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Abstract. In this paper, we develop the general approach, introduced in [1], to Lax operators on
algebraic curves. We observe that the space of Lax operators is closed with respect to their usual
multiplication as matrix-valued functions. We construct orthogonal and symplectic analogs of Lax
operators, prove that they form almost graded Lie algebras, and construct local central extensions
of these Lie algebras.
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1. Introduction

A general approach to Lax operators on algebraic curves was proposed by one of the authors in
[1], where the conventional theory of Lax and zero curvature representations with a rational spectral
parameter was generalized to the case of algebraic curves Γ of arbitrary genus g. The linear space
of such operators associated with an effective divisor D =

∑
k nkPk , Pk ∈ Γ, was defined as the

space of meromorphic (n×n) matrix functions on Γ having poles of multiplicity at most nk at the
points Pk and at most simple poles at ng more points γs . The coefficients of the Laurent expansion
of these matrix functions in a neighborhood of each point γs had to obey certain linear constrains
parametrized by the point αs of a projective space (see relations (2.1)–(2.3) below).

According to [12], generic sets (γs, αs) parameterize stable rank n degree ng framed holomor-
phic vector bundles B on Γ. It was noted in [1] that the requirements on the form of Lax operators
at the points γs mean that these operators can be viewed as meromorphic sections of the bundle
End(B) with pole divisor D. It is an easy consequence of this remark that Lax operators having
poles of arbitrary orders at the points Pk form an algebra with respect to the usual pointwise
multiplication.

In the simplest case of two marked points, D = P+ + P− , this enables us to equip the algebra
of the corresponding operators with an almost graded structure generalizing the graded structure
of the classical affine algebra ̂gl(n). Recall that a Lie algebra V is said to be almost graded if
V =

⊕
Vi , where dim Vi < ∞, [Vi, Vj ] ⊆

⊕k=i+j+k1

k=i+j−k0
Vk , and k0 and k1 are independent of i and j .

The general notion of almost graded algebras and modules over them was introduced in [3]-
[5], where generalizations of the Heisenberg and Virasoro algebras were introduced. In a number
of papers, whose survey can be found in [11], the almost graded analogs of classical affine Lie
algebras, called Krichever–Novikov current algebras, were investigated. It is natural to treat the
algebra of Lax operators having poles at two points as a generalization of the Krichever–Novikov
gl(n)-algebra.

A central extension of V is said to be local if it is an almost graded Lie algebra itself. Local
central extensions are given by local 2-cocycles. A 2-cocycle γ is said to be local if there exists
a K ∈ Z such that γ(Vi, Vj) = 0 for |i + j| > K . The notion of local cocycle is introduced in
[3], where, in addition, its uniqueness was conjectured and the proof for Virasoro type algebras
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was outlined; a complete proof is given in [9] and [10]. The locality condition is important when
considering analogs of highest weight representations.

To construct the orthogonal and symplectic analogs of Lax operators is the main goal of the
present paper. In these cases, the Lax operators do not form an associative algebra; they only
form a Lie algebra. For all classical Lie algebras g, the corresponding Lax operator algebras can be
viewed as a “twisted” version of the Krichever-Novikov current algebras and loop algebras.

In Sec. 2, we prove the multiplicative properties of gl(n)-valued Lax operators, introduce g-val-
ued Lax operators for g = so(n) and g = sp(2n), and prove that they are closed with respect to
the pointwise bracket.

In Sec. 3, we define an almost graded structure on Lax operator algebras and show that dimVi =
dim g, as is the case for Krichever–Novikov algebras.

In Sec. 4, on every type of a Lax operator algebra we define a 2-cocycle and prove its locality.
The authors are grateful to M. Schlichenmaier for fruitful criticism.

