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FOLIATIONS ON THE MODULI SPACE OF CURVES,

VANISHING IN COHOMOLOGY, AND

CALOGERO-MOSER CURVES

SAMUEL GRUSHEVSKY AND IGOR KRICHEVER

Abstract. Using meromorphic differentials with real periods, we
show that a certain tautological homology class on the moduli
space Mg of smooth algebraic curves of genus g vanishes. The van-
ishing of the entire tautological ring for degree g−1 and higher, part
of Faber’s conjecture [7], is known in both homology and Chow —
it was proven by Looijenga [34], Ionel [18], and Graber-Vakil [13],
and the class that we show vanishes is just one such tautological
class. However, our approach, motivated by the Whitham pertur-
bation theory of the soliton equations, is completely new, elemen-
tary in the sense that no techniques beyond elementary complex
analysis are used, and also leads to a natural non-speciality conjec-
ture, which would imply many more vanishing results and relations
among tautological classes.

In the course of the proof we define and study foliations of Mg

constructed using periods of meromorphic differentials, in a way
providing for meromorphic differentials a theory similar to that de-
veloped for abelian differentials by Kontsevich and Zorich [19, 20].
In our setting we can construct local coordinates near any point of
the moduli space, while for abelian differentials only coordinates
along the strata with a fixed configuration of zeroes are known.
The results we obtain are of independent interest for thestudy of
singularities of solutions of the Whitham equations.

1. Introduction

In this paper we use the ideas of Whitham theory, in particular
meromorphic differentials with real periods (which we used in [15] to
give a new direct proof of the theorem of Diaz [4]), to construct and
study certain foliations of the moduli and Teichmüller spaces of Rie-
mann surfaces together with a meromorphic differential, and to obtain
a vanishing result in the cohomology ring of the moduli spaces Mg,n
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of Riemann surfaces of genus g with n punctures (aka algebraic curves
of genus g with n marked points).
The vanishing result we prove is theorem 2.8 — that a certain tau-

tological class vanishes. This result is not new — it is a corollary of
Faber’s [7] vanishing conjecture for the tautological ring, proven, both
in cohomology and Chow, by Looijenga [34], Ionel [18], and Graber-
Vakil [13]. However, our investigations lead us to a non-speciality con-
jecture (conjecture 3.18): the statement that the divisor of common
zeros of two meromorphic differentials of the second kind (with a sin-
gle double pole at a fixed point) and all periods real is never a special
divisor. If true, this conjecture would imply the vanishing of many
more tautological classes covered by Faber’s conjecture, but would also
yield further geometric vanishings, which may be new — see remark
3.19. The vanishing results are primarily algebro-geometric in nature;
the constructions with meromorphic differentials that we use are in
a way a generalization of those considered in Teichmüller theory for
abelian differentials; and the motivation for our work comes from the
Whitham perturbation theory in integrable systems — we thus give an
introduction and motivation for our work from these three perspectives.

Algebraic geometry viewpoint — the result. The tautological
ring of the moduli space of curves has been a central object of study in
recent years. We recall that an intrinsic definition (due to Faber and
Pandharipande [8]) of the tautological ring is as the minimal system of
subalgebras of the Chow rings R∗(Mg,n) ⊂ CH∗(Mg,n) for all g and
n that is closed under pushforward and pullback under all forgetful
maps Mg,n+1 → Mg,n and all gluing maps Mg1,n1+1 × Mg2,n2+1 →
Mg1+g2,n1+n2

(one can similarly define the homology tautological rings

RH∗(Mg,n) ⊂ H∗(Mg,n), and this is the setup in which we work).
Much of the recent study of the tautological ring has been motivated

by Faber’s conjectures [7] on the tautological ring. In particular Faber
conjectured that the tautological ring R∗(Mg,n) looks like the homology
ring of a compact complex manifold of dimension g− 2+ n, i.e. that it
is a Gorenstein ring with socle in dimension g − 2 + n.
Some parts of this statement have been proven, we refer to [38] for

an overview of the status. In particular the vanishing part of Faber’s
conjecture — that tautological classes on Mg,n of degree higher than
g − 2 + n+ δ0,n vanish — has been proven in various ways in different
contexts by Looijenga [34], Ionel [18], Graber-Vakil [13]. From the
point of view of algebraic geometry, the main result that we prove is
theorem 2.8: that the tautological class

∏
(ψ2

0+ψ
2
i ) onMg,1+g vanishes.

This result is an easy corollary of a general conjecture 3.18, which, if
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proven, would also yield further vanishing results, some of which do
not seem to be immediate corollaries of Faber’s vanishing conjectures.

While the tautological rings are defined to be subrings of the Chow,
one can also ask similar questions for homology. In particular one can
obtain bounds for the homological and homotopical dimension of Mg,n

(see Mondello [36] for results and more references). One approach to
proving such vanishing results was proposed by Arbarello [1] who con-
structed for Mg a stratification that is conjectured to be affine. More
generally, Roth and Vakil [37] studied possible approaches to obtaining
affine stratifications of Mg. One can ask for an even stronger property:
thatMg admits a cover by at most g−1 affine open sets. The existence
of such covers is conjectured by Hain and Looijenga [16]; for genus up
to 5 such stratifications were recently constructed by Fontanari and
Looijenga [10], and covers — by Fontanari and Pascolutti [11], but no
affine stratificaion, and not even a conjectural cover, is known beyond
genus 5.
The approach we take here is to relax the condition of having an

affine stratification, and construct what can be thought of roughly as
an “affine foliation” of Mg,1 (which is tangentially complex, and trans-
verse real-analytic, i.e. each leaf is a complex submanifold, while the
set of leaves is locally parameterized by real-analytic coordinates). A
variation of this construction was used in our work [15] to prove Diaz’
[4] bound of g − 2 for the dimension of complete subvarieties of Mg.
In this paper we study the leaves of our foliation in more detail, de-
scribing their local structure and defining coordinates on them. This
is an analog of a construction of a stratification of the moduli of curves
with a holomorphic differential, and some closed leaves of our folia-
tion correspond to spectral curves of the Calogero-Moser integrable
system. Our proof, though motivated by integrable systems, only uses
elementary complex analysis on Riemann surfaces. The possibility of
using our techniques to try to construct complete subvarieties of Mg,n

or interesting cycles representing non-zero cohomology classes remains
open.

Teichmüller theory viewpoint — the construction. In the study
of geometry and dynamics of the Teichmüller space the moduli space
of pairs consisting of a Riemann surfaces Γ (we follow the integrable
systems convention for this notation) and an abelian differential ω on
it has recently played a fundamental role. We denote this space Hg

— it is the total space of the rank g Hodge bundle — the complex
vector bundle over Mg, with a fiber over a point Γ being the space
H1,0(Γ,C) of abelian differentials on Γ (with the 0-section removed if
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the differential is required to be non-zero). The space Hg is naturally
stratified, with the open strata Hg(m) = Hg(m1, . . . , mn) form1+ . . .+
mn = 2g− 2 being the loci where the multiplicities of the zeroes of the
differential are equal to (m1, . . . , mn) (so that in particular the stratum
Hg(1, . . . , 1) is open in Hg). The structure of these strata was studied
by Kontsevich and Zorich in their foundational works [19, 20].
It is well-known in Teichmüller theory [6, 17] that if p1, . . . , pn denote

the zeroes of an abelian differential ω, then the periods of ω over a basis
of relative homologyH1(Γ\{p1, . . . , pn},Z) give local coordinates on the
stratumHg(m). Among these periods, one commonly distinguishes the
absolute periods, i.e. the integrals of ω over H1(Γ,Z), and the relative
periods, a basis for which is given for example by

∫ pi

p1
ω for i = 2 . . . n

(a more symmetric choice is to take
∫ pi

p
ω for i = 1 . . . n, choosing p

in such a way that the sum of the n relative periods is zero). The
foliations defined using these periods have been considered in various
works, including [35]. The action of SL(2,R) on Hg, defined by acting
on the flat structure defined on Γ by ω, has been a central object of
study in recent research on dynamics and geometry of the Teichmüller
space — we refer to the survey [39] for a more detailed discussion. One
known difficulty in studying the space Hg is that is it not known how to
naturally extend the local coordinates on Hg(m) to local coordinates
on Hg (the difficulty is that the number of zeroes of the differential
varies, and it is not clear how to account for this).

The main tool that we use in this paper are meromorphic differentials
with prescribed singularities. While in our previous work [15] we used
meromorphic differentials of the third kind — with two simple poles,
in this paper we use differentials of the second kind — with one double
pole (and thus with no residue). Generalizing the case of abelian differ-
entials, one can consider instead of the total space of the Hodge bundle
the total space of the bundle over Mg,1 of meromorphic differentials
with a second order pole. This means that over a point (Γ, p0) ∈ Mg,1

the fiber is the space of meromorphic differentials Ψ having a double
pole at p0, and holomorphic on Γ \ {p0}. Algebro-geometrically, this
means that Ψ ∈ H0(Γ, KΓ + 2p0). We denote by ΩMg,1 the total
space of this bundle — it is a complex rank g + 1 vector bundle over
Mg,1 (it would be interesting to try to understand a suitable action of
subgroups of SL(2,R) on ΩMg,1, but this is beyond the scope of the
current work).



FOLIATIONS ON Mg, AND CALOGERO-MOSER CURVES 5

Similarly to the case of abelian differentials, one can study the strata
in ΩMg,1 with prescribed configurations of zeroes, on which the abso-
lute and relative periods (now together with extra parameters corre-
sponding to a suitably normalized singular part of the expansion of Ψ
near p0 — see next section for the precise definition) would serve as
local coordinates. While in some ways the situation of a meromorphic
differential is a generalization of that of an abelian (holomorphic) dif-
ferential, there is one striking difference, which in the framework of the
finite-gap theory was observed in [23] (and perhaps first, in the case of
differentials of the third kind, by Maxwell in his study of electromag-
netism).

Indeed, given any prescribed singular part of a meromorphic dif-
ferential of the second kind at p0 (or more generally, any prescribed
collection of singular parts at poles, with all residues imaginary and
summing to zero), on any Riemann surface Γ there exists a unique dif-
ferential of the second kind with this singular part and all (absolute)
periods real. This is to say that within ΩMg,1 the subset where all
absolute periods are real maps 1-to-1 onto the C∗ bundle over Mg,1

corresponding to prescribing the singular part of Ψ. We refer to [15]
for more details and discussion. This situation is in stark contrast to
that of abelian differentials: all imaginary parts of absolute periods of
an abelian differential are zero if and only if the differential is identi-
cally zero. In this paper, we will work with a pair of differentials with
real periods, with a single double pole, where their singular parts differ
by multiplying by

√
−1.

