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Abstract. We show that certain structures and constructions of
the Whitham theory, an essential part of the perturbation theory
of soliton equations, can be instrumental in understanding the geo-
metry of the moduli spaces of Riemann surfaces with marked points.
We use the ideas of the Whitham theory to define local coordinates
and construct foliations on the moduli spaces. We use these con-
structions to give a new direct proof of the Diaz’ bound on the
dimension of complete subvarieties of the moduli spaces. Geomet-
rically, we study the properties of meromorphic differentials with
real periods and their degenerations.

1. Introduction

Solitons originally arose in the study of shallow waves. Since then, the
notion of soliton equations has broadened considerably, and it now embraces
a wide class of non-linear ordinary and partial differential equations, which
all share the characteristic feature of being expressible as a compatibility
condition for an auxiliary system of linear differential equations. The general
algebro-geometric construction of exact periodic and quasi-periodic solutions
of soliton equations was proposed by the second-named author in [21, 22],
where Baker-Akhiezer functions were introduced (the analytical properties
of Baker-Akhiezer functions are generalization of properties of the Bloch
solutions of the finite-gap Sturm-Liouville operators, established during the
initial development of the finite-gap integration theory of the Korteweg-de
Vries equation, see [5, 19, 31, 33]).

The algebro-geometric solutions of soliton equations corresponding to
smooth algebraic curves can be explicitly written in terms of Riemann’s
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theta function. The celebrated Novikov’s conjecture: that the Jacobians of
curves are exactly those indecomposable principally polarized abelian vari-
eties (ppav) whose theta functions provide explicit solutions of the Kadomtsev-
Petviashvili (KP) equation, was the first evidence of the now well-accepted
usefulness of combining the techniques of integrable systems and algebraic
geometry to obtain new results in both fields.

Novikov’s conjecture was proved by Shiota in [38], and until relatively
recently had remained the most effective solution of the Riemann-Schottky
problem, the problem of characterizing Jacobians of Riemann surfaces among
all ppavs. A much stronger characterization of Jacobians was suggested by
Welters, who, inspired by Novikov’s conjecture and Gunning’s theorem [15],
conjectured in [39] that a ppav is a Jacobian if and only if its Kummer vari-
ety admits at least one trisecant line (and then it follows that in fact it has
a four-dimensional family of trisecants).

Recall that for a ppav X with principal polarization Θ the Kummer
variety K(X) is the image of the complete linear system |2Θ|. This is to say
that the coordinates for the embedding K : X/ ± 1 ↪→ CP

2g−1 are given by
a basis of the sections of |2Θ|, consisting of theta functions of the second
order

Θ[ε](z) := θ[ε, 0](2τ, 2z) :=
∑
n∈Zg

exp(πi(2n + ε)tτ(n + ε/2) + 4(n + ε/2)tz)

for all ε ∈ (Z/2Z)2g, where τ is the period matrix of X. A projective (m−2)-
dimensional plane CP

m−2 ⊂ CP
2g−1 intersecting K(X) in at least m points

is called an m-secant of the Kummer variety.
The Kummer varieties of Jacobians of curves were shown to admit a

four-dimensional family of trisecant lines (this is the Fay-Gunning trisecant
formula, see [9]). It was then shown by Gunning [15] that the existence
of a one-dimensional family of trisecants that are translates of each other
characterizes Jacobians among all ppavs. The Welters’ trisecant conjecture
was recently proved by the second-named author in [25, 27]. In [14, 26] the
soliton theory was used to obtain a solution to another classical problem of
algebraic geometry — characterizing Prym varieties among indecomposable
ppavs.

The algebro-geometric perturbation theory for two-dimensional soliton
equations was developed in [23, 24]. It was stimulated by the application
of the Whitham approach for (1+1) integrable equation of the KdV type,
see [4, 10, 16]. As usual, in the perturbation theory “integrals” of an initial
equation become functions of the “slow” variables εtA (where ε is a small
parameter). “The Whitham equations” is a name given to the equations
that describe “slow” variations of “adiabatic integrals”.

We denote by Mg,n the moduli space of smooth algebraic curves Γ of
genus g with n distinct labeled marked points p1, . . . , pn (i.e., not taking the
quotient under the symmetric group). The universal Whitham hierarchy, as
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defined in [24], is a hierarchy of commuting equations on the total space
of the bundle M̂g,n → Mg,n of infinite rank: M̂g,n is the moduli space of
smooth algebraic curves Γ of genus g with n labeled marked points and a
choice of a holomorphic local coordinate zi, which we think of as an infinite
power series, in a neighborhood Upi of each marked point pi (it is customary
in the theory of integrable equations to write the local coordinate as k−1

instead of z, so that we have k−1
i (pi) = 0, i.e., ki(pi) = ∞). Thus we have

the bundle

M̂g,n = {Γ, pi ∈ Γ, zi : Upi → C, i = 1, . . . , n} −→ Mg,n = {Γ, pi ∈ Γ}.

(1)

For any point in M̂g,n and for a point of the Jacobian J(Γ) the algebro-
geometric construction gives a quasi-periodic solution of some integrable
partial non-linear differential equation (for a given non-linear integrable
equation the corresponding set of data has to be specified. For example,
the solutions of the KP hierarchy correspond to the case n = 1. The solu-
tions of the two-dimensional Toda lattice correspond to the case n = 2).

The construction of special “algebraic” orbits of the Whitham hierar-
chy, proposed in [23], has already found its applications to the theory of
topological quantum field models and to Seiberg-Witten solution of N = 2
supersymmetric gauge models (see details in [29, 30] and references
therein).

