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Abelian solutions of the soliton equations
and Riemann–Schottky problems

I. M. Krichever

Abstract. The present article is an exposition of the author’s talk at the
conference dedicated to the 70th birthday of S. P. Novikov. The talk con-
tained the proof of Welters’ conjecture which proposes a solution of the clas-
sical Riemann–Schottky problem of characterizing the Jacobians of smooth
algebraic curves in terms of the existence of a trisecant of the associated
Kummer variety, and a solution of another classical problem of algebraic
geometry, that of characterizing the Prym varieties of unramified covers.
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1. Introduction

The famous Novikov conjecture which asserts that the Jacobians of smooth alge-
braic curves are precisely those indecomposable principally polarized Abelian vari-
eties whose theta-functions provide explicit solutions of the Kadomtsev–Petviashvili
(KP) equation, fundamentally changed the relations between the classical algebraic
geometry of Riemann surfaces and the theory of soliton equations. It turns out
that the finite-gap, or algebro-geometric, theory of integration of non-linear equa-
tions developed in the mid-1970s can provide a powerful tool for approaching the
fundamental problems of the geometry of Abelian varieties.

The basic tool of the general construction proposed by the author [1], [2] which
establishes a correspondence between algebro-geometric data {Γ, Pα, zα, S

g+k−1(Γ)}
and solutions of some soliton equation, is the notion of Baker–Akhiezer function.
Here Γ is a smooth algebraic curve of genus g with marked points Pα, in whose
neighborhoods we fix local coordinates zα, and S

g+k−1(Γ) is a symmetric prod-
uct of the curve. The Baker–Akhiezer functions are determined by their analytic
properties on the corresponding algebraic curve. These analytic properties are
essentially an axiomatization of the analytic properties of the Bloch functions of
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finite-gap Schrödinger operators which were established in the initial period of the
development of the theory of finite-gap integration of the Korteweg–de Vries equa-
tion [3]–[6].

A particular case of the general construction of algebro-geometric solutions of
soliton equations is the following statement:

• If a symmetric matrix B is the period matrix of a basis of normalized holo-
morphic differentials on some algebraic curve Γ, then the function u(x, y, t) given
by the formula

u(x, y, t) = 2∂2
x log θ(Ux + V y + Wt + Z | B) (1)

satisfies the KP equation

3uyy = (4ut − 6uux + uxxx)x, (2)

where U , V , W are the vectors of b-periods of normalized meromorphic differentials
with pole at some point P0 ∈ Γ of orders 2, 3, and 4 respectively.

Here and below, for any symmetric matrix B with positive-definite imaginary
part, θ(z | B) is the Riemann theta-function given by the formula

θ(z) =
�

m∈Zg

e
2πi(z,m)+πi(Bm,m)

, (z, m) = m1z1 + · · · + mgzg. (3)

The formula (1) looks simple, but the definition of the matrix B in it as the period
matrix of holomorphic differentials on some algebraic curve is rather indirect. This
naturally raises a question about the possibility of a self-contained description of
admissible parameters. A conjecture posed by Novikov in the framework of the
general problem stated by him of an effective presentation of theta-functional for-
mulae, is equivalent to the statement that the direct substitution of the formula (1)
in the KP equation produces equations that characterize the period matrices of
holomorphic differentials; that is, this should provide a solution of the famous
Riemann–Schottky problem of characterizing the Jacobians of algebraic curves.
The proof of Novikov’s conjecture obtained in 1986 by Shiota [7] was the first
effective solution of the above problem posed more than 120 years ago.

To explain the role of new ideas introduced by the Novikov conjecture in the solu-
tion of the Riemann–Schottky problem we give a brief description of the history of
the question and of results obtained in the framework of classical algebro-geometric
approaches to its solution (details can be found in [8]).