2. Lax Operators and Their Lie Bracket

2.1. Lax operator algebras for gl(n) and sl(n). Following [1], we define a Lax operator
with Tyurin parameters {αs, γs | s = 1, . . . , gr} as a gl(n)-valued function L on Γ that is holo-
morphic outside P± and {γs | s = 1, . . . , gr} and has at most simple poles at the points γs , i.e.,
satisfies

L =
Ls,−1

z − zs
+ Ls0 + O(z − zs), zs = z(γs); (2.1)

moreover,
(i) Ls,−1 = αsβ

t
s and

tr Ls,−1 = βt
sαs = 0, (2.2)

where αs ∈ C

n is fixed, βs ∈ C

n is arbitrary, and the superscript t indicates transposition of a
matrix. In particular, Ls,−1 has rank 1.

(ii) αs is an eigenvector of the matrix Ls0 ,

Ls0αs = ksαs. (2.3)

Lemma 2.1. Let L′ and L′′ satisfy conditions (2.1)–(2.3). Then L = L′L′′ satisfies these
conditions as well.

Proof. From (2.1), we have

L =
L′

s,−1L
′′
s,−1

(z − zs)2
+

L′
s,−1L

′′
s0 + L′

s0L
′′
s,−1

(z − zs)
+ L′

s,−1L
′′
s1 + L′

s0L
′′
s0 + L′

s1L
′′
s,−1 + O(1). (2.4)

It follows from (2.2) for L′ that the first term is zero,

L′
s,−1L

′′
s,−1 = αs(β′

s
t
αs)β′′

s
t = 0.

For the second term, we have Ls,−1 = L′
s,−1L

′′
s0 +L′

s0L
′′
s,−1 = αs(β′

s
tL′′

s0)+(L′
s0αs)β′′

s
t . It follows

by (2.2) for L′ that L′
s0αs = k′

sαs , and hence Ls,−1 = αsβ
t
s , where βt

s = β′
s
tL′′

s0 + k′
sβ

′′
s

t . Further,
tr Ls,−1 = (β′

s
tL′′

s0 + k′
sβ

′′
s

t)αs = k′′
sβ′

s
tαs + k′

sβ
′′
s

tαs = 0.
Consider the expression Ls,0αs , where Ls,0 = L′

s,−1L
′′
s1 +L′

s0L
′′
s0 +L′

s1L
′′
s,−1 . It follows from the

definition of Lax operators that L′′
s,−1αs = 0 and L′

s0L
′′
s0αs = k′

sk
′′
sαs . We also have L′

s,−1L
′′
s1αs =

αs(β′
s
tL′′

s1αs). Hence αs is an eigenvector of the matrix Ls,0 with eigenvalue ks = β′
s
tL′′

s1αs +
k′

sk
′′
s .
Since conditions (2.1) and (2.2) are linear, we see that Lax operators form an associative algebra

and hence the corresponding Lie algebra. The latter is called the Lax operator algebra.
If, along with conditions (2.1)–(2.3), the function L satisfies the condition trL = 0, it is called

an sl(n)-valued Lax operator. Such Lax operators form a Lie algebra.
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2.2. Lax operator algebras for so(n). For the elements of this Lie algebra, we have Xt =
−X . We introduce a matrix function L ranging in so(n) by the same expansion as in Sec. 2.1 but
change condition (i), because there is no rank one skew-symmetric matrix, and accordingly change
condition (ii). We omit the index s for brevity and write out the expression (2.1) in the form

L =
L−1

z
+ L0 + O(z), (2.5)

where L0, L1, . . . are skew-symmetric. Instead of condition (i) in Sec. 2.1, we require that

L−1 = αβt − βαt, (2.6)

where α ∈ C

n is fixed, β ∈ C

n is arbitrary, and

αtα = βtα(= αtβ) = 0. (2.7)

By analogy with (2.3), we require that
L0α = kα (2.8)

for some complex number k.
Let us prove that the space of Lax operators is closed with respect to the Lie bracket in the

case g = so(n). We point out that there is no structure of associative algebra in this case.
Lemma 2.2. Properties (2.5)–(2.8) are invariant with respect to the Lie bracket.

