ξ0s (x, y)

)
dx , (6.14)

where B(y) =
∫ x0+1

x0
u dx. This defines cs uniquely up to a constant.

In the general case, when u is quasi-periodic, the normalization of the wave func-
tions is defined along the same lines.

Let YU = 〈CU〉 be the Zariski closure of the group CU = {Ux | x ∈ C} in X .
Shifting YU if needed, we may assume, without loss of generality, that YU is not in
the singular locus, YU 6⊂ Σ. Then, for a sufficiently small y, we have YU +V y /∈ Σ as
well. Consider the restriction of the theta-function onto the affine subspace Cd+V y,
where Cd := (the identity component of π−1(YU )), and π : Cg → X = Cg/Λ is the
universal covering map of X :

τ(z, y) = θ(z + V y), z ∈ C
d. (6.15)

The function u(z, y) = −2∂21 ln τ is periodic with respect to the lattice ΛU = Λ ∩ Cd

and, for fixed y, has a double pole along the divisor ΘU (y) = (Θ− V y) ∩ Cd.

Lemma 6.16 Let equations (1.10) for zeros of τ(Ux+z, y) hold and let λ be a vector
of the sublattice ΛU = Λ ∩ Cd ⊂ Cg. Then:

(i) equation (1.7) with the potential u(Ux+ z, y) has a wave solution of the form

ψ = ekx+k2yφ(Ux + z, y, k) such that the coefficients ξs(z, y) of the formal series

φ(z, y, k) = eby
(
1 +

∞∑

s=1

ξs(z, y) k
−s

)
(6.17)

are λ-periodic meromorphic functions of the variable z ∈ Cd with a simple pole at
the divisor ΘU (y),

ξs(z + λ, y) = ξs(z, y) =
τs(z, y)

τ(z, y)
; (6.18)

(ii) φ(z, y, k) is unique up to a factor ρ(z, k) that is ∂U -invariant and holomorphic
in z,

φ1(z, y, k) = φ(z, y, k)ρ(z, k), ∂Uρ = 0. (6.19)
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Proof. The functions ξs(z) are defined recursively by the equations

2∂Uξs+1 = ∂yξs + (u+ b)ξs − ∂
2
Uξs. (6.20)

A particular solution of the first equation 2∂Uξ1 = u+ b is given by the formula

2ξ01 = −2∂U ln τ + (l, z) b, (6.21)

where (l, z) is a linear form on Cd given by the scalar product of z with a vector l ∈ Cd

such that (l, U) = 1. By definition, the vector λ is in YU . Therefore, (l, λ) 6= 0. The
periodicity condition for ξ01 defines the constant b

(l, λ)b = (2∂U ln τ(z + λ, y)− 2∂U ln τ(z, y)) , (6.22)

which depends only on a choice of the lattice vector λ. A change of the potential by
an additive constant does not affect the results of the previous lemma. Therefore,
equations (1.10) are sufficient for the local solvability of (6.20) in any domain, where
τ(z+Ux, y) has simple zeros, i.e., outside of the set ΘU

1 (y) = (Θ1 − V y)∩C
d, where

Θ1 = Θ ∩ ∂UΘ. This set does not contain a ∂U -invariant line because any such line
is dense in YU . Therefore, the sheaf V0 of ∂U -invariant meromorphic functions on
Cd\ΘU

1 (y) with poles along the divisor ΘU (y) coincides with the sheaf of holomorphic
∂U -invariant functions. That implies the vanishing of H1(Cd \ ΘU

1 (y),V0) and the
existence of global meromorphic solutions ξ0s of (6.20) which have a simple pole at
the divisor ΘU (y) (see details in [3, 58]). If ξ0s are fixed, then the general global
meromorphic solutions are given by the formula ξs = ξ0s + cs, where the constant of
integration cs(z, y) is a holomorphic ∂U -invariant function of the variable z.

Let us assume, as in the example above, that a λ-periodic solution ξs−1 is known
and that it satisfies the condition that there exists a periodic solution ξ0s of the next
equation. Let ξ∗s+1 be a solution of (6.20) for fixed ξ0s . Then it is easy to see that the
function

ξ0s+1(z, y) = ξ∗s+1(z, y) + cs(z, y) ξ
0
1(z, y) +

(l, z)

2
∂ycs(z, y), (6.23)

is a solution of (6.20) for ξs = ξ0s + cs. A choice of a λ-periodic ∂U -invariant function
cs(z, y) does not affect the periodicity property of ξs, but it does affect the periodicity
of the function ξ0s+1. In order to make ξ0s+1 periodic, the function cs(z, y) should
satisfy the linear differential equation

(l, λ)∂ycs(z, y) = 2ξ∗s+1(z + λ, y)− 2ξ∗s+1(z, y) . (6.24)

This equation, together with an initial condition cs(z) = cs(z, 0) uniquely defines
cs(x, y). The induction step is then completed. We have shown that the ratio of two
periodic formal series φ1 and φ is y-independent. Therefore, equation (6.19), where
ρ(z, k) is defined by the evaluation of the both sides at y = 0, holds. The lemma is
thus proven.

Corollary 6.25 Let λ1, . . . , λd be a set of linear independent vectors of the lattice
ΛU and let z0 be a point of Cd. Then, under the assumptions of the previous lemma,
there is a unique wave solution of equation (1.7) such that the corresponding formal
series φ(z, y, k; z0) is quasi-periodic with respect to ΛU , i.e., for λ ∈ ΛU

φ(z + λ, y, k; z0) = φ(z, y, k; z0)µλ(k) (6.26)

and satisfies the normalization conditions

µλi
(k) = 1, φ(z0, 0, k; z0) = 1. (6.27)
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The proof is identical to that of the part (b) of the Lemma 12 in [58]. Let us briefly
present its main steps. As shown above, there exist wave solutions corresponding to
φ which are λ1-periodic. Moreover, from the statement (ii) above it follows that for
any λ′ ∈ ΛU

φ(z + λ, y, k) = φ(z, y, k) ρλ(z, k) , (6.28)

where the coefficients of ρλ are ∂U -invariant holomorphic functions. Then the same
arguments as in [58] show that there exists a ∂U -invariant series f(z, k) with holo-
morphic in z coefficients and formal series µ0

λ(k) with constant coefficients such that
the equation

f(z + λ, k)ρλ(z, k) = f(z, k)µλ(k) (6.29)

holds. The ambiguity in the choice of f and µ corresponds to the multiplication by
the exponent of a linear form in z vanishing on U , i.e.,

f ′(z, k) = f(z, k) e(b(k),z), µ′
λ(k) = µλ(k) e

(b(k),λ), (b(k), U) = 0, (6.30)

where b(k) =
∑

s bsk
−s is a formal series with vector-coefficients that are orthogonal

to U . The vector U is in general position with respect to the lattice. Therefore,
the ambiguity can be uniquely fixed by imposing (d − 1) normalizing conditions
µλi

(k) = 1, i > 1 (recall that µλ1
(k) = 1 by construction).

