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1 Introduction

The Riemann–Schottky problem on the characterization of the Jacobians of curves
among abelian varieties is more than 120 years old. Quite a few geometrical charac-
terizations of Jacobians have been found. None of them provides an explicit system
of equations for the image of the Jacobian locus in the projective space under the
level-two theta imbedding.

The first effective solution of the Riemann–Schottky problem was obtained by
T. Shiota [1], who proved the famous Novikov conjecture:

An indecomposable principally polarized abelian variety (X, θ) is the Jacobian
of a curve of a genus g if and only if there exist g-dimensional vectors U �= 0, V ,W
such that the function
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u(x, y, t) = −2∂2
x ln θ(Ux + Vy +Wt + Z) (1.1)

is a solution of the Kadomtsev–Petviashvili (KP) equation

3uyy = (4ut + 6uux − uxxx)x. (1.2)

Here θ(Z) = θ(Z|B) is the Riemann theta-function,

θ(z) =
∑
m∈Zg

e2πi(z,m)+πi(Bm,m), (z,m) = m1z1 + · · · +mgzg, (1.3)

whereB is the corresponding symmetric matrix with positive definite imaginary part.
It is easy to show [2] that the KP equation with u of the form (1.1) is in fact equiv-

alent to the following system of algebraic equations for the fourth-order derivatives
of the level-two theta constants:

∂4
U'[ε, 0] − ∂U∂W'[ε, 0] + ∂2

V'[ε, 0] + c'[ε, 0] = 0, c = const. (1.4)

Here '[ε, 0] = '[ε, 0](0), where '[ε, 0](z) = θ [ε, 0](2z|2B) are level-two theta-
functions with half-integer characteristics ε ∈ 1

2Zg2 .
The KP equation admits the so-called zero-curvature representation [3, 4], which

is the compatibility condition for the following over-determined system of linear
equations:

(∂y − ∂2
x + u)ψ = 0, (1.5)(

∂t − ∂3
x +

3

2
∂x + w

)
ψ = 0. (1.6)

The main goal of the present paper is to show that the KP equation contains excessive
information and that the Jacobians can be characterized in terms of only the first of
its auxiliary linear equations.

Theorem 1.1. An indecomposable principally polarized abelian variety (X, θ) is the
Jacobian of a curve of genus g if and only if there exist g-dimensional vectors U �=
0, V ,A such that equation (1.5) is satisfied for

u = −2∂2
x ln θ(Ux + Vy + Z) (1.7)

and

ψ = θ(A+ Ux + Vy + Z)
θ(Ux + Vy + Z) epx+Ey, (1.8)

where p,E are constants.

The “if’’ part of this statement follows from the exact theta-functional expression
for the Baker–Akhiezer function [5, 6].

The addition formula for the Riemann theta-function directly implies that equation
(1.5) with u andψ of the form (1.7) and (1.8) is equivalent to the system of equations
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(∂V − ∂2
U − 2p∂U + (E − p2))'[ε, 0](A/2) = 0, ε ∈ 1

2
Zg2 . (1.9)

Recently Theorem 1.1 was proved by E. Arbarello and G. Marini and the author [7]
under the additional assumption that the closure 〈A〉 of the subgroup of X generated
by A is irreducible. The geometric interpretation of Theorem 1.1 is equivalent to
the characterization of Jacobians via flexes of Kummer varieties (see details in [7]),
which is a particular case of the so-called trisecant conjecture, first formulated in [8].

Theorem 1.1 is not the strongest form of our main result. What we really prove
is that the Jacobian locus in the space of principally polarized abelian varieties is
characterized by a system of equations which formally can be seen as the equations
of motion of the infinite-dimensional Calogero–Moser system.

Let τ(x, y) be an entire function of the complex variable x smoothly depending
on a parameter y. Consider the equation

resx(∂
2
y ln τ + 2(∂2

x ln τ)2) = 0, (1.10)

which means that the meromorphic function given by the left-hand side of (1.10) has
no residues in the x variable. If xi(y) is a simple zero of τ , i.e., τ(xi(y), y) = 0,
∂xτ (xi(y), y) �= 0, then (1.10) implies

ẍi = 2wi, (1.11)

where “dots’’ stands for the y-derivatives andwi is the third coefficient of the Laurent
expansion of u(x, y) = −2∂2

x τ (x, y) at xi , i.e.,

u(x, y) = 2

(x − xi(y))2 + vi(y)+ wi(y)(x − xi(y))+ · · · . (1.12)

Formally, if we represent τ as an infinite product,

τ(x, y) = c(y)
∏
i

(x − xi(y)), (1.13)

then equation (1.10) can be written as the infinite system of equations

ẍi = −4
∑
j �=i

1

(xi − xj )3 . (1.14)

Equations (1.14) are purely formal because, even if τ has simple zeros at y = 0, in the
general case there is no nontrivial interval in y where the zeros stay simple. For the
moment, the only reason for representing (1.11) in the form (1.14) is to show that in
the case when τ is a rational, trigonometric or elliptic polynomial the system (1.11)
coincides with the equations of motion for the rational, trigonometrical or elliptic
Calogero–Moser systems, respectively.

