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Abstract The scaling limit and Schauder bounds are derived for a singular integral
operator arising from a difference equation approach to monodromy problems.
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1 Introduction

Recently an alternative approach to Birkhoff’s theory of difference equations [1]
has been proposed in [4]. This approach leads naturally to local monodromies of
difference equations, which should converge in principle to monodromy matrices of
differential equations, thus providing a missing link in the theory of isomonodro-
mic transformations of systems of linear difference equations (see e.g. [2,3,7] and
references therein).

The key to the convergence process in [4] is the scaling limit of a certain singular
integral operator /, arising from a Riemann-Hilbert problem. The operator [ acts on
functions ¢ defined on the vertical line with fixed abscisse at a, and its kernel k(z, &)
is given explicitly by

erri(z—a) 4 e—ni(z—a)

k(z,&) = (1.1)

(e E—a) 4 o—TiE—a))(pin(E—2) 4 e—mi(E—2))

Research supported in part by National Science Foundation grants DMS-02-45371 and
DMS-04-05519.

I. M. Krichever - D. H. Phong (X))
Department of Mathematics, Columbia University, New York, NY 10027, USA
e-mail: phong@math.columbia.edu

@ Springer



122 Geom Dedicata (2008) 132:121-134

Ifwesetnz =mwa+iy, 7& = ma+in,y,n € R, and view ¢ as a function of n, we can
define the following re-scaled versions 7, of I,

00 1 —Ay+eky
L@®y) =PV /oo GO — A g 4 g P A (12)

where P.V. denotes principal values. As noted in [4], an essential property of the
operators [, is their formal limit,

y
h@m%ﬁ¢@% A = o0, (13)

The purpose of the present paper is to provide a detailed study of the boundedness
properties of the operators I and I, in suitable spaces of Schauder type, and to estab-
lish a precise version of the formal limit (1.3). Near the diagonal, the singularities of
the kernels of I, are the same as for the Hilbert transform, and the techniques for
handling the local behavior of such kernels are well known. The main novel feature
in our case is rather their global behavior near co. This global behavior prevents their
boundedness on scale-invariant spaces, and accounts for the existence of non-trivial
limits such as (1.3).

2 Schauder estimates with exponential growth

We introduce the following norms of Schauder type for functions on R. Fix x € R,
m € Z,0 < a <1, and let A7, be the space of functions ¢ on R satisfying the
conditions

()] < C 1+ x)™ e,
90— < Cle—yl* [+ D™ e+ a+ppme}, @
for all x,y € R. We define ||¢]] A% to be the infimum of the constants C for which

these inequalities hold. We also require the space A and the corresponding norm
[l Ao defined by the conditions

(log.x)

(0] = C log (1 +Lx) eV,
900 — ¢ = Clx =yl {log (L+ [xh e + log (L +ye |, (22)

The singular integral operator I can be expressed as
1
— (e 1 ¢ (-
I@)) = (e +wH((0+A@0), (2:3)

where H is the following exponentially decaying version of the classical Hilbert trans-
form,

mww=RV/

) 1
= lim, — 0/|yn|>€ P v (n) dn. 2.4)
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Set
K ! 25
@)= —=- (2.3)
Then the kernel K(z) is C*°(R \ 0), odd, and satisfies
lzI7, iflzl < 1 12|72, iflzl < 1;
K <C 0, K <C 2.6
R@i= [e—IZ, g > 1. @IS L—IZ, it >1. @0

In particular, these are better estimates than for the standard Hilbert transform kernel
Ko(z) = z71, and it follows at once that the operator H is bounded on the standard
Schauder spaces (see e.g. [5,6]). To obtain estimates for the operator /, we need the
boundedness of H on the above spaces A{,, ., and this is provided by the following
theorem:

Theorem 1 Fix 0 < « < 1, m € Z. The operator H is bounded on the following
Schauder spaces,

IH |z, < CoakIWllaz, » —1 <k <1. @.7)
For k = —1, we have the following bounds, form € Z, m > —1,
IHY Iz = ConaIllag, o m =0,
1Y llas, = CallWllag, , m=—1. (28)

Proof The method of proof is the standard method for Schauder estimates for singu-
lar integral operators. The only new feature here is the control of Hyr(x) for x large.
In view of the fact that K(z) is odd and exponentially decreasing, we can write