While absolute and relative periods give local coordinates on Hg and
ΩMg,1, only for the case of meromorphic differentials it appears pos-
sible to use the above to construct local coordinates on the moduli
space Mg,1 itself. Fixing the values of the (absolute) real periods of
such a meromorphic differential defines a foliation of Mg,1 (not just
of the Teichmüller space, which would be much easier); the leaves of
this “big” foliation are known to be smooth. Taking two linearly in-
dependent meromorphic differentials with real periods and fixing the
absolute periods of both, one obtains a “small” foliation. Motivated by
interpreting an everywhere dense set of the leaves of the “small” folia-
tion as normalizations of spectral curves of the Calogero-Moser system
(see below), we make conjecture 3.14, that all small leaves are in fact
smooth. It turns out that potential singularities of the small leaves are
controlled by the common zeroes of the two differentials, and, if true,
this conjecture would imply that the divisor of common zeroes is non-
special, conjecture 3.18 (one could attempt to apply similar techniques
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to study singularities of plane curves; this is currently under investiga-
tion). While we cannot prove either conjecture, we use our description
of the tangent spaces to the leaves of foliations, and their intersections
with the common zero sets, together with the results of [15] on de-
generation of differentials with real periods, to obtain a bound on the
number of common zeroes, by a degeneration transverse to the leaves.
This implies the vanishing result for the homology classes these loci
represent.

Remark 1.1. Along the way of our study of meromorphic differentials
we use local real-analytic coordinates si,j (introduced in [31], see for-
mula 9 below) near any point of Mg,1, irrespective of the configuration
of zeroes of the meromorphic differential. It appears that this construc-
tion can also be made to work for abelian differentials, thus solving the
problem of constructing local coordinates on Hg near a point on any
stratum Hg(m) (not just along the stratum, but on the whole space).

Remark 1.2. It would be interesting to see if our methods can be
applied to study the local structure of the strata Hg(m) and their
degenerations, or perhaps of the leaves of the corresponding foliation by
absolute periods of abelian differentials. While algebro-geometrically
one can describe the local deformation space to Hg(m), it seems that
the tangent spaces to the leaves of the foliations, and the local structure
near the boundary of Hg(m) where the zeroes come together are more
subtle and have not yet been completely explored — see [21] for recent
results in this direction.

Integrable systems viewpoint — the motivation. Meromorphic
differentials with real periods, on which our approach is based, are
central to various constructions in Whitham theory, are one of the main
ingredients in string topology, and were used in our previous work [15]
to give a proof of the Diaz’ bound. From the point of view of integrable
systems what we do can be interpreted as studying singularities of exact
solutions of the Whitham equations. Indeed, these solutions are defined
(implicitly) by an explicit set of functions on the moduli space of curves
with two differentials. The set of such functions, called “Whitham
times”, is degenerate exactly on the loci where these differentials have
common zeros. Therefore, our study of the tangent spaces to the leaves
of foliations at these loci is important for the further study of possible
types of singularities of solutions of the Whitham equations. This
problem is of its own interest and we plan to address it elsewhere.
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The structure of the paper, and of the proof. In section 2 we
review (following our earlier work [15]) the constructions of meromor-
phic differentials with real periods. We then construct (real-analytic)
loci Dν

n ⊂ Mg,n+1 obtained by prescribing the multiplicities of common
zeroes at p1, . . . , pn of a pair of R-linearly-independent differentials Ψ1

and Ψ2 of the second kind with double poles at p0 and all periods real.
In theorem 2.6 we compute the cohomology classes represented by these
loci, and our main vanishing result, theorem 2.8, proven in section 4,
is that one of these loci is empty, thus giving a zero homology class.
We believe that much more is actually true, and make conjectures

about the precise geometry of the situation. In section 3 we define,
extending the ideas of [15], two real-analytic foliations of the moduli
spaces, with smooth complex leaves denoted L and L′, corresponding
to fixing (absolute) periods of Ψ1 and Ψ2, respectively. The main re-
sults are propositions 3.5 and 3.8, computing the tangent spaces to the
leaves of the foliation in terms of certain differentials on a cut Riemann
surface (equivalently, on the universal cover), in a way reminiscent of
Rauch’s variational formula, and proving that the lociDν

n, if non-empty,
intersect any leaf L (or L′) transversely.
The leaves L and L′ of the two foliations are smooth, but we also

make conjecture 3.14: that the leaves of the intersection of the two foli-
ations S := L∩L′ are also smooth (and also transverse to the common
zero sets Dν

n of the differentials). It turns out that this conjectured
smoothness is equivalent to conjecture 3.18, that the divisor of com-
mon zeroes of Ψ1 and Ψ2 is never special. While we do not prove either
conjecture, in section 4 we use the description of the tangent space to
prove, by degeneration, that the differentials Ψ1 and Ψ2 cannot have
g common zeroes, which implies the vanishing result 2.8. The descrip-
tion of the behavior under degeneration of the zeroes of meromorphic
differentials with real periods that appears here may be of independent
interest.
In section 5 we review the theory of the Calogero-Moser integrable

system, for motivation, and obtaining new results that are not directly
used in the proof of our vanishing theorem. The main result we prove
in this section is proposition 5.9, showing that a certain dense set of
algebraic leaves of the small foliation arise precisely as the loci of nor-
malizations of spectral curves of the Calogero-Moser system.
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2. Meromorphic differentials of the second kind, and

loci representing products of ψ classes

In this section we recall the construction of meromorphic differentials
with prescribed singularities and all periods being real. From the point
of view of integrable systems, these constructions are motivated by the
Whitham perturbation theory of integrable systems, see [24, 25, 31, 32].
We follow the notation of [15], where many of these constructions were
used, specializing from the case of general meromorphic differentials to
differentials of the second kind. Algebro-geometrically, this means we
are considering sections of H0(Γ, KΓ + 2p0) with prescribed jet of the
singularity at p0, with all periods real.

Definition 2.1. Let Mg,1+n(1, 0, . . . , 0) denote the moduli space of
smooth algebraic curves Γ of genus g with labeled marked distinct
points p0, . . . , pn ∈ Γ, together with a 1-jet of a local coordinate at
p0. We recall that explicitly choosing a 1-jet of a local coordinate
near p0 means on a small neighborhood U ⊃ p0 choosing a coordinate
z : U → C such that z(p0) = 0, and identifying two local coordinates
z and z′ if z′ = z + O(z2). Notice this identification is equivalent to
identifying if dz′

z′2
= dz

z2
+ O(1)dz, and thus the chosen 1-jet of a local

coordinate determines uniquely a “singular part with a double pole”,
which is to say a local form dz/z2 of a meromorphic differential near
p0.
Algebro-geometrically such a 1-jet of a local coordinate can be thought

of as a non-zero cotangent vector, z ∈ T ∗
p0
Γ \ {0}, and the space

Mg,1+n(1, 0, . . . , 0) is then the total space of the cotangent bundle to
Mg,1+n at the first point, with the zero-section removed.

Definition 2.2. Similarly, define Mg,1+n(2, 0, . . . , 0) by fixing a 2-jet
of a local coordinate: identifying two local coordinates z and z′ if z′ =
z + O(z3). The space Mg,1+n(2, 0, . . . , 0) is then the total space of an
affine bundle of complex dimension one over Mg,1+n(1, 0, . . . , 0). This
is just a way of saying that a given 2-jet of a local coordinate defines a 1-
jet of a coordinate, and that for a given 1-jet of a local coordinate there
are C different choices for its extension to a 2-jet (in fact the bundle of
2-jets is an extension of the cotangent bundle by the cotangent bundle,
but we will not need this).

As it was pointed out in [23] (see [15] for details), for any Riemann
surface with marked points, and for any collection of singular parts at
these marked points, with all residues imaginary, and summing to zero,
there exists a unique meromorphic differential with these singular parts
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and all periods real. Since for differentials of the second kind there can
be no residue at the only pole, we get

Definition 2.3. For any (Γ, p0, . . . , pn, z) ∈ Mg,1+n(1, 0, . . . , 0) let
Ψ1,Ψ2 ∈ H0(Γ, KΓ + 2p0) be the unique differentials of the second
kind such that all their periods are real and their singular parts at p0
are dz

z2
and idz

z2
, respectively.

The existence and uniqueness mean that Ψi are two real-analytic
nowhere vanishing (single-valued) sections of the total space of the
bundle of differentials of the second kind over Mg,1+n(1, 0, . . . , 0). In
what follows, for technical reasons we will need to work primarily on
Mg,1+n(2, 0, . . . , 0), and by abuse of notation we will also denote Ψi

the corresponding differentials of the second kind over it. We will now
use Ψ1 and Ψ2 to define the main tools of our study.

Definition 2.4. For ν = {ν1, . . . , νn} ∈ (Z+)
×n we let E :=

∑
νipi be

the corresponding divisor on Γ. We then denote D̂ ν
n ⊂ Mg,1+n(2, 0, . . . , 0)

the locus where Ψ1 and Ψ2 both vanish at each pj to order at least νj
(i.e. Ψj ∈ H0(KΓ + 2p0 − E)), and let D̂ ν ⊂ Mg,1(2) be the image of

D̂ ν
n under the forgetful map. In words, D̂ ν is the locus where Ψ1 and

Ψ2 have at least n distinct common zeros on Γ of common multiplicities
ν1, . . . , νn.

Note that the space of meromorphic differentials of the second kind,
with a second order pole at p0 and all periods real, is a two-dimensional
real vector space, with an R-basis given by Ψ1 and Ψ2 (to express
any other such differential as their linear combination, it is sufficient
to express the singular part as an R-linear combination of dz/z2 and
idz/z2). Thus if Ψ1 and Ψ2 both vanish on E, so does any differential
with a double pole at p0 and all periods real.

It follows that the defining conditions for D̂ ν
n are independent of the

choice of the local coordinate at p0, and thus D̂ ν
n is the preimage of

some locus D ν
n ⊂ Mg,1+n. Similarly D̂ ν is the preimage of some locus

D ν ⊂ Mg,1. To simplify notation we will drop the ν if all multiplicities
are equal to one.

Remark 2.5. It is natural to ask what the dimensions of these loci of
common zeroes are. Since Ψj depend on the moduli real-analytically,
all of the loci we defined are real-analytic and not complex, and thus
though we know the defining equations, we have no a priori lower or

upper bounds on their dimensions. Below we will in fact show that D̂n

for n < g has expected dimension (real codimension 2n), while D̂g is
empty, contrary to expected codimension.
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The loci Dν
n, while defined by real-analytic conditions, still repre-

sent cohomology classes, which we will now compute. Instead of the
Deligne-Mumford compactification, it is easier for us to work on C1+n

g ,
the (n + 1)’th fiberwise product of the universal curve (so the fiber of
the map C1+n

g → Mg over Γ ∈ Mg is Γ×(1+n)). This is to say that on

C1+n
g the marked points are allowed to coincide. Following [7],[34], we

denote by Ki the class of the universal cotangent bundle to C1+n
g at pi

— this is the analog of the class ψi on Mg,1+n. It is easier to work with
classes on C1+n

g in particular because by definition the pullback of Ki

from Ck
g to Ck+1

g under the forgetful map is equal to Ki, see [7]. We also

denote by Dij ⊂ Ck
g the divisor where the points pi and pj coincide, and

we finally note that as a set we have Mg,2 = C2
g , though the objects

parameterized by these are different.
We note that our differentials Ψi are in fact defined over the bundle of

jets of the universal coordinate over Mg,1 = C1
g , and thus their common

zero loci D ν
n are well-defined on C1+n

g (where they are closed).