Equations (1.11) for the zeros of the function τ = θ(Ux+Vy+Z)were derived
in [7] as a direct corollary of the assumptions of Theorem 1.1. Simple expansion of
θ at the points of its divisor z ∈ ' : θ(z) = 0 gives the equation
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[(∂2θ)
2 − (∂2

1θ)
2]∂2

1θ + 2[∂2
1θ∂

3
1θ − ∂2θ∂1∂2θ ]∂1θ + [∂2

2θ − ∂4
1θ ](∂1θ)

2

= 0 (mod θ)
(1.15)

which is valid on '. Here and below ' is the divisor on X defined by the equation
θ(Z) = 0 and ∂1 and ∂2 are constant vector fields on Cg corresponding to the vectors
U and V .

It would be very interesting to understand if any reasonable general theory of
equation (1.10) exists. The following form of our main result shows that in any case
such a theory has to be interesting and nontrivial.

Let '1 be defined by the equations '1 = {Z : θ(Z) = ∂1θ(Z) = 0}. The
∂1-invariant subset � of '1 will be called the singular locus.

Theorem 1.2. An indecomposable principally polarized abelian variety (X, θ) is the
Jacobian of a curve of genus g if and only if there exist g-dimensional vectors U �=
0, V , such that for each Z ∈ Cg \ � equation (1.10) for the function τ(x, y) =
θ(Ux + Vy + Z) is satisfied, i.e., equation (1.15) is valid on '.

The main idea of Shiota’s proof of the Novikov conjecture is to show that if u is
as in (1.1) and satisfies the KP equation, then it can be extended to a τ -function of the
KP hierarchy, as a global holomorphic function of the infinite number of variables
t = {ti}, t1 = x, t2 = y, t3 = t . Local existence of τ directly follows from the KP
equation. The global existence of the τ -function is crucial. The rest is a corollary of
the KP theory and the theory of commuting ordinary differential operators developed
by Burchnall–Chaundy [9, 10] and the author [5, 6].

The core of the problem is that there is a homological obstruction for the global
existence of τ . It is controlled by the cohomology groupH 1(Cg\�,V), where V is the
sheaf of ∂1-invariant meromorphic functions on Cg\�with poles along' (see details
in [11]). The hardest part of Shiota’s work (clarified in [11]) is the proof that the locus
� is empty. That ensures the vanishing of H 1(Cg,V). Analogous obstructions have
occurred in all the other attempts to apply the theory of soliton equations to various
characterization problems in the theory of abelian varieties. None of them has been
completely successful. Only partial results were obtained. (Note that Theorem 1.1 in
one of its equivalent forms was proved earlier in [12] under the additional assumption
that '1 does not contain a ∂1-invariant line.)

Strictly speaking, the KP equation and the KP hierarchy are not used in the present
paper. But our main construction of the formal wave solutions of (1.5) is reminiscent
of the construction of the τ -function. All its difficulties can be traced back to those
in Shiota’s work. The wave solution of (1.5) is a solution of the form

ψ(x, y, k) = ekx+(k2+b)y
(

1+
∞∑
s=1

ξs(x, y)k
−s
)
. (1.16)

At the beginning of the next section, we show that the assumptions of Theorem 1.2
are necessary and sufficient conditions for the local existence of the wave solutions
such that

ξs = τs(Ux + Vy + Z, y)
θ(Ux + Vy + Z) , Z /∈ �, (1.17)
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where τs(Z, y), as a function of Z, is holomorphic in some open domain in Cg . The
functions ξs are defined recursively by the equation 2∂1ξs+1 = ∂yξs − ∂2

1 ξs + uξs .
Therefore, the global existence of ξs is controlled by the same cohomology group
H 1(C \�,V) as above. At the local level the main problem is to find a translational
invariant normalization of ξs which defines wave solutions uniquely up to a ∂1-
invariant factor.

