
ar
X

iv
:0

80
4.

02
74

v1
  [

he
p-

th
] 

 2
 A

pr
 2

00
8

Abelian solutions of the KP equation

I. Krichever∗ T. Shiota†

January 3, 2008

Abstract

We introduce the notion of abelian solutions of KP equations and show that all of
them are algebro-geometric.

1 Introduction

The Kadomtsev-Petviashvili equation (KP)
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(1.1)

is one of the most fundamental integrable equation of the soliton theory. Various classes of
its exact solutions have been constructed and studied over the years. The purpose of this
paper is to introduce and characterize a new class of solutions of the KP equation. We call
a solution u(x, y, t) of the KP equation abelian if it is of the form

u = −2∂2
x ln τ(Ux+ z, y, t) , (1.2)

where x, y, t ∈ C and z ∈ Cn are independent variables, 0 6= U ∈ Cn, and for all y, t the
function τ(·, y, t) is a holomorphic section of a line bundle L = L(y, t) on an abelian variety
X = Cn/Λ, i.e., for all λ ∈ Λ it satisfies the monodromy relations

τ(z + λ, y, t) = eaλ·z+bλτ(z, y, t), for some aλ ∈ Cn, bλ = bλ(y, t) ∈ C . (1.3)

There are two particular cases in which a complete characterization of the abelian solu-
tions has been known for years. The first one is the case n = 1 of elliptic solutions of the
KP equations. Theory of elliptic solutions of the KP equation goes back to the work [1],
where it was found that the dynamics of poles of the elliptic (resp. rational or trigonometric)
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solutions of the Korteweg-de Vries equation can be described in terms of the elliptic (resp.
rational or trigonometric) Calogero-Moser (CM) system with certain constraints. In [11] it
was shown that when the constraints are removed this correspondence becomes an isomor-
phism between the solutions of the elliptic (resp. rational etc.) CM system and the elliptic
(resp. rational etc.) solutions of the KP equation. Recall that the elliptic CM system is
a completely integrable system with Lax representation L̇ = [L,M ], where L = L(z) and
M = M(z) are (N ×N) matrices depending on a spectral parameter z ∈ C. The involutive
integrals Hn are defined as Hn = n−1 TrLn. A function u(x, y, t) which is an elliptic function
in x satisfies the KP equation if and only if it has the form

u(x, y, t) = 2
N∑

i=1

℘(x− qi(y, t)) + c , (1.4)

where ℘(q) is the Weierstrass ℘-function ([6]), and its poles qi as functions of y (resp. t) satisfy
the equations of motion of the elliptic CM system, corresponding to the second Hamiltonian

H2 =
1

2

N∑

i=1

p2
i − 2

∑

i6=j

℘(qi − qj)

(resp. the third Hamiltonian H3).

An explicit theta-functional formula for algebro-geometric solutions of the KP equation
provides an algebraic solution of the Cauchy problem for the elliptic CM system [11]. Namely,
for generic initial data the positions q = qi(y, t) of the particles at any time y, t are roots of
the equation

θ(Uq + V y +Wt+ Z) = 0 ,

where θ(Z) is the Riemann theta-function of the Jacobian of time-independent spectral
curve Γ, given by R(k, z) = det(kI −L(z)) = 0 (hence Γ as well as the vectors U , V , W and
Z depend on the initial data).

The correspondence between finite-dimensional integrable systems and pole systems of
various soliton equations has been extensively studied in [5, 12, 13, 17, 18]. A general scheme
of constructing such systems using a specific inverse problem for linear equations with elliptic
coefficients is presented in [12]. In [2] it was generalized for the case of field analog of the
CM system (see also [19]).

The second case in which a complete characterization of abelian solutions is known
is the case of indecomposable principally polarized abelian variety (ppav). The corre-
sponding θ-function is unique up to normalization, so that Ansatz (1.2) takes the form
u = −2∂2

x ln θ(Ux+Z(y, t) + z). Since the flows commute, Z(y, t) must be linear in y and t:

u = −2∂2
x ln θ(Ux+ V y +Wt+ z) . (1.5)

Novikov conjectured that an indecomposable ppav (X, θ) is the Jacobian of a smooth genus
g algebraic curve if and only if there exist vectors U ( 6= 0), V and W such that u given by
(1.5) satisfies the KP equation. Novikov’s conjecture was proved in [21], and until recently
has remained the most effective solution of the Riemann-Schottky problem.
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Besides these two cases of abelian solutions with known characterization, another may
be worth mentioning. Let Γ be a curve, P ∈ Γ a smooth point, and π: Γ → Γ0 a ramified
covering map such that the curve Γ0 has arithmetic genus g0 > 0 and P is a branch point of
the covering. Let J(Γ) = Pic0(Γ) be the (generalized) Jacobian of Γ, let Nm: J(Γ) → J(Γ0)
be the reduced norm map as in [20], and let

X = ker(Nm)0 ⊂ J(Γ)

be the identity component of the kernel of Nm. Suppose X is compact. By assumption we
have

dim J(Γ) − dimX = dim J(Γ0) = g0 > 0,

so that X is a proper subvariety of J(Γ), and the polarization on X induced by that on J(Γ)
is not principal. Now take a local coordinate ζ ∈ mP \m

2
P at P , and define the KP flows on

Picg−1(Γ) using the data (Γ, P, ζ).

Suppose first that π is given by ζ 7→ ζm near P , i.e., ζm ∈ π∗(mπ(P ) \ m
2
π(P )). Then for

any r ∈ Z>0 not divisible by m we have
∏m−1

j=0 etr/(εjζ)r

= 1, where ε = e2πi/m, so that, as
seen from the definition of the map e in (1.12) below, we have e(0, . . . , 0, tr, 0, . . .) ∈ X, so

the r-th KP orbit of F ∈ Picg−1(Γ) is contained in F ⊗X := {F ⊗L | L ∈ X} ⊂ Picg−1(Γ).

In general, since for any r0 ∈ Z>0 the space
∑

r≤r0
C∂/∂tr is independent of the choice of

ζ , for any ζ ∈ mP \m
2
P and 0 < r < m (so in particular for r = 1), the r-th KP orbit of F is

contained in F ⊗X, and so it gives an abelian solution. Let us call this the Prym-like case.