Proof. 1. First, let us prove the absence of the term with z−2 . The corresponding coefficient
is equal to

[L−1, L
′
−1] = [αβt − βαt, αβ′t − β′αt]

= (βtα)(αβ′t − β′αt) − (αtα)(β′βt − ββ′t) − (αtβ′)(αβt − βαt).

It vanishes by virtue of relation (2.7) (applied to both β and β′). We point out that the term with
z−2 in the product L−1L

′−1 does not vanish.
2. Now let us compute the term with z−1 in the product LL′ . The coefficient is equal to

L−1L
′
0 + L0L

′
−1 = α(βtL′

0) − β(αtL′
0) + (L0α)β′t − (L0β

′)αt

= α(βtL′
0) − β(−k′αt) + kαβ′t − (L0β

′)αt

= α(βtL′
0 + kβ′t) − (L0β

′ − k′β)αt.

(Here we have used relation (2.8).) We see that it does not have the required form (2.6). Now
consider the corresponding coefficient in the expansion of the commutator:

[L, L′]−1 = α(βtL′
0 − β′tL0 + kβ′t − k′βt) − (L0β

′ − L′
0β − k′β + kβ′)αt

= αβ′′t − β′′αt,

where β′′t = βtL′
0 − β′tL0 + kβ′t − k′βt .

One can readily verify that β′′ satisfies (2.7).
3. Let us verify condition (2.8) on the eigenvalue of the degree 0 matrix coefficient (LL′)0 =

L−1L
′
1 + L0L

′
0 + L1L

′−1 .
By (2.7), L′−1α = 0; hence for the third term we have L1L

′−1α = 0.
For the first term, we have

L−1L
′
1α = (αβt − βαt)L′

1α = α(βtL′
1α) − β(αtL′

1α).

The last term on the right-hand side in this equation vanishes owing to the skew-symmetry of L′
1 .

Thus,
(LL′)0α = k′′α, where k′′ = βtL′

1α + kk′. (2.9)

2.3. Lax operator algebras for sp(2n). For the elements of the symplectic algebra, we have
Xt = −σXσ−1 , where σ is a nondegenerate skew-symmetric matrix.
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Take the expansion for L in the form

L =
L−2

z2
+

L−1

z
+ L0 + L1z + L2z

2 + O(z3) (2.10)

(again, we omit the subscript s for brevity), where L−2, L−1, L0, L1, . . . are symplectic matrices
and

L−2 = νααt, L−1 = (αβt + βαt)σ (ν ∈ C, β ∈ C

2n). (2.11)
By analogy with (2.7), we require that

βtσα = 0. (2.12)
Note that αtσα = 0 owing to the skew-symmetry of the matrix σ.

Next, we require that
L0α = kα (2.13)

for some complex number k.
We impose the new relation

αtσL1α = 0. (2.14)
Now let us prove that the space of Lax operators is closed with respect to the Lie bracket in the

case g = sp(2n). We point out that there is no structure of associative algebra in this case either.
Lemma 2.3. Properties (2.10)–(2.14) are invariant with respect to the Lie bracket.

Proof. Let L′′ = [L, L′].
1. The absence of the terms of orders −4 and −3 in z in L′′ follows from the relations βtσα = 0

and αtσα = 0 alone.
2. For the term of order −2, we have

L′′
−2 = (ν ′k − νk′ + βtσβ′)ααtσ;

hence it has the form required by (2.11). (Here and below, ν ′ , β′ , and L′
i have the same meaning

for L′ as ν , β , and Li do for L.)
3. For the term of order −1, a straightforward computation using (2.10) and (2.11) gives

L′′
−1 = α(ν · αtσL′

1 − ν ′ · αtσL1 + βtσL′
0 − β′tσL0 + kβ′tσ − k′βtσ)

+ (−νL′
1α + ν ′L1α − L′

0β + L0β
′ + kβ′ − k′β)αtσ.

Denote the second bracket by β′′ . Then the relations Lt
1 = −σL1σ

−1 and Lt
0 = −σL0σ

−1 (which
hold for symplectic matrices) imply that the first bracket is equal to β′′tσ. Hence

L′′
−1 = (αβ′′t + β′′αt)σ,

where
β′′ = −νL′

1α + ν ′L1α − L′
0β + L0β

′ + kβ′ − k′β.