Theorem 2.6. The cohomology class of the locus D ν
n ⊂ C1+n

g is

[D ν
n ] =

n∏

i=1

(K2
0 +K2

i + 2K0D0i)
νi.

Proof. Let us first handle the simplest case — the locus D1, where on C2
g

(which we consider as the partial compactification of Mg,1+1 where the
two points are allowed to coincide) the two differentials Ψ1 and Ψ2 with
double poles at p0 have a common zero at p1. Since our differentials Ψi

and their zero loci are well-defined on Mg,2(1, 0), we will work there,
using the classes ψ0 and ψ1 and δ01 instead ofK0, K1, D01. By definition
Ψi are defined as sections of the bundle of meromorphic differentials
over Mg,1+1(1, 0), which is a C∗-bundle over Mg,1+1. The homology
ring of the total space of a C∗ bundle is the quotient of the homology
ring of Mg,1+1 by the Chern class of this bundle, which is to say by the
class ψ0.
Considered over Mg,1+1(1, 0), the value of the differential Ψi at p1

is the value of a holomorphic differential on Γ at p1, that is a section
of ψ1, and thus the class of the locus D̂1 ⊂ Mg,1+1(1, 0) is equal to

ψ2
1. Since D̂1 and ψ2

1 on Mg,1+1(1, 0) are both pullbacks from Mg,1+1,
it follows that the class of the locus D1 ⊂ Mg,1+1, in the quotient of
the cohomology ring by the class ψ0, is equal to ψ

2
1. Since by [2] it is

known that all cohomology classes on C2
g in complex codimension 2 are

tautological, it follows that there we must have

(1) [D1] = ψ2
1 + aψ2

0 + bψ0ψ1 + cψ0δ01
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for some a, b, c ∈ C, and we now need to compute the coefficients.
It follows from the reciprocity law that D1 is symmetric in p0 and

p1. To prove this, we let Ξ be a meromorphic differential of the second
type, with a second order pole at p1 and holomorphic elsewhere, with
all periods real. We denote by Fi(p) =

∫ p

p1
Ψi the integrals of the mero-

morphic differentials — these are meromorphic functions on Γ cut along
a basis for cycles in H1(Γ,Z). By the reciprocity law for differentials
of the second kind (see [14, p.241]) it then follows that the sum of the
residues 2πi

∑
Res(FiΞ) is equal to some linear combination of periods

of Ψi and Ξ. Note, however, that since Ψi vanishes at p1, the function
Fi will have a second order zero at p1, and thus the meromorphic differ-
ential FiΞ will not have a residue at p1. It thus follows that the residue
of FiΞ at p0 must be purely imaginary. However, locally near p0 we
have F1 = −dz/z + O(1) and F2 = −idz/z + O(1), and thus for the
residues we have Resp0(F1Ξ) = Ξ(p0) and Resp0(F2Ξ) = −iΞ(p0). For
both of these to be purely imaginary then implies Ξ(p0) = 0, i.e. any
differential with a double pole at p1 and all periods real vanishes at p0.
Therefore the class [D1] must be symmetric in p0 and p1, which implies
a = 1 in (1) — note that ψ0δ01 = ψ1δ01.
Note now that if the points p0 and p1 collide on C2

g , which is to say
that on the universal family over the partial compactification Mg,1+1

they go onto a new rational component, the differentials Ψ1 and Ψ2,
being just dz and idz on the sphere, do not vanish at p1. Thus we must
have

0 = [D1 ∩ δ01] = (ψ2
0 + ψ2

1 + bψ0ψ1 + cψ0δ01)δ01 = (2 + b− c)ψ2
0δ01

where we have used the identity δ201 = −ψ0δ01 = −ψ1δ01 from [7]. It
thus follows that c = 2 + b, so that rewriting the class in terms of Ki

instead of ψi, and denoting the coefficient bg for the class in genus g we
have

[D1] = ψ2
0+ψ

2
1+bgψ0ψ1+(2+bg)ψ0δ01 = K2

0+K
2
1+bgK0K1+(2+bg)K0D01

A direct way to compute the last unknown coefficient bg would be to
compute the pushforward of [D1] from C2

g to Mg — it would be a
multiple of the fundamental class, and the coefficient would give bg.
Geometrically, computing this pushforward is equivalent to computing
the number of pairs of points p0, p1 on a generic curve Γ ∈ Mg such
that Ψ1 and Ψ2 with double poles at p0 and all periods real vanish at
p1. Instead of doing this computation directly, we use a degeneration
argument.
In [15] we showed that on a nodal curve the limit of Ψi is identi-

cally zero on all irreducible components of the normalization except
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the one containing p0, while on the component containing p0 in the
limit Ψi is simply equal to the differential of the second kind with real
periods on the normalization of that component. We now consider the
degeneration of the locus D1 as we approach the boundary component
δirr ⊂ Mg,1. In the open part of δirr the points p0 and p1, while not nec-
essarily distinct themselves, as we are working on the universal curve
C2
g , do not approach the node. By the results of [15] such a nodal curve

lies in the closure of D1 if and only if the differentials Ψ1 and Ψ2 on its
genus g − 1 normalization have a common zero
We thus have, possibly up to classes supported on the loci D02, D03,

D12, D13 (where the points p0 or p1 approach the node), D(g)
1 |δirr =

ρ∗(D(g−1)
1 ), where ρ : δirr → Mg,1 forgets the node. Since the tauto-

logical classes of dimension two are independent on C2
g (for example,

this can be easily seen from Faber’s formularium [7]), this in particular
implies that the coefficients of K0K1 should be the same on both sides
— recall that unlike the ψ classes, where the pullback includes the di-
agonals, the pullback of Ki from Mg,n to Mg,n+1 is equal to Ki. Thus
we must have bg = bg−1 =: b. On the other hand, the same argument
applies to the pushforward

π∗([D1]) = κ1 + ((2g − 2)b+ 2 + b)K0

under the map forgetting p1. This pushforward restricted to the open
part of δirr must again be equal to the pullback of the pushforward of
[D1] from Mg−1,1. Thus we must have (2g − 1)b = (2g − 3)b, which
finally implies b = 0.
For many simple common zeroes, the class of the locus D1,...,1

n , being
the intersection of the pullbacks of D1 to Cn

g from various C2
g by maps

forgetting all points except p0 and pi, is given by the product
∏n

i=1(K
2
0+

K2
i + 2K0D0i).

Remark 2.7. A more elaborate version of the degeneration argument
above, tracking the number of common zeroes under a degeneration
where they may approach a node, will turn out to be a key step in prov-
ing our main vanishing result, theorem 2.8, stating that Dg is empty.

For the case of common zeroes of higher multiplicity, we would like
to treat a multiple zero as a limit of simple zeroes coming together.
Formally this means that we claim that the class Dν1,...,νn+1

n+1 intersected
with the diagonal Dn,n+1 ⊂ C1+1+n

g is equal to the class Dν1,...,νn+νn+1

n ,

when we identify C1+n
g with the diagonal Dn,n+1 ⊂ C1+1+n

g .
Once this claim is proven, the general formula for the class follows

immediately by intersecting the formula for D1,...,1
n with various diago-

nals (which amounts to some of the factors now becoming equal). To
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prove the claim we would need to study the local structure of the strata
Dν

n. In the next section we will describe explicitly the tangent spaces
to these loci. In particular we will describe the tangent space to a leaf
of a foliation (which we will define) at a point on each Dν

n, and from
this description the above claim will follow. �

Our study of the infinitesimal geometry of the foliations will lead
to some precise conjectures, while the main result we will prove is the
following

Theorem 2.8. The locus Dg ⊂ C1+g
g is empty, i.e. Ψ1 and Ψ2 cannot

have g distinct common zeroes

By theorem 2.6 we know the cohomology class represented by Dg,
and thus obtain

Corollary 2.9. The class
g∏

i=1

(K2
0+K

2
i +2K0D0i) is zero in cohomology

(or real cobordisms) of C1+g
g .

We note that the above class is of dimension 2g, the lowest dimension
where the tautological classes vanish by Faber’s conjecture.

3. The geometry of the foliations on Mg

In this section we recall the local coordinates on the Teichmüller (or
moduli) spaces defined using meromorphic differentials with real pe-
riods. We then define two natural foliations of the moduli space, the
“big” and the “small”, obtained by fixing the absolute periods (i.e. in-
tegrals over H1(Γ,Z)) of either one of or both Ψ1,Ψ2. We note that
it is a priori easy to construct foliations of the Teichmüller space: it
is homeomorphic to an open ball, admits many non-constant holomor-
phic functions, and the level sets of such a function give a foliation.
However, it is much harder to construct a foliation of the moduli space
or its compactification.
The foliations we define are real-analytic, but their leaves are com-

plex (so the foliations are real-analytic “in the transverse direction”).
We then proceed to describe the tangent spaces to the leaves of these
foliations, which will be needed in the following sections. The con-
struction of these foliations, while similar to the foliations in the mod-
uli spaces Hg of curves with abelian differentials, is motivated by the
Whitham perturbation theory of integrable systems [24, 25, 31, 32]. In
[15] we used the “big” foliation (in that paper we had a situation with
only one meromorphic differential with real periods), and we refer to
that paper for more details.
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Definition 3.1. For any a1, . . . , ag, b1, . . . , bg ∈ R the leaf La,b (which
we denote L if a, b are not important) of the foliation of the Te-
ichmüller space Tg,1(2) is defined to be the locus where the integrals
of Ψ1 over the chosen basis of cycles A1, . . . , Ag, B1, . . . , Bg are equal
to a1, . . . , ag, b1, . . . bg. Note that such a leaf La,b is defined by saying
that there exists a differential with prescribed periods (the reality is
implied) — these are holomorphic conditions, and thus the leaf is a
complex submanifold La,b ⊂ Tg,1(2). If a different basis of H1(Γ,Z)
is chosen, the periods of Ψ1 over the basis are still fixed along a leaf
(though numerically different). Thus a leaf L is invariant under the
action of the mapping class group, and so descends to a “tangentially
complex” leaf L of a foliation on Mg,1(2).