An important subcase of it is the quasiperiodic solutions of Novikov-Veselov (NV) or BKP
hierarchies. In the Prym-like case, just as in the NV/BKP case we can put singularities to Γ
and Γ0 in such a way thatX remains compact, so it is more general than the KP quasiperiodic
solutions, for which J(Γ) itself is compact. Recall that NV or BKP quasiperiodic solutions
can be obtained from Prym varieties Prym(Γ, ι) of curves Γ with involution ι having two fixed
points. The Riemann theta function of J(Γ) restricted to a suitable translate of Prym(Γ, ι)
becomes the square of another holomorphic function, which defines the principal polarization
on Prym(Γ, ι). The Prym theta function becomes NV or BKP tau function, whose square
is a special KP tau function with all even times set to zero, so any KP time-translate of it

• gives an abelian solution of the KP hierarchy with n = dimX being one-half the genus
g(Γ) of Γ, and

• defines twice the principal polarization on X.

A natural question may be whether these conditions characterize the (time-translates of)
NV or BKP quasiperiodic solutions.

Hurwitz’ formula tells us that in the Prym-like case n = dim(X) ≥ g(Γ)/2, where the
equality holds only in the NV/BKP case. At the moment we have no examples of abelian
solutions with 1 < n < g(Γ)/2.
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Integrable linear equations The KP equation can be seen as the compatibility condition
for a system of linear equations. In [14], it is shown that only one of the auxiliary linear
equations (

∂y − ∂2
x + u

)
ψ = 0 (1.6)

suffices to characterize the Jacobian locus. We shall call this an intebrable linear equation
although here both u and ψ are unknown, and the equation should be regarded nonlinear.

This result is stronger than the one given in terms of the KP equation (see details in [4]).
In terms of the Kummer map it is equivalent to the characterization of the Jacobians via
flexes of the Kummer varieties, which is one out of the three particular cases of the trisecant
conjecture, first formulated in [22]. Two remaining cases of the trisecant conjecture were
proved in [16]. The characterization problem of the Prym varieties among indecomposable
ppav was solved in [8, 15].

The notion of abelian solutions can be extended to equation (1.6). A solution (u, ψ) of
equation (1.6) is abelian if

u = −2∂2
x ln τ(Ux + z, y) and ψ =

τA(Ux + z, y)

τ(Ux + z, y)
ep x+E y (1.7)

for some p, E ∈ C and 0 6= U ∈ Cn, such that τA(z, y) and τ(z, y) are holomorphic functions
of (z, y) ∈ Cn×D, where D is a neighborhood of 0 in C, satisfying the monodromy properties

τ(z + λ, y) = eaλ·z+bλ(y)τ(z, y) , τA(z + λ, y) = eaλ·z+cλ(y)τA(z, y) (1.8)

for all λ in the period lattice Λ of an abelian variety X = C
n/Λ.

Main result Our examples of abelian solutions of KP equation (1.1) or the integrable
linear equation (1.6) can be extended to rank one algebro-geometric solutions of the KP
hierarchy, for which X ⊂ J(Γ), with Γ being the spectral curve. In this paper we follow the
lines of [14] to observe that abelian solutions of (1.1) or (1.6) are rank one algebro-geometric,
and X ⊂ J(Γ) holds if the group CU = {Ux ∈ X | x ∈ C} is Zariski dense in X.

Without loss of generality it will be assumed throughout the paper that

(∗) Λ is a maximal lattice satisfying the respective monodromy property, i.e., any λ ∈ Cn

which satisfies condition (1.3) in the case of KP equation (1.1), or condition (1.8) in
the case of equation (1.6), must belong to Λ.

Theorem 1.1 Suppose that one of the following two conditions (A), (B) holds:

(A) for any z ∈ Cn, and y, t in a neighborhood of the origin in C2, the function u given
by (1.2), with τ satisfying the monodromy condition (1.3), is an abelian solution of the
KP equation (1.1);

(B) for any z ∈ Cn, and y in a neighborhood of the origin in C, the pair (u, ψ) given by
(1.7), with τ and τA satisfying the monodromy condition (1.8), is an abelian solution
of equation (1.6), such that the following condition holds:

(†) the divisors Θ := {(z, y) ∈ X × D | τ(z, y) = 0} and ΘA := {(z, y) ∈ X × D |
τA(z, y) = 0} have no common component.
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Suppose, moreover, that condition (∗) holds. Then there exist a unique irreducible algebraic
curve Γ, a smooth point P ∈ Γ, a subabelian variety Y of X containing CU , where u is as in
(1.2) or (1.7), an injective homomorphism i:Y →֒ J(Γ), a Y -invariant blow-up π: X̃ → X
(i.e., the Y -action on X lifts to X̃) with the center contained in

Σ :=
⋂

x∈C

(Θ + Ux) , (1.9)

and a holomorphic map j of X̃ to the space Picg−1(Γ) of torsion-free rank 1 sheaves on Γ of
degree g− 1, where g = g(Γ) is the arithmetic genus of Γ, such that for any given z̃ ∈ X̃ the
diagram

C
e1−→ Y ∋ z′ 7−→ z′ + z̃ ∈ X̃yi

yj

J(Γ) ∋ L 7−→ L⊗ j(z̃) ∈ Picg−1(Γ)

(1.10)

commutes, where e1(x) = Ux ∈ Y , and such that, locally in z̃ ∈ X̃,

τ(Ux+ z, y, t) = ρ(z̃, y, t) τ̂(x, y, t, 0, . . . | Γ, P, j(z̃)) (1.11)

(here the t-variable is absent in case (B)), where z = π(z̃), τ̂ (t1, t2, t3, . . . | Γ, P,F) is the KP
tau-function defined by the data (Γ, P,F), and ρ(z̃, y, t) 6≡ 0 is a function of (z̃, y, t) which
satisfies ∂Uρ = 0.

Here are some remarks:

• the locus Σ, defined in (1.9), is a unique maximal ∂U -invariant subset of Θ, and it will
be called the singular locus,

• the main assumptions in either case (A) or (B), i.e., (1.1) or (1.6), contain excessive
information. All what is used for their proof is a certain equation valid on the τ -divisor
derived in Lemmas 3.1 and 3.2 below.

• time evolutions of the KP hierarchy can be described by extending the map e1 in (1.10):

C
e1−→ Y

·+ z̃
−֒→ X̃yj1

yi

yj

C∞ e
−→ J(Γ)

· ⊗ j(z̃)
−→ Picg−1(Γ) ,

(1.10′)

where j1: x 7→ (x, 0, 0, . . .), and by taking a local coordinate ζ ∈ mP \ m
2
P at P , the

homomorphism e is defined by

e(t1, t2, . . .) =

{
O near P and on Γ \ {P},

glued to itself around P by e
P

ti/ζi

.
(1.12)

• the factor ρ in (1.11) is needed since multiplying τ and τA by a quantity independent
of x has no effect on (1.2) or (1.7).
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Since i and e are homomorphisms, they are lifted to linear maps on the universal coverings,
as readily seen for the latter in the formula for tau when Γ is smooth:

τ̂(x, t2, t3, . . . | Γ, P, j(z̃)) = θ
(
Ux+

∑
Viti + j(z̃)

∣∣∣ B(Γ)
)
eQ(x,t2,t3,...) , (1.13)

where Vi ∈ Cn, Q is a quadratic form, B(Γ) is the matrix of B-periods of Γ, and θ is the Rie-
mann theta function. This linearization of nonlinear ti-dynamics provides some evidence that
there might be underlying integrable systems on the spaces of higher level theta-functions
on an abelian variety. The CM system is an example of such a system for n = 1.