Let us show that β′′tσα = 0. Making use of the above expression for β′′tσ, we find

β′′tσα = ν · αtσL′
1α − ν ′ · αtσL1α + βtσL′

0α − β′tσL0α + kβ′tσα − k′βtσα.

The first two terms in this expression vanish by virtue of relation (2.14) applied to L and L′ . To
the second pair of terms, we apply the relations L0α = kα and L′

0α = k′α; after that, all remaining
terms vanish by virtue of relations (2.12).

4. Let us verify relation (2.13) on the eigenvalues of the term of degree zero. By definition,

(LL′)0 = νααtσL′
2 + (αβt + βαt)σL′

1 + L0L
′
0 + L1(αβ′t + β′αt)σ + ν ′L2ααtσ.

The last pair of terms obviously vanishes after the multiplication by α on the right. We obtain

(LL′)0α = νααtσL′
2α + αβtσL′

1α + βαtσL′
1α + kk′α.

The third summand is zero by (2.14). Thus, α is an eigenvector of the zero degree term in the
product LL′ ,

(LL′)0α = α(ν · αtσL′
2α + βtσL′

1α + kk′),
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and in the commutator we obtain

L′′
0α = α(ν · αtσL′

2α − ν ′ · αtσL2α + βtσL′
1α − β′tσL1α). (2.15)

5. Let us verify the conservation of the relation αtσL1α = 0 in the product and the commutator.
For the product, by definition,

(LL′)0 = L−2L
′
3 + L−1L

′
2 + L0L

′
1 + L1L

′
0 + L2L

′
−1 + L3L

′
−2.

Replacing L−2 , L′−2 , L−1 , and L′−1 by known expressions, we obtain

αtσ(LL′)0α = ν(αtσα)αtσL′
3α + ((αtσα)βt + (αtσβ)αt)σL′

2α − k(αtσL′
1α)

+ k̃(αtσL1α) + αtσL2(α(β′tσα) + β′(αtσα)) + ν ′αtσL3α(αtσα).

By virtue of relations (2.11)–(2.14), this expression vanishes.

3. Almost Graded Structure

In this section, we consider the following cases: g = sl(n), g = so(n), g = sp(2n), and, to
conclude with, g = gl(n), which is a somewhat special case with respect to the almost gradeness.
The general definition of almost graded structure was given in the introduction. Denote by g the
Lax operator algebra corresponding to g.

For all algebras g listed above except for gl(n) and for each m ∈ Z, let

gm = {L ∈ g | (L) + D � 0},
where (L) is the divisor of a g-valued function L,

D = −mP+ + (m + g)P− +
ng∑

s=1

γs

for g = sl(n) and g = so(n), and

D = −mP+ + (m + g)P− + 2
ng∑

s=1

γs

for g = sp(2n).
We refer to gm as the (homogeneous) subspace of degree m of the Lie algebra g.
Theorem 3.1. For g = sl(n), so(n), and sp(2n), the following assertions hold :
1. dim gm = dim g.

2. g =
∞⊕

m=−∞
gm .

3. [gk, gl] ⊆
k+l+g⊕

m=k+l

gm .

Proof. First, let us prove 1. By the Riemann–Roch theorem, the dimension of the space of all
g-valued functions L satisfying the relation (L) + D � 0 is equal to (dim g)(ng + 1) for g = sl(n)
and g = so(n). For g = sp(2n), it is equal to (dim g)(2ng + 1). We shall prove that for g = sl(n)
or g = so(n) and for an arbitrary m ∈ Z, there are exactly dim g relations at every pole γs , while
for g = sp(2n) the number of these relations is 2 dim g. This will mean that dim gm = dim g.