Since the absolute and relative periods of Ψ1 give local coordinates
at any point of the moduli space, all leaves of L — the level sets of a
subset of these coordinates — are smooth. We will now describe the
tangent space to the leaves explicitly: this construction is one of the key
elements of the Whitham theory, and can also be thought of in terms
of the deformation theory of Riemann surfaces. The construction is
analytic, giving locally a map from the tangent space to a certain space
of differentials, and gives a local description of the tangent space. It
would be interesting to relate this construction to the Rauch variational
formulas: the leaves of the foliations are the level sets of periods, and
thus the variation of the periods along their tangent spaces is zero.

Definition 3.2. Let Γ∗ := Γcut be the (closed) result of cutting Γ along
the standard basis of cycles, i.e this is a 2g-gon, identifying the sides

of which pairwise one gets Γ. Let then T̂ be the space of differentials
on Γ∗ that are holomorphic on the interior of Γ∗ \ {p0}, have at most a
simple pole at p0, are continuous on Γ∗, and such that the “jump” of the
differential on any cut cycle c ∈ {a1, . . . ag, b1, . . . , bg} (the difference of
its values on the two corresponding sides of the 2g-gon) is equal to
r1cΨ1 + r2cΨ2 for some real numbers r1c , r

2
c .

We now define the R-linear homomorphism

(2) τ̂ : TX(Mg,1(2)) 7−→ T̂ , (X = (Γ, p0, z) ∈ Mg,1(2)).

(We note that while all of the previos constructions work given a 1-jet
of the local coordinate, for defining this map we need the full 2-jet of z.)
The construction of this map in full generality is discussed in [25, 31].
For the applications in this paper we will be primarily concerned with
the case when no common zeroes of Ψ1 and Ψ2 are multiple.

To define the map τ̂ , we proceed as follows. Since Γ∗ is simply
connected, one can choose globally on Γ∗ a branch of the integral F1 :=
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∫
Ψ1. To fix the constant of integration, we use the 2-jet of a local

coordinate: locally near p0 we must have F1 = z−1 + a+O(z), and we
require a = 0. Note that this indeed depends precisely on the 2-jet of
the local coordinate: if z′ = z +O(z2) = z + cz2 + . . . is an equivalent
1-jet, then

(z′)−1 = z−1(1 + cz + . . .)−1 = z−1(1− cz + . . .) = z−1 − c+ . . .

and thus the condition for the constant term of F1 to still be zero in
the z′ coordinate is equivalent to c = 0, which is to say that z and z′

define the same 2-jet of the loca coordinate.
The function F1 is then uniquely defined (given a point in Mg,1(2))

and defines a local coordinate on Γ∗ away from p0 and the locus where
its derivative vanishes, i.e away from the zeros p1, . . . , p2g of Ψ1. Since
Ψ1 is not an exact differential, it has non-zero periods along the cycles,
and thus F1 is not a well-defined function on Γ — it has “jumps”

along the cut cycles (while in the definition of T̂ above the jumps were
differentials, here the jumps are functions along the cuts!). Indeed, the
jumps of F1 are constant along a cycle, and equal to the corresponding
period of Ψ1.
Thus on the universal cut curve over Tg,1(2) (or locally on the family

of Γ∗ over Mg,1(2)) the function F1 is non-degenerate (its gradient is
non-zero) away from the zeros of Ψ1. It thus makes sense to consider,
locally on the universal cut curve, the variation of the function F2 in
the direction of some vector v ∈ TX(Mg,1(2)) along the level set of F1.
Geometrically this means that to lift v to a tangent vector to C∗

g,1+1(2, 0)
(the total space of the family of all Γ∗) we will locally choose a section of
C∗
g,1+1(2, 0) → Mg,1(2) given by a level set of F1. Technically this means

the following: let the x’s be local coordinates on Mg,1(2); then on the
universal cut curve the local coordinates near some point ((Γ, p0, z), p)
(where (Γ, p0, z) ∈ Mg,1(2) and p ∈ Γ∗) are the x’s together with the
value of F1. Consider now in the universal cut curve over Mg,1(2)
the level set {x | F1(x) = F1(p)}. It locally maps isomorphically to
Mg,1(2), and the inverse map is given by PF1

(x) such that F1(PF1
) ≡

F1(p). Corresponding to a tangent vector v ∈ TX(Mg,1(2)), which
we think of as a variation x 7→ x + εv, we can compute the variation
F2(x+ εv, PF1

(x+ εv))−F2(x, p), and this is what we want. As this is
the partial derivative of F2 for F1 fixed, we write it as ∂vF2 = ∂vF2(F1).
This derivative is holomorphic on Mg,1+1(2, 0) away from p0, the

cuts, and from the points ps, where it acquires simple poles, as F1

ceases to be a local coordinate on Γ∗ there. It thus follows that Ωv :=
∂vF2(F1)Ψ1 has no poles at ps and defines a holomorphic differential
on Γ∗ away from p0 where it may have a simple pole. If the vector v
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is tangent to a leaf L, i.e it does not change the periods of Ψ1, then
the values of Ωv on the two sides of the cuts differ by rΨ1, where r is
the derivative along v of the corresponding period of Ψ2 (which is by
definition real). If v changes the periods of Ψ1 then as shown in [25]
the additional jump of the derivative on the cut is of the form r2Ψ2.
We thus define the map (2) by setting τ̂(v) := Ωv, which by definition

is an element of T̂ .
By definition the image under τ̂ of the tangent space to a leaf TX(L)

consists of differentials in T̂ with jumps proportional to Ψ1 only. De-

noting the space of such differentials by T ⊂ T̂ , we get the map

(3) τ : TX(L) 7−→ T .
Remark 3.3. The image under the map τ̂ of the vector field ∂t corre-
sponding to changing the 2-jet for a fixed 1-jet of the local coordinate,
z → z + cz2 is the holomorphic differential

(4) τ̂ (∂t) = iΨ2 +Ψ1

A direct dimension count shows that the real dimension of T̂ is equal
to 6g, the same as the dimension ofMg,1(2). One thus wonders whether
τ̂ may be an isomorphism. Generically this is indeed the case:

Lemma 3.4 ([31]). On the open setMg,1(2)\D̂1, where Ψ1 and Ψ2 have

no common zeros, the map τ̂ : TX(Mg,1(2)) → T̂ is an isomorphism.

(our more detailed analysis below will also yield this as a corollary).
Thus one is led to study the behavior of the map τ̂ when Ψ1 and Ψ2

have common zeroes, and this description is the main result of this
section. The loci D ν

n arise naturally as the degeneracy loci of the map
τ .
The most important case for us is that of ν = (1, . . . , 1), in which

case the result is the following

Proposition 3.5. If all zeroes of Ψ1 on Γ are simple, and X ∈ Dn \
Dn+1 (so Ψ1 and Ψ2 have exactly n common simple zeros), the image
of the map τ̂ is equal to

(5) T̂n := τ̂ (TX(Mg,1(2))) = {Ω ∈ T̂ | Ω(p1) = . . . = Ω(pn) = 0}.

Proof. Recall the notation F1(p) :=
p∫
Ψ1 that we introduced for the

abelian integral of Ψ1 in the definition of the map τ̂ , and let φi := F1(pi)
(these are local coordinates on the leaf L, as discussed in [15]). Since by
assumption pi is a simple zero of Ψ1, the difference F1(p)− φi vanishes
to precisely the second order for p approaching pi, and thus zi(p) :=
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√
F1(p)− φi gives a local coordinate on Γ near pi. By definition in this

coordinate we locally have Ψ1 = dF1 = 2zidzi. Let us now consider the
Taylor expansion of F2(p) :=

∫ p
Ψ2 near pi in coordinate zi, denoting

the coefficients

(6) F2(zi) = αi,0 + αi,1zi + αi,2z
2
i + . . . .

In this notation, the conditions for Ψ2 = dF2 to vanish at the points
pi (i.e. at zi = 0) for 1 ≤ i ≤ n are then

(7) αi,1 = 0, i = 1, . . . , n.

Consider now a tangent vector v ∈ TX(Mg,1(2))), and compute
the partial derivative of F2 for F1 fixed (as in the definition of τ̂).
Notice that the derivative of zi for fixed F1 is given by ∂vzi(F1) =
−(∂vφi)z

−1
i /2. Therefore,

(8)

∂vF2 =
Ωv

Ψ1

= −1

2
(∂vφi)αi,1z

−1
i +(∂vφ

′
i−(∂vφi)αi,2)+(∂vαi,1−

3

2
(∂vφi)αi,3)zi+. . .

Since this expression is regular near zi = 0 (i.e. near the zero pi of Ψ1),
it follows that Ωv(pi) = 0. By definition the differential Ωv is the image

in T̂ of v ∈ TX(Mg,1(2)), thus we have proven that τ̂ (TX(Mg,1(2))) is

contained in the subspace T̂n of T̂ consisting of differentials vanishing
at p1, . . . , pn.
To prove that the image is equal to this subspace, it is sufficient

to show that vanishing conditions are linearly independent and then
compute the dimension of the kernel of τ̂ . The linear independence
of equations (5) follows from the following stronger result (indeed, the

independence of the vanishing conditions on T̂ means that the matrix

of values of a basis of T̂ at p1 . . . pn has rank n; this would follow if the
matrix of values of a basis of T at p1 . . . p2g has full rank):

Lemma 3.6. If a differential Ω ∈ T vanishes at all zeros of Ψ1, i.e.
Ω(p1) = . . . = Ω(p2g) = 0, then Ω = 0.

Proof. Indeed, if Ω vanishes at all zeroes of Ψ1, then the ratio f :=
Ω/Ψ1 is a holomorphic function on Γ∗ with all jumps on cut cycles
being real numbers (since the jumps of Ω are real multiples of Ψ1).
Then df is a holomorphic differential on Γ with all periods real, in
which case it must be zero, so that f is a constant. Thus Ω is a constant
multiple of Ψ1. Since by definition of T the differential Ω ∈ T cannot
have a double pole at p0, as Ψ1 does, we have f(p0) = 0, and thus this
constant multiple is zero. �
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We now describe the kernel of the map τ̂ on TX(Mg,1(2)) explicitly,
and thus in particular will see that its complex dimension is equal to n.
By definition a tangent vector v ∈ Ker τ̂ does not change the periods of
Ψ1 or Ψ2 (this means that v is a tangent vector to a leaf of the “small”
foliation, which we define below).
As we know from [15, 31], the critical values φi of F1 are local co-

ordinates on a leaf L. Thus any tangent vector v to L is a real linear
combination of (Re ∂φi

) and (Im ∂φi
). From the leading term of (8) we

see that if ∂vφj 6= 0 for some j > n, then ∂vF2(pj) 6= 0. Conversely,
if for all j > n we have ∂vφj = 0, then ∂vF2 would be regular at all
the points p1 . . . , p2g. Thus by definition the differential Ωv would van-
ish at p1, . . . , p2g, which by Lemma 3.6 would imply Ωv = 0 and thus
v ∈ Ker τ̂ , i.e the kernel Ker τ̂ as a C-vector space is spanned by the
vector fields ∂φi

, 1 ≤ i ≤ n. �

The description of τ̂ in full generality, for Ψ1 and Ψ2 having common
zeroes of arbitrary multiplicity, is given by

Proposition 3.7. For X = (Γ, p 0, p1, . . . , pn) ∈ Mg,1+n if Ψ1 and Ψ2

have exactly n common zeroes at p1, . . . , pn, with multiplicity νi at pi
(i.e if X ∈ D ν

n and X does not lie in any “more degenerate” locus D),

the image τ̂ (TX(Mg,1(2))) =: T̂ ν
n is the subspace T̂ ν

n ⊂ T̂ consisting of

differentials Ω ∈ T̂ vanishing at each pi to order at least νi.