For g = 2 and 3, the dimensions of the moduli space Mg of smooth algebraic
curves of genus g and the moduli space Ag of principally polarized g-dimensional
Abelian varieties coincide. Therefore, as an immediate consequence of Torelli’s
theorem, we obtain that in this case a sufficiently general symmetric matrix B with
positive-definite imaginary part is the period matrix of a Riemann surface. The
only restriction is given by Martens’ theorem which asserts the Jacobian variety
of a Riemann surface is indecomposable, that is, is not isomorphic to a direct
product of Abelian varieties of positive dimension. This condition can be effectively
described in terms of theta-constants.

A non-trivial relation for the period matrix of a Riemann surface of genus 4 was
obtained by Schottky in 1888. Since for g = 4 the space Mg is of codimension 1,
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the corresponding Schottky relation gives at least a local solution to the problem of
characterizing the corresponding Jacobian varieties. The proof of the irreducibil-
ity of the variety defined by the Schottky relation was obtained only in 1981 by
Igusa [9]. Generalizations of this relation to the case of curves of arbitrary genus
were formulated as a conjecture in 1909 in a joint work of Schottky and Jung [10].
These generalizations were proved in the work of Farkas and Rauch [11]. Later
van Geemen [12] proved that the Schottky–Jung relations give a local solution of
the Riemann–Schottky problem. It is known that these relations obviously do not
give a complete solution of the problem because the subvariety defined by these
relations has extra components even for g = 5 (Donagi [13]).

A characterization of Jacobians in a geometrical form was proposed by
Gunning [14], [15]. The basic tool of this characterization is Fay’s trisecant
identity [16].

Consider the map of a principally polarized Abelian variety X into a complex
projective space CP2g−1 given by a basic set of theta-functions of level two

φ2(z) = Θ[ε1, 0](z) : · · · : Θ[ε2g , 0](z). (4)

These functions are even, so the map φ2 may be written as a composition

X
π−→ X/σ

K−→ CP2g−1
, (5)

where σ(z) = −z is the involution of an Abelian variety and π is the projec-
tion onto the quotient space. The map K is called the Kummer map and its
image K(X) is called the Kummer variety. It is known that the Kummer map is
an embedding of a variety with singularities. An N -secant of a Kummer variety
is an (N−2)-dimensional plane in CP2g−1 meeting K(X) at N points. The existence
of an N -secant passing through points K(Ai), i = 0, 1, . . . , N − 1, is equivalent to
the condition of linear dependency of these points. Fay’s trisecant identity immedi-
ately implies that if X is a Jacobian of an algebraic curve Γ, then any three distinct
points of Γ determine a one-parameter family of trisecants. A slightly simplified
form of Gunning’s result asserts that the existence of such a one-parameter fam-
ily of trisecants is not only necessary but also sufficient for a principally polarized
Abelian variety to be the Jacobian of some algebraic curve.

The problem of formulating Gunning’s geometrical criterion in terms of equations
was far from trivial and its solution required some serious steps. The first of these
were made in the works of Welters [17], [18], whose starting point was probably
Mumford’s remark [19] that the limiting case of Fay’s trisecant identity gives the
theta-functional formula (1) for algebro-geometrical solutions of the KP equation.
An infinitesimal analogue of a trisecant is an inflection point of a Kummer variety,
that is, a point A such that there is a line in CP2g−1 containing the image of the
formal 2-jet of some curve in X. According to [18] the condition of the existence of
a formal infinite jet of inflection points is characteristic for Jacobians.

A fundamental fact of the theory of soliton equations is that each of these equa-
tions is related to a consistent system of equations, the so-called hierarchy of the
equation. Algebro-geometric solutions of the KP hierarchy are given by the formula

u(t1, t2, . . . ) = 2∂2
x log θ

� �

i

Uiti + Z | B

�
, t1 = x, t2 = y, t3 = t. (6)
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The next step was the proof by Arbarello and De Concini [20] that Welters’
characterization is equivalent to the following assertion: a matrix B is the period
matrix of holomorphic differentials if and only if there are vectors Ui such that
the function u(t) given by the formula (6) satisfies the equations of the whole KP
hierarchy.

