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ABSTRACT. Using meromorphic differentials with real periods, we prove Arbarello’s conjecture that
any compact complex cycle of dimension g —n in the moduli space M, of smooth algebraic curves
of genus g must intersect the locus of curves having a Weierstrass point of order at most n.
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1. Introduction
In [1] Arbarello considered the natural filtration
WeCW3C--- CWy1 CWy =M, (1)

of the moduli space M, of smooth Riemann surfaces of genus g by subvarieties W, of curves
having a Weierstrass point of order at most n (i.e., by subvarieties of curves on which there exists
a meromorphic function with one pole of order at most n). He conjectured that any compact
complex cycle in Mg of dimension at least g — n must intersect W, . Since W, is the subvariety
of hyperelliptic curves, which is affine, Arbarello’s conjecture implies that the dimension of any
compact complex cycle in My does not exceed g — 2. This was proved later by Diaz in [4] with the
help of a modification of the Arbarello filtration. Another modification of the Arbarello filtration
was used by Looijenga, who proved that the tautological classes of degree greater than g — 2 vanish
in the Chow ring of Mg. This implies Diaz’ result (indeed, the Hodge class A; is ample in Mg,
and thus for any complete d-dimensional subvariety X C M, we have )\il - X > 0, while )\51’_1 =0,
because the latter class is tautological).

The main goal of this paper is to prove Arbarello’s conjecture, which has remained open until
now in spite of the attention which it attracted during many years. (The highly nontrivial nature
of this problem has found its explanation in the recent work [2], where it was shown that the
strata of the Arbarello filtration are almost never affine.) Our proof uses certain constructions
of the Whitham perturbation theory of integrable systems, which were proposed in [10] and [11]
and further developed in [12] and [13]. These constructions have already found their applications
in problems of topological quantum field theory (WDVV equations) and N = 2 supersymmetric
gauge theory [5] (see also [3] and the references therein). The application of these constructions to
the study of the geometry of the moduli spaces of curves was initiated in author’s joint works with
S. Grushevsky (see [7] and [8]).

In [7] we gave a new proof of Diaz’ theorem, and in [8] we proved the triviality of certain
tautological classes. Both results had been known, but their new proofs suggested that the further
development of the Whitham theory constructions, which was the main goal of [7] and [8], might
lead to the creation of new methods applicable to a wide spectrum of algebraic-geometric problems.

The notion of real-normalized meromorphic differentials is central in Whitham theory. By defi-
nition a real normalized differential is a meromorphic differential all of whose periods are real. The
possibility of application of this notion is based on the fact that, on any algebraic curve and for any
fixed set of “singular parts,” there exists a unique real normalized differential having prescribed
singularities at marked points.
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In [7] real normalized differentials of the third kind, i.e., differentials with two simple poles, were
used. Arbarello’s conjecture involves curves with one puncture, which has tempted the author to
try to use real normalized differentials of the second kind in its proof. However, the naive attempt
to use an argument similar to that in [7] runs almost immediately into a serious obstacle related
to the noncompactness of the space of the singular parts parameterizing such differentials. This
obstacle is similar to those arising in all attempts to prove Arbarello’s conjecture (see details in the
book [6]).

In the next section we present the necessary extensions and partial compactification of the
previously known constructions. Namely, we define a foliation structure on the space of real nor-
malized differentials of the second kind with poles of order at most n, + 1 at a marked point
Po- In previous works the foliation structure was defined on the moduli space of real normalized
differentials with fized order of poles. As previously, each leaf of the foliation is a (locally) smooth
complex subvariety. At the end of Section 2 we show that the foliation structure on the moduli
space of real normalized differentials induces a foliation structure on the quotient space of these
differentials modulo the action of the multiplicative group of positive real numbers.

In Section 3 we introduce an additional tool needed for the proof of the main theorem, namely,
the notion of cycles “dual” to the zeros of real normalized differentials. We prove that the “dual
cycles” generate the homology group H;(I',Z). It seems to the author that the construction of these
cycles is of independent interest and deserves a separate study. The proof of Arbarello’s conjecture
is given in Section 4.

Acknowledgments. The author would like to thank Sam Grushevsky for numerous valuable
comments, clarifications, and suggestions.