The moduli spaces of curves with marked points have curious vanishing
properties of tautological classes, Chow groups and rational cohomology. In
[1] Arbarello constructed a stratification of the moduli space Mg of smooth
Riemann surfaces of genus g and provided some evidence that it can be
a useful tool for investigating the geometric properties of Mg. Later Diaz
in [3] used a variant of Arbarello stratification to show that Mg does not
contain complete (complex) subvarieties of dimension g − 1. Some years
later, using a similar stratification Looijenga proved in [32] that the tau-
tological classes of degree greater than g − 2 vanish in the Chow ring of
Mg, which implies Diaz’ result (the Hodge class λ1 is ample on Mg, and
thus for any complete d-dimensional subvariety X ⊂ Mg we would have
λd

1 · X > 0, while λg−1
1 = 0, as a tautological class). Hain and Looijenga

[17] then asked whether the reason for this vanishing would be the exis-
tence of a cover of the moduli space of curves by at most g − 1 affine open
sets. Roth and Vakil [37] studied affine stratifications (generalizing covers
by affines) and asked whether they could be given for Mg. The following
conjecture is widely believed to be true, and would imply all of the above
results.

Conjecture 1.1 ([17, 32, 37]). Let g > 0, n ≥ 0 be such that 2g − 2 +
n > 0. Then the moduli space Mg,n of smooth genus g algebraic curves with
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n marked points has a stratification

(2) Mg,n =
g−δn,0⋃

i=1

Si, S̄j =
⋃
i≤j

Si

such that each locally closed stratum Si is affine.

Existence of such a stratification would also imply bounds on the homo-
topical dimension of Mg,n obtained by Mondello [35].

In [11] Fontanari and Looijenga construct such affine stratifications for
Mg for g ≤ 5. Both Arbarello’s and Diaz’ stratifications of Mg have the
right number of strata, but it is not known whether the strata are affine.
Not even conjectural candidates have been proposed for covers of Mg by at
most g − 1 affine open sets.

Our first goal is to give a new proof of Diaz’ theorem. Our approach,
based on the constructions of the Whitham theory, does not use any kind
of stratification. What we do in a sense can be considered a generalization
of the constructions and computations in the Hurwitz space (the space of
Riemann surfaces together with a meromorphic function with prescribed
pole orders), which were used to great effect in [6]. Our construction is on the
total space of the bundle of meromorphic differentials on Riemann surfaces
with prescribed pole orders. The Hurwitz space is a subvariety of this space
corresponding to the case when the differential is exact, i.e., when all its
periods are equal to zero. There are two advantages to our construction: that
the compactification is straightforward, and that the subbundle where the
singular parts are fixed admits a section, the unique meromorphic differential
with prescribed singular parts and real periods (if all these real periods are
in fact zero, we again recover the Hurwitz space).

We use this construction of real-normalized differentials to show that
on the moduli spaces of curves with fixed finite jets of local coordinates at
marked points there exist canonical real-analytic local coordinates. More-
over, part of these local coordinates are in fact globally defined piecewise
real-analytic functions, which become piecewise harmonic when restricted
to leaves of a canonically defined foliation on the moduli space. The maxi-
mum principle for harmonic functions then implies that codimension of any
compact cycle in the moduli space can not be less than the dimension of the
corresponding foliation, and we thus obtain a proof of Diaz’ theorem.

The real-normalized differentials of the third kind (i.e., with two simple
poles) are closely related to constructions in Chas-Sullivan string topology:
indeed, the imaginary part of the integral of a meromorphic differential with
real periods defines a global real function on the Riemann surface taking
values ±∞ at the two poles, which is used in string topology. We will also
use this global real function for our proof. Moreover, the total space of
meromorphic differentials on Riemann surfaces has long been an object of
study in Teichmüller theory. Our discussion of the possible degenerations of
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real-normalized differentials is in some ways reminiscent for example of the
theory of geometric limits of quadratic differentials developed by McMullen
[34].

2. Algebraic orbits of the Whitham hierarchy

The notion of algebraic orbits of the universal Whitham hierarchy is at
the heart of all the following constructions. They are defined as leaves of
a certain “canonical” foliation on the moduli space of curves with marked
points, together with a meromorphic differential with prescribed pole orders
at the points.

Definition 2.1. For any set of positive integers h = (h1, . . . , hn) we
denote by

Mg,n(h) :={
(Γ, p , ω)

∣∣∣ (Γ, p) ∈ Mg,n; ω ∈ H0(KΓ+
∑

hipi)\
n
∪

j=1
H0(KΓ−pj +

∑
hipi)

}
the moduli space of curves of genus g with n marked points, together with
a meromorphic differential with poles of order exactly hi at each pi. The
residues of the differential give n global well-defined functions on Mg,n(h):

(3) ρi(Γ, p, ω) := respi ω.

Remark 2.2. Note that in the definition we have required the poles to
be of order exactly hi — and thus obtained an open subset of the moduli of
curves with differentials of poles of order at most hi. This will be useful for
our construction of local coordinates and foliations in Mg,n(h), as we will
be able to say that the degree of any differential in Mg,n(h) is the same,
and thus it has a fixed number of zeros.

The moduli space Mg,n(h) is an open subset of the total space of the
universal complex vector bundle of meromorphic differentials over Mg,n with
fiber KΓ +

∑
hipi, and thus is a complex orbifold of complex dimension

(4)

dimC Mg,n(h) = dimC Mg,n +h0(KΓ +
n∑

i=1

hipi) = 3g −3+n+g −1+
n∑

i=1

hi

(we have h0(KΓ) = g, and for a meromorphic differential the only condition
is for the sum of the residues to be zero).