The formal series fφ is quasi-periodic and its multipliers satisfy (6.27). Then, by
that properties it is defined uniquely up to a factor which is constant in z and y.
Therefore, for the unique definition of φ0 it is enough to fix its evaluation at z0 and
y = 0. The corollary is proved.

The spectral curve

The next goal is to show that λ-periodic wave solutions of equation (1.7), with u as
in (1.8), are common eigenfunctions of rings of commuting operators.

Note that a simple shift z → z+Z, where Z /∈ Σ, gives λ-periodic wave solutions
with meromorphic coefficients along the affine subspaces Z + Cd. Theses λ-periodic
wave solutions are related to each other by ∂U -invariant factor. Therefore choosing,
in the neighborhood of any Z /∈ Σ, a hyperplane orthogonal to the vector U and
fixing initial data on this hyperplane at y = 0, we define the corresponding series
φ(z + Z, y, k) as a local meromorphic function of Z and the global meromorphic
function of z.

Lemma 6.31 Let the assumptions of Theorem 1.6 hold. Then there is a unique
pseudodifferential operator

L(Z, ∂x) = ∂x +

∞∑

s=1

ws(Z)∂
−s
x (6.32)

such that
L(Ux+ V y + Z, ∂x)ψ = k ψ , (6.33)

where ψ = ekx+k2yφ(Ux + Z, y, k) is a λ-periodic solution of (1.7). The coefficients
ws(Z) of L are meromorphic functions on the abelian variety X with poles along the
divisor Θ.
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Proof. Let ψ be a λ-periodic wave solution. The substitution of (6.17) in (6.33) gives
a system of equations that recursively define ws(Z, y) as differential polynomials
in ξs(Z, y). The coefficients of ψ are local meromorphic functions of Z, but the
coefficients of L are well-defined global meromorphic functions of on Cg \Σ, because
different λ-periodic wave solutions are related to each other by ∂U -invariant factor,
which does not affect L. The singular locus is of codimension ≥ 2. Then Hartogs’
holomorphic extension theorem implies that ws(Z, y) can be extended to a global
meromorphic function on Cg.

The translational invariance of u implies the translational invariance of the λ-
periodic wave solutions. Indeed, for any constant s the series φ(V s + Z, y − s, k)
and φ(Z, y, k) correspond to λ-periodic solutions of the same equation. Therefore,
they coincide up to a ∂U -invariant factor. This factor does not affect L. Hence,
ws(Z, y) = ws(V y + Z).

The λ-periodic wave functions corresponding to Z and Z + λ′ for any λ′ ∈ Λ are
also related to each other by a ∂U -invariant factor:

∂U
(
φ1(Z + λ′, y, k)φ−1(Z, y, k)

)
= 0. (6.34)

Hence, ws are periodic with respect to Λ and therefore are meromorphic functions
on the abelian variety X . The lemma is proved.

Consider now the differential parts of the pseudodifferential operators Lm. Let
Lm+ be the differential operator such that Lm− = Lm − Lm+ = Fm∂

−1 + O(∂−2). The
leading coefficient Fm of Lm− is the residue of Lm:

Fm = res∂ L
m. (6.35)

From the construction of L it follows that [∂y − ∂
2
x + u,Ln] = 0. Hence,

[∂y − ∂
2
x + u,Lm+ ] = −[∂y − ∂

2
x + u,Lm− ] = 2∂xFm (6.36)

(compare with (4.10)). The functions Fm are differential polynomials in the coeffi-
cients ws of L. Hence, Fm(Z) are meromorphic functions on X . Next statement is
crucial for the proof of the existence of commuting differential operators associated
with u.

Lemma 6.37 The abelian functions Fm have at most the second order pole on the
divisor Θ.

Proof. We need a few more standard constructions from the KP theory. If ψ is as in
Lemma 3.8, then there exists a unique pseudodifferential operator Φ such that

ψ = Φekx+k2y, Φ = 1 +

∞∑

s=1

ϕs(Ux+ Z, y)∂−s
x . (6.38)

The coefficients of Φ are universal differential polynomials on ξs. Therefore, ϕs(z +
Z, y) is a global meromorphic function of z ∈ Cd and a local meromorphic function
of Z /∈ Σ. Note that L = Φ(∂x)Φ

−1.
Consider the dual wave function defined by the left action of the operator Φ−1:

ψ+ =
(
e−kx−k2y

)
Φ−1. Recall that the left action of a pseudodifferential operator

is the formal adjoint action under which the left action of ∂x on a function f is
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(f∂x) = −∂xf . If ψ is a formal wave solution of (1.7), then ψ+ is a solution of the
adjoint equation

(−∂y − ∂
2
x + u)ψ+ = 0. (6.39)

The same arguments, as before, prove that if equations (1.10) for poles of u hold
then ξ+s have simple poles at the poles of u. Therefore, if ψ is as in Lemma 6.16,

then the dual wave solution is of the form ψ+ = e−kx−k2yφ+(Ux + Z, y, k), where
the coefficients ξ+s (z + Z, y) of the formal series

φ+(z + Z, y, k) = e−by

(
1 +

∞∑

s=1

ξ+s (z + Z, y) k−s

)
(6.40)

are λ-periodic meromorphic functions of the variable z ∈ Cd with a simple pole at
the divisor ΘU (y).

The ambiguity in the definition of ψ does not affect the product

ψ+ψ =
(
e−kx−k2yΦ−1

)(
Φekx+k2y

)
. (6.41)

Therefore, although each factor is only a local meromorphic function on C
g \ Σ, the

coefficients Js of the product

ψ+ψ = φ+(Z, y, k)φ(Z, y, k) = 1 +

∞∑

s=2

Js(Z, y)k
−s. (6.42)

are global meromorphic functions of Z. Moreover, the translational invariance of u
implies that they have the form Js(Z, y) = Js(Z + V y). Each of the factors in the
left-hand side of (6.42) has a simple pole on Θ−V y. Hence, Js(Z) is a meromorphic
function on X with a second order pole at Θ. According to Lemma 4.19, we have
Fn = Jn+1. That completes the proof of the lemma.

Let F̂ be a linear space generated by {Fm, m = 0, 1, . . .}, where we set F0 = 1. It
is a subspace of the 2g-dimensional space of the abelian functions that have at most
second order pole at Θ. Therefore, for all but ĝ = dim F̂ positive integers n, there
exist constants ci,n such that

Fn(Z) +

n−1∑

i=0

ci,nFi(Z) = 0. (6.43)

Let I denote the subset of integers n for which there are no such constants. We call
this subset the gap sequence.