Hy () = / K@ —y) (50 — p)dy, (2.9)

where the integrals on the right-hand side are now convergent for v € A{, , with
0 <a <1,k < 1. In particular,

V@I [ ey e ()" dy
le—yl<1
-+ / eI + XM + (1 + [yh™e Py dy.  (2.10)
lx—y|=1
These are clearly bounded for |x| bounded, so we may assume that |x| > 3. In this
case, ﬁ < |x]—=1<|y| < |x|+1 < 2|x| in the integral over the region |[x —y| < 1, and

A+|yhmeM < C (14|x])™e<R!. Thus the first integral is bounded by C (14 |x|)™e<!.
The same upper bound for the second integral follows from the following lemma:

Lemma 1 Forany —1 < k < 1, and any m € Z, we have for all |x| > 3
/ e (1 + [x — 2 dz < Cpue (1 + [x])™e . (2.11)
R

For k = —1, we have form € Z, m > —1,

e WA+ xpmt ifm =0

3 : (2.12)
e Wlog (14 |x|), if m=—1.

/ e A+ x —zhme " dz < Gy l
R
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Proof of Lemma 1 We consider separately the cases of 0 <k <1, -1 <« < 0, and
k = —1. When 0 < k < 1, we write e“¥ 2 < ¢l ¢¢2l "and hence the integral on the
left-hand side of the above inequality can be bounded by

e K\xl/ e—(l—x)\zl(l 4 |x _ Z|)de
lx—z|>3 x|

+eK|X|/ e*(lfk)\ﬂ(] +|x = Z|)de. (213)
\x7z|<%|x\

In the first integral we can write

A+ x =z < Cp(d + |xD™A + 12D™ (2.14)
This is certainly true with C,, = 1 if m > 0. If m < 0, then we use the condition
lx—z| > %|x| to write (1 + |x — z)"" < 27"(1 + |x|)"™, and the inequality still holds.
Since ¥ < 1, the desired bound follows for the first integral. Next, in the second
integral, we have %|x| <|z|l < %|x|, and we can write

/ e~ U0I(1 4 |x — 2]y dz < e—%”‘ﬂ/ (1 + DI+ [z dz
e—z| <3 x| lzl<3 x|

<CvA+xp7N, (2.15)
for arbitrary N. This proves the lemma when 0 < k¥ < 1. When —1 < « < 0, we write
instead

el erlr—zl — o= (402l pr(lzl+lv—2z]) < o=(+x)Iz] prelx] (2.16)

and bound the integral on the left-hand side of the lemma by

e lel/ e—(l—HC)lZl(l 4 |x _ Z|)mdz
lx—z|> 4 I1x|

+el{\x| / e*(l+’<)|2\(1 +|x = Z|)de. (217)
lx—z|<}lx]

The bounds for these integrals are now the same as in the previous case. This estab-
lishes the estimate (2.11). Finally, consider the case k = —1. In the region of inte-
gration |x — z| > 4|x|, we have the integrand can be crudely bounded by e 21 +
|x— zl)me_%"‘_z| , and hence the contribution of this region is O(e~2M1), which is better
than we actually need. Thus it suffices to consider the region |x — z| < 4|x|. We write
then

/ e—lz\(l +lx— z|)me_|x_z|dz < e_‘xl/ 1+x=zD™ (2.18)
[x—z|<4|x|

|x—z|<4|x|

from which the desired estimate follows at once. The proof of the lemma is complete.

O

We return to the proof of the theorem. Let x,x” € R and set § = |x — x'|. The next
step is to estimate Hvr(x) — Hy (x), which can be expressed as

/ Kx =y y) —y@)dy — / KX =) (y) = ¥ (x))dy
ly—x|<36 ly—x'|<38

+ / K@ - p)W ) — v )y - / K& =)0 — p(@&dy. (2.19)
ly—x|=38 ly—x'|>38
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The first two integrals can be estimated as in the bounds for |H (x)|. For example,

/ K@ =@y =y (0)dy| < ||w||AgM/ e =y~ {1+ ey e
ly—x|<38 " S x—y| <38
+(1 + Iy "e )
< Cll¥llag, 81+ lx)™e ™ (2:20)

(M)

since (1+]y|)"™e“Y! < C (1+|x|)™e™ for |x| > 3and § « 1. To estimate the remaining
two integrals, write