First, consider the case g = sl(n). The elements of the subspace gm satisfy certain conditions
of three kinds coming from (2.2) and (2.3); these are the following conditions on the residues,
eigenvalues, and traces of the matrix L ∈ gm :

1. At every weak singularity, one has L−1 = αβt , which would give dim g relations (since
L−1 ∈ g) if the right-hand side were fixed. But the right-hand side depends on the free n-dimensional
vector β . Hence we have dim g − n conditions at each of the ng simple poles γs .

2. At every weak singularity, one has L0α = kα, which gives n conditions. Taking into account
one free parameter k, we obtain n − 1 conditions at each γs .
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3. We also have tr L = 0, i.e., one more relation at every weak singularity.
Thus, we have (dim g − n) + (n − 1) + 1 = dim g relations at every γs , as desired.
For g = so(n), we follow the same line of argument. Again, the relation L−1 = αβt − βαt (2.6)

gives dim g − n equations, the relation L0α = kα (2.8) gives n − 1 equations, and βtα = 0 (2.7)
gives one more equation. All in all, we obtain dim g equations at every point γs .

For g = sp(2n), at every point γs we have the following conditions:

L−2 = νααt : dim g − 1 conditions (one free parameter ν);

L−1 = (αβt + βαt)σ : dim g − 2n conditions (2n free parameters β);

L0α = kα : 2n − 1 condition (one free parameter k);

βtσα = 0, αtσL1α = 0 : 2 conditions;

i.e., there are 2 dim g conditions at each of the ng points, as desired.
For m > 0 and m < −g, the subspaces gm are linearly independent for the obvious reason: the

orders at P± of the elements of these subspaces are different for different m.
For −g ≤ m ≤ 0, the linear independence of gm follows from the fact that there are no

everywhere holomorphic Lax operators. We point out that the last argument applies only to the
case of simple Lie algebras. That explains why the case of reductive Lie algebra gl(n) requires some
modification (see below).

Assertion 3 of the theorem follows from the consideration of orders at the points P± .
Theorem 3.1 defines an almost graded structure on g.
Now consider the case g = gl(n). In this case, g contains a subspace of functions ranging in the

1-dimensional space of scalar matrices. Let L be such a function. By (2.2), we obtain trL−1 = 0.
Since L−1 is a scalar matrix, we obtain L−1 = 0. Hence L is holomorphic everywhere except at
P± . Let A be the algebra of meromorphic functions on Γ holomorphic everywhere except at P± .
Then L ∈ A · id, where id is the identity matrix. Therefore,

gl(n) = sl(n) ⊕ A · id . (3.1)

In [3], a certain base {Am} (later called the Krichever-Novikov base) was introduced in the space of
such functions. Denote Am = CAm and set gl(n)m = sl(n)m ⊕ (Am · id). For m > 0 and m < −g,
this definition is equivalent to the above definition of gm (with g = gl(n)).

As follows from (3.1), Theorem 3.1 with gm = gl(n)m remains valid for g = gl(n). Only relation
3 in the theorem holds with a different upper limit of summation, which is determined by the algebra
A (see [3]).

4. Central Extensions of Lax Operator Algebras

4.1. Central extensions of Lax operator algebras over gl(n). The 2-cocycle defining a
central extension for Krichever-Novikov current algebras (in particular, loop algebras) is given by
the conventional expression tr resP+ L dL′ . For these algebras, the cocycle is local. A cocycle χ is said
to be local [3] if there exist constants µ′ and µ′′ such that χ(gm, gm′) = 0 unless µ′ � m+m′ � µ′′ ,
where gm and gm′ are the homogeneous subspaces introduced in the previous section. In the case
of Lax operator algebras, the above cocycle is no longer local. In this section, we improve it so as
to obtain a local cocycle.

The eigenvalue k of the zero degree component L0 of an operator L (see (2.3)) can be treated
as a linear functional of L. We denote this functional by k(L).

Lemma 4.1. At every weak singularity, the 1-form tr L dL′ has an at most simple pole, and

res tr L dL′ = k([L, L′]). (4.1)

Proof. Let us compute both parts of the relation explicitly.
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1. Using the relation

dL′ = −αβ′t

z2
+ L′

1 + · · ·
and (2.1), we obtain

L dL′ = −αβtαβ′t

z3
− L0αβ′t

z2
− L1αβ′t − αβtL′

1

z
+ · · · .