2. Foliations Defined by Real Normalized Differentials

Let /\/l( o= (n1,...,nk), be the moduli space of smooth algebraic curves I' of genus g with
fixed smgular parts of poles of order ny, + 1 without residue in a neighborhood of marked distinct
points p, € I', a=1,..., k. We recall that choosing a singular part of a pole of order n, + 1 at a
point p, means choosing an equivalence class of pairs (z4, Ry), where (i) z, is a local coordinate in a
neighborhood of p, such that z,(pa) = 0; (ii) R4 is a polynomial of the form R, = Y /% rq Zz_’ L
Pairs (24, Ra) and (wq, R.,) belong to the same equivalence class if R dw, = Ry dzq + O( )dza,
Wo = Wo(2a). The coefficient r, o in the polynomial is the residue of the singular part; i.e., for
singular parts without residues, we have r, 9 = 0.

The nondegeneracy of the imaginary part of the Riemann matrix of the b-periods of normalized
holomorphic differentials on a smooth genus ¢ algebraic curve I'" implies the following assertion.

Lemma 2.1. For any fized singular parts of poles with purely imaginary residues, there exists
a unique meromorphic differential ¥ having prescribed singular part at marked points p, and such
that its periods over all cycles on T' are real, i.e.,

Im (%m) =0 VYee HY(T,Z). (2)

(For a detailed proof see Proposition 3.4 in [7].)

Remark 2.2. Although throughout the paper we consider only real normalized differentials of
the second kind (i.e., having no residues at poles), most of the constructions can be easily extended
to the case of meromorphic differentials with purely imaginary residues. For the first time, real
normalization as a defining property of quasi-momentum differentials in the spectral theory of
linear operators with quasi-periodic coefficients was introduced in [9] and [10] (where it was called
absolute normalization).

Let /\/l< > be the moduli space of smooth algebraic curves I' of genus g with fixed nontrivial
real normahzed meromorphic differential ¥ of the second kind having poles of order at most n,+1

at marked points p, € I'. Lemma 2.1 identifies M;,z with the moduli space of curves with fixed
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nontrivial set of singular parts of poles of orders at most n, + 1 without residues at the marked
points. The latter is the total space of a vector bundle of rank |n| := ) n, over M, with the
zero section removed. Therefore, the identification of a real normalized differential with its singular

(n)

part defines a complex structure on M ok
Our next goal is to introduce the structure of a foliation on M;n,z The periods of the differential
U define a cohomology class IT € H*(I',R). Let V be the Gauss-Manin connection on the Hodge
bundle over M, j, whose fiber over (I', p,) is H YT, Z). Then the equation
VxII=0 (3)
considered as an equation for the tangent vector X € T(M;n,z) defines a subspace of the tangent

space at every point of M;n,z The distribution of these subspaces is integrable and defines a foliation

on M;n,z The rigorous definition is as follows.

Definition 2.3. A leaf £ of the foliation on M;n,z is defined as the locus along which the
periods of the corresponding differentials remain (covariantly) constant.

Remark 2.4. In the previous works [11]-[13] (see also [7] and [8]) the structure of the foliation
was defined on the moduli space Ménlz of real normalized differentials having poles of exact order
no + 1 at the marked points. The definition given above extends the construction to the moduli

(n)

space M iy corresponding to real normalized differentials with poles of order at most n, + 1.

The foliation defined above is real-analytic, but its leaves are complex (so the foliation is real-
analytic only “in the transverse direction”). Indeed, locally, in a neighborhood U of any curve
I'g, one can always choose a basis of cycles on every curve I' € U which continuously varies with
the variation of I'. Therefore, locally a leaf £ is defined by equations which mean the existence
of a differential ¥ on I' whose periods over the chosen basis of cycles Ay,..., Ay, By,..., By take
prescribed values a,...,a4,b1,...,by. These are holomorphic conditions, and thus each leaf is a
locally complex subvariety £ C M;nlz If a different basis of Hy(I',Z) is chosen, the periods of ¥
over the new basis are still fixed along a leaf (although take different numerical values).