Lemma 6.44 Let L be the pseudodifferential operator corresponding to a λ-periodic
wave function ψ constructed above. Then, for the differential operators

Ln = Ln+ +

n−1∑

i=0

ci,nL
n−i
+ = 0, n /∈ I, (6.45)

the equations

Ln ψ = an(k)ψ, an(k) = kn +

∞∑

s=1

as,nk
n−s (6.46)

where as,n are constants, hold.
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Proof. First note that from (6.36) it follows that

[∂y − ∂
2
x + u, Ln] = 0. (6.47)

Hence, if ψ is a λ-periodic wave solution of (1.7) corresponding to Z /∈ Σ, then
Lnψ is also a formal solution of the same equation. That implies the equation
Lnψ = an(Z, k)ψ, where a is ∂U -invariant. The ambiguity in the definition of ψ does
not affect an. Therefore, the coefficients of an are well-defined global meromorphic
functions on Cg \ Σ. The ∂U - invariance of an implies that an, as a function of Z,
is holomorphic outside of the locus. Hence it has an extension to a holomorphic
function on Cg. Equations (6.34) imply that an is periodic with respect to the lattice
Λ. Hence an is Z-independent. Note that as,n = cs,n, s ≤ n. The lemma is proved.

The operator Lm can be regarded as a Z /∈ Σ-parametric family of ordinary
differential operators LZ

m whose coefficients have the form

LZ
m = ∂nx +

m∑

i=1

ui,m(Ux+ Z) ∂m−i
x , m /∈ I. (6.48)

Corollary 6.49 The operators LZ
m commute with each other,

[LZ
n , L

Z
m] = 0, Z /∈ Σ. (6.50)

From (6.46) it follows that [LZ
n , L

Z
m]ψ = 0. The commutator is an ordinary differential

operator. Hence, the last equation implies (6.50).

Lemma 6.51 Let AZ , Z /∈ Σ, be a commutative ring of ordinary differential op-
erators spanned by the operators LZ

n . Then there is an irreducible algebraic curve
Γ of arithmetic genus ĝ = dim F̂ such that AZ is isomorphic to the ring A(Γ, P0)
of the meromorphic functions on Γ with the only pole at a smooth point P0. The
correspondence Z → AZ defines a holomorphic imbedding of X \Σ into the space of
torsion-free rank 1 sheaves F on Γ

j : X \ Σ 7−→ Pic(Γ). (6.52)

Proof. In order to get the statement of the theorem as a direct corollary of Theorem
5.1, it remains only to show that the ring AZ is maximal. Recall, that a commutative
ring A of linear ordinary differential operators is called maximal if it is not contained
in any bigger commutative ring. Let us show that for a generic Z the ring AZ is
maximal. Suppose that it is not. Then there exits α ∈ I, where I is the gap sequence
defined above, such that for each Z /∈ Σ there exists an operator LZ

α of order α
which commutes with LZ

n , n /∈ I. Therefore, it commutes with L. A differential
operator commuting with L up to the order O(1) can be represented in the form
Lα =

∑
m<α ci,α(Z)L

i
+, where ci,α(Z) are ∂1-invariant functions of Z. It commutes

with L if and only if

Fα(Z) +

n−1∑

i=0

ci,α(Z)Fi(Z) = 0, ∂U ci,α = 0. (6.53)

Note the difference between (6.43) and (6.53). In the first equation the coefficients
ci,n are constants. The λ-periodic wave solution of equation (1.7) is a common
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eigenfunction of all commuting operators, i.e., Lαψ = aα(Z, k)ψ, where aα = kα +∑∞

s=1 as,α(Z)k
α−s is ∂1-invariant. The same arguments as those used in the proof

of equation (6.46) show that the eigenvalue aα is Z-independent. We have as,α =
cs,α, s ≤ α. Therefore, the coefficients in (6.53) are Z-independent. That contradicts
the assumption that α /∈ I. The lemma is proved.

Our next goal is to prove finally the global existence of the wave function.

Lemma 6.54 Let the assumptions of the Theorem 1.19 hold. Then there exists a
common eigenfunction of the corresponding commuting operators LZ

n of the form
ψ = ekxφ(Ux + Z, k) such that the coefficients of the formal series

φ(Z, k) = 1 +

∞∑

s=1

ξs(Z) k
−s (6.55)

are global meromorphic functions with a simple pole at Θ.

Proof. It is instructive to consider first the case when the spectral curve Γ of the rings
AZ is smooth. Then, as shown in ([29, 30]), the corresponding common eigenfunction
of the commuting differential operators (the Baker-Akhiezer function), normalized by
the condition ψ0|x=0 = 1, is of the form ([29, 30])

ψ̂0 =
θ̂(Â(P ) + Ûx+ Ẑ) θ̂(Ẑ)

θ̂(Ûx+ Ẑ) θ̂(Â(P ) + Ẑ)
exΩ(P ). (6.56)

(compare with (2.24). Here θ̂(Ẑ) is the Riemann theta-function constructed with
the help of the matrix of b-periods of normalized holomorphic differentials on Γ;
Â : Γ→ J(Γ) is the Abel-Jacobi map; Ω is the abelian integral corresponding to the
second kind meromorphic differential dΩ with the only pole of the form dk at the
marked point P0 and 2πiÛ is the vector of its b-periods.
Remark. Let us emphasize, that the formula (6.56) is not the result of solution
of some differential equations. It is a direct corollary of analytic properties of the
Baker-Akhiezer function ψ̂0(x, P ) on the spectral curve.

The last factors in the numerator and the denominator of (6.56) are x-independent.
Therefore, the function

ψ̂BA =
θ̂(Â(P ) + Ûx+ Ẑ)

θ̂(Ûx+ Ẑ)
exΩ(P ) (6.57)

is also a common eigenfunction of the commuting operators.
In the neighborhood of P0 the function ψ̂BA has the form

ψ̂BA = ekx
(
1 +

∞∑

s=1

τs(Ẑ + Ûx)

θ̂(Ûx+ Ẑ)
k−s

)
, k = Ω, (6.58)

where τs(Ẑ) are global holomorphic functions.
According to Lemma 6.51, we have a holomorphic imbedding Ẑ = j(Z) of X \Σ

into J(Γ). Consider the formal series ψ = j∗ψ̂BA. It is globally well-defined out of
Σ. If Z /∈ Θ, then j(Z) /∈ Θ̂ (which is the divisor on which the condition (5.9) is
violated). Hence, the coefficients of ψ are regular out of Θ. The singular locus is at
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least of codimension 2. Hence, using once again Hartogs’ arguments we can extend
ψ on X .

If the spectral curve is singular, we can proceed along the same lines using the
generalization of (6.57) given by the theory of Sato τ -function ([52]). Namely, a set
of algebraic-geometrical data (5.8) defines the point of the Sato Grassmannian, and
therefore, the corresponding τ -function: τ(t;F). It is a holomorphic function of the
variables t = (t1, t2, . . .), and is a section of a holomorphic line bundle on Pic(Γ).