Idea of the proof. Since we will not use this result in full generality, we
do not give a complete proof. The idea is similar to that of the case
of simple zeroes above. Indeed, note that F1(p)− φi vanishes to order
νi+1 near pi, and thus a coordinate zi near pi can be chosen such that
on a universal cut curve we have

(9) F1(p, x) = zνi+1
i +

νi−1∑

i=0

si,j(x)z
j
i ,

where x = (Γ, p0, k) ∈ Mg,1(2) and zi = zi(x, p) for p ∈ Γ∗ are local
functions on the universal cut curve, and si,j(x) are local holomorphic
functions on the leaf L through Γ. We then compute for any v ∈
TX(Mg,1(2))

(10) ∂vF2(F1) =
∞∑

k=0

(∂vαi, k)z
k
i + (∂vzi)

∞∑

k=1

kαi, kz
k−1
i

If X is in D̂ν
n, then by definition the first νi terms in the Taylor expan-

sion vanish, i.e we have

(11) αi, k = 0, i = 1, . . . , n; k = 1, . . . , νi
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Therefore, ∂vF2(F1) is regular at the points pi, i = 1, . . . , n and the

differential Ωv vanishes at these points to order at least νj, i.e Ωv ∈ T̂ ν
n ,

and the result follows. �

As the first consequence of the description of the tangent space to
the leaves, we show that the loci D̂ν

n, if non-empty, are of expected

dimension; the proof is by computing the tangent spaces to D̂ν
n. As

before, we will give a detailed proof for the case of simple zeroes, and
then give the corresponding (here, technically much more involved)
statement in full generality.

Proposition 3.8. The locus Dn, if non-empty, has expected dimen-
sion, i.e. its real codimension is equal to 2n. Moreover, on an open
subset D∗

n ⊂ Dn, the homomorphism (2) restricts to an isomorphism

τ̂ : TX(D∗
n) ≃ T̂n, with T̂n given by (5).

Proof. We first prove that the subset D̂∗
n ⊂ D̂n, where the coefficients

α1,3, . . . , αn,3 in (6) are all non-zero, if non-empty, is of expected di-

mension, and then show that D̂∗
n is open within D̂n.

The defining equations for D̂n are given in expansion (6) by condi-
tions (7), i.e. by α1,1 = . . . = αn,1 = 0. For any v ∈ Ker τ̂ we have
∂vF2 ≡ 0. Substituting the expression for ∂vF2 from (8), this yields

(12) ∂vαi,1 = (∂vφi)αi, 3, i = 1, . . . , n.

We know that Ker τ̂ is spanned by ∂φj
, 1 ≤ j ≤ n. Thus the n × n

matrix of derivatives ∂φj
αi,1 is diagonal with diagonal entries being αi,3,

and thus if we have α1,3 · . . . · αn,3 6= 0, this matrix is non-degenerate
(since φi are part of a local coordinate system). Then the gradients of
the defining equations (7) are linearly independent, and thus the locus
defined by these equations is locally smooth of expected codimension.
It thus remains to prove that the locus where α1,3 · . . . · αn,3 6= 0

is open within D̂n, i.e. that it cannot happen that some αi, 3 vanishes
generically. Indeed, if we had αi, 3 ≡ 0 in a neighborhood of X , from
the vanishing of the further terms in expansion (6) for 1 ≤ i ≤ n we
would get

(13) ∂φi
αi,2m−1 =

2m+ 1

2
αi,2m+1.

Thus if αi,3 were to vanish identically in a neighborhood, so would
αi,2m+1 for all m. If this were the case, F2 locally on Γ near pi would
be an even function of zi. Since by definition F1(zi) = φi + z2i , for any
q1 6= pi in the neighborhood of pi there exists a unique point q2 6= pi
such that F1(q1) = F1(q2). We can thus consider q2 as a function of
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q1 and analytically continue it along any path in Γ not containing any
zeroes pi of Ψ1 (i.e on the locus on Γ where F1 gives a local coordinate).
The above vanishing would imply that F2(q1) = F2(q2) identically in
the neighborhood of pi, and thus that this also holds for the analytic
continuation. On the other hand, let us continue q2(q1) along a path
where q1 approaches some zero pk of Ψ1 for k > n. If Ψ1 vanishes at pk
to order ν, the map F1 locally near pk is of degree ν + 1, i.e there are
ν+1 points near pk with the same value of F1. Since we know from the
above that F2 must take the same value at all of these points (equal
to F2(q2)), it means that F2 must also have the same values at these
ν + 1 points, and thus Ψ2 = dF2 must also have a zero of order ν at
pk. Thus Ψ2 vanishes at all zeroes of Ψ1, which is impossible, and we
have arrived at a contradiction. �

Remark 3.9. For future use, we now describe explicitly the inverse
map for the isomorphism τ̂ : (TX(D∗

n)) → T̂n. From the leading term
in the expansion (8) we get

(14) ∂vφi = −Ωv

Ψ2
(pi), i > n.

By definition, the differential Ωv vanishes at p1, . . . , pn. Hence, its
expansion has the form

(15) Ωv = (2βi,2zi + 3βi,3z
2
i + . . .) dzi

Comparing the coefficients of zi in (8) and (15) and using ∂vαi,1 = 0

(since v is tangent to D̂1,...,1,∗
n ) gives

(16) ∂vφi = −βi,3
αi,3

, 1 ≤ i ≤ n.

We now give the corresponding expression in the case of common
zeroes of higher multiplicity — in this case it is technically more in-
volved.

Proposition 3.10. The locus Dν, if non-empty, has expected dimen-
sion, i.e. its real codimension is equal to 2dν := 2

∑
(2νi−1). Moreover,

on an open subset Dν ∗
n ⊂ D ν

n (where for any 1 ≤ i ≤ n we have αi, j 6= 0
for some νi+1 < j ≤ 2νi−1 for α defined by (11)), the homomorphism

(2) restricts to an isomorphism τ̂ : TX(D ν ∗
n ) ≃ T̂ ν

n ⊂ T̂ , where T̂ ν
n is

the subspace of differentials Ω ∈ T̂ such that for any 1 ≤ i ≤ n there
exist constants c1i , c

2
i ∈ C such that the differential

(17) Ω + c1iΨ1 + c2iΨ2

vanishes at pi to order at least 2νi + 1.
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Note that if all multiplicities νi are equal to 1, then on an open set
where Ψ1 and Ψ2 have sufficiently generic expansions near pi, we can
use the second and third order terms of their expansions to cancel the
corresponding terms in the expansion of Ω. Thus for νi = 1 condition
(17) on an open set is equivalent simply to saying that Ω(pi) = 0, so
that we get proposition 3.8 as a special case for ν = (1, . . . , 1).
As we will not need this more general version (proposition 3.8 suffices

to prove our vanishing result), we do not give the details of the proof
here. The method is again similar to the case of simple zeroes: one
uses zi := νi+1

√
F1(p)− φi as the local coordinate so that one gets

∂vzi = −(∂vφi)
z
−νi
i

νi+1
, and more elaborate, but similar, computations of

the series for ∂vF2 yield the desired result.

We will now overlap the foliations corresponding to the differentials
Ψ1 and Ψ2.

Definition 3.11. Similarly to the above, we define L′ to be the foli-
ation of Mg,1(2) obtained by fixing the periods of the differential Ψ2

(the leaves are of course again smooth tangentially complex and have
expected codimension), and then let S := L ∩ L′ be the leaves of the
“small” foliation — the intersections of the leaves of the two “big”
foliations.

Remark 3.12. For any point (Γ, p0) the projection to Mg,1 of the leaf
S ⊂ Mg,1(2) passing through (Γ, p0, z) is independent of z. Indeed,
for a different choice of the local coordinate, Ψ1 and Ψ2 would be
replaced by some R-linear combinations, and the periods of such linear
combinations would still be constant along a leaf S. The resulting well-
defined “small foliation” on Mg,1 is a natural object from the point of
view of algebraic geometry, worth further investigation.

Remark 3.13. The leaves of analogous “small” foliations, which can
be defined for a moduli space of algebraic curves with a pair of differ-
entials having poles of arbitrary but fixed order are central to several
theories with distinct goals and origins. As shown in [31, 32], they
provide a general solution to the Seiberg-Witten ansatz in the the-
ory of N = 2 supersymmetric gauge theories. It was also shown that
the Jacobian bundle over each leaf is the phase space of a completely
integrable Hamiltonian system.

As discussed above, the leaves L and L′ of the big foliations are
smooth. Of course their intersection, the leaves of the small foliation
S = L ∩ L′ a priori might have singularities. However, we make the
following
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Conjecture 3.14 (Structural conjecture). All leaves S of the small

foliation are smooth, and transverse to the loci D̂ν, i.e. for any leaf S
the intersection D̂ν ∩ S, if non-empty, has expected codimension in S
(complex codimension 2dν).

The motivation for this conjecture comes from interpreting the leaves
S as perturbations of the loci of spectral curves of the Calogero-Moser
curves, see section 5. If true, the conjecture would immediately yield
the following

Corollary 3.15. For any set of multiplicities ν such that dν ≥ g the
locus Dν

n is empty. By theorem 2.6 the corresponding class
n∏

i=1

(K2
0 +K2

i + 2K0D0i)
νi

vanishes in homology of C1+n
g .