Moreover, these authors were the first who proved that, for the characterization
of Jacobians, the validity of only a finite number of these equations is sufficient.
We should note that the estimate obtained in [20] for the number of equations of
the KP hierarchy necessary for the characterization of Jacobians was certainly an
overestimate. A trivial consequence of the theory of commuting ordinary differential
operators is that it is sufficient to consider the first N = g + 1 equations of the
hierarchy. The Novikov conjecture asserted that the number of equations does not
depend on g and is N = 1.

The key step in the proof of the Novikov conjecture proposed by Shiota is the
fact that if the function u(x, y, t) given by formula (1) satisfies the KP equation,
then there are vectors Ui such that the function u(t) given by formula (6) is a solu-
tion of the KP hierarchy. The main difficulty encountered by Shiota was that
the possibility of such an extension of a solution of the KP equation to that of the
KP hierarchy is controlled by some, a priori non-trivial, homological obstruction.
A sufficient condition for the triviality of this obstruction is the condition that the
theta-divisor Θ does not contain a complex line parallel to the vector U = U1. The
proof of the last property was technically the most difficult part of Shiota’s work.
The significance of this part was clarified in [21].

2. Welters’ trisecant conjecture

The interest in subjects related to the Riemann–Schottky problem did not
weaken after the proof of Novikov’s conjecture. First of all this is related to
a series of other problems in the geometry of Abelian varieties. Among them
we distinguish the problem of characterizing the principally polarized Abelian
varieties which are the Prym varieties of double covers of algebraic curves, and also
Welters’ remarkable conjecture stating that for the characterization of Jacobians
the existence of one trisecant is sufficient. Comparing Welters’ conjecture with
Gunning’s theorem, which requires the existence of a one-parameter family of such
secants, one can see how strong this last statement is.

We should note that there are three particular cases of Welters’ conjecture cor-
responding to three possible configurations of intersection points (a, b, c) of the
trisecant and the Kummer variety K(X):

(i) all three points coincide (a = b = c);
(ii) two of them coincide (a = b �= c);
(iii) all three points are distinct (a �= b �= c �= a).

Of course if there is a family of secants the first two cases can be regarded as degen-
erations of the general case (iii). However, in the situation when there is only one
secant, all three cases are independent and require separate treatment. The proof of
the first case, (i), of Welters’ conjecture was obtained by the author [22] by means
of a new approach1. It turns out that for the solution of the Riemann–Schottky
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problem it is sufficient to consider not the whole KP equation but just one auxiliary
linear equation. More precisely, we have the following theorem.

Theorem 1. An indecomposable principally polarized Abelian variety (X, θ) is
the Jacobian variety of a smooth algebraic curve of genus g if and only if there
exist g-dimensional vectors U �= 0, V , A and constants p and E satisfying one of
the following three equivalent conditions :

(A) the following equality holds

(∂y − ∂
2
x + u)ψ = 0, (7)

where

u = −2∂
2
x log θ(Ux + V y + Z), ψ =

θ(A + Ux + V y + Z)
θ(Ux + V y + Z)

e
px+Ey

, (8)

and Z is an arbitrary vector;
(B) for all theta characteristics ε ∈ 1

2Zg
2,

�
∂V − ∂

2
U − 2p ∂U + (E − p

2)
�
Θ[ε, 0](A/2) = 0 (9)

(here and below ∂U , ∂V are the derivatives along the directions given by the vec-
tors U and V , respectively);

(C) on the theta-divisor Θ = {Z ∈ X | θ(Z) = 0},

[(∂V θ)2 − (∂2
Uθ)2]∂2

Uθ + 2[∂2
Uθ ∂

3
Uθ − ∂V θ ∂U∂V θ]∂Uθ

+ [∂2
V θ − ∂

4
Uθ](∂Uθ)2 = 0 (mod θ). (10)

Equation (7) is one of the auxiliary linear equations for the KP equation. The
direct substitution of the expressions (8) in this equation and the use of the addition
formula for the Riemann theta-functions shows the equivalence of conditions (A)
and (B) in the theorem. Equation (9) means that the image of the point A/2 under
the Kummer map is an inflection point (case (i) of Welters’ conjecture). Condi-
tion (C) is the relation that is really used in the proof of the theorem. Formally,
it is weaker than the two other conditions because its derivation is only local and
does not use an explicit form of the solution ψ of the equation (7), but only the
condition of meromorphicity of the solution. More precisely, consider an entire
function τ(x, y) of the complex variable x depending smoothly on a parameter y

and assume that in a neighbourhood of a simple zero η(y) of the function τ (that is,
τ(η(y), y) = 0) equation (7) with the potential u = −2∂