The variable x is identified with the first time of the KP-hierarchy, x = t1.
Therefore, the formula for the Baker-Akhiezer function corresponding to a point of
the Grassmannian ([52]) implies that the function ψ̂BA given by the formula

ψ̂BA =
τ(x − k,− 1

2k
2,− 1

3k
3, . . . ;F)

τ(x, 0, 0, . . . ;F)
ekx (6.59)

is a common eigenfunction of the commuting operators defined by F . The rest of
the arguments proving the lemma are the same, as in the smooth case.

Lemma 6.60 The linear space F̂ generated by the abelian functions {F0 = 1, Fm =
res∂ L

m}, is a subspace of the space H generated by F0 and by the abelian functions
Hi = ∂U∂zi ln θ(Z).

Proof. Recall that the functions Fn are abelian functions with at most second order
pole on Θ. Hence, a priori ĝ = dim F̂ ≤ 2g. In order to prove the statement of the
lemma it is enough to show that Fn = ∂UQn, where Qn is a meromorphic function
with a pole along Θ. Indeed, if Qn exists, then, for any vector λ in the period lattice,
we have Qn(Z + λ) = Qn(Z) + cn,λ. There is no abelian function with a simple
pole on Θ. Hence, there exists a constant qn and two g-dimensional vectors ln, l

′
n,

such that Qn = qn+(ln, Z)+ (l′n, h(Z)), where h(Z) is a vector with the coordinates
hi = ∂zi ln θ. Therefore, Fn = (ln, U) + (l′n, H(Z)).

Let ψ(x, Z, k) be the formal Baker-Akhiezer function defined in the previous
lemma. Then the coefficients ϕs(Z) of the corresponding wave operator Φ (6.38)
are global meromorphic functions with poles on Θ.

The left and right action of pseudodifferential operators are formally adjoint,
i.e., for any two operators the equality

(
e−kxD1

) (
D2e

kx
)

= e−kx
(
D1D2e

kx
)
+

∂x
(
e−kx

(
D3e

kx
))

holds. Here D3 is a pseudodifferential operator whose coefficients
are differential polynomials in the coefficients of D1 and D2. Therefore, from (6.41)
it follows that

ψ+ψ = 1 +

∞∑

s=2

Fs−1k
−s = 1 + ∂x

( ∞∑

s=2

Qsk
−s

)
. (6.61)

The coefficients of the series Q are differential polynomials in the coefficients ϕs of
the wave operator. Therefore, they are global meromorphic functions of Z with poles
on Θ. Lemma is proved.

The construction of multivariable Baker-Akhiezer functions presented in Section
2 for smooth curves is a manifestation of general statement valid for singular spectral
curves: flows of the KP hierarchy define deformations of the commutative rings A
of ordinary linear differential operators. The spectral curve is invariant under these
flows. For a given spectral curve Γ the orbits of the KP hierarchy are isomorphic
to the generalized Jacobian J(Γ) = Pic0(Γ), which is the equivalence classes of zero
degree divisors on the spectral curve (see details in [58, 29, 30, 52]).
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As shown in Section 4, the evolution of the potential u is described by equation
(4.6) The first two times of the hierarchy are identified with the variables t1 = x, t2 =

y. Equations (4.6) identify the space F̂1 generated by the functions ∂UFn with the
tangent space of the KP orbit at AZ . Then, from Lemma 6.9 it follows that this
tangent space is a subspace of the tangent space of the abelian variety X . Hence,
for any Z /∈ Σ, the orbit of the KP flows of the ring AZ is in X , i.e., it defines an
holomorphic imbedding:

iZ : J(Γ) 7−→ X. (6.62)

From (6.62) it follows that J(Γ) is compact.
The generalized Jacobian of an algebraic curve is compact if and only if the curve

is smooth ([14]). On a smooth algebraic curve a torsion-free rank 1 sheaf is a line
bundle, i.e., Pic(Γ) = J(Γ). Then (6.52) implies that iZ is an isomorphism. Note that
for the Jacobians of smooth algebraic curves the bad locus Σ is empty ([58]), i.e., the
imbedding j in (6.52) is defined everywhere on X and is inverse to iZ . Theorem 1.6
is proved.

7 Characterization of the Prym varieties

To begin with let us recall the definition of Prym varieties. An involution σ : Γ −→
Γ of a smooth algebraic curve Γ induces an involution σ∗ : J(Γ) −→ J(Γ) of the
Jacobian. The kernel of the map 1 + σ∗ on J(Γ) is the sum of a lower-dimensional
abelian variety, called the Prym variety (the connected component of zero in the
kernel), and a finite group. The Prym variety naturally has a polarization induced
by the principal polarization on J(Γ). However, this polarization is not principal,
and the Prym variety admits a natural principal polarization if and only if σ has at
most two fixed points on Γ — this is the case we will concentrate on.

From the point of view of integrable systems, attempts to prove the analog of
Novikov’s conjecture for the case of Prym varieties of algebraic curves with two
smooth fixed points of involution were made in [61, 59, 7]. In [61] it was shown that
Novikov-Veselov (NV) equation provides solution of the characterization problem up
to possible existence of additional irreducible components. In [59, 7] the characteri-
zations of the Prym varieties in terms of BKP and NV equations were proved only
under certain additional assumptions. Moreover, in [7] an example of a ppav that is
not a Prym but for which the theta function gives a solution to the BKP equation
was constructed. Thus for more than 15 years it was widely accepted that Prym
varieties can not be characterized with the help if integrable systems.

In [38] the first author proved that Prym varieties of algebraic curves with two
smooth fixed points of involution are characterized among all ppavs by the property
of their theta functions providing explicit formulas for solutions of the integrable 2D
Schrödinger equation, which is one of the auxiliary linear problems for the Novikov-
Veselov equation.

Prym varieties possess generalizations of some properties of Jacobians. In [7]
Beauville and Debarre, and in [22] Fay showed that the Kummer images of Prym
varieties admit a 4-dimensional family of quadrisecant planes (as opposed to a 4-
dimensional family of trisecant lines for Jacobians). Similarly to the case of Jacobians,
it was then shown by Debarre in [12] that the existence of a one-dimensional family
of quadrisecants characterizes Prym varieties among all ppavs. However, Beauville
and Debarre in [7] constructed a ppav that is not a Prym but such that its Kummer
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image has a quadrisecant plane. Thus no analog of the trisecant conjecture for Prym
varieties was conjectured, and the question of characterizing Prym varieties by a
finite amount of geometric data (i.e., by polynomial equations for theta functions at
a finite number of points) remained completely open.