The moduli space of curves with marked points and an exact meromor-
phic differential with prescribed pole orders is a subset of Mg,n(h). Thus
the Hurwitz space — the moduli space of curves with marked points and
a meromorphic function with pole orders hi − 1 at marked points — is the
subset of Mg,n(h) consisting of differentials whose integral over any closed
curve is zero. This is to say these are differentials with all periods zero, and
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all residues zero. We will now describe a canonical foliation on Mg,n(h),
for which this Hurwitz space will be one leaf. To define this foliation, we
will perform a construction on the total space of the bundle of appropriate
meromorphic differentials over the Teichmüller space, and then argue that
the construction is invariant under the action of the mapping class group,
and thus descends to the moduli space.

Definition 2.3. For a curve Γ ∈ Mg we call a set of generators A1, . . . ,
Ag, B1, . . . , Bg of the fundamental group π1(Γ, Z) standard if the only rela-
tion between them is

∏
AiBiA

−1
i B−1

i = 1. We denote Tg,n(h) the moduli of
objects as in Mg,n(h) together with a choice of a standard basis. On Tg,n(h)
we have the well-defined global functions

(5) αi(Γ, p, ω, A, B) :=
∮

Ai

ω; βi(Γ, p, ω, A, B) :=
∮

Bi

ω

(from the point of view of integrable systems, these integrals are some of
the times for the universal Whitham hierarchy, and thus often denoted T ).
We then define the foliation L on Tg,n(h) to have leaves given by, for any
complex numbers r1, . . . , rn, a1, . . . , ag, b1, . . . , bg,

Lr,a,b :=
{
(Γ, p, ω, A, B) ∈ Tg,n(h) | ρj = rj , αi = ai, βi = bi, ∀j ≤ n, ∀i ≤ g

}(6)

Since the periods of a differential are holomorphic functions on Tg,n(h),
each leaf L is a holomorphic subvariety of Tg,n(h).

Notice that on Mg,n(h) one cannot globally talk about periods, as there
is no chosen basis of cycles, and thus there are no global functions αi or βi.
However, the condition of the periods being constant is independent of the
choice of the basis, and we thus have

Lemma 2.4. The subvarieties Lr,a,b ⊂ Tg,n(h) are permuted by the action
of the mapping class group, and thus the family L of them for all values of
r, a, b defines a complex foliation of Mg,n(h) by complex submanifolds.

Proof. Indeed, note that though the definition of Lr,a,b depends on the
choice of the set of generators A, B for π1(Γ, Z) and thus only makes sense on
Tg,n(h), if we choose a different basis A′, B′, then the new basis is obtained
from the old one by a linear transformation G ∈ Sp(2g, Z), and thus the
periods α′, β′ of a differential with respect to the new basis are obtained by
applying G to the periods α, β, and thus the manifold Lr,a,b is mapped to
Lr,G(a,b), so the action of the mapping class group permutes the leaves, and
thus preserves the foliation. �

We note that the leaves of L in Mg,n(h) may no longer be submani-
folds, as the action of the mapping class group may result in the image
L ⊂ Mg,n(h) of a leaf L ⊂ Tg,n(h) being dense, etc. However, we can still
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talk of the tangent space to L at a point, by thinking of the tangent space to
a preimage L. Thus any connected component of the intersection L with a
small neighborhood of any point in Mg,n(h) is a manifold, and we can talk
about the dimension of the leaves of L. Each leaf of L is given by n− 1+2g
equations (recall that the sum of the residues is equal to 1), and we thus
expect it to have codimension n − 1 + 2g in Mg,n(h). To prove that the
codimension of a leaf is indeed this, one needs to show that the functions
ρ, α, β are independent, i.e., that prescribing their values imposes indepen-
dent conditions on Tg,n(h). It turns out that this is indeed the case, and
moreover that this set of functions can be completed to a local coordinate
system near any point of Mg,n(h) (for local coordinates it does not matter
whether we work with Mg,n(h) or the universal cover Tg,n(h)). This will
also imply that the leaves of L are smooth. The construction of such local
coordinates is given in [29]. We will now summarize it for completeness and
for future use.

Remark 2.5. For motivation, note that the leaf L0,0,0 corresponding to
zero values of all periods and residues, consists of exact differentials, and
thus is simply the Hurwitz space of meromorphic functions with prescribed
pole orders at the marked point. As described by Ekedahl, Lando, Shapiro,
and Vainshtein in [6], the coordinates on the Hurwitz space are given by the
Lyashko-Looijenga mapping: associating to the meromorphic function the
(unordered) set of its critical values.

The critical point of a function is a zero of its differential, and so makes
sense in our situation. The critical value of a function at the critical point
is the integral of the differential — and thus we need to fix the path of
integration. Note that when dealing with Hurwitz spaces, one often allows
only simple branching away from infinity, i.e., requires all critical values to
be distinct. We will not require this, and thus to get real analytic coordinates
also along the locus where some critical values are multiple, we need to use
the symmetric functions of critical values as coordinates rather than the
critical values themselves.

Analogously to the Hurwitz space situation, where functions are only
defined up to an additive constant, our construction should rather be per-
formed on the moduli of curves with marked points and a chosen (multival-
ued) abelian integral, i.e., a chosen integral of the meromorphic differential
— which is unique up to an additive constant. This space is an affine bundle
over the moduli of curves with marked points, and is of independent interest,
but we will not need the details of it for what follows.