2
x log τ has a meromorphic

solution ψ. Then the equation
η̈ = 2w (11)

holds, where the ‘dots’ denote the derivatives with respect to the variable y, and w

is the third coefficient of the Laurent expansion of the function u at the point η;
that is, u(x, y) = 2(x − η(y))−2 + v(y) + w(y)(x − η(y)) + · · · . Formally, if we
represent τ in the form of an infinite product

τ(x, y) = c(y)
�

i

(x− xi(y)), (12)

1Under different additional assumptions the corresponding statement was proved in the earlier
works [23]–[25].
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then equation (11) is equivalent to an infinite system of equations

ẍi = −4
�

j �=i

1
(xi − xj)3

, (13)

which, in the cases where τ is a rational, trigonometric, or elliptic polynomial,
coincides with the equations of motion for the rational, trigonometric, or elliptic
Calogero–Moser systems, respectively. Equation (11) for the zeros of the func-
tion τ = θ(Ux + V y + Z) was first derived in [25]. Expanding the function θ in
a neighborhood of the points of its divisor z ∈ Θ: θ(z) = 0, it is easy to see that
equation (11) is equivalent to equation (10).

The proof of Welters’ conjecture was completed by the author in [26]. Although
the proof of the conjecture in the differential-difference (ii) and completely dis-
crete (iii) cases required a series of technical changes, the main ideas of the approach
basically remain unchanged. For brevity we present the statement of the corre-
sponding theorem only in the completely discrete case.

Theorem 2. An indecomposable, principally polarized Abelian variety (X, θ) is
the Jacobian variety of a smooth algebraic curve of genus g if and only if there
exist g-dimensional vectors U �= V �= A �= U (mod Λ) such that one of the following
three equivalent conditions holds :

(A) the difference equation

ψ(m, n + 1) = ψ(m + 1, n) + u(m, n)ψ(m, n), (14)

holds with

u(m, n) =
θ((m + 1)U + (n + 1)V + Z)θ(mU + nV + Z)
θ
�
mU + (n + 1)V + Z

�
θ
�
(m + 1)U + nV + Z

� (15)

and

ψ(m, n) =
θ(A + mU + nV + Z)

θ(mU + nV + Z)
e
mp+nE

, (16)

where p, E are constants and Z is an arbitrary vector;
(B) the equations

Θ[ε, 0]
�

A− U − V

2

�
+ e

pΘ[ε, 0]
�

A + U − V

2

�
= e

EΘ[ε, 0]
�

A + V − U

2

�
(17)

are satisfied for all ε ∈ 1
2 Zg

2;
(C) the equality

θ(Z+U)θ(Z−V )θ(Z−U +V )+θ(Z−U)θ(Z+V )θ(Z+U−V ) = 0 (mod θ) (18)

holds on the theta-divisor Θ = {Z ∈ X | θ(Z) = 0}.

We should note that, in a certain sense, the replacement of the generating dif-
ferential equation (7) in the statement of the previous theorem by the discrete
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equation (14) was predictable because the last equation is one of the auxiliary
linear problems for the so-called discrete bilinear Hirota equation

τn(l+1, m) τn(l,m+1)−τn(l,m) τn(l+1, m+1)+τn+1(l+1, m) τn−1(l,m+1) = 0,

(19)
which in the continuous limiting case gives the KP equation, and in an intermediate
limiting case gives another fundamental equation, the two-dimensional Toda lattice
equation.

As above, the equivalence of conditions (A) and (B) immediately follows from
addition formulas. Condition (C), which is a discrete analog of the equality (10),
is that which is really used in the proof of the theorem.