Proof. Indeed, the leaves of the small foliation S ⊂ Mg,1(2) have com-

plex dimension 3g−3+1+2−2g = g. Moreover, note that the loci D̂ν

and the leaves S are in fact both well-defined on Mg,1(1). Considered
on Mg,1(2), their intersection is the preimage of their intersection on

Mg,1(1). Therefore, if the intersection D̂ν ∩S ⊂ Mg,1(2) is not empty,
it has dimension at least 1. On the other hand, by the proposition

above, the codimension of a non-empty intersection D̂ν ∩ S is equal to
dν, so that the dimension of this intersection is g − dν . For this to be
at least 1 we must then have dν < g. �

We will now use the above description of the tangent spaces to the
foliations to determine what properties of Ψ1 and Ψ2 would correspond
to the leaves S being smooth.
Notationally, the constructions for L′ are completely the same as for

L, and we denote them the same with an apostrophe added. Thus the
image under τ̂ of the tangent space to a “small” leaf S will lie in the
intersection of the images of the maps τ and τ ′. Note, however, that
if the jumps of a differential on Γ∗ are proportional to both Ψ1 and
Ψ2, the jumps must be simply equal to zero. Thus the intersection
T ∩ T ′ consists of differentials that are defined on Γ, and since such a
differential cannot have a single simple pole, it is holomorphic. Thus
we get the following restriction

(18) τc : TX(S) 7−→ H0(Γ, KΓ) = T ∩ T ′

Note that while the maps τ̂ and τ are only R-linear, the map τc is in
fact C-linear.
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Proposition 3.5 identifies the tangent space to Mg,1(2) and its image
under the map τ . Note that while the map τ changes rank on the loci
Dν

n, the moduli space is smooth, and we thus know that the dimension
of its tangent space is the same at all points. We will now use the local
description of the tangent spaces and of the map τ (rather its restriction
τc) to identify the loci where the leaves S of the small foliation may
potentially have singularities.

Definition 3.16. We let Σ ⊂ Mg,1(2) be the locus where the divisor E
(of common zeroes of Ψ1 and Ψ2) is special, i.e. where H

0(Γ, KΓ−E) >
g−degE or equivalently H0(Γ, E) > 1 (in particular if Ψ1 and Ψ2 have
no common zeroes, or only one simple common zero, this is not a point
of Σ).

Lemma 3.17. The singular locus of a leaf S is equal to the intersection
S ∩ Σ.

Proof. The image of the tangent space to S at a point X = (G, p0) ∈
D̂ν

n ∩ S under the map τc given by (18), being the intersection of the
tangent spaces to L and L′ computed in proposition 3.5, is equal to
H0(Γ, KΓ − E). Since the complex dimension of S ⊂ Mg,1(2) is equal
to g, the leaf S is smooth whenever Ψ1 and Ψ2 have no common zeroes,
since in that case the tangent space to it is H0(Γ, KΓ), with the map
τc being an isomorphism.
In general the image τc(TX(S)) has dimension h0(Γ, KΓ − E), while

the kernel of τc on TX(S) always has dimension degE. Thus for X to
be a smooth point of S we must have g = dimTX(S) = H0(Γ, KΓ −
E)+degE, which is equivalent to the divisor E being non-special. �

From the above description we see that the tangent space TX(D̂n∩S)
is isomorphic to H0(Γ, KΓ −E), and thus away from Σ has dimension
g−degE, as expected (this also implies that a leaf S away from S ∩Σ

intersects the locus D̂n transversely). If conjecture 3.14 holds, by the
lemma above each leaf S would have an empty intersection with Σ.
Since the small leaves foliate Mg,1, the structural conjecture implies
(and is in fact equivalent to) the following

Conjecture 3.18 (Non-speciality conjecture). The divisor E is never
special on Γ, i.e. the locus Σ is empty.

Notice that the differential Ψ1 + iΨ2 is holomorphic, vanishing at
all common zeroes of Ψ1 and Ψ2. Thus no matter what the divisor
of common zeroes E is, we have h0(Γ, KΓ − E) > 0. However, for
degE ≥ g, the expected dimension of this space is zero, and thus we
see that if degE ≥ g, the divisor E must be special. The non-speciality
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conjecture would thus imply degE < g, and in particular would imply
that D ν

n ⊂ Mg,1+n is empty if
∑
νi > g. We note that from Faber’s

vanishing conjecture, one would expect this for g ≤ dν =
∑n

i=1(2νi−1).
Our vanishing result, theorem 2.8, which we prove in the next section
without using the conjecture, would thus be a direct corollary of the
non-speciality conjecture in the case of all multiplicities equal to 1,
where these two bounds agree.

Remark 3.19. The non-speciality conjecture would imply many more
vanishing results, for some of which it is not a priori clear if the van-
ishing follows by Faber’s conjecture. For example if F ⊂ Mg,3(2, 0, 0)
is the locus of (Γ, p0, p1, p2) where p1 + p2 is a special divisor (which is
thus a hyperelliptic component), then the non-speciality also implies
F (ψ2

0 + ψ2
2)(ψ

2
0 + ψ2

3) = 0. Computing the class of F , and of more
general special loci of this kind, is thus a natural problem. Recently
some computations of the strata in Hg were done in [21], and it would
be interesting to see if the techniques of that work could be used to
obtain further vanishing results.

4. The main vanishing result: proof by degeneration

In this section we use the infinitesimal description of the tangent
spaces to L and to D developed above to prove our main vanishing
result, the statement that the locus Dg is empty.

Proof of theorem 2.8. The idea of proving that Ψ1 and Ψ2 cannot have
g distinct common zeroes is to use a degeneration argument to even-
tually apply an induction in genus. We first deal with the base case
of induction: that for g = 1 the differentials Ψ1 and Ψ2 cannot have a
common zero on an elliptic curve. This is straightforward: If Ψ1 and
Ψ2 have a common zero, their linear combination Ψ1+iΨ2 also vanishes
at the same point. However, a holomorphic differential is nowhere zero
on an elliptic curve, and we have a contradiction.
Now assume that Dg is non-empty for some genus g. For the case

of simple zeroes, on an open subset of D̂∗
g ⊂ D̂g condition (17) simply

means that Ω vanishes at pi. From propositions 3.5 and 3.8 it follows

that for X ∈ D̂∗
g the map τ̂ : TX(D∗

g) → T̂g is an isomorphism, while

τ̂(TX(Mg,1(2))) = T̂g is the same space.

We further compute τ̂ (TX(D̂g ∩L)) = T̂g ∩T = Tg to be the space of
differentials with jumps proportional to Ψ1 and vanishing at p1, . . . , pg.
From lemma 3.6 it follows that Tg ⊂ T has complex codimension g,
equal to the codimension of L ⊂ Mg,1(2). Thus the complex codimen-

sion of L ∩ D̂g ⊂ D̂g is equal to g. Since the codimensions of L and of
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Dg in Mg,1(2) are both g, their intersection is codimension 2g (and di-
mension g). For dimension reasons it thus follows from the above that
TX(Dg)/TX(L ∩ Dg) = TX(Mg,1(2))/TX(L). Since the right-hand-side
is the local parameter space for the leaves of the big foliation near X ,
this means that Dg must intersect all big leaves near X . Since the ar-
gument can be applied near every point of Dg, we obtain the following

Lemma 4.1. The locus Dg, if non-empty, must intersect every leaf L
of the “big” foliation by absolute periods of Ψ1.

The idea is now to consider a family of leaves of L where a suitable
period of Ψ1 approaches zero, and to guarantee that in the limit we
would have a nodal curve, still with many common zeroes of Ψ1 and
Ψ2. To find which period to shrink, we use the specifics of the situation
of a meromorphic differentials with one double pole and real periods.
We consider the structure on the surface similar to that defined by

a holomorphic differential. Indeed, recall that the imaginary part of
the abelian integral f1(p) := ImF1 = Im

∫ p
Ψ1 is a well-defined global

real-valued function on the Riemann surface Γ \ {p0}, and taking value
∞ at p0 (it does not have jumps as all periods of Ψ1 are real). Then
any level set Cc := {f1(p) = c} for c an arbitrary real number is a
(real) curve on Γ, passing — or we could say approaching in the limits
at plus and minus infinity — the point p0. Away from any zeroes
of Ψ1 lying on it, the (locally defined) real part of F1 gives a local
coordinate on Cc — in particular, Cc is smooth away from any zeroes
of Ψ1 that lie on it. Moreover, note that the real part of F1 has to
be monotonous along Cc, and we will choose orientation on each Cc so
that ReF1 is monotonically increasing (so far this construction is the
same as for holomorphic differentials, except that all our level sets pass
through p0). For a generic value of c the curve Cc will avoid any of the
finitely many zeroes of Ψ1 and will be smooth. The set of curves Cc

for c ∈ R fills out Γ \ {p0}: any point p ∈ Γ lies on Cc for some c, and
Cc1 ∩ Cc2 = {p0} for c1 6= c2.
Recall that the absolute and relative periods of Ψ1 give local coor-

dinates at any point of Mg,1(2); the relative periods gives local coor-
dinates on a leaf L; recall also from propositions 3.5 and 3.8 that local
coordinates on Dg ∩ L are given by those relative periods of Ψ1 that
correspond to the zeroes of Ψ1 that are not zeroes of Ψ2. In particular
we could choose a generic point X ∈ Dg ∩ L such that p1, . . . , pg are
the common zeroes of Ψ1 and Ψ2, and q1, . . . , qg are the zeroes of Ψ1

that are not zeroes of Ψ2; we can ensure that q1, . . . , qg are all distinct.
Moreover, we can choose X in such a way that f1(q1) is not equal to the
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value of f1 at any other zero of Ψ1. Notice that all of the above con-
ditions are open, and we can thus consider a small open neighborhood
of X where all of them will be satisfied.
Consider now the level set Cc containing the zero q1 of Ψ1 — it will

be a self-intersecting curve, starting from p0, passing more than once
through q1, and returning to p0. Consider the loop γ formed on Γ by the
curve Cc from the first time it passes through q1 until the next. Since
f1 is constant on γ, and the real part of F1 is monotonous increasing on
this loop, it follows that

∫
γ
Ψ1 is a positive real number. In particular,

γ is a homologically non-trivial loop on Γ. Since the choice of γ does
not require choosing a basis for the homology or the fundamental group
of Γ, the class γ is well-defined for any X ∈ Mg,1(2) with labeled zeroes
of Ψ1, in particular for any X ∈ Dg.
We will now perturb a small neighborhood of X in Dg ∩L to a small

neighborhood of some point Xt lying in the intersection of Dg with
another leaf Lt of the big foliation. More precisely, consider a family of
leaves Lt of the big foliation, parameterized by t ∈ (0, 1], determined
by the condition that on Lt all the periods of Ψ1 are the same as on X ,
except for the period over γ, which is multiplied by t (thus L1 = L).
By the lemma we can also choose a family Xt ⊂ Mg,1(2) such that
Xt ∈ Lt ∩ Dg and X1 = X . Moreover, for Ψ1 and Ψ2 to have an extra
common zero is one complex condition (that Ψ2 is zero at some zero
of Ψ1), and thus we can choose a family Xt such that the number of
common zeroes of Ψ1 and Ψ2 is constant in the family, and moreover
the multiplicities of all zeroes of Ψ1 are constant in the family, so that
the above construction works on any Xt: we thus have a well-defined
family of zeroes q1(t) ∈ Γt such that q1(1) = q1 ∈ Γ, and a well-defined
family of level sets of f1 on each Γt, passing through q1(t). By continuity
the homology class of γt must then be constant and thus equal to γ.
Consider now the limit of Xt as t → 0. Notice that the locus Dg ⊂