The first term vanishes, since βtα = 0. The second term vanishes when we take the trace, since
L0α = kα and trαβ′t = β′tα = 0. The third term gives the desired residue. We have

res tr L dL′ = tr(αβtL′
1 − L1αβ′t) = βtL′

1α − β′tL1α.

2. Now let us compute the right-hand side of the relation in question. Denote by [L, L′]0 the
zero degree coefficient in the expansion (2.1) for the commutator [L, L′]. We have

[L, L′]0 = αβtL′
1 + L0L

′
0 + L1αβ′t − αβ′tL1 − L′

0L0 − L′
1αβt.

Multiply both sides of this relation by α on the right. Then the third terms in both rows vanish,
since they contain the factors β′tα and βtα, which are zero by (2.2). The second terms cancel each
other, since L0L

′
0α = k′kα and L′

0L0α = kk′α. Hence

[L, L′]0α = αβtL′
1α − αβ′tL1α = α(βtL′

1α − β′tL1α).

The expression in brackets is a 1 × 1-matrix, that is, a complex number. Certainly, this complex
number is the eigenvalue of [L, L′]0 on the vector α, i.e., k([L, L′]). Its value exactly coincides with
the expression computed above for tr res L dL′ , which completes the proof.

We wish to eliminate the singularities of the 1-form trLdL′ at γs by subtracting another
expression for the eigenvalue on the right-hand side in (4.1). Remarkably, we can give this new
expression in terms of connections in holomorphic vector bundles on Γ whose explicit form is given
in [2]. In what follows, L denotes the 1-form of such a connection.

Lemma 4.2. Let L be a matrix-valued 1-form such that locally, near a weak singularity,

L = L−1
dz

z
+ L0 dz + · · · ,

where L satisfies the same assumptions as L (see (2.1)–(2.3)) with the only modification : β̃tα = 1,
where L−1 = αβ̃t . Then the 1-form tr LL has an at most simple pole at z = 0, and

res tr LL = k(L).

Proof. We have

L =
αβt

z
+ L0 + · · · , L =

(
αβ̃t

z
+ L0 + · · ·

)

dz;

hence

LL =
(

αβtαβ̃t

z2
+

αβtL0 + L0αβ̃t

z
+ · · ·

)

dz.

Just as above, the first term is zero. For the second term, we have

res tr LL = tr(αβtL0 + L0αβ̃t) = βtL0α + β̃tL0α.

Next, L0α = k̃α and L0α = kα; hence βtL0α = k̃βtα = 0 and β̃tL0α = kβ̃tα = k. This completes
the proof.

Theorem 4.3. For every 1-form L satisfying the assumptions of Lemma 4.2, the 1-form
tr(L dL′ − [L, L′]L ) is regular except at the points P± , and the expression

γ(L, L′) = resP+ tr(L dL′ − [L, L′]L )

gives a local cocycle on the Lax operator algebra.
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Proof. In the course of proof of Lemmas 4.1 and 4.2, we have seen that the 1-forms tr L dL′
and tr[L, L′]L have simple poles at each point γs and their residues are equal to the same quantity
ks([L, L′]). Hence, their difference is regular at every γs .

Assume that at the point P+ we have the expansions

L(z) =
∞∑

i=m

aiz
i, L′(z) =

∞∑

j=m′
bjz

j , L (z) =
∞∑

k=m+

ckz
kdz. (4.2)

Then

L(z) dL′(z) =
∞∑

p=m+m′

( ∑

i+j=p

jaibj

)

zp−1 dz

and

[L(z), L′(z)]L =
∞∑

p=m+m′+m+

( ∑

i+j+k=p

[ai, bj ]ck

)

zp dz.