3. The problem of characterization of Prym varieties

An involution σ : Γ �→ Γ on a smooth algebraic curve Γ naturally determines
an involution σ

∗ : J(Γ) �→ J(Γ) on its Jacobian. The odd subspace with respect
to this involution is a sum of an Abelian variety of lower dimension, called the
Prym variety, and a finite group. The restriction of the principal polarization of
the Jacobian determines a polarization of the Prym variety which is principal if
and only if the original involution of the curve has at most two fixed points.

The problem of characterizing the locus Pg of Prym varieties of dimension g

in the space Ag of all principally polarized Abelian varieties is well known and
during its more than 100-year-old history has attracted considerable interest. This
problem is much more difficult than the Riemann–Schottky problem and until quite
recently its solution in terms of a finite system of equations was completely open.

The problem of characterizing Prym varieties in the case of curves with an invo-
lution having two fixed points was solved in [27] in terms of the Schrödinger opera-
tors integrable with respect to one energy level. The theory of such operators was
developed by Novikov and Veselov in [28], where the authors also introduced the
corresponding non-linear equation, the so-called Novikov–Veselov equation.

Curves with an involution having a pair of fixed points can be regarded as a limit
of unramified covers. A characterization of the Prym varieties in the latter case in
terms of the existence of quadrisecants was obtained in the recent work [29] of the
author and Grushevsky.

The existence of families of quadrisecants for curves with an involution having at
most two fixed points was proved in [30], [32]. An analogue of Gunning’s theorem
asserting that the existence of a family of secants characterizes Prym varieties
was proved by Debarre [32]. We note that the existence of one quadrisecant does
not characterize Prym varieties. A counterexample to the näıve generalization of
Welters’ conjecture was constructed by Beauville and Debarre in the work [30].

It was proved in [29] that the existence of a symmetric pair of quadrisecants is
a characteristic property for Prym varieties of unramified covers.

Theorem 3. (Geometric characterization of Prym varieties.) An indecomposable
principally polarized Abelian variety (X, θ) ∈ Ag is in the closure of the locus of
Prym varieties of smooth unramified double covers if and only if there exist four
distinct points p1, p2, p3, p4 ∈ X , none of them of order two, such that the images of
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the Kummer map of the eight points p1 ± p2 ± p3 ± p4 lie on two quadrisecants (the
corresponding quadruples of points are determined by the number of plus signs).

We should note that the proof of this statement required constructing and devel-
oping the theory of a new integrable equation because before that, in contrast with
all other cases, no non-linear equations whose algebro-geometric solutions are asso-
ciated to unramified double covers were known.

The auxiliary linear equation of the corresponding analogue of the Novikov–
Veselov equation is a discrete analogue of the potential Schrödinger equation and
has the form

ψ(n + 1, m + 1)− u(n, m)
�
ψ(n + 1, m)− ψ(n, m + 1)

�
− ψ(n, m) = 0. (20)

4. Abelian solutions of the soliton equations

Most recently, in joint works of the author and Shiota [33], [34], a general notion
of Abelian solutions of soliton equations was introduced. This notion generalizes
naturally classes of solutions expressed in the terms of the theta-functions of prin-
cipally polarized Abelian varieties and the theory of elliptic solutions of the soliton
equations.

The theory of elliptic solutions of the KP equation goes back to the remarkable
work [35], where it was found that the dynamics of poles of the elliptic (rational
or trigonometric) solutions of the Korteweg–de Vries equation can be described
in terms of the elliptic (rational or trigonometric) Calogero–Moser (CM) system
with certain constraints. It was observed in [24] that, when the constraints are
removed, this restricted correspondence becomes an isomorphism when the elliptic
solutions of the KP equation are considered. Recall that the elliptic CM system is
a completely integrable Hamiltonian system with Hamiltonian

H2 =
1
2

N�

i=1

p
2
i − 2

�

i �=j

℘(qi − qj),

where ℘ is the Weierstrass ℘-function. In [24], for the elliptic CM system a Lax
representation L̇ = [L, M ] with spectral parameter was proposed, which made it
possible to prove the algebraic integrability of the problem. It turns out that,
for generic initial data, the positions of the particles q = qi(y) at any time are
determined by the equation

θ(Uq + V y + Z) = 0,

where θ(Z) is the Riemann theta-function which corresponds to the spectral curve
explicitly constructed from the initial data.