/l - K& =y =y ()dy =/ K& =)W (y) — ¥ (x)dy
y—x'|=

ly—x'|>38

y—x|235  Jiy—x'|=36.|y—x|<35

- / (2.21)
ly—x'|<36,|ly—x|>38

The last two integrals on the right-hand side satisfy the desired bounds, because in
their ranges of integration, we have |y — x| ~ |y — x/| ~ §, and the same arguments
above apply. The remaining integral can be combined with the third integral in (2.19)
to give

/I KO0 = KW =) =y oy (222)
y—x >
Since we have

IK(x —y) = K" = p)| < |x = y| - [9:K(2)] (2.23)

for some z in the segment between x — y and x’ — y, and hence |z| ~ |x — y| when
ly — x| > 3|x — x'|, we can write, in view of the bounds for the |3,K(z)|,

/I | 38(K(x =) = K& =y - w(X))dY’
y—x|>
<38 ||W||Am/ e — y| 7>t {(1 + e+ (1 + |y|)me’(‘y|] dy
38<|x—y|<1

+811¥lg,, / e+ e - (4 ey, (224)

[x—y|>1

The first integral on the right-hand side is bounded by
S llag,, / Ix — y| =2+ {(1 + )M 4+ (1 + |y|)mef<|y\} dy
T J38<|x—y|<1
=8 11¥llag, 1+ 'x')mekm/ e — y| 72T < C8% (1 + |x™e . (2.25)
’ 38<x—y|<1

Applying Lemma (1), we obtain similar bounds for the second integral. Altogether,
we have shown that

[Hy (x) = Hy ()] < Cllyllag,  1x = x|+ |x])™ e (226)
@ Springer
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for |x — x’| small, and the theorem is proved when —1 < « < 1. The case x = —1 is
established exactly in the same way, using the corresponding estimates in Lemma 1
for k = —1 and m > —1. The proof of Theorem 1 is complete. O

Theorem2 For0 <k <2, meZ, and 0 < o < 1, the operator I is bounded on the
following Schauder spaces,

I@lrs, | < e 19114

Fork =0, m € Z, m > —1, the operator I satisfies the following bounds,

0<k<?2. (2.27)

?m,)() ’

1@las,, < Cmalillag, . m>0
11@)llas, < Calldllng, . m=—1. (228)

Proof This is an easy consequence of Theorem 1, the fact that the map ¢ — ¥ (y) =

ﬁqb(y) is a one-to-one and onto map M from A‘("m’K) — A‘()‘m,“ 1) with equivalent
norms

KA

(myx—1)

~1Igllaz, - (229)

and the relation I(¢) = M~ 'HM. O
We observe that these bounds always require some space which is not scale-

invariant. Thus bounds for 7, cannot be obtained by scaling the bounds for 7, and

this explains partly the possibility of the scaling limits discussed in the next section.

3 The scaling limit of I

We come now to the operators I,. The estimates for / in the previous section show
that I, cannot be treated by simple scaling arguments from /. Instead, we shall study
the bounds and limits for 7, as A — 4-oo directly. It is simplest to carry this out for
functions ¢ satisfying conditions of the form,

0'¢(0)] < Cr (1 + [y, 0<I<k, (3.1)

for fixed m € N, k € N, and norms ||¢|| A defined to be the best constant Cj for

which the above condition holds. The following theorem describes the limit of /; in
these spaces, although it should be clear from the proof and from the previous section
that other more precise versions can be formulated as well:

Theorem 3 Fix m € N. Then we have the following bounds, uniform in } and in

¢ e A%m),
y
11.(9)(y) —/ ¢@E)déll0 =< Cmf%H(bllAl : (32)
0 (m+1) (m)
Proof Formally, if we write
Lo0) = [ Ko dy (33)
with
—Ay Ay 1
Ky = S (3.4)

e M 4 erl eh(y—=n) — e—A(y—n)
@ Springer



Geom Dedicata (2008) 132:121-134 127

then for, say, y > 0, we have the pointwise limit

1, ifO0<n<y
3.5)

K 9 H .
»0- [0, if n < Oorn > y.