To formally define local coordinates, we will use the critical values of the
integral of ω. Indeed, write the divisor of ω on Γ as

(7) (ω) =
2g−2+

∑
hi∑

s=1

qs
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(where some of the qs may be the same). Consider then the integrals

(8) φj := C +
∫ qj

q1

ω, for j = 1, . . . , 2g − 2 +
∑

hi

where the integral of course depends upon the path of integration, and on
the choice of the numbering of the points in the divisor of ω. Note that even
if we work on Tg,n(h) and require the path not to intersect any of the loops
Ai or Bi, the integral still depends on the path of integration if the residues
of ω are not all zero. The constant C in (8) is defined by the normalization
condition s1 (φ) :=

∑
j φj = 0. We let

(9) σk := sk(φ1, φ2, . . . , φ2g−2+
∑

hi
) for k = 2, . . . , 2g − 2 +

∑
hi

be the values of the elementary symmetric polynomials of the critical values φj .
Locally in a neighborhood of a point (Γ, p, ω) ∈ Mg,n(h) we can choose

a basis for cycles, a labeling for the points in the divisor, and a family of
paths of integration. Notice that even if some of the points qs coincide, the
tuple q ∈ Sym2g−2+

∑
hi(Γ) deforms holomorphically, and thus sk are local

holomorphic functions on Mg,n(h), dependent on the choices made. Indeed,
locally let q = qs1 = . . . = qsμ be a zero of the differential ω of multiplicity
μ. Consider a small neighborhood of q, viewed as a point of the universal
curve above Mg,n(h). An abelian integral f(p) = C +

∫ p
q1

ω, viewed as a
function on the universal curve in a neighborhood of q, is a deformation
of a holomorphic function with a multiple critical value. Therefore, on the
corresponding curve, there exists a local coordinate z such that

f = zμ+1 +
μ−1∑
i=0

Φiz
i.

The coefficients Φi are (local) holomorphic functions on Mg,n(h). Note that
if μ = 1, Φ0 coincides with one of the critical value from (8). In the gen-
eral case these coefficients are elementary symmetric polynomials of critical
values φs1 , . . . , φsμ that coincide at q.

Theorem 2.6 ([29], Appendix). The set of functions α, β, σ(φ) (note
that the total number of functions is equal to n − 1 + 2g + 2g − 3 +

∑
hi =

dimC Mg,n(h)) give local holomorphic coordinates in a neighborhood of any
point of Mg,n(h), dependent on the choices made above for defining α, β, σ(φ).

Proof. We outline the key step in the proof of the argument, given
in full detail in [29]. Suppose that the differentials of these functions are
linearly dependent at some point Γ0 ∈ Mg,n(h) (and thus the functions
do not give local coordinates near Γ0). Then there exists a one-dimensional
family Γt ⊂ Mg,n(h), with complex parameter t such that the derivative of
any of the above functions along this family is equal to zero at t = 0.
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Choose locally a basis A, B for cycles, and let Ωi(t) be the basis of
holomorphic differentials on Γt dual to Ai. Denote then Fi(p, t) :=

∫ p
q1(t) Ωi(t)

the corresponding abelian integral — the function of p ∈ Γt, depending on
the choice of the path of integration. Let us also denote ft(p) :=

∫ p
q1(t) ω(t)

the integral of our chosen meromorphic differential along the same path.
We will now want to see how Fi varies in t. For this to make sense as a

partial derivative, we need to “fix” the point p as we vary Γt, and to do this
we will use f as the local coordinate on the universal cover of Γ. This is to
say that we will fix x := ft(p) and let t vary; this is to say that f allows us
to define a connection on the space of abelian integrals.

Rigorously, we consider the derivative

(10)
∂

∂t
Fi(f−1

t (x), t)|t=0

and show that it is zero. We think of the surface Γt as cut along a basis
of cycles, so that the integrals

∫ p
q1(t) in the definition above are taken along

paths not intersecting this basis, i.e., on the simply-connected cut surface.
Then the expression above is by definition holomorphic on the cut surface
Γ0, with possible poles at the zeros of ω (where f−1 is singular), and with
discontinuities along the cuts. However, if as we wary t the coordinates α and
β do not change, i.e., the periods of ωt do not change, the differential of (10)
has no discontinuity along the cuts, and since the critical values φ do not
change (which is implied by σ(φ) not changing as we vary t), (10) also has
no poles at the critical values of ω. Thus the differential of expression (10)
is a holomorphic differential on Γ0 with zero A-periods; thus it is identically
zero, and also has zero B-periods. Since the B-periods of Ωi are entries of
the period matrix τ of Γ0, this means that we have

∂

∂t
τij(t)|t=0 = 0,

The infinitesimal Torelli theorem says that the period map τ : Mg → Ag

induces an embedding on the tangent space away from the locus of the hyper-
elliptic curves and thus the above is impossible unless Γ0 is a hyperelliptic
curve.

For a hyperelliptic curve the kernel of dτ is one-dimensional and trans-
verse to the tangent space of the hyperelliptic locus. Therefore, to complete
the proof, it suffices to show that if Γ0 is a hyperelliptic curve, then the
tangent vector to the family Γt at t = 0 is tangent to the locus of hyperel-
liptic curves. For that, we fix on Γ0 a pair of distinct points P± for which
there exists a function λ with simple poles at these points and holomorphic
everywhere else. We may choose P± so that ω(P±) 
= 0. Let

λ = a±(x − x±)−1 + b± + O(x − x0
±), x0

± = f(P±)

be the expansions of λ at the points P± in terms of the local coordinate
defined by the abelian integral x = f(p). Then on Γt there exists a unique
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meromorphic differential Λt with double poles at P±,t, such that Λ+a±(ft−
f±,t)−2) ω (where f±,t) = ft(P±,t)) is holomorphic at P±,t, and normalized
by the condition

∮
Ai

Λ = 0. By the definition of Λ singular parts of the
expansions of the abelian integral λt(p) :=

∫ p
q1(t) Λ(t) at the points P±,t

in terms of the local coordinates (ft − f±,t) are t-independent. Arguing as
before, we conclude that

∂tλt(f−1
t (x)|t=0 = 0.