In [24] S. Grushevsky and the first author proved that Prym varieties of un-
ramified covers are characterized among all ppavs by the property of their Kummer
images admitting a symmetric pair of quadrisecant 2-planes. That there exists such
a symmetric pair of quadrisecant planes for the Kummer image of a Prym variety
can be deduced from the description of the 4-dimensional family of quadrisecants,
using the natural involution on the Abel-Prym curve. However, the statement that
a symmetric pair of quadrisecants in fact characterizes Pryms seems completely un-
expected.

The geometric characterization of Prym varieties follows from a characterization
of Prym varieties among all ppavs by some theta-functional equations, which by using
Riemann’s bilinear addition theorem can be shown to be equivalent to the existence of
a symmetric pair of quadrisecant planes. In order to obtain such a characterization of
Prym varieties in [24] a new hierarchy of difference equations, starting from a discrete
version of the Schrödinger equation was introduced, developed, and studied . The
hierarchy constructed can be thought of as a discrete analog of the Novikov-Veselov
hierarchy.

Theorem 7.1 (Main theorem) An indecomposable principally polarized abelian
variety (X, θ) ∈ Ag lies in the closure of the locus Pg of Prym varieties of unramified
double covers if and only if there exist vectors A,U, V,W ∈ Cg representing distinct
points in X, none of them points of order two, and constants c1, c2, c3, w1, w2, w3 ∈ C

such that one of the following equivalent conditions holds:

(A) The difference 2D Schrödinger equation

ψn+1,m+1 − un,m(ψn+1,m − ψn,m+1)− ψn,m = 0, (7.2)

with

un,m := Cnm
θ((n+ 1)U +mV + νW + Z) θ(nU + (m+ 1)V + νW + Z)

θ((n+ 1)U + (m+ 1)V + νW + Z) θ(nU +mV + νW + Z)
(7.3)

and

ψn,m :=
θ(A + nU +mV + νnmW + Z)

θ(nU +mV + νnmW + Z)
wn

1w
m
2 w

νnm

3 (cm1 c
n
2 )

1−2νnm , (7.4)

is satisfied for all Z ∈ X, where

ν := νnm :=
1 + (−1)n+m+1

2
, ν := 1− ν, Cnm := c3

(
c2n+1
2 c2m+1

1

)1−2νnm
. (7.5)

(B) The following identity holds:

w1w2(c1c2)
±1K̃

(
A+ U + V ∓W

2

)
− w1c3(w3c1)

±1K̃

(
A+ U − V ±W

2

)

+ w2c3(w3c2)
±1K̃

(
A+ V − U ±W

2

)
− K̃

(
A− U − V ∓W

2

)
= 0 ,
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where K̃ : Cg ∋ z 7→
(
Θ[ε, 0](z)

)
∈ C2g is a lifting of the Kummer map (1.3) to the

universal covering of X.

(C) The two equations (one for the top choice of signs everywhere, and one for
the bottom)

c∓2
1 c23 θ(Z + U − V ) θ(Z − U ±W ) θ(Z + V ±W )

+ c∓2
2 c23 θ(Z − U + V ) θ(Z + U ±W ) θ(Z − V ±W )

= c∓2
1 c∓2

2 θ(Z − U − V ) θ(Z + U ±W ) θ(Z + V ±W )

+ θ(Z + U + V ) θ(Z − U ±W ) θ(Z − V ±W ) (7.6)

are valid on the theta divisor {Z ∈ X : θ(Z) = 0}.

A purely geometric restatement of part (B) of this result is as follows.

Corollary 7.7 (Geometric characterization of Pryms) A ppav (X, θ) ∈ Ag lies
in the closure of the locus of Prym varieties of unramified (étale) double covers if and
only there exist four distinct points p1, p2, p3, p4 ∈ X, none of them points of order
two, such that the following two quadruples of points on the Kummer variety of X:

{K(p1 + ε2p2 + ε3p3 + ε4p4) | εi ∈ {±1}, ε2ε3ε4 = +1}

and
{K(p1 + ε2p2 + ε3p3 + ε4p4) | εi ∈ {±1}, ε2ε3ε4 = −1}

are linearly dependent.
Equivalently, this can be stated as saying that (X, θ) lies in the closure of the Prym

if and only if there exists a pair of symmetric (under the z 7→ 2p1 − z involution)
quadrisecants of K(X).

At first glance the structure of the proof is the same as above. It begins with
a construction of a wave solution of the discrete analog of 2D Schrödinger equation
(7.2). But in fact, the hierarchy considered involves essentially a pair of functions and
is thus essentially a matrix hierarchy, unlike the scalar hierarchy arising for the trise-
cant case. The argument is very delicate, and involves using the pair of quadrisecant
conditions to recursively construct a pair of auxiliary solutions (essentially corre-
sponding to the two components of the kernel, only one of which is the Prym). We
refer the reader to [24]) for details.

Our goal for this section is to elaborate on the “only if” part of the statement of
the theorem, because as a byproduct it gives new identities for theta-function which
are poorly understood an seems require additional attention.

Four point Baker-Akhiezer function

Four-point Baker-Akhiezer function depends on three discrete parameters and, as
was mentioned in Section 2 gives solution to the BDHE equation. For various choice
of two linear combination of these variables one obtain various linear equation. In
[35] (see details in [44]) it was shown that the following choice of the “discrete times”
gives a a construction of algebraic-geometric 2D difference Schrödinger operators.

Let Γ be a smooth algebraic curve of genus ĝ. Fix four points P ±
1 , P ±

2 ∈ Γ,

and let D̂ = γ1 + · · · + γĝ be a generic effective divisor on Γ of degree ĝ. By the
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Riemann-Roch theorem one computes h0(D̂ + n(P+
1 − P

−
1 ) + m(P+

2 − P−
2 )) = 1,

for any n,m ∈ Z, and for D̂ generic. We denote by ψ̂n,m(P ), P ∈ Γ the unique

section of this bundle. This means that ψ̂n,m is the unique up to a constant factor
meromorphic function such that (away from the marked points P±

i ) it has poles only

at γs, of multiplicity not greater than the multiplicity of γs in D̂, while at the points
P+
1 , P

+
2 (resp. P−

1 , P
−
2 ) the function ψ̂n,m has poles (resp. zeros) of orders n and m.