Remark 2.5. In [7] the leaves of the foliation on /\/l( ,2 were called big leaves, as opposed to
small leaves defined by periods of two real normalized dlfferentlals Big leaves can be regarded as a
generalization of the Hurwitz spaces of covers of P'. More precisely, if k> 1 or k =1 but ny > 1,

then the corresponding foliation contains a special leaf £y C ./\/l;nlz on which all periods of ¥ vanish,
i.e.,, U is exact, ¥ = dF. On the curves corresponding to points of the open set Ly N ./\/l;nlz the
meromorphic function F has poles of orders ng at pa, i.e., F' defines a cover of P! with prescribed
types of branching over one point (infinity). Hence Ly N ./\/l;nlz can be identified with a C*-bundle
over the Hurwitz space H(1-mk)
Theorem 2.6. A leaf L is a smooth (local) complex subvariety of real codimension 2g (i.e., of
complez dimension dén) =29 -3+ n|+k).
(n)

Remark 2.7. Theorem 2.6 is a generalization to the case of ./\/lg .. of the following assertion
proved in [12]: The open part of L, namely, £ N /\/l;n,z, s smooth.

Proof. As mentioned above, locally, after a basis of cycles on the curves in a neighborhood of
I'p € M, is chosen, the leaf £ passing through a point (I'y, Uy) € ./\/l;n,z is defined by the equations

}é’xp:aj, f’ig.m:bj, ()

J J
which mean that on a curve I' near I'y there exists a differential which has the same periods as
the differential on T’y (the periods are automatically real). To prove the theorem, we must show
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that these equations are independent. It turns out that this is indeed the case; moreover, the set

(n)

of periods considered as a set of local functions on M gk CAN be explicitly completed to a local

coordinate system near any point of (I'g, ¥g) € M;n,z

The construction of such local coordinates on M;nlg is given in [12]. The set of holomorphic

coordinates on £ N M;nlz is similar to that used in the theory of Hurwitz spaces. The coordinates
are the critical values of the corresponding Abelian integral

F(p):c—i—/p\Il, pel, (5)

which is a multivalued meromorphic function on I". On ./\/l(n) the differential has poles of orders

ne +1 at p,. Therefore, the zero divisor of V¥ is of degree d( ) + 1. At a generic point of £N M; ,2,

where the zeros g5 of ¥ are distinct, the coordinates on £ are the values of F' at these critical
points, that is,

vs = F(gs), Y(gs) =0, s:(),...,d;"), (6)
normalized by the condition ) ¢s = 0. Of course, these coordinates depend on the path of
integration needed to define F' in a neighborhood of gs. The normalization is needed to define the
additional constant ¢ in (5). Near points of £ N Ménlz where the corresponding differential has a

multiple zero g5, = -+ = ¢s, the local coordinates are symmetric polynomials o;(ps,, ..., ®s,),
i=1,...,r (it is assumed here that the paths of integrations determining the critical values ¢y,
are chosen consistently; for more details see [12]).

Remark 2.8. A direct corollary of the real normalization is the statement that the imaginary
parts fs = Im ¢, of the critical values are independent of the paths of integration and depend only
on the numbering of critical points. These points can be arranged in decreasing order:

fozh =22 fa1 2 fa, d:dé"). (7)
Then each function f; is a well-defined continuous function on ./\/l(nlz whose restriction to Eﬂ./\/l("lz is

a piecewise harmonic function. Moreover, as shown in [7], the first function fp restricted to £ﬂM(n)
is a subharmonic function, i.e, a function to which the maximum principle can be applied: If fo
has a local maximum on a complex subvariety of L, then it is constant on this subvariety.

Now we are going to introduce a set of local coordinates in a neighborhood of any point (I'g, ¥¢)
of an arbitrary stratum M;WI? C ./\/l;n,z Let C be the universal curve over ./\/l;n,z, i.e., the bundle
whose fiber over (I', W) € M;n,z is the curve I itself. The marked points determine sections s, of C.
A choice of local coordinates z, near p, on each of the curve I' in a neighborhood of I'j is equivalent

to a choice of a local trivialization of a neighborhood of s, in C. After such a trivialization is fixed,
the coefficients r,; in the Laurent expansion

Na
U = Z rmz;i*l dzo + O(1) dz,, (8)
i=1
of W near p, can be regarded as local functions on M;n,z
If (Tg, ¥g) € /\/lgr,?, then one can choose a neighborhood U; of (I'g, ¥g) in M;n,z so that in this
neighborhood the following inequalities hold:
0<7<|ramal, |[Tail <e, i=mg+1,... N4, 9)
where r is a constant.
If € is small enough, then the differential ¥ has dém) + 1 zeros ¢s outside neighborhoods of the

marked points p,, which tend to the zeros of ¥ on I'y as ¢ — 0. The remaining ) (nq—mq) zeros
of ¥ tend to the marked points p,. Recall that the critical values of F' depend on the choice of the
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constant ¢ in (5). Under the normalization ), ¢, = 0 chosen above, which fixes this constant, all

critical values may have no limit on MSZ). In what follows, we define “finite critical values” g,

(m)
s=0,... ,dgm), of F locally in U, by the normalization Z;lio ps = 0.