Blow-up and P1-family of solutions The space of tau functions is the total space, say

B, of a C
∗-bundle over Picg−1(Γ). However, given z ∈ X our τ as a function of x, y, t (or τ̂

as a function of t1, t2, . . . ) might be identically zero. So this maps X to B ∪ {0}, a space to

which the projection from B to Picg−1(Γ) cannot be continuously extended. Thus we often
do need to blow up X to define j in (1.10). However, we observe

Remark 1.1 No blow-up is needed if Γ is smooth.

Proof. After dividing τ by the trivial factors (see Section 2), we assume the locus Σ is of
codimension ≥ 2 in X.

Suppose Γ is smooth. Then Picg−1(Γ) = J(Γ), and it is an abelian variety. Then any
holomorphic map from P

1 to it must be constant. Indeed, since P
1 is simply connected, any

such map can be lifted to a map from P1 to the universal covering of J(Γ), i.e., an affine
space. Hence it must be constant.

Assuming Σ 6= ∅, take any point p0 ∈ Σ, and take a 2-dimensional plane Π ⊂ X such
that locally near p0, the loci Σ and Π meet only at p0. Take a coordinate system (a, b) on Π
such that p0 is the origin a = b = 0, and restrict the range of z to Π to obtain a family of τ
parametrized by (a, b). Taylor expanding τ in a, b:

τ(x, y; a, b) =
∑

m,n≥0

τm,n(x, y)ambn,

where we omit the t-variable in case (A) (or the sequence t3, t4, . . . if τ is a KP τ -function),
let N be the set of indices (m,n) for which τm,n 6≡ 0. Since τ(x, y, 0, 0) ≡ 0 and τ is not
divisible by a or b, we have (0, 0) /∈ N , and (m, 0) ∈ N , (0, n) ∈ N for some m, n > 0. Hence
there exist positive integers p, q and C such that N ⊂ {(m,n) | pm + qn ≥ C}, and such
that N meets the line pm+ qn = C at least at two points. Then as the “lowest order” part
of τ ,

τ̃ (x, y; a, b) :=
∑

pm+qn=C

τm,n(x, y)ambn

is a family of solutions, and it is a weighted homogeneous polynomial of a and b. Then
τ̃(x, y; ap, bq) is an (unweighted) homogeneous polynomial, giving a P1-family of τ mod C×.
Then by the fact noted above, this must be a constant family, so all the τm,n on the line
pm+qn = C must be a constant multiple of the same τ . Observing this on every edge of the
polygon N , we see that as (a, b) → (0, 0) we have a well-defined limit of the corresponding
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sheaf F , which means no blow-up is necessary around p0. Since the point p0 ∈ Σ and the
plane Π ∋ p0 are arbitrary, no blow-up is needed at all, so the remark follows.

Having this in mind, let us start with a curve with a node, and constract a nontrivial
family of τ -functions of the form

τ(t, z′; a, b) = aτ0(t, z
′) + bτ1(t, z

′) , (a, b) ∈ C
2 \ {(0, 0)} , (1.14)

where τ0 and τ1 (and hence the entire family) depend on the same parameters z′ ∈ Cd in
such a way that τi(t, z

′) = τi(z
′ + Ut1, t2, . . .), and satisfy the same monodromy conditions

for a lattice Λ′ ⊂ Cd.

Such a family of quasiperiodic τ -functions should yield an example of abelian solutions
for which blow-up is really needed: take an abelian variety Z = Cn/Λ, and two C-linearly
independent functions θ0 and θ1 on Cn which satisfy the same monodromy conditions with
respect to Λ (so the ratio θ0/θ1 is a meromorphic function on Z), let Y = C

d/Λ′, X = Y ×Z,
denote X ∋ z = (z′, z′′), with z′ ∈ Y and z′′ ∈ Z, and define τ(t, z) by replacing a and b in
(1.14) by θ0(z

′′) and θ1(z
′′), respectively, i.e.,

τ(t, z′, z′′) = θ0(z
′′)τ0(t, z

′) + θ1(z
′′)τ1(t, z

′) .

We need to blow up X along the intersection of zero loci of θ0 and θ1 to define a map to

Picg−1(Γ), where g is the arithmetic genus of Γ. Note also that the KP hierarchy has no
control over the 2nd factor Z.

Construction of family (1.14) goes as follows. First, consider a simple Backlund transform
applied to any quasiperiodic τ -function τ0(t), t = (t1, t2, . . .). This yields a family of τ -
functions of the form (1.14), where

τ1 := X(p, q)τ0 := exp
(∑

ti(p
i − qi)

)
exp

(∑ q−i − p−i

i

∂

∂ti

)
τ0 (1.15)

using Date et al.’s notation for vertex operator [7]. It is more common to take a = 1, but
formula (1.14) gives a tau function as long as (a, b) 6= (0, 0). Let us try to make τ0 and τ1
satisfy the same monodromy conditions. If τ0 is a quasiperiodic solution associated with a
smooth curve Γ̃ and a point P ∈ Γ̃, the effect of a + bX(p, q) on τ0 is to identify the points
p and q on Γ̃ to make a curve Γ with node, and the fibres of line bundle on Γ̃ at p and q to
obtain a line bundle on Γ if the ratio b/a is not 0 or ∞, or a torsion-free rank 1 sheaf on Γ
in general.

As we saw in the paragraph on Prym-like solutions, suitably chosen Γ̃, P , p and q
make entire family (1.14) of τ -functions quasiperiodic in t1: suppose there exists a ramified
covering map π̃ of Γ̃ to another smooth curve Γ̃0 of genus g0 ≥ 0, such that P , p and q are
branch points, and such that π̃−1(π̃(p)) = {p} and π̃−1(π̃(q)) = {q} hold. Identify p and
q on Γ̃, and π̃(p) and π̃(q) on Γ̃0 to obtain curves with nodes Γ and Γ0, respectively, with
a covering map π: Γ → Γ0. Note that pa(Γ0) = g0 + 1 ≥ 1. Since J(Γ) (resp. J(Γ0)) is a
C×-extension of J(Γ̃) (resp. J(Γ̃0)), and since the restriction of Nm: J(Γ) → J(Γ0) to the
C× does not vanish, the identity component Y of ker(Nm) is an abelian variety isogenous to

that of ker(Ñm: J(Γ̃) → J(Γ̃0)). Hence, as seen in our construction of “Prym-like” solutions,
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the t1-evolution associated to (Γ, P ) is contained in Y and hence quasiperiodic, and for any
(a, b) 6= (0, 0) the solution τ in (1.14) is quasiperiodic in t1.