Thus, formally, the left-hand side of the expression in the theorem tends to 0 as
A — +o00. However, none of the integrals involved is uniformly nor absolutely con-
vergent, and we have to proceed with care. Fix y > 0 (the case of y < 0 being similar).
The key to the estimates is the following break-up of the principal value integral
defining 7, (¢),

Y oM 4 e Ay 4 ey
L)) =/ e W -n— v+ )dr+/ L -
0o €' —e [t]>y e —e
= (A) + (B) (3.6)
with

1

v(n) = m¢(ﬂ)~ (3.7)
To estimate (A), we apply Taylor’s formula

1
Vo= =vo+0=1 [ ¥o=pds (38)

which gives in this particular case,

! 1
YO-D -y +D= t/4 dp ( G0 Lo ? V=P

M=o _ =2 (y—p0)

A (er—r0) 4 e—k(y—pt))

Sy — pt)) (3.9)
Thus (A) can be rewritten as
1 /Y 1
W =5 [ at [ doxio.096 o0
0 -1

y 1 er =Pl _ o= (y—p0)
—/0 dt/_1 AR vermry T RSl

= A1+ Ao (3.10)

where the function yx; (p,f) is defined by

t At e e
X (p,t) = e — g ghy—ph) | g hy—pD) "

(3.11)

The following sharp estimates for x; (p, ) play an essential role in the sequel:

Lemma 2 Forall 0 <t <y, the functions x,(p,t) satisfy the following properties

(a)

At

At —ar(l—
<X)L(p,t)§2me A p), |p|<1,0<t<y

1 M=)
21 —e2M
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(b)

1 1
7 5/ x.(p,0dp < 2. (3.12)
1

Proof In the region 0 < ¢ < y, we have y — pt > 0 for all |p| < 1, and thus

Ay —Ay
L ot o te <26, (3.13)

7€ = S0 4 ero—pn =

The upper bound implies (a), while the lower bound implies (b), when combined with
the following explicit formula

1
/ eMldp = l( M — M. (3.14)
1 At

The proof of Lemma 2 is complete.
We can now show that A — 0 with a precise rate:

Lemma 3 The term involving ¢’ above tends to 0 at the following rate,

1
AL < G Il ()" (3.15)
Proof It suffices to write
i< Sl [dcae iy um [ de o (316)
and the desired estimate follows from the statement (b) of Lemma 2. O

The estimates in Lemma 2 show that x, (p, f) provide an approximation of the Dirac
measure concentrated at p = 1,

m 00, 0) — S(u—1) (3.17)
-1 X)\ M? M

A precise version of this statement with sharp estimates is given in the next lemma.
Set

1 e My=ph) _ oA (y—p0)
[ o000 s #0 = o0~ 9 =0

1 e +y=pt) _ pA(y—pt)
=/] dp xr(p,0) 1)o@y —pD

e—2—p0) 4 eh—ph)

1 1
+/1 dp x.(p,1) (<i>(y—pt)—<i>(y—t))+(/1 deA(p,t)—l)fﬁ(y—t)- (3.18)

Lemma 4 Forall0 <t <y, and any § > 0 and small, we have the following estimates,
with absolute constants,

(a)

1
‘/1 dp x(p,1) — 1

O =0l < 11910, (1+p)"(E +e72070) (3.19)
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(b)
1
’/1 dp xo.(p, 1) (p(y — pt) —p(y — )| < 1911a1, (L+ )" (6t + e ") (3.20)
(©)
1 e v—ph) _ =2 (y—p0)
/_1 dlo X}L(,O,[) e)»(Y*pl)_}_g*)»(Y*pt) _1|¢(y_10t)|
< Cer 0 gl A+ (3:21)

Proof To prove (a), we write

e ety
e y—pt) — pA(y—pt)

e—ZAy _ e—ZA(y—pt)
1+ e—2r—pD)

Apt Apt

—e =e

< e)\pt(efDLy _i_efZ)\(yfpt)) < ekpt(efDLy _i_efZA(yft))‘

(3.22)
In particular,
At 1
/ dp x.(p, 1) — / dpe'| < TR / dp e (e 4 e~ H0D),
e -1
(3.23)
Since [ <1 dp Mt = ()~ (M — M), the statement (a) follows.
To establish the statement (c), we begin by noting that
_ —A(y— “A(y—
o200 -1 _ =Pt _ o= (y—pD) _5 e 2A(y—p0) < 0 g 2(—p0) 3 24)
= ery=pt) 4 e=2(y—p0) 1+ e 20—p) — ’ ’

Using the estimate for x; in Lemma 2 and carrying out explicitly the integral in p
gives

! 1
/1 dp x2.(p,1) e—k(t+2y)/1 dpe!