If we fix local coordinates k−1 in the neighborhoods of marked points (it is cus-
tomary in the subject to think of marked points as punctures, and thus it is common
to use coordinates such that k at the marked point is infinite rather than zero), then
the Laurent series for ψn,m(P ), for P ∈ Γ near a marked point, has the form

ψ̂n,m = k±n

( ∞∑

s=0

ξ ±
s (n,m)k−s

)
, k = k(P ), P → P ±

1 , (7.8)

ψ̂n,m = k±m

( ∞∑

s=0

χ±
s (n,m)k−s

)
, k = k(P ), P → P ±

2 . (7.9)

As it was shown in Section 2 the function ψn,m can be expressed as follows:

ψ̂n,m(P ) = rnm
θ̂(Â(P ) + nÛ +mV̂ + Ẑ)

θ̂(Â(P ) + Ẑ)
enΩ̂1(P )+mΩ̂2(P ), (7.10)

where for i = 1, 2 the differential dΩ̂i ∈ H0(KΓ + P+
i + P−

i ) is of the third kind,
normalized to have residues ∓1 at P ±

i and with zero integrals over all the a-cycles,

and Ω̂i is the corresponding abelian integral; we have the following expression rnm
is some constant, Û = Â(P−

1 )− Â(P+
1 ), V̂ = Â(P−

2 )− Â(P+
2 ), and

Ẑ = −
∑

s

Â(γs) + κ̂, (7.11)

where κ̂ is the vector of Riemann constants.

Change of notation We use here notation θ̂ for the Riemann theta-function of Γ,
for later use of θ for the Prym theta function.

Theorem 7.12 ([35]) The Baker-Akhiezer function ψ̂n,m given by formula (7.10)
satisfies the following difference equation

ψ̂n+1,m+1 − an,mψ̂n+1,m − bn,mψ̂n,m+1 + cn,mψ̂n,m = 0, (7.13)

Setup for the Prym construction

We now assume that the curve Γ is an algebraic curve endowed with an involution σ
without fixed points; then Γ is a unramified double cover Γ −→ Γ0, where Γ0 = Γ/σ.
If Γ is of genus ĝ = 2g+1, then by Riemann-Hurwitz the genus of Γ0 is g+1. From
now on we assume that g > 0 and thus ĝ > 1. On Γ one can choose a basis of cycles
ai, bi with the canonical matrix of intersections ai · aj = bi · bj = 0, ai · bj = δij , 0 ≤
i, j ≤ 2g, such that under the involution σ we have σ(a0) = a0, σ(b0) = b0, σ(aj) =
ag+j , σ(bj) = bg+j , 1 ≤ j ≤ g. If dωi are normalized holomorphic differentials on Γ
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dual to this choice of a-cycles, then the differentials duj = dωj−dωg+j , for j = 1 . . . g
are odd, i.e., satisfy σ∗(duk) = −duk, and we call them the normalized holomorphic
Prym differentials. The matrix of their b-periods

Πkj =

∮

bk

duj , 1 ≤ k, j ≤ g , (7.14)

is symmetric, has positive definite imaginary part, and defines the Prym variety

P(Γ) := C
g/(Zg +ΠZg)

and the corresponding Prym theta function

θ(z) := θ(z,Π),

for z ∈ Cg. We assume that the marked points P ±
1 , P ±

2 on Γ are permuted by the
involution, i.e., P+

i = σ(P−
i ). For further use let us fix in addition a third pair of

points P±
3 , such that also P−

3 = σ(P+
3 ).

The Abel-Jacobi map Γ →֒ J(Γ) induces the Abel-Prym map A : Γ −→ P(Γ)

(this is the composition of the Abel-Jacobi map Â : γ →֒ J(Γ) with the projection
J(Γ) → P(Γ)). There is a choice of the base point involved in defining the Abel-
Jacobi map, and thus in the Abel-Prym map; let us choose this base point (such a
choice is unique up to a point of order two in P(Γ)) in such a way that

A(P ) = −A(σ(P )). (7.15)

Admissible divisors

An effective divisor on Γ of degree ĝ − 1 = 2g, D = γ1 + . . . γ2g, is called admissible
if it satisfies

[D] + [σ(D)] = KΓ ∈ J(Γ) (7.16)

(where KΓ is the canonical class of Γ), and if moreover H0(D + σ(D)) is generated
by an even holomorphic differential dΩ, i.e., that

dΩ(γs) = dΩ(σ(γs)) = 0, dΩ = σ∗(dΩ). (7.17)

Algebraically, what we are saying is the following. The divisorsD satisfying (7.16)
are the preimage of the point KΓ under the map 1 + σ, and thus are a translate of
the subgroup Ker(1 + σ) ⊂ J(Γ) by some vector. As shown by Mumford [49], this
kernel has two components — one of them being the Prym, and the other being the
translate of the Prym variety by the point of order two corresponding to the cover
Γ→ Γ0 as an element in π1(Γ0). The existence of an even differential as above picks
out one of the two components, and the other one is obtained by adding A − σ(A)
to the divisor of such a differential, for some A. statement.

Proposition 7.18 For a generic vector Z the zero-divisor D of the function θ(A(P )+
Z) on Γ is of degree 2g and satisfies the constraints (7.16) and (7.17), i.e., is admis-
sible.
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Remark. S. Grushevsky and the first author had been unable to find a complete
proof of precisely this statement in the literature. However, both Elham Izadi and
Roy Smith have independently supplied them with simple proofs of this result, based
on Mumford’s description and results on Prym varieties. As pointed out by a referee,
this result can also be easily obtained by applying Fay’s proposition 4.1 in [21]. In
[24] independent analytic proof was proposed which also can be seen analytic proof
of some of Mumford’s results.

Note that the function θ(A(P ) + Z) is multi-valued on Γ, but its zero-divisor is
well-defined. The arguments identical to that in the standard proof of the inversion
formula (7.11) show that the zero divisorD(Z) := θ(A(P )+Z) is of degree ĝ−1 = 2g.

Lemma 7.19 For any pair of points P±
j conjugate under the involution σ there exists

a unique differential dΩj of the third kind (i.e., a dipole differential with simple poles
at these points and holomorphic elsewhere), such that it has residues ∓1 at these
points, is odd under σ, i.e., satisfies dΩj = −σ∗(dΩj), and such that all of its a-
periods are integral multiples of πi, i.e., such a differential dΩi exists for a unique
set of numbers l0, . . . , lg ∈ Z satisfying

∮

ak

dΩj = πi lk, k = 0, . . . , g. (7.20)

Indeed, by Riemann’s bilinear relations there exists a unique differential dΩ of the
third kind with residues as required, and satisfying

∮
ak
dΩ = 0 for all k. Note,

however, that then
∮
ak
σ∗(dΩ) is not necessarily zero, as the image σ(ak) of the

loop ak, while homologous to ag+k on Γ̃, is not necessarily homologic to ag+k

(resp. to a0 for σ(a0)) on Γ̃ \ {P±
j }. Thus each integral

∮
ak
σ∗(dΩ), being equal

to 2πi times the winding number of σ(ak) around P+
j minus that around P−

j , is
equal to 2πilk for some lk ∈ Z. We now subtract from dΩ the linear combination
πi (l0dω0 +

∑g
k=1 lk(dωk + dωg+k)) of even abelian differentials to get the desired

dΩj .