This implies that, up to order O(t2), the periods of Λt are the same as the
periods of dλ0, and thus equal to zero, i.e., up to the order O(t2) the function
λt is a single-valued function with only two simple poles on Γt. Hence, ∂t=0
is a tangent vector to the moduli space of hyperelliptic curves.

Further similar arguments show that if the functions α, β, σ(φ) are con-
stant along the family, than the singular parts of ω are t-independent as
well. (We refer to the appendix of [29] for details.) �

3. Differentials with real periods

We now introduce the second main tool of the theory: differentials with
real periods, or real-normalized abelian differentials, i.e., differentials ω on a
Riemann surface Γ such that all their periods are real.

Definition 3.1. We denote by Mreal
g,n (h) the space of curves with marked

points, together with a real-normalized meromorphic differential with
prescribed pole orders:
(11)

Mreal
g,n (h) :=

{
(Γ, p, ω) ∈ Mg,n(h)

∣∣∣ ∮
γ
ω ∈ R, ∀γ ∈ H1(Γ \ {p1, . . . , pn}, Z)

}
.

Note that to be able to talk of all periods of a meromorphic differential
being real, without choosing a basis for cycles, the integrals of ω around all
poles need to be real, so all residues need to be imaginary. Thus we have
ρj : Mreal

g,n (h) → iR.

Notice that the condition of the periods being real is a real-analytic and
not a holomorphic condition. From now on our constructions will happen in
the real-analytic category unless stated otherwise.

Remark 3.2. Because the periods of differentials are constant along the
leaves of the foliation L on Mg,n(h), the foliation L restricts to a foliation on
Mreal

g,n (h) (i.e., any leaf of L on Mg,n(h) intersecting Mreal
g,n (h) is contained in

Mreal
g,n (h)). Since Mreal

g,n (h) is only a real-analytic orbifold, the foliation L on
it is real-analytic, but each individual leaf carries the structure of a complex
orbifold (recall that the smoothness of every leaf follows from theorem 2.6).
The functions σ(φ) give local holomorphic coordinates on the leaves of L on
Mreal

g,n (h).
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One of the strengths of the real normalization lies in the following

Proposition 3.3. When restricted to Mreal
g,n (h), the tuple of imaginary

parts of the functions φ given by (8) is defined globally:

⎧⎨
⎩Im φj ,

∑
j

Im φj = 0

⎫⎬
⎭ : Mreal

g,n (h) → Sym2g−2+
∑

hi(R)

Another strength of the real normalization is in the uniqueness of a real-
normalized differential with prescribed singular parts at the marked points
(written out in terms of the jets of local coordinates at the marked points).
Thus the real-normalized differentials provide a section of the bundle of
meromorphic differentials with prescribed pole orders over the moduli space
of curves with marked points, endowed with jets of local coordinates at these
points.

Proposition 3.4. For any (Γ, p1, . . . , pn) ∈ Mg,n, any set of positive
integers h1, . . . , hn, and any choice of hi-jets of local coordinates zi in the
neighborhood of marked points pi, with zi(pi) and any singular parts (i.e., for
i = 1 . . . n the choice of Taylor coefficients c1

i , . . . , c
hi
i , with all residues

c1
i ∈ iR and the sum of the residues

∑
c1
i = 0) there exists a unique real-

normalized differential Ψ on Γ with prescribed singular parts, i.e., such that
in a neighborhood Ui of each pi we have

Ψ|Ui =
hi∑

j=1

cj
i

dz

zj
+ O(1)

Proof. Indeed suppose there were two such differentials. Subtracting
one from the other would then yield a holomorphic differential Ω with all
periods real. Then all the periods of the difference Ω − Ω̄ must be zero, and
thus we must have Ω − Ω̄ = 0 ∈ H1(Γ). Since Ω is holomorphic and Ω̄ is
antiholomorphic, this implies Ω = Ω̄ = 0.

From Riemann-Roch theorem it follows that there must exist a differen-
tial ω with the prescribed singular part. Let a1, . . . , ag be its periods over
the A cycles, and let Ω1 . . .Ωg be the basis of holomorphic differentials dual
to the A cycles. The differential ω′ := ω −

∑
aiΩi then has all A-periods

zero (and thus in particular real). We now need to show that there exists
a differential Ψ = ω′ −

∑
ciΩi, for some ci ∈ R, with all B-periods real —

its A-periods are equal to ci. Indeed, let b1, . . . , bg be the imaginary parts of
the B-periods of ω′. Since the imaginary part of the period matrix τ of Γ
is non-degenerate, there must exist a vector c ∈ R

g such that b = (Im τ) c,
and this is our solution. �
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4. A foliation of Mg,2, and Diaz’ theorem

In what follows we will concentrate on meromorphic differentials with
a single double pole (and thus with no residue at the marked point) —
traditionally called second kind — i.e., sections of KΓ + 2p over Mg,1, and
meromorphic differentials with two simple poles with opposite residues —
traditionally called third kind — sections of KΓ + p1 + p2 over Mg,2.

Definition 4.1. For the case of a differential of the second kind the sin-
gular part is equal to rz−2dz for some r ∈ C, where z is the local coordinate
near p with z(p) = 0. If the local coordinate z is changed, r transforms as a
tangent vector, and thus a Riemann surface with a differential of a second
kind determines a point in the moduli space Mg,1 together with a non-zero
tangent vector at p. We will denote by Mg,1̂ this space: the total space of
the universal tangent bundle to Mg,1 at the marked point, with the zero
section removed.