0=pD _ o= y—pD) ‘ A

— <
ery—p) — g=A(y—pD) 1 —e2M

61
1 20— pl—e” < Ce 200,

3¢ 1—e 2~

which implies immediately (c).
To establish (b),let § > 0 be any number sufficiently small and to be chosen suitably
later. Write

1 1-6 1
/1dm(p,o(cp(y—pr)—¢<y—r>)=/1 +/1 =l (29)

The second term on the right-hand side can be estimated by,

1
|115|551||¢||A;m)(1+y)m/1 dpppn =511l (0", (326)
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while the first term can be estimated using Lemma 2,

sl < 211115 (143" / dp e

el — e M=) A8t

=2 ||¢||A%m) (L+y)"e” g = Csupyg,,lple™". (3.27)

The proof of Lemma 4 is complete. O
We can now carry out the integral in ¢. The precise estimates are given in the next

lemma:

Lemma 5 For any 0 < y, we have the following estimates,

Ay Ly V=Pt _ o=A(y—pD)
dt/ dp o _ m(e te )( ,\(y—pt)+e—x(y—pz))2¢’(y_pt)
—/‘m¢@—o
0

with a constant C independent of y and of A.

sawm%aﬂw(ljw+é).@%)

Proof In view of the defining formula (3.11) for the function x;(p,?) and the break
up (3.18), the left-hand side of the desired inequality is bounded by the integral in ¢
of the three inequalities in Lemma 4. This gives the following upper bound,

y
ol (L+ )™ / dr (e 4+ 272070 4 5t 4 o7, (3.29)
(m) 0
The integral can be evaluated explicitly, and we find

1 1 1
4 (1 —e ) 4 25y + — (1 — e, 3.30
yer Sl = e 4 S8yt (=) (3.30)
We consider the sum of the first two terms: when Ay < 1, it is bounded by Cy, where
C is an absolute constant. When Ay > 1, it is bounded by C A~1. Thus we have

y Ly oY
ye 4+ Iy 1 —e) Tty (3.31)
Next, we consider the optimal choice of § so as to minimize the size of the sum of
the remaining two terms in the above integral. We note that we may assume that
8» > 1, since otherwise the term (81)~1(1 — e=%*) is of size 1, and we do not even
get convergence to 0. Thus we should take 1 > 1, in which case the sum of the two
remaining terms is of size

1
§y2 + — 3.32
v+ 5 (3.32)

which attains its lowest size y)»_% if wesetd = y‘lk_%. This gives the estimate stated
in the lemma. O

We return now to the estimate of the contribution to 7, (¢)(y) of the integral in ¢
from the region [t| > y.
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Lemma 6 For any 0 < y, we have the following estimate

1 e e 1 1
‘/It|>y A oM gD e—x(y—t)‘P(y —ndt| < Gy, X”d)”/‘?m) (1 + log (1 + E))

Proof Consider first the contribution from the region ¢ > y. In this region, we have

A - s
lek(zy_’) Lt 2 T 260 (3.33)
2 = ety + e—Ay—1) — 7 pAli—y) ’

Thus the contribution from the region ¢ > y to the integral on the left-hand side of
the desired inequality can be bounded by

672)\ (t—y) —2A8

oo
e
/,>y1—crz}"|¢(y_[)|dt:/g mkf’(—sﬂds

[ 672)Ls m
= ||¢||A(()m)/0 m(l‘f‘ Is|™) ds. (3.34)

We claim that for all m € N, we have

00 672}@ 1 1
m
/0 m(l + 5| ds < Cp 5 (1 + log (1 + E)) . (3.35)

In fact, setting 1 = e~>*Y and making the change of variables s — u, e"?** = s, this
integral can be rewritten as

1 ' du 1 1\"
— —— 1+ —1log—]) . 3.36
22X Jo 1—u,u( + Ogu) ( )

We break it into two regions of integration 0 < u < % and % < u < 1. In the first
region, the integral is of size
1 1
2 du 1 " 2 1 \"
— 1+ —log—) <2 1+ —log-
_/0 1—uu(+2k Ogu) - /0 (+2k Ogu)
—A 1

2 e 1\" }
< (logf) du—|—2’"+1/2 du
A Jo u e

Con. (3.37)

IA

In the second region, we have

1 m 1
du 1 1 du
14+ —log— <C 3.38
/%1—u,u(+2)» Ogu) - m/; 1—up ( )