For one of these 1-forms to have a nontrivial residue at the point P+ , it is necessary that either
m + m′ � 0 or m + m′ + m+ � −1; in other words,

m + m′ � max{0,−1 − m+}.
If L and L′ are homogeneous of degrees m and m′ , respectively, then their expansions (similar

to (4.2)) at the point P− start from i = −m − g and j = −m′ − g, respectively. The expansion of
L starts from some integer m− . Hence the condition at P− reads

−m − m′ − 2g � max{0,−1 + m−}.
Finally, we obtain

min{0, 1 − m−} − 2g � m + m′ � max{0,−1 − m+}.
Since m± are fixed (because L is fixed), the latter exactly means that the cocycle is local.

4.2. Central extensions of Lax operator algebras over so(n). We stick to the same line
of argument as in the preceding section.

Lemma 4.4. At each weak singularity, the 1-form tr L dL′ has an at most simple pole, and

res tr L dL′ = 2k([L, L′]). (4.3)

Proof. 1) Using (2.5) and the relation

dL′ = −L′
−1z

−2 + L′
1 + · · · ,

where L′−1 is given by (2.6), we obtain

L dL′ = −L−1L
′−1

z3
− L0L

′−1

z2
− L1L

′−1 − L−1L
′
1

z
+ · · · . (4.4)

For the first term, we have

L−1L
′
−1 = (αβt − βαt)(αβ′t − β′αt) = α(βtα)β′t − β(αtα)β′t − αβtβ′αt − βαtβ′αt.

The first two summands are zero by (2.7). For the remainder, we have

tr(L−1L
′
−1) = tr(−αβtβ′αt − βαtβ′αt) = −(αtα)βtβ′ − (αtβ)αtβ′,

which again vanishes by (2.7).
Again (as in Sec. 4.1), the term containing z−2 vanishes when we take the trace. By definition,

L0L
′
−1 = L0(αβ′t − β′αt) = kαβ′t − L0β

′αt.

Now observe that tr(L0β
′αt) = tr(αtL0β

′) and αtL0 = −kαt . Hence tr(L0L
′−1) = 2kαtβ′ , which is

zero by (2.7).
The third term in (4.4) gives the desired residue. We have

res L dL′ = (L−1L
′
1 − L1L

′
−1).
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The substitution of L−1 and L′−1 given by (2.6) results in the relation

res L dL′ = αβtL′
1 − βαtL′

1 − L1αβ′t + L1β
′αt;

hence
tr resL dL′ = βtL′

1α − αtL′
1β − β′tL1α + αtL1β

′.
By the skew-symmetry of the matrices L1 and L′

1 , the first two summands in the last relation are
equal, and the same is true for the last two summands. Hence

tr res L dL′ = 2(βtL′
1α − β′tL1α).

It obviously follows from (2.9) that [L, L′]0α = βtL′
1α − β′tL1α, which proves the lemma.

Lemma 4.5. Let L be a skew-symmetric matrix-valued 1-form such that locally, near the weak
singularity,

L = L−1
dz

z
+ L0 dz + · · · ,

where L−1 = αβ̃t − β̃αt , β̃tα = 1, and L0α = k̃α. Then the 1-form tr LL has at most a simple
pole at z = 0 and

res tr LL = 2k(L).

Proof. The coefficient of z−2 in the product LL is, by definition, equal to

(αβt − βαt)(αβ̃t − β̃αt) = α(βtα)β̃t − αβtβ̃αt − β(αtα)β̃t + βαtβ̃αt.

The first and third terms are zero by (2.7). For the trace of the remaining sum, we have

tr(−αβtβ̃αt + βαtβ̃αt) = −(αtα)βtβ̃ + (αtβ)αtβ̃,

which is zero for the same reason.
By multiplying the expansions for L and L , we find that

tr res(LL ) = tr(L−1L0 + L0L−1) = tr(αβt − βαt)L0 + trL0(αβ̃t − β̃αt).

For the first term, we have

tr(αβt − βαt)L0 = tr(αβtL0 − βαtL0) = βtL0α − αtL0β.