Next, let us construct a more explicit example. Starting with an elliptic curve Γ̃, we
can easily adjust the monodromy conditions of τ0 and τ1 so that, after doubling one of the
fundamental periods (or replacing J(Γ̃) ≃ Γ̃ by a double cover, Y , of it), τ0 and τ1 satisfy the

same monodromy conditions. In this example we take Γ̃0 = P1, so that ker(Ñm) = J(Γ̃) = Γ̃.
That Y is a double cover of it fits the general picture above.

For brevity we restrict ourselves to the first three time variables (t1, t2, t3) = (x, y, t), and
consider the first KP equation (1.1) only. It is a simple exercise on elliptic functions to work
out the formulae for the whole KP hierarchy.

For 2ω1, 2ω3 ∈ C× with ℑ(ω3/ω1) > 0, let Λ0 := 2Zω1 +2Zω3 and Γ̃ := C/Λ0. Denote by∑′ (resp.
∏′) the sum (resp. product) over all ω ∈ Λ0\{0}. Defining Weierstrass’ σ-function

by

σ(z) := z
∏′

(1 − z/ω) exp(z/ω + (z/ω)2/2)

and using a well-known differential equation for ℘(z) = −(ln σ(z))′′, we have

D4
zσ · σ

σ2
≡ 2∂4

z ln σ + 12(∂2
z ln σ)2 = g2 := 60

∑′

ω−4 .

Hence τ0(x, y, t) := τ0(x, y, t, z) := eαxt+βy2

σ(z + x) is a z-dependent solution to the KP
equation iff

g2 + 12β − 8α = 0. (1.16)

Moreover, setting ζ(z) = (ln σ(z))′, ω2 := −ω1 − ω3 and ην = ζ(ων), where ν = 1, 2, 3, we
have

σ(z + 2ων) = −σ(z) exp(2ην(z + ων))

and ∣∣∣∣
η1 η3

ω1 ω3

∣∣∣∣ =

∣∣∣∣
η3 η2

ω3 ω2

∣∣∣∣ =

∣∣∣∣
η2 η1

ω2 ω1

∣∣∣∣ =
πi

2
,

so that Weierstrass’ co-sigma functions σµ(z) := exp(−ηµz)σ(z + ωµ)/σ(ωµ), µ = 1, 2, 3,
satisfy

σµ(z + 2ων) = (−1)δµ,ν exp(2ην(z + ων))σµ(z), ν = 1, 2, 3,

i.e., σµ satisfies the same monodromy conditions as σ for the periods 2ωµ and 4ων (ν 6= µ).
On the other hand, (1.15) implies

τ1
τ0

= Cy,t exp(Ax)
σ(x− 1/p+ 1/q)

σ(x)
, (1.17)

where A := p − q + α(−1/p3 + 1/q3)/3, and Cy,t 6= 0 is independent of x. Therefore, if we
choose p, q and α so that

−
1

p
+

1

q
= ωµ and p− q +

α

3

(
−

1

p3
+

1

q3

)
= 2ηµ (1.18)
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hold for some µ ∈ {1, 2, 3}, then the right-hand side of (1.17) becomes σµ/σ up to a factor
independent of x, so that τ0 and τ1 satisfy the same monodromy conditions for the periods
2ωµ and 4ων (ν 6= µ). We thus constructed a P1-family of solutions quasiperiodic with
respect to the lattice 2Zωµ + 4Zων , where ν ∈ {1, 2, 3} \ {µ} is arbitrary.

The paper is organized as follows. In Sect. 2 we show basic properties of the zero loci
of τ and τA, and observe the nature of condition (†). In Sect. 3 we construct a formal wave
function, which is used in Sect. 4 to obtain commuting differential operators. Almost till the
very end the proof of Theorem 1.1 goes along the lines of [21] (in case (A)) or [14] (in case
(B)). Constructing a wave function is easier in case (A) than in case (B), and the rest of the
proof is the same for both cases, so in what follows we mainly consider case (B).

2 Zero loci of τ and τA

Before constructing the wave function, let us observe some properties of the zero loci of τ
and τA.

For a constant coefficient polynomial P (ξ, η, . . .), Hirota’s bilinear differential operator
P (D) = P (Dx, Dy, . . .) is defined by

P (D)f · g := P (∂x′, ∂y′ , . . .)f(x+ x′, y + y′, . . .)g(x− x′, y − y′, . . .)
∣∣∣
x′=y′=···=0

.

Putting (1.7) into the left-hand side of (1.6) and using

∂y
τA
τ

=
DyτA · τ

τ 2
, ∂x

τA
τ

=
DxτA · τ

τ 2
and ∂2

x

τA
τ

=
D2

xτA · τ

τ 2
− 2

τA
τ

D2
xτ · τ

τ 2
,

we have e−px−Eyτ 2(∂y − ∂2
x + u)ψ = ((Dy + E) − (Dx + p)2)τA · τ , so (1.6) is equivalent to

((Dy + E) − (Dx + p)2)τA · τ = 0 . (2.1)

This readily shows the symmetry (x, y) ↔ (−x,−y), τ ↔ τA of equation (1.6), and it is also
handy to find the possible forms of common factors of τ and τA:

Lemma 2.1 If

τ(x, y) = (x− x(y))bϕ and τA(x, y) = (x− x(y))aϕA, (2.2)

where ϕ, ϕA 6= 0 at x = x(y), then

a =
ν(ν + 1)

2
, b =

ν(ν − 1)

2
, (2.3)

for some ν (= a− b) ∈ Z. Conversely, for any ν ∈ Z there is a solution of (2.1) of the form
(2.2) with a, b given by (2.3).
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Indeed, putting (2.2) into the left-hand side of (2.1) yields

−D2
xτA · τ + · · · = −Cab(x− x(y))a+b−2ϕAϕ+O((x− x(y))a+b−1)

with Cab = (a− b)2 − (a+ b), which vanishes iff (2.3) holds. Conversely, for any holomorphic
solution of the heat equation

fy = fxx ,

e.g., f ∈ exp(y∂2
x)C[x], the pair

τA = e−px−Eyf(x, νy)a and τ = f(x, νy)b

give a solution of (2.1) of the form (2.2). This proves the lemma.