2

This last integral can be evaluated explicitly, and we find that it is bounded by (1 +
log (1 + ﬁ)). This is the desired estimate.
Next, consider the contribution of the region ¢ < —y. In this region, we have instead
e)‘y + e‘*)‘y Ay

LY € At
€ < T00 4 e 70D < 26)\()17[) <2e (3.39)

The contribution from ¢t < —y to the left-hand side of the desired inequality can then
be bounded by
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1
191150, (141" / 2M(l + )™ dt < Con (1 + log (1 + E)) , (3.40)

as was to be shown. m]

The bound provided by Lemma 6 involves a log (Ay)~! term, and is not adequate
for y close to 0. This is because the integral is only a principal value integral when
|t — y| is small, and the estimates we have just derived for the contribution of the
region ¢ > y do not take into account the cancellations inherent to principal value
integrals. This issue is addressed in the next lemma:

Lemma 7 Assume that0 < Ay < 1. Then

1 M e N
tHydt
/y<t|<1 Ty ey prape o LA S )

1 e 4 e

o1 € — eH D 4 =i

1
< Cligley,, (v+5) @41

1
<Cn ||¢||A?m) X (342)

Proof Since we can assume that A is large, the condition that Ay < 1 implies that
y < 1, say. We can exploit the cancellation by writing the integral over the region
y < |t| < 1in the form,

1 1 e + ey
/ :/ v x[ So-0 a0 ?0 D
y<lt<1 y €"—e” te

e 4 ety

~ TR 0D ¢y + t)] dt (3.43)
Next, the expression within brackets is written as,
e~ 4 ey e 4 My
S0 00?0 =) - oo
00 + g0 =0t 4 h D)
e 4 M
m((ﬁ@’ H—¢y+0n)
e 4 e e + M

T+ [ef}\(yfl) + el PN + er+D ’ (3.44)

The contribution of the first term on the right-hand side can be estimated as follows,

-1 1 7)‘)/ +e}"y
/y = L A R )

< R A(zy_t)dt
<Wllgy /y e
Since Ay < 1, we can estimate this last term crudely by

1 2 1
t )\(zyit) e / t}\. C
——¢ dt < — ——dt < —, 3.45
/y eM — oM - A y eZM -1 ~ A ( )

since the function u(e2* — 1)~! is a smooth and bounded function for u > 0. Next, to
estimate the other contribution, we also exhibit the cancellation more clearly,

1 1 1 1 1
e 0D £ h0—D o r0HD 4 ghOHD | ] - 2htY) (ek(tfy) B ex<z+y>)

1 1 1
t (1 = R e—zx(y+z>)
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The first resulting group of terms can be estimated by

1 1 1 MDAy —hy —t
‘1 Fap=TaEy (e'\(f—ﬁ — g)\(t+y))‘ <eMEeY —e ™)y <Crye™™, (3.46)

and the corresponding integral in turn by,

d 1 1 1
t ,\t|¢0’ +0l- 1 4 e 2M1+y) \ ghi—y) — r(+)
Lar
= ||¢||C?02] Y /y i1 (3.47)
To determine the size of this expression, we break it up as follows,
[am=l wie [z ([ 5 &
Y e 1 Y e 1 1 ezxz % eZM
<C ! 1 ! +1 (3.48)
— | log — .

and hence, since Ay < 1,

. 1 1 1 1
/ b — e PO+ 1T = o~ g )| S 0l A5 7))
(3.49)

The remaining group of terms in (3.46) can be estimated in a similar way,

1 1 1 N
_ y _ =AYy ,—AGBt+y) —3t
G0 |Tre 2  1Tyedomm| =€ —€7)e < Caye ™, (3.50)
and hence
! P 1 1 1
y te/\t_ef/\t Y |1 £ 20—y 1 4 e—2004D oG+ 0l
1 ,=3u

< ligllcy Ay /y — (3:51)

which is even smaller than the previous integral. Finally, to estimate the integral from
the region |¢| > 1, we have the simple estimate, since Ay < 1, say for ¢ > 0,

1 M e M
M — g M o—A(I=Y) } oh—)

1 1
60 =0l < C oo gl (L + 1)
< Cligllqo, (1+1d)y"e™  (3.52)

which implies readily the desired inequality upon integration in . The proof of the
lemma is complete. o
Proofof Theorem 2 It suffices to combine all estimates from Lemmas 4, 5, and 6: when
Ay > 1, we apply Lemmas 4 and 5, and when Ay < 1, we apply Lemmas4 and 6. O
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