Remark 4.2. Notice that such a differential of the second kind has no
residue, and thus we can talk about real normalization. If such a differential
of the second kind were exact, it would be the derivative of a meromorphic
function with a single simple pole, in which case the Riemann surface would
be CP

1. In [6] it is explained why the tangent vectors at marked points
appear in the context of Hurwitz spaces.

For a differential of the third kind the singular part is determined by the
residue r ∈ C at p1 (the residue at p2 is then −r). To be able to talk about
real normalization, we need to require this residue to be imaginary, and then
all such real-normalized differentials of the third kind are R-multiples of each
other. We fix the residue to be i then (getting a section of the R-line bundle
Mreal

g,2 (1, 1) → Mg,2), and thus the foliation L, along the leaves of which the
residue is constant, induces a real-analytic foliation on Mg,2. Each leaf of
this foliation itself carries a complex structure, compatible with the complex
structure on Mg,2, and is of complex codimension g in Mg,2.

Remark 4.3. Real-normalized differentials of the third kind probably
had been known to Riemann in his study of electric potential created by
two charged particles on a surface. In modern literature they were used in
[12] to study triangulations of moduli space of curves with marked points in
connection with light-cone string theory, and in [28] in a construction of an
analog of Fourier-Laurent theory on Riemann surfaces. This is a case that
is of importance for string topology.

The fiber of the forgetful map Mg,2 → Mg over the point [Γ] is Γ × Γ \
diagonal, and thus non-compact. We define a partial compactification M̃g,2
of Mg,2 by allowing the two marked points to collide, so that the fiber of
the map M̃g,2 → Mg, equal to Γ×Γ, is compact. From the point of view of
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the Deligne-Mumford compactification, if the two marked points coincide,
we attach a nodal CP

1 at this point.
In the next section we formally study the degenerations of the real-

normalized differentials of the second kind. For the case of the differential
of the third kind the situation with this degeneration is clear: the bundle
KΓ +p1 +p2 extends to the boundary of Mg,n as a line bundle ωΓ +p1 +p2,
where ωΓ is the relative dualizing sheaf of a stable curve. Thus the limit of Ψ
is a differential with possible poles at the node and at the marked points on
CP

1. However, as the node on the original curve is separating, and is the only
marked point on the genus g component of the stable curve, there can be no
residue at it. Thus in this limit the real-normalized differential Ψ becomes
holomorphic on Γ, and will have residues at the two other marked points of
the CP

1. Since in the limit Ψ is still real-normalized, in the limit it becomes
identically zero on Γ, and the associated functions σ, α, β all become zero
(they no longer give coordinates near such degenerate points).

We now use this foliation on M̃g,2 and the local coordinates on it to
prove Diaz’ theorem.

Theorem 4.4 (Diaz [3]). There do not exist complete complex subvari-
eties of Mg of complex dimension greater than g − 2.

Proof. Suppose for contradiction Y ⊂ Mg were a complete complex
submanifold of Mg with dimC Y ≥ g − 1. Consider the preimage Z ⊂ M̃g,2
of Y ; it would then be a complete complex submanifold with dimC Z ≥ g+1
(notice that here we need the fact that the fibers of M̃g,2 are complete, which
is why we could not use Mg,2 in the first place).

By proposition 3.3 we have the globally defined tuple of the imaginary
parts of the critical values Imφj . Let us now arrange them into functions
f1 ≥ . . . ≥ f2g,

∑
fj = 0. The functions fj are continuous, and piecewise

real-analytic: they are harmonic on any open set of Mreal
g,n (h) where the

critical values are all distinct, so that their ordering above does not change.
Then f1 must achieve a maximum on Z, as a continuous function on a
compact set. We will want to use local coordinates on Mg,2 given by theorem
2.6, and thus need to avoid working on M̃g,2 \ Mg,2, where we do not have
local coordinates. We start by proving the following:

Lemma 4.5. The maximum of f1 on Z is strictly greater then zero (and
thus is achieved on Mg,2).

Proof. Indeed, if the maximum of f1 were zero, then due to the nor-
malization condition

∑
j φj = 0 it follows that all fj would be identically

zero on Z. Take then any point (Γ, p1 
= p2) ∈ Z ∩ Mg,2 (this is non-empty,
as Z is the preimage of Y ⊂ Mg) and consider a leaf L containing it. Then
in a neighborhood of (Γ, p1, p2) all functions Imφj would be identically zero
along L ∩ Z. If (Γ, p1 
= p2) is in the open set of Mg,2, where zeros of ω
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are simple, then the local holomorphic functions φj would be constant along
L ∩ Z, while all α and β are constant on L. Thus the values of σ(φ), α, β
would all be constant along L ∩ Z locally near (Γ, p1, p2). Since by theorem
2.6 these functions are local coordinates on Mg,2 , this would imply that
(Γ, p1, p2) is an isolated point of L ∩ Z. However, since codimC L = g, and
we assumed dimC Z ≥ g + 1, we have dimC(L ∩ Z) ≥ 1, and thus there is a
contradiction.

If all non-isolated points of L ∩ Z are not in the open set of Mg,2 where
the zeroes of w are simple, then they must lie in the strata corresponding
to differentials with some configuration of multiple zeros. From the defini-
tion of local coordinates it follows that although φj are not holomorphic as
functions on Mg,n(h) near the points of the strata, their restrictions to the
(open) stratum with a fixed configuration of multiplicities of the zeroes are
holomorphic. Moreover, on this open subset of a stratum they define a local
coordinate system, and we get the same contradiction as before. �

The proof of the theorem follows the same line of thought, but an induc-
tive argument is needed. Indeed, we let Z1 be the locus of points in Z where
f1 achieves its maximum. Since this maximum is non-zero, Z1 is a closed
subvariety of Z ∩Mg,2 (and thus we know that we have local coordinates at
any point of Z1). We claim that Z1 is foliated by (the connected components
of) leaves of L|Z , i.e., that if any component (L ∩ Z)0 of L ∩ Z contains a
point of Z1, then (L ∩ Z)0 ⊂ (L ∩ Z1). Note that Z1 ⊂ Z is by definition
closed and thus compact.