Let us introduce the following set of functions {x4} in U. C M;nlz:

(i) the leading coefficients o, i = mqo + 1,..., 14, in expansion (8);

(ii) the finite critical values @4, s =1,... ,dgm), of F if Wy has simple zeros; if ¥ has a multiple
Zero ¢s, = -+ - = (s, , then the corresponding subset of finite critical values of F' should be replaced

by symmetric polynomials.

Lemma 2.9. Near each point (I'g,Wy) € MS’Z) C /\/l;illz the periods a; and bj, j =1,...,g,
of ¥ and the real and imaginary parts of the functions xa (see (i) and (ii) above) have linearly

independent differentials and thus define a real-analytic local coordinate system on M;n,z

The proof of Lemma 2.9 is similar to that of Theorem 1 in [12]. The key points are as follows.
Suppose that the differentials of the functions under consideration are linearly dependent at (I'g, ¥y)
(and thus the functions do not determine local coordinates near (I'g, Up)). Then there exists a one-
parameter family of points (I'y, ¥y) € M;n,z with real parameter ¢ such that the derivative of any
of the above functions with respect to the parameter vanishes at t = 0.

Recall that locally on each of the curves I'y we have already fixed a basis A;, B; for cycles
(needed for the definition of periods (4)). Let w;(t) be the basis of holomorphic differentials on I
dual to Aj, and let vj(p,t) = (ﬁ ® w;(t) denote the corresponding Abelian integrals, which are

multivalued functions of p € T'; depending on the choice of the path of integration. By F(p) :=
/ q’i ® W, we denote the integral of the chosen meromorphic differential along the same path.

Consider how v; varies in t. To attach meaning to a partial derivative with respect to the
parameter, we must determine how the point p changes under the variation of I';. For this purpose,
we use F} to determine a local coordinate on the universal cover of I'. After this the variation of the
point p under the variation of the parameter is determined from the implicit equation F' = F;(p;).
In other words, the fixation of F' allows us to define a connection on the space of Abelian integrals.

Our goal is to prove that, under the assumptions made above, the partial derivatives with fized
F defined by

Oy (F) = ooy (F (), ) (10)
t=0

vanish. Consider the surface I'; cut along basis cycles so that the integration paths [ Cﬁ ® in the
definition of all Abelian integrals do not intersect these cuts, i.e., are contained in the simply
connected cut surface. Then expression (10) defines a meromorphic function on the cut surface
Iy with possible poles at the zeros of ¥ (where F~! is singular) and discontinuities along the
cuts. However, if the periods of ¥; do not change under the variation of ¢, then (10) has constant
“jumps” along the cuts, and if the critical values ¢, do not change, then (10) has no poles at the
zeros of W. By the chain rule the partial derivatives with fixed F' and partial derivatives with fized
2z, (determining a trivialization of a neighborhood of the marked point p,; € I';) are related by
the equation

O (F) = 0v;(24) — fl‘j; 8, F (20) (11)

t=0

By our assumption the first (n, — m,,) leading coefficients in expansion (8) do not change. Hence
it follows from (11) that (10) has no pole at p,. Thus, the differential of expression (10) is a
holomorphic differential on 'y with zero A-periods; therefore, it is identically zero and hence has
zero B-periods. Since the B-periods of w; form the period matrix 7 of I'g, we have

d
¢ (t) =0.

t=0
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The infinitesimal version of Torelli’s theorem says that the differential of the period map 7: M, —
Ay is nondegenerate outside the variety of hyperelliptic curves. Therefore, the above relation cannot
hold unless I'y is a hyperelliptic curve. For a hyperelliptic curve the kernel of the homomorphism
dr is one-dimensional and transverse to the tangent space of the subvariety of hyperelliptic curves.
Therefore, to complete the proof, it suffices to show that if I'g is a hyperelliptic curve, then the
tangent vector to the family of curves I'y at ¢t = 0 is tangent to the subvariety of hyperelliptic
curves. The proof of this assertion coincides with the proof of its analogue in [12].