We have |ν| ≤ 1 if ψ is a KP wave function evaluated at a finite value of spectral parameter
k, so a nonempty zero locus with higher |ν| is an obstruction for the extension problem to
be discussed in Sect. 3. Rather than trying to see what the occurrence of (|ν| > 1)-locus
means to quasiperiodic solutions, in this paper we will simply choose to exclude these cases
by assuming condition (†) in p. 4, or any one of the following:

(†′) ψ generically has a simple pole along Θ \ Σ;

(‡) Θ and ΘA are reduced, i.e., the zeros of τ and τA are generically simple;

(‡′) Θ and ΘA are irreducible;

(‡′′) Θ or ΘA is reduced and irreducible.

Indeed, we have

Lemma 2.2 For a solution of (1.6), conditions (†), (†′) and that |ν| ≤ 1 on all components
of Θ \ Σ, are all equivalent, and if the solution is quasiperiodic, then they follow from any
one of (‡), (‡′) and (‡′′).

Proof. Since a and b are positive (and one of them is greater than 1) when |ν| > 1, the
first assertion is almost obvious. To be precise, we have to see that ν is constant on each
component of Θ or ΘA, or at least that the |ν| > 1 case cannot deform into the |ν| ≤ 1 case,
i.e., there is no parameter-dependent solution (τ(x, y, ζ), τA(x, y, ζ)) of (2.1) which looks
like (2.2) with a, b > 0 when the parameter ζ = 0 but not when ζ 6= 0. Indeed, such a
deformation would imply that when ζ is close to 0 there are b simple zeros of τ (and a simple
zeros of τA) staying arbitrarily close to each other in a fixed interval of y. Since a or b must
be greater than 1, we see, even without calculations, that this is unlikely from the usual,
CM-like particle system interpretation of the motion of zeros of τ when |ν| ≤ 1.

That (‡) implies |ν| ≤ 1 is also equally obvious (the two conditions are equivalent if Σ is
of codimension ≥ 2 in X).

Next, if Θ and ΘA are irreducible and |ν| > 1 somewhere, then we have the same ν (and
the same, unequal and positive a and b) all over Θ and ΘA which have the same underlying
set. Then τ and τA cannot define the same polarization on X which contradicts (1.8). Hence
condition (‡′) also excludes the possibility of having |ν| > 1.

Criterion (‡′′) may be useful since it involves only τ (or τA). If, e.g., Θ is reduced, then
b ≤ 1, and the only case with |ν| > 1 we can have is ν = 2 (a = 3, b = 1). If, moreover, Θ is
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irreducible, then as a divisor ΘA ≥ 3Θ, so again τ and τA cannot define the same polarization
on X. This completes the proof of the lemma.

Thus, in what follows we assume |ν| ≤ 1, so τ and τA have no common factor depending
on x, and ψ has a simple pole along Θ \ Σ. The latter form of the condition will be used in
Sect. 3.

A pair (τ, τA) can also have “trivial” common factors. If (τ0(x, y), τA0(x, y)) solves equa-
tion (2.1), then so does

(ρ(y)τ0(x, y), ρ(y)τA0(x, y)) (2.4)

for any ρ(y). Such a factor ρ(y) itself is harmless, but it may not if, e.g., it deforms into an
x-dependent factor in a solution with parameters. So let us introduce a parameter z′, and
prove that a family of solutions of (2.1) which is a deformation of the pair in (2.4) must be
of the form

(ρ(y, z′)τ0(x, y; z
′), ρ(y, z′)τA0(x, y; z

′)) , (2.5)

where (τ0(x, y; z
′), τA0(x, y; z

′)) is a family of solutions of (2.1) and ρ(y, z′) is a function of
(y, z′) (independent of x) such that

(τ0(x, y; 0), τA0(x, y; 0)) = (τ0(x, y), τA0(x, y)) and ρ(y, 0) = ρ(y) .

As in the KP case, such a factorization is not free, but it can be proved using quasiperiodicity:

Lemma 2.3 Let D and D′ be neighborhoods of 0 in C, let d ∈ Z>0, let Λ be a lattice in C
d,

and let U ∈ Cd be such that CU mod Λ is Zariski dense in Y := Cd/Λ. Let (τ, τA) be a pair
of functions defined on Cd ×D ×D′, such that

i) as a pair of functions of (x, y) ∈ C×D, (τ(z+Ux, y, z′), τA(z+Ux, y, z′)) solves (2.1),

ii) τ and τA satisfy the same monodromy conditions in z: for all λ ∈ Λ, there exist
aλ ∈ Cd, bλ(y, z

′) ∈ C such that

τ(z + λ, y, z′) = eaλ·z+bλ(y,z′)τ(z, y, z′) , τA(z + λ, y, z′) = eaλ·z+bλ(y,z′)τA(z, y, z′) ,

iii) τ(z, y, 0) = ymτ0(z, y), τA(z, y, 0) = ymτA0(z, y) for some functions τ0, τA0 and m ∈
Z>0.

Then the whole family (τ, τA) must be factored as in (2.5), i.e., there exist a pair of functions
(τ0, τA0) defined on Cd ×D×D′ and a function ρ defined on D×D′ such that ρ(y, 0) = ym,
τ0(z, y, 0) = τ0(z, y) and τA0(z, y, 0) = τA0(z, y), and such that the factoring in iii) extends
to z′ away from 0:

τ(z, y, z′) = ρ(y, z′)τ0(z, y, z
′) , τA(z, y, z′) = ρ(y, z′)τA0(z, y, z

′) .

This is how we get the ρ in (1.11). Our choice of the factor ym in iii) is for notational
simplicity only. One can replace it by a more general ρ0(y).

Dividing τ and τA by the trivial factors, we may assume that Σ and

ΣA :=
⋂

x∈C

(ΘA + Ux) (2.6)
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are of codimension ≥ 2 in X ×D. Then we can prove that Σ = ΣA, and that Σ is not only
∂U -invariant but also ∂y-invariant.

Note that the division by trivial factors may change the monodromy condition (1.8), but
it will not affect our argument in the following sections since the trivial factors ρ, λ1 and λ2

must be constant in the directions of the Zariski closure YU of line CU in X.

3 Construction of the wave function

In the core of the proof of Theorem is the construction of quasiperiodic wave function as
in (3.8) below. Having a spectral parameter k, it contains much more information than the
function ψ in (1.7). Taking (1.6) as a starting point, we closely follow the argument from
the beginning of Section 2 through Lemma 3.2 of [14]. The construction is presented in two
steps, first locally to show that (1.6) guarantees the single-valuedness of the wave function
around each simple zero in x of τ(x, y), and then globally to maintain quasiperiodicity.