Indeed, take some (Γ, p1, p2) ∈ Z1 and consider the leaf L containing
(Γ, p1, p2). Since the complex codimension of L is equal to g, and by assump-
tion the complex dimension of Z is greater than g, we have dimC(L∩Z) ≥ 1
(for all components of the intersection). By theorem 2.6 we have local holo-
morphic coordinates α, β, σ in a neighborhood of (Γ, p1, p2) in Mg,2, and σ
are local coordinates on the leaf L. The function f1|L∩Z is the maximum of
{Im φi} for all i, and thus if f1 achieves a maximum at (Γ, p1, p2)0 ∈ (L∩Z)0,
one of the Im φi must also achieve a local maximum. If f1 = Im φi achieves
its maximum f0

1 at a point of the open set where Imφi is harmonic along
the leaf, then it is a constant along (L ∩ Z)0 due to the maximum principle
for harmonic functions. We claim that it is a constant along (L∩Z)0 even if
its maximum is achieved at (Γ, p1, p2)0, where the corresponding differential
has zero of multiplicity μ > 1, i.e., qi1 = . . . = qiμ .

Indeed, consider the function F1 =
∑μ

j=1 φij . In a neighborhood of
(Γ, p1, p2) it is well-defined and is holomorphic when restricted to the leaves
of the foliation.

By definition we have ImF1 ≤ μf1. Therefore, at the point (Γ, p1, p2)0
the function ImF1 achieves a local maximum, which is equal to μf0

1 .
Restricted to the leaf the function ImF1 is globally harmonic. Therefore,
it must be constant along the leaf, and thus along the leaf all the func-
tions Im φij are identically equal to f0

1 . Thus by definition of the foliation
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(L ∩ Z)0 ⊂ Z1. We now consider the function f2|Z1 , and let Z2 ⊂ Z1 be the
set where it attains its maximum on the compact manifold Z1. We claim
that Z2 is still foliated by the leaves of L ∩ Z, i.e., that if some (L ∩ Z)0

contains (Γ, p1, p2) ∈ Z2, then (L ∩ Z)0 ⊂ Z2. To prove this, we use the
same argument as above: indeed, f2 is the second-maximum value among
the tuple of functions Imφi, and thus if it attains a maximum at some
point, one of the functions Imφi must have a local maximum at this point.
Restricting Im φ to (L ∩ Z1)0, which we inductively know is equal to the
complex manifold (L ∩ Z)0, gives a harmonic function, which cannot have
a local maximum unless it is constant, and thus the value of f2 is constant
along (L ∩ Z1)0 = (L ∩ Z)0, so that (L ∩ Z1)0 ⊂ Z2 by definition.

Repeating this procedure, we get compact real subvarieties Z2g−1 ⊂
. . . ⊂ Z1 ⊂ Z such that for any leaf L containing some (Γ, p1, p2) ∈ Z2g−1
we still have (L ∩ Z2g−1)0 = (L ∩ Z)0. Let us now consider tuples α, β, φ
near (Γ, p1, p2). The coordinates α, β are constant on the leaf L, while by
construction all of fi, and thus all of Imφi, are constant along Z2g−1 (achieve
their respective maxima everywhere). Since (L ∩ Z)0 is a complex variety, if
the imaginary part of a (local) holomorphic function on it is constant, the
holomorphic function itself is constant. As shown above the multiplicities of
zeros of ω remain constant along (L ∩ Z)0. Therefore, φi are holomorphic
on (L ∩ Z)0, and thus as shown above must be constant along (L ∩ Z)0.
Since ρ, α, β are by definition constant on the leaf, it means that all the
local coordinates given by theorem 2.6 are constant along (L ∩ Z)0, which
implies that (L ∩ Z)0 is zero-dimensional. �

Another interesting space to consider is Mct
g , the moduli space of sta-

ble curves of compact type, i.e., those stable curves where the Jacobian is
compact; equivalently, this corresponds to pinching a number of separat-
ing (homologous to zero) loops on a Riemann surface. In [8] Faber and
Pandharipande further study the vanishing properties of the tautological
classes, for Mg and for the partial compactification Mct

g . They relate the
tautological classes on Mg and on the boundary, and use this to prove the
vanishing results for tautological rings of both Mg and Mct

g . In particular
their results imply that there do not exist complete subvarieties of Mct

g of
dimension higher than 2g − 3. In fact a stronger result is true:

Proposition 4.6 (Keel and Sadun [20]). For g ≥ 3 there do not exist
complete complex subvarieties of Mct

g of dimension greater than 2g − 4.