Theorem 7.21 [24] For a generic D = D(Z) and for each set of integers (n,m, r)
such that

n+m+ r = 0 mod 2 (7.22)

the space
H0(D + n(P+

1 − P
−
1 ) +m(P+

2 − P
−
2 ) + r(P+

3 − P
−
3 ))

is one-dimensional. A basis element of this space is given by

ψn,m,r(P ) := hn,m,r
θ(A(P ) + nU +mV + rW + Z)

θ(A(P ) + Z)
enΩ1(P )+mΩ2(P )+rΩ3(P ),

(7.23)
where Ωj is the abelian integral corresponding to the differential dΩj defined by
lemma 7.19, and U , V , W are the vectors of b-periods of these differentials, i.e.,

2πiUk =

∮

bk

dΩ1, 2πiVk =

∮

bk

dΩ2, 2πiWk =

∮

bk

dΩ3. (7.24)

The proof is identically the same as the proof of (2.19). It is easy to check that
the right-hand side of (7.23) is a single valued function on Γ having all the desired

42



properties, and thus it gives a section of the desired bundle. Note that the constraint
(7.22) is required due to (7.20), and the uniqueness of ψ up to a constant factor, i.e.,
the one-dimensionality of the H0 above, is a direct corollary of the Riemann-Roch
theorem.

Note that bilinear Riemann identities imply

2U = A(P−
1 )−A(P+

1 ), 2V = A(P−
2 )−A(P+

2 ), 2W = A(P−
3 )−A(P+

3 ). (7.25)

Let us compare the definition of ψ̂n,m defined for any curve Γ, with that of ψn,m,r,
which is only defined for a curve with an involution satisfying a number of conditions.
To make such a comparison, consider the divisor D̂ = D + P+

3 of degree ĝ = 2g + 1,

and let ψ̂n,m be the corresponding Baker-Akhiezer function.

Corollary 7.26 For the Baker-Akhiezer function ψ̂nm corresponding to the divisor
D̂ = D + P+

3 we have

ψ̂nm = ψn,m,ν (7.27)

where ν = νnm is defined in (7.5), i.e., is 0 or 1 so that n+m+ ν is even.

Corollary 7.28 If n+m is even, then by formulae (7.10), (7.23)

θ̂(Â(P ) + nÛ +mV̂ + Ẑ) θ̂(Â(P0) + Ẑ)

θ̂(Â(P ) + Ẑ) θ̂(Â(P0) + nÛ +mV̂ + Ẑ)
=

θ(A(P ) + nU +mV + Z) θ(A(P0) + Z)

θ(A(P ) + Z) θ(A(P0) + nU +mV + Z)
enr1+mr2 , (7.29)

where ri =
∫ P

P0
(dΩ̂i − dΩi), and we recall that Ẑ = Â(D̂) + κ̂, and Z is its image.

Remark. This equality, valid for any pair of points P, P0 is a nontrivial identity
between theta functions. The first author’s attempts to derive it directly from the
Schottky-Jung relations have failed so far.

Notation For brevity throughout the rest of the paper we use the notation: ψn,m :=
ψn,m,νnm

.

Lemma 7.30 [24] The Baker-Akhiezer function ψn,m given by

ψn,m =
θ(A(P ) + Un+ V m+ νnmW + Z)

θ(Un+ V m+ νnmW + Z) θ(A(P ) + Z)
·
enΩ1(P )+mΩ2(P )+νnmΩ3(P )

e(2νnm−1)(nΩ1(P
+

3
)+mΩ2(P

+

3
))
,

(7.31)
where νnm = 1− νnm as in (7.5), satisfies the equation (7.2), i.e.,

ψn+1,m+1 − un,m(ψn+1,m − ψn,m+1)− ψn,m = 0,

with un,m as in (7.3), (7.5), where

c1 = eΩ2(P
+

3
), c2 = eΩ1(P

+

3
), c3 = eΩ1(P

+

2
) (7.32)
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Note that the first and the last factors in the denominator of (7.31) correspond to a
special choice of the normalization constants hn,m,ν in (7.23):

ψnm(P−
3 ) = (θ(Z +W ))−1, νnm = 0,

ψnme
−Ω3 |P=P+

3

= (θ(Z −W ))−1, νnm = 1.
(7.33)

This normalization implies that for even n + m the difference (ψn+1,m+1 − ψn,m)
equals zero at P−

3 . At the same time as a corollary of the normalization we get that
(ψn+1,m − ψn,m+1) has no pole at P+

3 . Hence, these two differences have the same
analytic properties on Γ and thus are proportional to each other (the relevant H0 is
one-dimensional by Riemann-Roch). The coefficient of proportionality unm can be
found by comparing the singularities of the two functions at P+

1 .
The second factor in the denominator of the formula (7.31) does not affect equa-

tion (7.2). Hence, the lemma proves the “only if” part of the statement (A) of the
main theorem for the case of smooth curves. It remains valid under degenerations to
singular curves which are smooth outside of fixed points Qk which are simple double
points, i.e., to the curves of type {Γ, σ,Qk}.
Remark. Equation (7.2) as a special reduction of (7.13) was introduced in [16]. It
was shown that equation (7.13) implies a five-term equation

ψn+1,m+1 − ãnmψn+1,m−1 − b̃n,mψn−1,m+1 + c̃nmψn−1,m−1 = d̃n,mψn,m (7.34)

if and only if it is of the form (7.2). A reduction of the algebro-geometric construction
proposed in [35] in the case of algebraic curves with involution having two fixed points
was found. It was shown that the corresponding Baker-Akhiezer functions do satisfy
an equation of the form (7.2). Explicit formulae for the coefficients of the equations in
terms of Riemann theta-functions were obtained. The fact that the Baker-Akhiezer
functions and the coefficients of the equations can be expressed in terms of Prym
theta-functions was first obtained in [24].

The statement that ψn,m satisfy (7.34) can be proved directly. Indeed all the
functions involved in the equation are in

H0(D + (n+ 1)P+
1 − (n− 1)P−

1 + (m+ 1)P+
2 − (m− 1)P−

2 + ν(P+
3 − P

−
3 ))

By the Riemann-Roch theorem the dimension of the latter space is 4. Hence, any five
elements of this space are linearly dependent, and it remains to find the coefficients
of (7.34) by a comparison of singular terms at the points P±

1 , P
±
2 .