Corollary 2.10. The set of functions x4 defines a system of local complex coordinates on the
leaf L passing through the point (I'g, Uy).

For what follows we need a partial compactification of M;n,z The space M;nlz of real normalized
differentials is invariant under multiplication by real numbers. Let Pg% = M;n,z /R4 be the quotient

space by the action of the multiplicative group of positive real numbers. The fiber of the forgetful
map 73;7”,2 — M, is the space of nontrivial “normalized” singular parts. It is isomorphic to the
sphere S2Inl=1,

The canonical foliation of M

)

(n) defined above induces a foliation structure on Pg% .

g9,k
Definition 2.11. A leaf [£] of the foliation on Pg<nk> is defined to be the projection of the

() along which the ratio of any two periods of the corresponding differentials remains

locus in M,
constant (if two periods are zero, they both must remain zero).

Multiplication by real numbers acts “transversally” on all leaves £ of the big foliation except
on the Hurwitz leaf £y corresponding to exact differentials. Therefore, a leaf [£] passing through
a point (T, [¥]) € P;nlg , which is not in the image of Ly, is locally isomorphic to the leaf £ € M;n,z
;n> in the preimage of (I, [¥]). Hence [£] has a natural complex

structure. (Notice that we cannot treat [£] as a local complex subvariety anymore, because Pg<

passing through a point (I', ¥) € M
nk> is
not a complex variety.)

The leaf [£] is the only singular leaf of the foliation. It is not complex, and its real dimension
is less by 1 than the dimension of all other leaves. It is isomorphic to a S'-bundle over the Hurwitz

space.

3. Dual Cycles and Periods

In this section we introduce yet another notion needed for the proof of Arbarello’s conjecture
given in the next section, namely, the notion of cycles dual to critical points of real normalized
differentials.

For simplicity, we consider only the case where (I, V) € Mgnl) ,
malized differentials having poles only at one marked point (k = 1). By the definition of the real
normalization, the imaginary part ® = Im F' of an Abelian integral F' of such a differential is a
single-valued harmonic function on I'\ p;. The level curves ®;, := {p € I': ®(p) = h} of this func-
tion are cycles that are smooth everywhere except at p; and at ¢, if h = f; = ®(gs). For h large
enough (h > fp), the level curve is the union of n “loops” in a small neighborhood of p;. The real
part of F'(p) is multivalued. Nevertheless, everywhere except at the zeros of ¥, the directions along
which the real part remains (locally) constant is well defined. We refer to the integral lines of these
directions as imaginary rays. It will be always assumed that they are oriented so that ® increases
in the direction of orientation. In a small neighborhood of p; one can always fix a single-valued
branch of F'. If the imaginary ray going from a point p does not pass through the zeros of ¥, then
the values of F' at the points of the ray belonging to the neighborhood of p; uniquely determines
the real part of F(p). This allows one to define a single-valued holomorphic branch of F(p) on
'\ X, where X is the graph whose edges are imaginary rays that begin at p; and at zeros of W
and end at zeros of W. By continuity F' can be extended to I' cut along the edges of . The limits

that is, the case of real nor-
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F*(p), p € ¥, on the two sides of each cut are generally distinct. The discontinuity of F, i.e., the
“jump” function j(p) := F*(p) — F~(p), is constant on each of the edges.

Let D be an open subset of ./\/l;nl) where the differentials have simple zeros with “distinct” real
parts of critical values. The latter means that the imaginary rays emanating from any zero of the
differential do not contain any other zero, i.e., they end at p;. In this case the graph has 2g+n—1
connected components Y. Each component is the union of two imaginary rays, both beginning at
p1 and ending at one of the zeros g5 of W. Along these rays the imaginary part ® increases from
—o0 to fs, i.e., each of the zeros ¢s of W is a “tip” of X5. At the same time, for each zero g5, there
are two imaginary rays beginning at ¢s; and ending at p;. Along these rays ® increases from fs to
+00. Reversing the orientation of one of these rays, we can define a closed oriented cycle o on the
curve.