Step 1 Let τ(x, y) be a holomorphic function of the variable x in some domain in C,
depending smoothly on a parameter y and having only simple zeros at x = xi(y):

τ(xi(y), y) = 0, τx(xi(y), y) 6= 0. (3.1)

Let vi and wi be the second and the third Laurent coefficients of u(x, y) = −2∂2
x ln τ(x, y) at

x = xi, i.e.,

u(x, y) =
2

(x− xi(y))2
+ vi(y) + wi(y)(x− xi(y)) + · · · . (3.2)

Lemma 3.1 ([4]) If equation (1.6) with the potential u = −2∂2
x ln τ(x, y) has a meromor-

phic solution ψ0(x, y), then the equations

ẍi = 2wi (3.3)

hold, where the “dots” stand for y-derivatives.

Proof. Consider the Laurent expansion of ψ0 at x = xi:

ψ0 =
αi

x− xi

+ βi + γi(x− xi) + δi(x− xi)
2 +O((x− xi)

3) . (3.4)

All coefficients in this expansion are smooth functions of the variable y, and αi 6≡ 0 due to
condition (†′) in p. 10. Substituting (3.2) and (3.4) into (1.6) gives a system of equations.
The first three of them are

αiẋi + 2βi = 0 , (3.5)

α̇i + αivi + 2γi = 0 , (3.6)

β̇i + viβi − γiẋi + αiwi = 0 . (3.7)

Taking the y-derivative of the first equation and using the others, we get (3.3).
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The equation (3.3) is all what we are going to use below. Let us show that it is valid
for any meromorphic solution of the KP equation. Namely: let τ(x, y, t) be a a holomorphic
function of the variable x in some domain in C, depending smoothly on parameters y, t and
having only simple zeros x = xi(y, t).

Lemma 3.2 If the function u = −2∂2
x ln τ(x, y, t) is a solution of the KP equation then the

equations (3.3) hold.

Proof. For the proof of the theorem it is enough to substitute the Laurant expansion of u at
x(y, t) into the KP equation and consider the coefficient in front of (x− xi(y, t))

−3.

Next, let us show that equations (3.3) are sufficient for the existence of meromorphic
wave solutions, i.e., solutions of the form

ψ(x, y, k) = ekx+(k2+b)y

(
1 +

∞∑

s=1

ξs(x, y) k
−s

)
, (3.8)

where b is a constant, ξs are meromorphic functions, and the series in parentheses is a formal
power series in k−1.

Lemma 3.3 Suppose that equations (3.3) for the zeros of τ(x, y) hold. Then there exist
meromorphic wave solutions of equation (1.6) that have simple poles at xi and are holomor-
phic everywhere else.

Proof. Substituting (3.8) into (1.6) gives a recurrent system of equations

2ξ′s+1 = ξ̇s + (u+ b)ξs − ξ′′s . (3.9)

Adding b to u does not change the coefficient wi in the expansion (3.2), so the presense of
eby in (3.8) has no effect on the assertion of the lemma. We are going to prove by induction
that this system has meromorphic solutions with simple poles at x = xi .

Let us expand ξs at x = xi :

ξs =
rs

x− xi

+ rs0 + rs1(x− xi) +O((x− xi)
2) , (3.10)

where we omit the index i in the notation for the coefficients of this expansion, since it
suffices to look at a neighborhood of each xi. Suppose that ξs are defined and equation (3.9)
has a meromorphic solution. Then the right-hand side of (3.9) has no residue at x = xi, i.e.,

resxi
(∂yξs + uξs − ξ′′s ) = ṙs + virs + 2rs1 = 0 (3.11)

We need to show that the residue of the next equation vanishes also. From (3.9) it follows
that the coefficients of the Laurent expansion for ξs+1 are equal to

rs+1 = −ẋirs − 2rs0 , (3.12)

2rs+1,1 = ṙs0 − rs1 + wirs + virs0 . (3.13)

These equations imply

ṙs+1 + virs+1 + 2rs+1,1 = −rs(ẍi − 2wi) − ẋi(ṙs − virss+ 2rs1) = 0 ,

and the lemma is proved.

13



Step 2 Let us now reintroduce z-dependence to τ , so that it is a function of z + Ux ∈ C
n

and y. Our goal is to fix a translation-invariant normalization of ξs to define wave functions
uniquely up to an x-independent factor.

We assume that y runs over a small neighborhood D of 0 ∈ C, and let Cn∗ := Cn ×D.
Identify Cn with Cn×{0} ⊂ Cn∗, and hence U ∈ Cn with (U, 0) ∈ Cn×C and Λ with Λ×{0}.
A Λ-invariant subset of C

n∗ will be regarded as a subset of X∗ := X × D = C
n∗/Λ. Let

Θ := {(z, y) ∈ X∗ | τ(z, y) = 0}, Θ1 := {(z, y) ∈ X∗ | τ(z, y) = ∂Uτ(z, y) = 0}. The singular
locus Σ =

⋂
x∈C

(Θ + Ux) =
⋂

x∈C
(Θ1 + Ux) is a unique maximal CU -invariant subset of

Θ1. As we observed in Section 2, dividing τ and τA by suitable ∂U -invariant functions, we
assume that Σ and ΣA are of codimension ≥ 2 in X. Then Θ1 is also of codimension ≥ 2
in X. Let YU = 〈CU〉 be the Zariski closure of the group CU in X. Since it is a minimal
CU -invariant closed subset of X∗, Σ and ΣA are YU -invariant, so that for any (z, y) ∈ X∗

we have either YU ∩ (Σ − (z, y)) = ∅ or YU ⊂ Σ − (z, y). The former is true outside a set of
(z, y) of codimension ≥ 2 in X.

Let π: Cn∗ → X∗ be the covering map, let Cd = π−1(YU)0 be the connected component
of π−1(YU) through the origin, and let ΛU := Λ ∩ Cd. Since YU = Cd/ΛU is compact, ΛU is
a lattice in Cd. Taking another vector subspace H of Cn such that Cn = Cd ⊕ H , we can
write any z ∈ Cn as z = z′ + z′′, where z′ ∈ Cd and z′′ ∈ H . Consider τ as a function of
z′ ∈ Cd and y ∈ D depending on parameters z′′ ∈ H . The function u(z, y) = −2∂2

U ln τ is
periodic with respect to ΛU and, for each (z′′, y), has a double pole in z′ along the divisor
ΘU(z′′, y) := (Θ − (z′′, y)) ∩ YU .