Observe that, by skew-symmetry, we have αtL0=¯
− βtL0α, and hence

tr(αβt − βαt)L0 = βtL0α − αtL0β = 2βtL0α = 2k̃βtα,

which is zero by (2.7).
For the second summand, we have

tr L0(αβ̃t − β̃αt) = tr(L0αβ̃t − L0β̃αt) = β̃tL0α − αtL0β̃.

Since L0α = kα, αtL0 = −kαt , and β̃tα = αtβ̃ = 1, we obtain

tr L0(αβ̃t − β̃αt) = 2k. �

Theorem 4.6. For each L satisfying the assumptions of Lemma 4.5, the 1-form tr(L dL′ −
[L, L′]L ) is regular except at the points P± , and the expression

γ(L, L′) = resP+ tr(L dL′ − [L, L′]L )

gives a local cocycle on the Lax operator algebra.
The proof is similar to that of Theorem 4.3. It relies only on the absence of residues of the

1-form defining the cocycle at the weak singularities.
There is certain ambiguity in the definition of L in Lemma 4.5. For example, we could require

that L−1 = αβ̃t and take tr(L dL′ − 2[L, L′]L ) in Theorem 4.6.
4.3. Central extensions of Lax operator algebras over sp(2n). We stick to the same

line of argument as in the preceding sections. First, let us prove the following analog of Lemma 4.4.
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Lemma 4.7. At any weak singularity, the 1-form tr L dL′ has at most a simple pole, and

res tr L dL′ = 2k([L, L′]). (4.5)

Proof. A straightforward computation of LdL′ based on the expansion (2.10) shows that the
coefficients of z−5 and z−4 of this matrix-valued 1-form are equal to 0 by virtue of relations (2.12).

For the term with z−3 , we have

(L dL′)−3 = −(βtσβ′ − 2ν ′)ααtσ.

This expression vanishes when we take the trace,

tr(L dL′)−3 = −(βtσβ′ − 2ν ′)(αtσα) = 0.

Likewise, using (2.12)–(2.14), we have

tr(L dL′)−2 = ν(αtσL′
1α) − 2k(β′tσα) − ν ′(αtσL1α) = 0.

Thus, the 1-form trLdL′ indeed has at most a simple pole at the point in question. A straightforward
computation of the residue gives

tr(L dL′)−1 = 2(ν · αtσL′
2α − ν ′ · αtσL2α + βtσL′

1α − β′tσL1α),

which exactly coincides with twice the expression (2.15) for k([L, L′]).
Lemma 4.8. Let L be a g-valued 1-form such that locally, in a neighborhood of each weak

singularity,

L = L−1
dz

z
+ L0 dz + · · · ,

where L−1 = (αβ̃t + β̃αt)σ , β̃tσα = 1, L0α = k̃α, and αtσL1α = 0. Then the 1-form tr LL has
at most a simple pole at z = 0, and

res tr LL = 2k(L).

Proof. The expansion for LL starts from z−3 . We have

tr(LL )−3 = ν(β̃tσα)(αtσα) = 0,

tr(LL )−2 = ν(αtσβ̃)(αtσα) + (βtσβ̃)(αtσα) + (αtσβ̃)(αtσβ) = 0.

Thus, the 1-form tr LL indeed has at most a simple pole at the point in question. The calculation
of the residue gives

tr(LL )−1 = ν · αtσL1α + βtσ(L0α) + (αtσL0)β + β̃tσ(L0α) + (αtσL0)β̃.

By the assumption of the lemma, αtσL1α = 0 and L0α = k̃α. The latter relation also implies that
αtσL0 = −k̃αtσ. Consequently,

tr(LL )−1 = β̃tσ(L0α) + (αtσL0)β̃.

By the relations L0α = kα and αtσL0 = −kαtσ, we have

tr(LL )−1 = 2k(β̃tσα) = 2k. �

Just as above, the last two lemmas imply the following assertion:

Theorem 4.9. For g = sp(2n), the expression

γ(L, L′) = resP+ tr(L dL′ − [L, L′]L )

gives a local cocycle on the Lax operator algebra.
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