Although the differential W is singular on oy, the period of ¥ corresponding to the homology
class [os] € H1(I',Z) of o5 is well defined (recall that ¥ has no residue at pp). It equals

Ty ;:}{ ]\I’:r;—rg, (12)

where 7! and r2 are the values of the real part of F(qs) asymptotically defined along each of the
rays. Notice that on the edges of the graph ¥ the jump function equals j(p) = £, p € Xs.

Remark 3.1. In the simplest case of real normalized differentials having one pole of the second
order (n = 1) the construction of dual cycles looks especially attractive. In this case, if ¥ has
simple zeros with distinct real parts of critical values, then it defines precisely 2¢g dual cycles on the
corresponding curve. It is easy to see that each of the dual cycles represents a nontrivial homology
class. Indeed, for n = 1, the Abelian integral F' of ¥ has a simple pole at p;. Therefore, the period
of U over [os] never vanishes: w5 # 0. Hence the cycle is not homologous to zero: [o5] # 0. We
show below that the classes [os] are linearly independent and thus determine a basis in Hi(I',7Z)
(see Lemma 3.2 below).

At the points (I', V) where ¥ has a multiple zero or the integral F' has critical values with
“coinciding” real parts the structure of the graph ¥ may be combinatorially nontrivial. Still, for
each zero gs of W, there are only finitely many (arbitrarily ordered) semi-infinite paths ! along
imaginary directions which start at gs and end at p;. A pair of such paths determines an oriented
cycle 0 =~ U (—92), i < j.

Lemma 3.2. The homology classes (0] of dual cycles generate the homology group Hy(T',Z).

The proof of the lemma is yet another exercise in the application of the argument used in [12]
and, in a slightly generalized form, in the proof of Theorem 2.6. Indeed, suppose that the classes
[0¢] defined by the differential ¥y on a curve I'y do not generate Hy(T'g,Z); then by Theorem 1 in

[12] there is a one-parameter deformation (I'y, ¥;) € M;nl) such that the derivatives of the critical

values ¢, and the periods 77 along this family vanish at t = 0.

Recall once again that locally it can always be assumed that on each of the curves I'; one
has a fixed basis A;, B; for cycles. As above, let w;(t) be the basis of holomorphic differentials
on I'y dual to A;. Let us fix a branch of the corresponding Abelian integral v; in the sectors of
a neighborhood of p; where & — +o00. Analytically continuing this branch along imaginary rays
(with reverse orientation), we can define a single-valued branch of v; on I'; \ ¥; and then extend
it by continuity to both sides of each edge of ¥;. The jumps of v; on the edges of the graph are
linear combinations of the periods of w; over dual cycles. As before, consider the partial derivative
Ow;(F,t) with fixed F' at t = 0. If the derivatives of ¢, and the jumps of F' on the edges of ¥
vanish (as assumed), then the derivative dyv;(F,t)|;=o is holomorphic on I'g \ £y and has constant
jumps on Y. Therefore, the differential of this expression is a holomorphic differential on I'y with
zero A-periods. Hence it is identically zero. It follows that the matrix of b-periods of w; does not
change along the family at ¢ = 0. The remaining steps of the proof are identical to those in [12].
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Let 7% be the “real values” of F(gs) defined asymptotically by the paths 4. In the general case,
the jumps j(p) on the edges of ¥ are linear combinations with integer coefficients of the periods of
W over the dual cycles, which are

T ::j{_ U =rl—rl (13)
[o]

4. Proof of Arbarello’s Conjecture

To motivate the further steps in the proof of Arbarello’s conjecture, we outline a new proof of
Diaz’ theorem using real-normalized differentials with one pole of the second order.

Diaz’ theorem revisited. Let ¢, be a “weighted critical value” of I’ defined by the formula
¥ . i
¢s= "\, |ms|=min{|7| # 0}, (14)
|7s] Y
where the minimum is taken over a finite set of nonzero periods dual to the critical value. As
emphasized in Remark 3.1, at least one of the periods dual to a critical point of a real normalized
differential with one pole of the second order does not vanish. Therefore, ¢, is a well-defined local
function on Méli The imaginary parts of the weighted critical values gs = Im ¢4 are independent
of the paths of integration and depend only on the numbering of the critical points. Let us arrange
them in decreasing order:

9o = g1 =0 = g2g-2 = G291, (15)