A correspondence between finite-dimensional integrable systems and the pole
systems of various soliton equations was considered in [36]–[39]. A general scheme
of constructing such systems is presented in [40]. In [41] it was generalized to the
case of field analogues of CM type systems (see also [42]).

According to [33] the solution u(x, y, t) of the KP equation is called Abelian if it
has the form

u = −2∂
2
x log τ(Ux + z, y, t), (21)
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where z ∈ Cn and 0 �= U ∈ Cn are n-dimensional vectors, and where for all y, t

the function τ( · , y, t) is a holomorphic section of some line bundle L = L (y, t)
on the Abelian variety X = Cn

/Λ; that is, for all vectors λ ∈ Λ it satisfies the
following monodromy conditions:

τ(z + λ, y, t) = e
aλ·z+bλτ(z, y, t) (22)

for some aλ ∈ Cn, bλ = bλ(y, t) ∈ C.
In the case of sections of the canonical line bundle on a principally polarized

Abelian variety the corresponding theta-function is unique up to normalization.
Hence the ansatz (21) assumes the form u = −2∂

2
x log θ(Ux + Z(y, t) + z). Since

flows commute with each other, the dependence of the vector Z(y, t) must be linear:

u = −2∂
2
x log θ(Ux + V y + Wt + z). (23)

Therefore, the problem of classification of such Abelian solutions is the same prob-
lem as posed by Novikov.

In the case of one-dimensional Abelian varieties the problem of classification of
Abelian solutions is the problem of classification of those elliptic solutions which are
distinguished amongst the general algebro-geometric solutions by the condition that
the corresponding vector U generates an elliptic curve embedded into the Jacobian
of the spectral curve.

Note that, for any vector U , the closure of the group {Ux | x ∈ C} is an Abelian
subvariety X ⊂ J(Γ). So when this closure does not coincide with the whole
Jacobian, we get non-trivial examples of Abelian solutions. Briefly, the main result
on the classification of Abelian solutions of KP obtained in [33] can be formulated
as the statement that all the Abelian solutions are obtained in this manner.

To avoid some technical complications we give the formulation of the correspond-
ing theorem in the situation of general position.

Theorem 4. Suppose that u(x, y, t) is an Abelian solution of the KP equation such
that the subgroup {Ux | x ∈ C} is dense in X . Then there exists a unique algebraic
curve Γ with marked smooth point P ∈ Γ, a holomorphic embedding j0 : X → J(Γ),
and a torsion-free rank-1 sheaf F ∈ Pic g−1(Γ) on Γ of degree g−1, where g = g(Γ)
is the arithmetic genus of Γ, such that, with the notation j(z) = j0(z)⊗F ,

τ(Ux + z, y, t) = ρ(z, y, t)τ̂(x, y, t, 0, . . . | Γ, P, j(z)), (24)

where τ̂(t1, t2, t3, . . . | Γ, P, F ) is a KP τ -function corresponding to the data
(Γ, P, F ) and the function ρ(z, y, t) �≡ 0 satisfies the condition ∂Uρ = 0.

Note that if Γ is smooth, then

τ̂(x, t2, t3, . . . | Γ, P, j(z)) = θ

�
Ux +

�
Viti + j(z) | B(Γ)

�
e
Q(x,t2,t3,... )

, (25)

where Vi ∈ Cn, Q is a quadratic form, and B(Γ) is the corresponding period
matrix. A linearization on the Jacobian J(Γ) of the non-linear (y, t)-dynamics
for τ(z, y, t) indicates the possibility of the existence of integrable systems on spaces
of theta-functions of higher level. A CM system is an example of such a system
for n = 1.
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