Lemma 3.4 Suppose the equation

resx

(
∂2

y ln τ + 2
(
∂2

x ln τ
)2

)
= 0 (3.14)

for τ(Ux+ z, y) holds, and let λ1, . . . , λd be C-linearly independent vectors in ΛU . Then

(i) equation (1.6) with the potential u(Ux + z, y) has a wave solution of the form ψ =
ekx+k2yφ(Ux+ z, y, k) such that the coefficients ξs(z, y) of the formal series

φ(z, y, k) = eby

(
1 +

∞∑

s=1

ξs(z, y) k
−s

)
(3.15)

are (λ1, . . . , λd)-periodic meromorphic functions of (z, y) ∈ Cn∗ with a simple pole along the
divisor ΘU ,

ξs(z + λi, y) = ξs(z, y) =
τs(z, y)

τ(z, y)
, i = 1, . . . , d ; (3.16)

(ii) φ(z, y, k) is unique up to a factor which is ∂U -invariant and holomorphic in z, i.e.,
if φ and φ1 are two solutions, then we have

φ1(z, y, k) = φ(z, y, k)ρ(z′′, k) . (3.17)

Proof. Let us temporarily modify formula (3.15) for φ :

φ(z, y, k) = eby+
P

∞

s=1
bs(y)k−s

(
1 +

∞∑

s=1

ξs(z, y) k
−s

)
, (3.15′)
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where bs(y) = bs(z
′′, y) are functions of y and z′′, i.e., they are independent of z′, such that

bs(0) = bs(z
′′, 0) = 0. The factor e

P

∞

s=1
bs(y)k−s

can later be absorbed into 1 +
∑
ξsk

−s, so it
is redundant, and harmless.

Substituting ψ = ekx+k2yφ and (3.15′) into equation (1.6), we find the recursion formulas

2∂Uξs+1 = (∂y − ∂2
U + (u+ b))ξs +

s∑

i=1

b′iξs−i , s = 0, 1, . . . , (3.18)

where we set ξ0 = 1. The first equation 2∂Uξ1 = u+ b can be solved explicitly:

ξ1 = −∂U ln τ + (l1, z) , (3.19)

for a linear form (l1, ·) on Cd, and b = 2(l1, U). The periodicity condition (3.16) for s = 1 is
satisfied if and only if

(l1, λi) = ∂U ln τ(z + λi, y) − ∂U ln τ(z, y) = aλi
· U , i = 1, . . . , d, (3.20)

where the last equality follows from (1.8). Since λ1, . . . , λd are linearly independent vectors
in Cd, this determines the linear form (l1, ·) uniquely. The form (l1, ·) is independent of z
and y since the right-hand side of (3.20) is, so b = (l1, U) is a constant.

Suppose we have (λ1, . . . , λd)-periodic functions ξ1, . . . , ξr, constant b, and functions
b1(y), . . . , br−1(y) of y solving equations (3.18) for s < r, and consider the equation for
s = r, with tentative choice of br ≡ 0.

Equation (3.14) implies equations (3.3), which, as seen in Lemma 3.3, are sufficient for
the local solvability of (3.9), and hence (3.18), away from the locus Θ1 of multiple zeros
of τ as a function of x. This set does not contain a ∂U -invariant line away from Σ which
is of codimension ≥ 2. Therefore, the sheaf V0 of ∂U -invariant meromorphic functions on
Cn∗ \ΘU

1 with poles along the divisor ΘU coincides with the sheaf of ∂U -invariant holomor-
phic functions. This implies the vanishing of H1(Cn∗ \ ΘU

1 ,V0) and the existence of global
meromorphic solutions ξs of (3.18), with a simple pole along the divisor ΘU (see details in
[21, 3]).

Let ξ0
r+1 be a solution, not necessarily periodic, of (3.18) for s = r with br ≡ 0. Then

(3.18) implies that ξ0
r+1(z + λi, y)− ξ0

r+1(z, y), i = 1, . . . , d, are constant in the U -direction,
hence they are constant on each translate of YU . Let (lr+1, ·) be a linear form on C

d,
depending on y and z′′, such that

(lr+1, λi) = ξ0
r+1(z + λi, y) − ξ0

r+1(z, y) , i = 1, . . . , d ,

hold. Then

ξr+1(z, y) = ξ0
r+1(z, y) + (lr+1, z) and br(y) = 2

∫ y

0

(lr+1(y
′), U)dy′, (3.21)

together with the previously chosen ξs (s ≤ r) and bs (s < r), give a (λ1, . . . , λd)-periodic
solution of (3.18) for s = r. This completes the induction step, proving (i) except for the
latter half of (3.16), which is obvious if we compare the poles of ξs and the zeros of τ .
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In each step of this construction, equation (3.18) determines ξs+1 uniquely up to an
additive constant cs+1(z

′′) depending on z′′. Indeed, the constant may depend on y, but
the effect of this y-dependence will be cancelled by bs+1 to be chosen in the next step, so
we assume the cs+1(z

′′) is independent of y. Adding cs+1(z
′′) to ξs+1(z, y) will affect the

later steps of construction, but in terms of φ all the necessary changes can be done just by
multiplying it by 1 + cs+1(z

′′)k−s−1. This proves (ii), with ρ(z′′, k) =
∏

s(1+ cs+1(z
′′)k−s−1) .

The lemma is thus proven.

4 Commuting differential operators

In this section, using the wave function ψ we show the existence of sufficiently many commut-
ing differential operators, to obtain the curve Γ. From the point of view of the KP hierarchy,
this amounts to showing the finite dimensionality of the orbit. There can be several ap-
proaches. For instance, given our specific form of quasiperiodicity condition, i.e., that τ is
of the form τ(Ux+ z, y) and is periodic in z with periods λ1, . . . , λd, knowing its zero locus
is enough to recover τ , and hence u. Denote by Θ0 the space of ample divisors on X which
belong to the given polarization. Then equations (3.3) may be seen as a dynamical system
on a subset of the tangent bundle T (Θ0) of Θ0. This set is finite dimensional, and we can
realize the whole KP flows as commuting flows on this space, so the whole KP orbit must be
finite dimensional. Rather than following this argument, here we give a proof by showing the
finite dimensionality of certain space, to which we map an infinite sequence of differential
operators, thus showing that sufficiently many linear combinations of the operators belong
to the kernel of the map. We then identify this kernel with a space of commuting differential
operators.

First define a pseudo-differential operator

L = ∂x +

∞∑

s=1

ws(z, y)∂
−s
x (4.1)

by
L(Ux+ z, ∂x)ψ = k ψ , (4.2)

or equivalently
L(Ux+ z, ∂x) = Φ∂xΦ

−1 , (4.3)

where

Φ = 1 +
∞∑

s=1

ξs(Ux+ z, y) ∂−s
x (4.4)

if φ = e−(kx+k2y)ψ is given by (3.15). So L is determined uniquely by ψ, and the ambiguity
(3.17) in defining ψ does not affect L, so it is determined by u = −2∂x ln τ and the choice
of vectors λ1, . . . , λd. Since u is Λ-periodic, so is L ; the coefficients ws(Z, y) of L are
meromorphic functions on X∗ with poles along the divisor Θ.