Then each of the functions gs; can be seen as a well-defined function on M;lg (cf. Remark 2.8). It

(1)

is continuous on the open set D C M 1,
with distinct real parts of critical values. (Recall that the latter means that the imaginary rays
emanating from a zero of the differential do not contain any other zeros.) Moreover, gs restricted
to LN D is a piecewise harmonic function.

where the corresponding differentials ¥ have simple zeros

From (14) it is easy to see that the value of gs at any point of M;lg is equal to the maximum
limit at this point of values of g5, on D. Therefore, g5 is an upper semicontinuous function on Mgli
Lemma 4.1. The function gg restricted to any complex subvariety of L has a local maximum

if and only if it is constant on this subvariety.

Proof. By the definition of £, the periods ms are constant on £ N D; therefore, on LN D the
function gg, being the maximum of harmonic functions, has local maximum only if it is constant
(subharmonic). In order to show that gy has no local maximum at the points of discontinuity, it
is sufficient to notice that the “directions” of its discontinuity which correspond to a change of
the real part Re g are always transversal to the directions along which the imaginary part Im g
changes.

Let X be a compact complex cycle in M. Its preimage ¥ under the forgetful map MS% — M,
is noncompact, but the quotient space Z = Y/R, is compact. The function g is homogeneous with
respect to multiplication of real normalized differentials by positive real numbers; thus, it determines

an upper semicontinuous function g, on ’Pg<’11> . Since Z is compact, there is a point (I'g, [¥g]) of Z

where the restriction of g on Z attains its maximum. Let us fix a preimage (I'g, Uy) € Mff{ of
this point. At this preimage the function gg attains its maximum on Y.

Let £ be the leaf of the big foliation passing through (T'g, Ug) € ./\/lélg At this point the function
go restricted to LNY has a local maximum. By Lemma 4.1 it must be constant on LNY".

Let Yy € Y be a preimage of the compact set Zy C Z at which g{ takes its maximum value. On
this compact set the second function ¢}/ must attain its maximum. As shown above, Yj is foliated
by the leaves £ N Y. On these leaves the second function ¢ is subharmonic, i.e., it must be a
constant. Continuing by induction, we see that all functions g5 are constants on £ NY . If the g,
are constants, then the critical values ¢, are (locally) constant on £NY as well. The functions
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s are local coordinates on L. Therefore, £LNY must be at most zero-dimensional. But if X is of
dimension greater that g — 2, then £NY is at least one-dimensional. This contradiction completes
the proof of Diaz’ theorem.

The proof given above is almost a carbon copy of the proof of Diaz’ theorem given in [7] with
the only (but important) modification consisting in the replacement of critical values by weighted
critical values. The proof of Arbarello’s conjecture follows mainly the same line of reasoning but
requires further modifications for the following reasons: (a) the periods over cycles dual to critical
values of a real normalized differential having a pole of order n+1 > 2 may vanish; (b) only part of

the critical values of such a differential have finite limits on smaller strata ./\/lfﬁ). Notice that these

two issues are interrelated, at least in the neighborhood U, of Mgr{), m < n. Indeed, for sufficiently

small €, periods over the cycles dual to the critical points belonging to a small neighborhood of p;
are always zero, because the cycles themselves are homologically trivial.

For further use, let us introduce the corresponding stratification on M;nf First, for (I',¥) €

M;ill), consider the subset S of critical points of ¥ such that at least one of the periods of ¥ over

the dual cycles ol is nonzero, i.e., gs € S if there exists a 7 #0.

Definition 4.2. The stratum Sj of M;nf is defined to be the locus where ¥ has exactly k
zeros with nonvanishing periods over the dual cycles, i.e., |S| = k.

At the points of S we normalize the critical values of the corresponding differential by the
condition ques ws = 0. As before, the imaginary parts Im¢s, s € S, of the weighted critical
values (14) can be arranged in decreasing order:

wg > > wp_y (16)

After that wf can be seen as well-defined upper semicontinuous functions on Sy. The functions w;?

are continuous on S ND, and wlg is subharmonic on S N L.