Mg,1(2) by construction is a preimage of a locus in Mg,1, and thus
in the limit as t → 0 the Riemann surfaces (Γt, p0) must converge to
some point in (Γ0, p0) ∈ Mg,1. In the limit t → 0, by construction
the integral of Ψ1 over γ approaches zero. However, since the real part
of F1 is monotonically increasing along Cc ⊃ γ, this integral can only
be zero if the path γ is pinched to zero. Thus the curve Γ0 must be
degenerate, and the zero q1(0) of Ψ1 on Γ0 must coincide with the node
of Γ0.
Moreover, notice that since all the other (absolute) periods of Ψ1

on Γ0, except the one over γ, were preserved, no other degeneration is
possible: the normalization of Γ0 at q1(0) is a smooth curve. Since a
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non-trivial homology element γ was pinched, the normalization of Γ0

at q1(0) is smooth, of genus g−1. Recall from [15] that the differentials
of the second kind with real periods cannot develop singularities in the
limit, and thus the lifts of Ψ1 and Ψ2 to the normalization of Γ0 (at
q1(0)) are simply the corresponding differentials with real periods on
this normalization. Any zero pi(t) or qi(t) that does not approach q1(0)
in the limit remains a zero of the lifting of Ψ1 to the normalization of
Γ0 (common with Ψ2 if it is the limit of pi(t)), while the multiplicity of
any zero of Ψ1 approaching the node q1(0) in the limit t→ 0 decreases
by one under the normalization (blowup map). In genus g − 1 the
differential Ψ1 has 2g − 2 zeroes, and thus exactly two zeroes of Ψ1 on
Γt must approach the node q1(0) in the limit. One of these zeroes is of
course q1(0), and it thus follows that at most one common zero pi(t) of
Ψ1 and Ψ2 may disappear in the limit. Thus on the normalization of
Γ0 the differentials Ψ1 and Ψ2 will have at least g − 1 common zeroes.
By induction in g it follows that the locus Dg is empty for any genus
g. �

5. The Calogero-Moser integrable system and leaves of

the foliation

In general the leaves L, S are not algebraic, and could be everywhere
dense in the moduli space. In this section we will show that a certain
everywhere dense set of leaves of the small foliation actually arise as
loci of normalizations of spectral curves of the Calogero-Moser system.
Thus our foliations provide a perturbation theory for the Calogero-
Moser integrable system. Algebro-geometrically the Calogero-Moser
spectral curves are certain ramified covers of an elliptic curve; we will
use coordinates on these loci related to the branch points of such a
cover, similar to the Lyashko-Looijenga coordinates for the Hurwitz
spaces of covers of P1. While not used the proof of our vanishing
result above, this description is of independent interest for studying
the geometry of the Calogero-Moser system, and also motivates the
conjectures we made.

Teichmüller theory viewpoint: Calogero-Moser loci as leaves of the fo-
liation.

Definition 5.1. We define the Calogero-Moser locus Kg ⊂ Mg,1 to
be the locus of all (Γ, p0) for which there exist two linearly indepen-
dent differentials of the second kind Φ1,Φ2 ∈ H0(Γ, KΓ + 2p0) with all
periods integer.
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Since the space of differentials of the second kind (sections of KΓ +
2p0) with real periods has real dimension 2, such Φ1,Φ2 then give an
R-basis of it. Thus for any choice of the local coordinate (Γ, p0, z) ∈
Mg,1(2) the corresponding differentials Ψ1,Ψ2 with real periods can
be written as Ψi = ri,1Φ1 + ri,2Φ2, with some real coefficients ri,j. It
thus follows that the following gives an alternative definition of the
Calogero-Moser locus.

Definition 5.2. The Calogero-Moser locus K̂g ⊂ Mg,1(2) is the union
of all leaves of the small foliation S for which there exist real numbers
r1,1, r1,2, r2,1, r2,2 such that all (real by definition) periods of Ψi lie in

ri,1Z + ri,2Z. This K̂g is then the preimage of the locus Kg as defined
above.

If Φ1 and Φ2 have integer periods, then of course any Z-linear combi-

nation of them will also have integer periods, and thus on (Γ, p0) ∈ K̂g

there exists a whole lattice of differentials with integer periods. For a
given Calogero-Moser curve (Γ, p0) ∈ Kg we choose Φ1,Φ2 generating
this lattice over Z, and let

(19) τ :=
Φ2

Φ1
(p0)

(which means taking the ratio of the singular parts of Φ2 and Φ1 at p0).
Since Φi are R-linearly independent, Imτ 6= 0, and by swapping Φ1 and
Φ2 if necessary we may assume that Im τ > 0. From the definition of τ
it follows that dz := Φ2 − τΦ1 is a holomorphic differential on Γ with
all periods lying in the lattice Z + τZ. Thus integrating it defines a
holomorphic map to an elliptic curve

(20) z : Γ → E := C/Z+ τZ; p 7→ z(p) :=

∫ p

p0

dz

Note that τ depends on the choice of generators Φi in the lattice of
differentials with integer periods, but the corresponding elliptic curve
E, and the map z do not (so τ is defined up to a PSL(2,Z) action).

Definition 5.3. For N ∈ Z we denote Kg,N ⊂ Kg the locus of those
curves for which the degree of the map z : Γ → E is equal to N . We
will see that Kg,N is non-empty only if N ≥ g.

Since the degree depends continuously on a curve in Kg, being an
integer it is locally constant on Kg, and thus each Kg,N is a union of
some connected components of Kg. Analytically, N can be computed
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as

(21) N =

g∑

k=1

(∫

ak

Φ2

∫

bk

Φ1 −
∫

bk

Φ2

∫

ak

Φ1

)
= 2πi resp0 (F1Φ2) .

In what follows we will always assume that the generators Φ1,Φ2 of
the lattice of differentials with integral periods are fixed, or equivalently
we consider a fixed elliptic curve E with a fixed basis of cycles. We
denote Kτ

g,N ⊂ Kg,N ⊂ Kg ⊂ Mg,1(2) the locus of curves in Kg,N

mapping to this fixed E. By construction Kτ
g,N is a union of some

leaves of the small foliation.

Integrable systems viewpoint: spectral curves of the Calogero-Moser in-
tegrable system.

The reason we call the above the loci of Calogero-Moser curves is that
they are actually spectral curves of the Calogero-Moser integrable sys-
tem. We will now prove this statement. In particular, it will follow that
the transcendental construction of the Calogero-Moser locus above is
in fact algebraic — that Calogero-Moser curves are a special class of
covers of elliptic curves. We start by recalling the necessary facts from
the theory of the elliptic Calogero-Moser system.

Definition 5.4. The elliptic Calogero-Moser (CM) system introduced
in [3] is a system of N particles on an elliptic curve E with pairwise
interactions. The phase space of this system is
(22)
PN := (C×E)×N\{diagonals in E} = {qi, . . . , qN ∈ C, x1, . . . , xN ∈ E, xi 6= xj} ,
where we think of the variables xi as the positions of the particles,
and of qi as their momenta, elements of the trivial tangent space to E,
denoting qi = ẋi (the dot denotes the time derivative). The Calogero-
Moser Hamiltonian is the function H2 : PN → C defined as

(23) H2 :=
1

2

N∑

i=1

q2i − 2
∑

i 6=j

℘(xi − xj),

In [22] the second-named author showed that the equations of mo-
tion of the elliptic CM system admit Lax representation with “elliptic
spectral parameter z”. This is to say that the Hamiltonian equations
of motion for the CM system are equivalent to the matrix-valued dif-
ferential equation L̇ = [L,M ], where L = L(z) and M = M(z) are
certain N ×N matrices depending on the point z ∈ E. Explicitly, the
entries of the matrix L are given by

(24) Lii(t, z) =
1

2
qi, Lij = F (xi − xj , z), i 6= j,
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where F is defined as

(25) F (x, z) :=
σ(z − x)

σ(z)σ(x)
eζ(z)x,

with ζ and σ the standard Weierstrass functions. The entries of the
matrix M(z) are given by

(26) Mij(z) :=

(
℘(z)− 2

∑

j 6=i

℘(xi − xj)

)
δij−2(1−δij)F ′(xi−xj , z).

Definition 5.5. The spectral curve Γcm of the CM system is the nor-
malization at the point (k, z) = (∞, 0) of the closure in P1 × E of the
affine curve given in C× (E \ {0}) by

(27) R(k, z) = det(kI + L(z)) =: kN +

N∑

i=1

ri(z)k
N−i = 0,

where I is the identity matrix, and we simply denoted the coefficient
of kN−i in the expansion of the determinant by ri.

The normalized spectral curve Γ̃cm is a smooth algebraic curve that
is the normalization of Γcm (note that Γcm might have singularities in
the affine part).

From the Riemann-Hurwitz formula it follows that the arithmetic
genus of Γcm is equal to N ; thus the genus of its normalization Γ̃cm is
less than N if and only if Γcm is singular.
From the explicit formulas (24) for L one sees that each ri is a mero-

morphic function on E with a pole of order i at z = 0. As shown in [22],
near z = 0 the characteristic polynomial R(k, z) admits a factorization
of the form

(28) R(k, z) =
N∏

i=1

(k + aiz
−1 + hi +O(z)),

with a1 = 1 − N and ai = 1 for i > 1. This implies that the closure
in P1 × E of the affine curve in C × (E \ 0) given by equation (27) is
obtained by adding one point (∞, 0). Among the N branches of this
closure passing through (∞, 0), there areN−1 branches tangent to each
other and one branch transverse to them. After blowing up the point
(∞, 0) once, we get a smooth point p0 corresponding to the transverse
branch, and a singular point, where generically the N − 1 branches
passing through it are transverse. Thus generically the second blowup
at this singular point would give a smooth algebraic curve, which is
then equal to Γcm, abd obtained from the affine curve (27) by adding
N smooth points.
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The family of CM curves parameterized by equations of the form
(28) is N -dimensional. From the explicit parametrization of the family
obtained in [5] it follows that the parameter space for this family is in
fact CN . Indeed, in [5] it is shown that
(29)

R(k, z) = f(k − ζ(z), z), where f(φ, z) =
1

σ(z)
σ

(
z +

∂

∂φ

)
H(φ)

for H(φ) = φN +
∑N−1

i=0 Iiφ
i some polynomial in φ. Writing out this

formula explicitly yields

(30) f(φ, z) =
1

σ(z)

N∑

n=0

1

n!
∂ n
z σ(z)

(
∂

∂φ

)n

H(φ).