Consider now the differential parts of the pseudo-differential operators Lm, namely, let Lm
+

be the differential operator such that Lm
− := Lm −Lm

+ = Fm∂
−1 +F 1

m∂
−2 +F 2

m∂
−3 +O(∂−4).
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Here we denote ∂x by ∂ for simplicity. The leading coefficient Fm of Lm
− is the residue of Lm ,

Fm = res∂ L
m , (4.5)

and
F i

m = res∂(L
m∂i) . (4.6)

From the construction of L it follows that [∂y − ∂2
x + u,Ln] = 0. Hence

[∂y − ∂2
x + u,Lm

+ ] = −[∂y − ∂2
x + u,Lm

− ] = 2∂xFm . (4.7)

The vanishing of the coefficients of ∂−1 and ∂−2 in the middle member of this equality implies
the equations

2∂xF
1
m = −∂2

xFm + ∂yFm. (4.8)

2∂xF
2
m = Fmux − ∂2

xF
1
m + ∂yF

1
m. (4.9)

The functions Fm, F
i
m are differential polynomials in the coefficients ws of L. Hence, they

are meromorphic functions on X.

Lemma 4.1 The abelian functions Fm have at most the second order pole on the divisor Θ.

Proof. The mth KP flow on Φ is defined by

∂tm(Φ) = Lm
+Φ − Φ∂m = −Lm

−Φ . (4.10)

Comparing the coefficients of ∂−1 on both sides of (4.10) and using (3.19), we obtain

Fm = ∂x∂tm ln τ . (4.11)

So if we admit that the higher KP flows preserves the regularity of τ , the assertion follows
immediately from (4.11).

Alternatively, by constructing the adjoint wave function, we can see that the 0th order
pseudodifferential operator Φ−1 can be written in the form

Φ−1 = 1 +

∞∑

s=1

∂−s ◦ ξ∗s (Ux+ z, y) (4.12)

for some meromorphic functions ξ∗s having a simple pole along Θ. Using (4.3), (4.4) and
(4.12) we have

Lm = Φ∂mΦ−1 =

∞∑

r,s=0

ξr∂
m−r−s ◦ ξ∗s ,

where we set ξ0 = ξ∗0 = 1. Since ξr∂
m−r−s ◦ ξ∗s does not yield negative order terms in ∂ if

m− r − s ≥ 0, this implies

Lm
− =

∑

r+s>m

ξr∂
m−r−s ◦ ξ∗s =

∑

r+s=m+1

ξrξ
∗
s∂

−1 +O(∂−2) , (4.13)

hence Fm =
∑

r+s=m+1 ξrξ
∗
s , proving the lemma.

17



Important remark In [14] this statement was crucial for the proof of the existence of
commuting differential operators associated with u. Namely, it implies that for all but a
finite number of positive integers n there exist constants cn,i such that

Fn(z, y) +
n−1∑

i=0

cn,iFi(z, y) = 0 , (4.14)

hence (4.7) would imply that the corresponding linear combinations Ln := Ln
+ +

∑
cn,iL

i
+

commutes with P := ∂y − ∂2
x + u. Not so: since these constants cn,i might depend on y, we

might not have [P, Ln] = 0, and we cannot immediately make the next step and claim the
existence of commuting operators (!).

So our next goal is to show that these constants in fact are y-independent. For that let
us consider the functions F 1

m. Equation (4.8) (or (4.13)) implies that they have at most the
third order pole on the divisor Θ . Moreover, if we expand F 1

m near Θ ,

F 1
n =

f 3
n

τ 3
+
f 2

n

τ 2
+
f 1

n

τ
+O(1) , (4.15)

and use (4.11) so that Fn is of the form

Fn = ∂U

(qn
τ

+O(1)
)

= −
qn∂Uτ

τ 2
+
∂Uqn
τ

+O(1) , (4.16)

then (4.8) implies
f 3

n = −qn(∂Uτ)
2, f 2

n = 0 . (4.17)

Let {F 1
α | α ∈ A}, for finite set A, be a basis of the space F(y) spanned by {F 1

m}. Then for
all n /∈ A there exist constants cn,α(y) such that

F 1
n(z, y) =

∑

α∈A

cn,α(y)F 1
α(z, y) . (4.18)

Due to (4.17) it is equivalent to the equations

qn(z, y) =
∑

α

cn,α(y)qα(z, y) , (4.19)

f 1
n(z, y) =

∑

α

cn,α(y)f 1
α(z, y) . (4.20)

From equation (4.8) we get ∑

α

(∂ycn,α)qα(z, y) = 0 . (4.21)

Taking a linear combination of (4.9) we get

2∂x

(
F 2

n −
∑

α

cn,αF
2
α

)
=

∑

α

(∂ycn,α)
f 1

α

τ
+O(1) . (4.22)
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The left-hand side has no “residue” on Θ, and that implies the equation

∑

α

(∂ycn,α)f 1
α = 0 . (4.23)

Equations (4.19) and (4.23) are equivalent to

∑

α

(∂ycn,α)F 1
α = 0 . (4.24)

By definition the functions F 1
α are linearly independent. Therefore cn,α are y-independent

and we can proceed as in [14]. Let us sketch the rest of the proof.

Now we have sufficiently many ordinary differential operators Ln, one for each n ≫ 0,
satisfying

[P, Ln] = 0 . (4.25)

Although P = ∂y − ∂2
x + u is a partial differential operator, this suffices to conclude that

Ln’s commute with each other. Indeed, (4.25) implies that ψ̃ := Lnψ satisfies Pψ̃ = 0. Since
Ln is a linear combination of Lk

+’s, one observes that ψ̃ also satisfies the same periodicity
conditions as ψ, so by part (ii) of Lemma 3.4 it is equal to ψ up to a ∂U -independent factor.
This implies that the Ln’s commute with L and with each other.

The coefficients cn,α of linear combinations give the directions of trivial KP time evo-
lutions, and the Laurent coefficients of the polar part at P of the corresponding functions
fn(ζ) on the curve Γ. Now let us find all the Laurent coefficients, not just the polar part, of
fn(ζ). Since Ln commutes with L and the latter is a first order operator, we can write Ln

as a constant coefficient Laurent series in L−1:

Ln =

n∑

j=−∞

cn,jL
j,

then fn(ζ) =
∑∞

j=−n cn,−jζ
j ∈ C((ζ)) is the desired Laurent series for fn(ζ). The coefficients

cn,j are constant in z since they are periodic holomorphic functions. Hence the curve Γ is
constant in z. They are also constant in y since KP flows do not deform a spectral curve.
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