Theorem 7.35 [24] For any four points A,U, V,W on the image Γ →֒ P(Γ), and
any Z ∈ P(Γ) the following equation holds:

θ(Z +W )× [θ(A + U + V + Z) θ(Z − U) θ(Z − V )

− c21c
2
3 θ(A+ U − V + Z) θ(Z − U) θ(Z + V )

− c22c
2
3 θ(A− U + V + Z) θ(Z + U) θ(Z − V )

+ c21c
2
2 θ(A− U − V + Z) θ(Z + U) θ(Z + V )] =

= θ(A+ Z)× [θ(W + U + V + Z) θ(Z − U) θ(Z − V )

− c21c
2
3 θ(W + U − V + Z) θ(Z − U) θ(Z + V )

− c22c
2
3 θ(W − U + V + Z) θ(Z + U) θ(Z − V )

+ c21c
2
2 θ(W − U − V + Z) θ(Z + U) θ(Z + V )].

(7.36)
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To the best of the authors’ knowledge equation (7.36) is a new identity for Prym
theta-functions. For Z such that θ(W +Z) = 0 it is equivalent to equation (7.6) with
the minus sign chosen. The second equation of the pair (7.6) can be obtained from
(7.34) considered for the odd case, i.e., for n+m = 1 mod 2. Using theta functional
formulas, it can be shown using (7.34) that equation (7.36) is equivalent to (7.2).

8 Abelian solutions of the soliton equations

In [42, 43] the authors introduced a notion of abelian solutions of soliton equations
which provides a unifying framework the elliptic solutions of these equations and and
algebraic-geometrical solutions of rank 1 expressible in terms of Riemann (or Prym)
theta-function. A solution u(x, y, t) of the KP equation is called abelian if it is of the
form

u = −2∂2x ln τ(Ux+ z, y, t) , (8.1)

where x, y, t ∈ C and z ∈ Cn are independent variables, 0 6= U ∈ Cn, and for all y,
t the function τ(·, y, t) is a holomorphic section of a line bundle L = L(y, t) on an
abelian variety X = Cn/Λ, i.e., for all λ ∈ Λ it satisfies the monodromy relations

τ(z + λ, y, t) = eaλ·z+bλτ(z, y, t), for some aλ ∈ Cn, bλ = bλ(y, t) ∈ C . (8.2)

There are two particular cases in which a complete characterization of the abelian
solutions has been known for years. The first one is the case n = 1 of elliptic solutions
of the KP equations. The second case in which a complete characterization of abelian
solutions is known is the case of indecomposable principally polarized abelian variety
(ppav). The corresponding θ-function is unique up to normalization, so that Ansatz
(8.1) takes the form u = −2∂2x ln θ(Ux + Z(y, t) + z). Since the flows commute,
Z(y, t) must be linear in y and t: u = −2∂2x ln θ(Ux + V y +Wt + z) . Besides these
two cases of abelian solutions with known characterization, another may be worth
mentioning. Let Γ be a curve, P ∈ Γ a smooth point, and π : Γ → Γ0 a ramified
covering map such that the curve Γ0 has arithmetic genus g0 > 0 and P is a branch
point of the covering. Let J(Γ) = Pic0(Γ) be the (generalized) Jacobian of Γ, let
Nm : J(Γ)→ J(Γ0) be the reduced norm map as in [50], and let

X = ker(Nm)0 ⊂ J(Γ)

be the identity component of the kernel of Nm. Suppose X is compact. By assump-
tion we have

dim J(Γ)− dimX = dim J(Γ0) = g0 > 0,

so that X is a proper subvariety of J(Γ), and the polarization on X induced by
that on J(Γ) is not principal. and define the KP flows on Picg−1(Γ) using the data
(Γ, P, ζ).

In general, since for any r0 ∈ Z>0 the space
∑

r≤r0
C∂/∂tr is independent of the

choice of ζ, for any ζ ∈ mP \m
2
P and 0 < r < m (so in particular for r = 1), the r-th

KP orbit of F is contained in F ⊗X , and so it gives an abelian solution. Let us call
this the Prym-like case. An important subcase of it is the quasiperiodic solutions of
Novikov-Veselov (NV) or BKP hierarchies.

In the Prym-like case, just as in the NV/BKP case we can put singularities to
Γ and Γ0 in such a way that X remains compact, so it is more general than the
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KP quasiperiodic solutions. Recall that NV or BKP quasiperiodic solutions can be
obtained from Prym varieties Prym(Γ, ι) of curves Γ with involution ι having two
fixed points. The Riemann theta function of J(Γ) restricted to a suitable translate
of Prym(Γ, ι) becomes the square of another holomorphic function, which defines the
principal polarization on Prym(Γ, ι). The Prym theta function becomes NV or BKP
tau function, whose square is a special KP tau function with all even times set to
zero, so any KP time-translate of it

• gives an abelian solution of the KP hierarchy with n = dimX being one-half
the genus g(Γ) of Γ, and

• defines twice the principal polarization on X .

A natural question is whether these conditions characterize the (time-translates of)
NV or BKP quasiperiodic solutions.

Hurwitz’ formula tells us that in the Prym-like case n = dim(X) ≥ g(Γ)/2, where
the equality holds only in the NV/BKP case. At the moment we have no examples
of abelian solutions with 1 < n < g(Γ)/2.

For simplicity we present here a solution to the classification problem of abelian
solutions of the KP equation obtained in [42] under an additional assumption on the
density of the orbit CU mod Λ in X .

Theorem 8.3 Let u(x, y, t) be an abelian solution of the KP such that the group
CU mod Λ is dense in X. Then there exists a unique algebraic curve Γ with smooth
marked point P ∈ Γ, holomorphic imbedding j0 : X → J(Γ) and a torsion-free rank

1 sheaf F ∈ Picg−1(Γ) where g = g(Γ) is the arithmetic genus of Γ, such that setting
with the notation j(z) = j0(z)⊗F

τ(Ux+ z, y, t) = ρ(z, y, t) τ̂(x, y, t, 0, . . . | Γ, P, j(z)) (8.4)

where τ̂ (t1, t2, t3, . . . | Γ, P,F) is the KP τ-function corresponding to the data (Γ, P,F),
and ρ(z, y, t) 6≡ 0 satisfies the condition ∂Uρ = 0.

Note that if Γ is smooth then:

τ̂ (x, t2, t3, · · · | Γ, P, j(z)) = θ
(
Ux+

∑
Viti + j(z)

∣∣∣ B(Γ)
)
eQ(x,t2,t3,...) , (8.5)

where Vi ∈ C
n, Q is a quadratic form, and B(Γ) is the period matrix of Γ. A

linearization on J(Γ) of the nonlinear (y, t)-dynamics for τ(z, y, t) indicates the pos-
sibility of the existence of integrable systems on spaces of theta-functions of higher
level. A CM system is an example of such a system for n = 1.

Without the density assumption there are examples in which the KP hierarchy
has basically no control beyond the closure of the orbit, showing the importance of
the principal polarization in a Novikov-like conjecture in which a minimal number of
equation is used to study the nature of X . Having this in mind, we may regard prin-
cipally polarized Prym-Tjurin varieties [28] as a way to study analogues of Novikov’s
conjecture.
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