The coefficients Ii of the polynomial H(φ) then give the coordinates
on the space CN parameterizing the CM curves.
The construction of CM curves was crucial for the identification of

the theory of the CM system and the theory of the elliptic solutions
of the Kadomtsev-Petviashvili (KP) equation established in [22]. This
identification is based on the following result:

Lemma 5.6. The equation

(31)
(
∂t − ∂2x + u(x, t)

)
ψ(x, t) = 0

with elliptic potential (i.e. u(x,t) is an elliptic function of the variable
x) has a meromorphic in x solution ψ if and only if u is of the form

(32) u = 2

N∑

i=1

℘(x− xi(t))

with poles xi(t) satisfying the equations of motion of the CM system.

Remark 5.7. In [22] a slightly weaker form of the lemma was proven.
Namely, its assertion was proved under the assumption that equation
(32) has a family of double-Bloch solutions (i.e. meromorphic solutions
with monodromy ψ(x+ωα, t) = wαψ(x, t), where ωa are periods of the
elliptic curve and wa are constants.) This weaker version is sufficient
for our further purposes, but for completeness we included above the
strongest form of the lemma, proven in [27] (see [28] for details).

Spectral curves for the elliptic CM system are the small leaves.

We now relate the spectral curves of the CM system to the leaves of
the foliation.

Lemma 5.8. Any normalized spectral curve Γ̃cm of the Calogero-Moser
system lies in the Calogero-Moser locus Kτ

g,N .
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Proof. We define the constants c1, c2 by the identities

(33)

∫ 1

0

(℘(z)− c1) dz = 0,

∫ τ

0

(℘(z)− c2)dz = 0.

Then Riemann’s bilinear relations imply

(34)

∫ τ

0

(℘(z)− c1) dz = 2πi,

∫ 1

0

(℘(z)− c2)dz =
2πi

τ
.

The differentials Φ1,Φ2 on Γ̃cm are then the pullbacks of the differentials
on Γcm defined explicitly by
(35)

Φ1 :=
1

2πi
(dk − (℘(z)− c1)dz) , Φ2 :=

τ

2πi
(dk − (℘(z)− c2)dz) .

Indeed, from (28) it follows that Φi on Γcm has a single second or-
der pole at p0, and is holomorphic elsewhere (one only needs to check
the other points in the preimage of (∞, 0) under normalization). To
see that all periods of Φi are integral, first note that the periods on
Γcm of the exact differential dk (where k is the P

1 coordinate, i.e. a
meromorphic function on Γcm) are of course zero. Since the differential
(℘(z)− ci)dz on Γcm is a pullback of a differential on E, its period over
a cycle in Γcm is equal to a period over the image of this cycle on E.
Thus periods of (℘(z) − ci)dz on Γcm are integer linear combinations
of its integrals from 0 to 1 and from 0 to τ on E, which are integral by
(33),(34).
For generic values of the free parameters Ii of the CM system, the

spectral curve Γcm is smooth, of genus N , admitting a degree N cover

Γcm → E; thus we would have Γ̃cm = Γcm ∈ KN,N . If Γcm is singular,

the pullbacks of Φi to Γ̃cm still have a unique double pole at the preim-
age of the smooth point p0 ∈ Γcm, and their periods on Γ̃cm, being a
subset of their periods on Γcm, will still be integral. Thus we must then
have (Γ̃cm, p0) ∈ Kg,N , clearly with g < N . �

We will now show that the two definitions of the Calogero-Moser
curves coincide, i.e. that any curve in Kτ

g,N arises as the normalization
of a spectral curve of the CM system, and thus as a cover of an elliptic
curve.

Proposition 5.9. The locus Kg is equal to the locus of smooth genus g
curves that are normalizations of some spectral curve of the Calogero-
Moser system. In fact the locus Kg,N is the locus of curves that are

normalizations Γ̃cm of spectral curves Γcm of the N-particle Calogero-
Moser system (i.e. of curves given by (27)).
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Proof. One direction of the proposition is lemma 5.8. The proof of
the converse statement, that any curve (Γ, p0) with associated Φ1,Φ2

with integer periods lies in Kτ
g,N , essentially reduces to the statement

that the general construction of algebro-geometric solutions of the KP
equation proposed in [29, 30] in the case when (Γ, p0) ∈ Kτ

g,N leads to
elliptic solutions.
To explain this, we recall the definition of the Baker-Akhiezer func-

tion and related constructions.

Definition 5.10. For (Γ, p0, z) ∈ Mg,1(2), and a generic set of g points
γ1, . . . , γg ∈ Γ, the Baker-Akhiezer function ψ(x, t, p) : C×C× Γ → C

is the unique function meromorphic on Γ \ {p0}, with simple poles at
γi, and having an essential (exponential) singularity at p0, such that in
a neighborhood of p0 it admits an expression of the form

(36) ψ(x, t, z) = exz
−1+tz−2

(
1 +

∞∑

s=1

ξs(x, t)z
−s

)

where ξs are some holomorphic functions C× C → C.

In [29] the following explicit expression for the Baker-Akhiezer func-
tion was obtained:
(37)

ψ(x, t, p) =
θ(A(p) + Ux + V t + Z0) θ(A(p0) + Z0)

θ(A(p0) + Ux+ V t+ Z0) θ(A(p) + Z0)
ex

∫ p Ω2+t
∫ p Ω3 ,

where A : Γ →֒ J(Γ) is the Abel-Jacobi embedding of the curve into the
Jacobian, and U and V are the vectors of B-periods of the normalized
(i.e. with all A-periods zero) differentials Ω2 and Ω3, with poles at p0
of second and third order, respectively. The vector Z0 is the image of
the divisor γ1 + . . .+ γg under the Abel map.
As shown in [29], the Baker-Akhiezer function satisfies partial differ-

ential equation (31) with the potential u(x, t) given explicitly as

(38) u(x, t) = 2∂2x ln θ(Ux+ V t + Z0).

Now let us show that the curves Γ with marked point p0 in Kg can
be characterized by the property that the vector U in (38) spans an
elliptic curve in the Jacobian (i.e. CU ⊂ J(Γ) is closed).
Recall that U is the vector of B-periods of the normalized mero-

morphic differential Ω2 above. Note that the differentials Ω2 −Φ1 and
τΩ2 − Φ2 are holomorphic. Since all the A-periods of Ω2 are zero,
the A-periods of these two differentials are all integer, and thus both
Ω2−Φ1 and τΩ2−Φ2 are integer linear combinations of a basis ω1 . . . ωg

of holomorphic differentials on Γ dual to the A-cycles. Thus the vector
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U of B-periods of Ω2 is a sum of the integer vector of B-periods of
Φ1 and of some integral linear combination of B-periods of ωi. Thus
U ∼ 0 ∈ C

g/Zg + τΓZ
g (where τΓ is the period matrix of Γ). Similarly

it follows that τU also lies in the lattice of periods of Γ, and thus the
vector U spans an elliptic curve in J(Γ).
Let N be the degree of the restriction of the theta function from

J(Γ) to any translate of the elliptic curve E generated by U . Since any
algebraic function on an elliptic curve can be expressed in terms of the
elliptic σ function, we can write

(39) θ(τΓ, Ux+ V t+ Z0) = f(t, Z0)

N∏

i=1

σ(x− xi(t))

where f is a suitable non-vanishing holomorphic function. Substituting
this expression into (38) implies that u is of the form (32). The Baker-
Akhiezer function is a meromorphic function of x. From lemma 5.6 it
then follows that qi(t) in (39) satisfy the equations of motion of the
CM system.

Remark 5.11. For the last statement a weaker version of lemma 5.6
suffices, because from the definition of the Baker-Akhiezer function it
follows that it has monodromy given by
(40)
ψ(x+ 1, t, p) = e2πiF1(p)ψ(x, t, p), ψ(x+ τ, t, p) = e2πiF2(p)ψ(x, t, p).

Such monodromy was called in [33] the double-Bloch property. Ge-
ometrically, it means that as a function of x, ψ is a (meromorphic)
section of a certain bundle on the elliptic curve E = C/Z+ τZ.

Thus, starting from a curve Γ ∈ Kg,N , we have recovered a solution of
the CM system, and can use equation (27) to define a Calogero-Moser

curve Γcm. In order to show that its normalization Γ̃cm coincides with
the original curve it is enough to check that

(41) ψ(x, t, p) =

N∑

i=1

ci(t, p)F (x− xi(t), z)e
kx+k2t

satisfy all the defining properties of the Baker-Akhiezer function on

Γ̃cm. Here the functions ci are coordinates of the vector C = (c1, . . . , cN)
satisfying

(42) (L(t, z) + k)C = 0, ∂tC =M(t, z)C .

This verification is straightforward, and the proof is thus complete. �
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Since we have constructed all curves in Kg as normalizations of spec-
tral curves of the Calogero-Moser system, and normalizing can only
reduce the arithmetic genus, we get in particular

Corollary 5.12. The locus Kτ
g,N is empty if g > N .

Remark 5.13. A further investigation into singularities of the Calogero-
Moser curves is of independent interest, and motivated our conjectures.
To start with, one easily sees that in the first nontrivial case N = g,
i.e. on Kg,g, the differentials Φ1 and Φ2 cannot have common zeroes.
Indeed, if for some point p ∈ Γcm we have Φ1(p) = Φ2(p) = 0, then
also dk(p) = dz(p) = 0, as these two differentials are linear combina-
tions of Φ1 and Φ2. However, if both dk and dz vanish at a point of
the closure in P1 × E of the affine curve, this point is singular, while
we assumed the curve to be smooth. Following this line of thought,
one would expect the common zeroes of Φ1 and Φ2 on Calogero-Moser
curves to be closely related to the singularities of the curve. For the two
simplest possible classes of singularities — nodes and simple cusps —
the situation is as follows: the differentials Ψ1 and Ψ2 (or equivalently

dk and dz) do not have a zero at a point of Γ̃cm that is a preimage of a
node on Γcm, and have a simple common zero at a preimage of a cusp
(and a multiple common zero at a preimage of any more complicated
singularity).

Note that the loci Kg,N become dense in Mg,1 as N → ∞. An open
set of Kg,N correspond to singular CM curves having N − g nodes.
The intersection of Kg,N with Dn corresponds to the CM curves with n
simple cusps and N − g− n nodes. Our main result, that Dg is empty,
for the case of CM curves can be formulated as follows:

Corollary 5.14. Let Γcm be an N-particle CM curve (i.e. given by
equation (29)), whose only singularities are n simple cusps and k nodes.
Then we have the bound

(43) 2n+ k < N.

Note that the family of N -particle Calogero-Moser curves is N di-
mensional. Hence, (43) is the expected inequality, and the statement
that (43) holds is in striking contrast with the case of plane curves,
where it is known that the similar inequality is false.
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