Idea of the proof from [20]. One uses induction in g, the case of
g = 3, when Mct

3 → A3 was shown in [20] not to contain a threefold,
being the base of induction. Suppose X ⊂ Mct

g is a complete subvariety.
If X ⊂ Mg, then by Diaz’ theorem its dimension is at most g − 2, and
we are done. Otherwise X must intersect the boundary, and we must have
dim(X ∩ ∂Mct

g ) = dimX − 1. Thus there must exist a component δi =
Mct

i,1 × Mct
g−i,1 ⊂ ∂Mct

g such that dim(X ∩ δi) = dimX − 1. One now
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uses the inductive bound for the dimension of complete subvarieties of Mct
i,1

and Mct
g−i,1, and finally observes that since any complete curve in Mct

2 must
intersect the boundary, for g = 4 the hypothetical X would have to intersect
not only δ2, but also δ1, which gives an improved bound in this case. �

5. Extension to the boundary

The line bundle of meromorphic differentials with prescribed pole orders,
i.e., the bundle with fiber KΓ +

∑
cipi over a smooth curve, extends to a

bundle globally over the Deligne-Mumford compactification Mg,n — the
fiber over a stable curve Γ is ωΓ +

∑
cipi, where ωΓ is the relative dualizing

sheaf. Recalling the definition of the relative dualizing sheaf, analytically
this means that limits of meromorphic differentials with prescribed poles
at pi are meromorphic differentials with poles at the points pi and possibly
with simple poles at the nodes, with the residues from the two components
canceling. In general if one takes a family of meromorphic differentials on
smooth Riemann surfaces (i.e., takes a section over Mg,n), we expect that the
limit may have simple poles at the nodes. Moreover, the theory of limit linear
series on reducible curves is extremely complicated, see for example [7], and
to determine all possible limits of sections on reducible nodal curves, one
may need to twist the bundle by some multiples of the connected components
of the nodal curve. We claim that this does not happen for the differentials
of the second kind with real periods.

Theorem 5.1. The real analytic section Ψ over Mg,1̂ of the bundle of
meromorphic differentials with one double pole and prescribed singular part
extends to a continuous section of the extension of this bundle, ωΓ +2p over
Mg,1̂. For a stable curve (Γ, q, k) the section ΨΓ is the unique meromorphic
differential that is identically zero on all connected components of the nor-
malization Γ̃ (geometrically Γ̃ is obtained from Γ by detaching the attached
nodes) except the one containing q. On that component ΨΓ is the unique
differential with real periods and prescribed singular part at the double pole
at q.

Proof. As we did above for differentials of the third kind, choose a
point p0 
= q on Γ and consider the function f(p) := Im

∫ p
p0

Ψ. Since Ψ has
real periods, this is a well-defined function on Γ \ {q}, and in this case f
diverges to both ±∞ at q, i.e., in any neighborhood of q it takes arbitrarily
large and small values. Let us now choose a small open disk D ⊂ Γ around
q. The function f is a real harmonic function on the open Riemann surface
Γ \ D. By the maximum principle it must then achieve its maximum (and
also minimum) on the boundary ∂D.

Consider now a family Γt ⊂ Mg,1̂ degenerating to a stable curve Γ0. On
each Γt choose a small neighborhood Dε of the point q, of size εk, where k
is the chosen cotangent vector at q, not containing any nodes for any t. This
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is always possible — if the family degenerates by acquiring nodes away from
q, this is clear; for the degeneration when a node develops and approaches
q the stable model has a blowup at this point, and thus on the blown up
P

1 there is an open disk around the marked point there not containing the
nodes.

Then the function ft is bounded on Γt \ Dε above and below by its
values on ∂Dε. However, since the singular part of Ψ at q is prescribed,
we can write down the singular part of the expansion of ft near q, and
thus the values of ft on ∂Dε are bounded independent of t. Thus the limit
function f(p) = Im

∫ p Ψ0 must also be bounded on Γ0 \ Dε. We want to
show that Ψ0 is equal to the differential Φ determined by the condition of its
holomorphicity at the nodes. Indeed, let us take F (p) := Im

∫ p(Ψ0−Φ). This
is a real harmonic function on Γ0, bounded on Γ0\Dε by the above argument,
but also bounded in the neighborhood Dε ⊃ p0 since Ψ0 − Φ is holomorphic
at p0. Thus F is a bounded harmonic function on a compact Riemann surface
Γ0 (to be more precise, on each component of the normalization), and thus
is constant, which implies Ψ0 = Φ. �

Remark 5.2. The compactification of Mg,1 has boundary strata corre-
sponding to the case of the marked point approaching the node in the limit
— in this case the stable reduction is to take a blowup, and thus we would
end up with an attached CP

1 with a marked point and fixed coordinate z
at the marked point, which can be extended to CP

1. In this case dz/z2 is
the unique meromorphic differential on CP

1 with a double pole and given
singular part — there are no periods to consider.

Remark 5.3. In the theory of limit linear series determining the limit
of a line bundle on a reducible curve is very complicated [7], and in fact
the compactification of the universal Picard scheme over Mg has several
connected components over the boundary [2]. In dealing with limit linear
series, it may not even be enough to consider limits in the versal deformation
space [36]: studying the limit of the line bundle for degenerating families of
curves with higher order tangency to the boundary of Mg may be needed.
Note, however, that in our proof we only use the maximum principle for
harmonic functions, which holds independent of the degenerating family
considered.

Remark 5.4. The above theorem fails for differentials of the third kind,
i.e., for sections ΨΓ,p,q,k over Mg,2. Indeed, if one tries to apply the same
proof, the neighborhoods of both points p and q need to be removed, and f
could achieve its maximum on the boundary of one neighborhood, and the
minimum on the boundary of the other. If points p and q lie on different
components of the nodal curve Γ0, then on any component we would only
have either the lower or the upper bound for ft, and thus it is possible for
the limit Ψ0 to acquire simple poles with residues ±k at the nodes of Γ0. It
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can in fact be shown that this is the only possible limit, i.e., that no twisting
of the bundle by the components of the reducible curve is possible.
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[34] McMullen, C.: Amenability, Poincaré series and quasiconformal maps, Invent. Math.

97 (1989), 95–127.
[35] Mondello, G.: A remark on the homotopical dimension of some moduli spaces of stable

Riemann surfaces, J. Eur. Math. Soc. 10 (2008) 1, 231–241.
[36] Mumford, D.: Stability of projective varieties, L’Enseignement Mathématique XXIII
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