On a leaf £ the periods of ¥ over any continuously varying cycles are constants. Therefore, on
L, the locally constant function |S| is discontinuous only at those points at which one of the zeros
qs of the corresponding differential “escapes” from .S under a variation which makes the real part
of its critical value different from the others. Notice that if ¢s leaves S under a variation moving
it to one side of the edge, then it remains in S under variations moving it on the other side of the
edge. Therefore, the intersection £ N S; of the leaf with the closure of S; is a complex domain
with boundary. Notice also that the imaginary part of the vanishing critical value should be less
than the imaginary part of one of the critical values corresponding to the top vertex of the graph
edge, which the vanishing critical value intersects under the variation. At the same time, the set
of nontrivial periods g5 (before the variation) is a subset of the periods dual to the top vertex of
the edge. Hence the vanishing weighted critical value satisfies the inequality Im ¢ < wé. Thus, at
the common points of the boundaries of £LN S, and £ NSy the functions wlg and wé“ coincide,
i.e., on each leaf £ of the foliation there is a well-defined subharmonic function Woﬁ. It should be
emphasized that the above argument is valid only when consideration is restricted to the leaves of
the foliation. Under variations changing periods the vanishing critical value may tend to infinity,
and there may exist no globally defined upper semicontinuous function Wj.

Now, we are ready to present the proof of the main theorem.

Theorem 4.3. Any compact complex cycle in My of dimension at least g —n must intersect
the subvariety W, C My of smooth algebraic curves of genus g having a Weierstrass point of order
at most n.

Proof. Let X be a complex compact cycle in M, that does not intersect W, . Then its preimage

Y under the forgetful map M;nf — M, does not intersect the leaf Ly C ./\/lf;f> corresponding to

exact differentials. Therefore, for each point (I', U') € Y, the corresponding set S of critical points
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is always nonempty. Let ko be the minimum value of |S| on Y, i.e., the minimum number such
that Y* = S, NY is nonempty.

For arbitrary k, the set Y* is nonclosed, partly because of the vanishing of some periods at
limit points. Although kg is the minimal number of critical values with nonzero dual periods, the
subset Y% may be nonclosed under variations along leaves. The limit points of Y*0 not belonging
to Y*0 are boundary points of domains Y* N £ with k& > ko which contain “vanishing” critical
values. As shown above, the function wgo has a continuous extension to the closure Yo,

The quotient space Zko = Yk /R, is compact. The function wy induces an upper semicon-
tinuous function w6 on Zko which must attain its maximum at some point. Let £ be the leaf
of the foliation passing through any preimage of this point in Y*0. The intersection £ N Y%*o is a
complex domain with boundary. The argument used in the proof of Lemma 4.1 shows that wlgo is
subharmonic both at the interior points of the domain and on its boundary. Therefore, wg must
be constant on £ N Y%ko,

If it is a constant, then the next function w’fo on £LNY*o is subharmonic and must be a constant
from the same considerations. Continuing by induction, we see that all functions w, are constant
on LNY*0, If the w0 are constant, then the corresponding critical values ¢, ¢s € S, are constant
as well.

Consider the set Yy C Y for which among the zeros of the corresponding differential there is a
ko-tuple of zeros of ¥ such that (a) the ordered set wg > - -+ > wy, of the imaginary parts of the
critical values remain constant along the corresponding leaf of the foliation and (b) the imaginary
part of the first critical value is normalized by the condition fy = 1. Notice that this normalization
fixes the lifting of Yo/Ry C Z =Y/R. into Y.

The set Yp is compact (and nonempty, as shown above). Therefore, the continuous function
f: maxges Im ¢ restricted to Yy attains its maximum. (Recall that, by definition, the zeros g¢s,
s € S, of the differential ¥ are bounded away from p;, and therefore the function f is bounded
on Y.) The function f restricted to any leaf of the foliation is subharmonic. Hence the same
argument as above proves that on YyN L all critical values having nonzero dual period are constant.

Suppose that at least one of the remaining critical values ¢s, gs ¢ S, is nonconstant on £NYj.
Then, “moving” along £ N Yy, the corresponding zero ¢s ¢ S must cross an “unmovable” edge
of the graph ¥ with a nontrivial jump on it. After such a crossing at least one period dual to ¢
becomes nonzero. If ¢; becomes constant after crossing the edge of the graph, then it must be
constant before the crossing. Thus, all critical values are constant on £ N Y. By the definition of
Yo we have LNYy = LNY . If the p, are constants, then £LNY is at most zero-dimensional, which
contradicts the assumption that X has dimension at least g — n. This completes the proof of the
theorem.
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