In the case of periodic potentials u(x + T , y) = u(x) the normalization problem
for the wave functions was solved by D. Phong and the author in [13]. It was shown
that the condition that ξs is periodic completely determines the y-dependence of
the integration constants and the corresponding wave solutions are related by an x-
independent factor. In general, the potential u = −2∂2

x θ(Ux+Vy+Z) is only quasi-
periodic in x. In that case the solution of the normalization problem is technically
more involved but mainly goes along the same lines as in the periodic case. The
corresponding wave solutions are called λ-periodic.

In the last section, we showed that for each Z /∈ � a local λ-periodic wave solu-
tion is the common eigenfunction of a commutative ring AZ of ordinary differential
operators. The coefficients of these operators are independent of ambiguities in the
construction of ψ . For generic Z the ring AZ is maximal and the corresponding
spectral curve  is Z-independent. The correspondence j : Z �−→ AZ allows us
to take the next crucial step and prove the global existence of the wave function.
Namely, onX \� the wave function can be globally defined as the preimage j∗ψBA
under j of the Baker–Akhiezer function on  and then can be extended to X by
the usual Hartog-type arguments. The global existence of the wave function implies
that X contains an orbit of the KP hierarchy, as an abelian subvariety. The orbit is
isomorphic to the generalized Jacobian J () = Pic0() of the spectral curve [1].
Therefore, the generalized Jacobian is compact. The compactness of Pic0() implies
that the spectral curve is smooth and the correspondence j extends by linearity and
defines an isomorphism j : X→ J ().

2 λ-periodic wave solutions

As was mentioned above, the formal Calogero–Moser equations (1.11) were derived
in [7] as a necessary condition for the existence of a meromorphic solution to equa-
tion (1.5).

Let τ(x, y) be a holomorphic function of the variable x in some open domain
D ∈ C smoothly depending on a parameter y. Suppose that for each y the zeros of
τ are simple,

τ(xi(y), y) = 0, τx(xi(y), y) �= 0. (2.1)

Lemma 2.1 ([7]). If equation (1.5) with the potential u = −2∂2
x ln τ(x, y) has a

meromorphic in D solution ψ0(x, y), then equations (1.11) hold.

Proof. Consider the Laurent expansions of ψ0 and u in the neighborhood of one of
the zeros xi of τ :
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u = 2

(x − xi)2 + vi + wi(x − xi)+ · · · , (2.2)

ψ0 = αi

x − xi + βi + γi(x − xi)+ δi(x − xi)
2 + · · · , (2.3)

(All coefficients in these expansions are smooth functions of the variable y.) Substi-
tution of (2.2), (2.3) in (1.5) gives a system of equations. The first three of them are

αiẋi + 2βi = 0, (2.4)

α̇i + αivi + 2γi = 0, (2.5)

β̇i + viβi − γi ẋi + αiwi = 0. (2.6)

Taking the y-derivative of the first equation and the using other two, we get (1.11).
Let us show that equations (1.11) are sufficient for the existence of meromorphic

wave solutions. )�
Lemma 2.2. Suppose that equations (1.11) for the zeros of τ(x, y) hold. Then there
exist meromorphic wave solutions of equation (1.5) that have simple poles at xi and
are holomorphic everywhere else.

Proof. Substitution of (1.16) into (1.5) gives a recurrent system of equations

2ξ ′s+1 = ∂yξs + uξs − ξ ′′s . (2.7)

We are going to prove by induction that this system has meromorphic solutions with
simple poles at all the zeros xi of τ .

Let us expand ξs at xi :

ξs = rs

x − xi + rs0 + rs1(x − xi), (2.8)

where for brevity we omit the index i in the notation for the coefficients of this
expansion. Suppose that ξs are defined and equation (2.7) has a meromorphic solution.
Then the right-hand side of (2.7) has zero residue at x = xi , i.e.,

resxi (∂yξs + uξs − ξ ′′s ) = ṙs + virs + 2rs1 = 0. (2.9)

We need to show that the residue of the next equation also vanishes. From (2.7) it
follows that the coefficients of the Laurent expansion for ξs+1 are equal to

rs+1 = −ẋi rs − 2rs0, (2.10)

2rs+1,1 = ṙs0 − rs1 + wirs + virs0. (2.11)

These equations imply

ṙs+1 + virs+1 + 2rs+1,1 = −rs(ẍi − 2wi)− ẋi (ṙs − virss + 2rs1) = 0, (2.12)

and the lemma is proved. )�
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Our next goal is to fix a translation-invariant normalization of ξs which defines
wave functions uniquely up to an x-independent factor. It is instructive to consider
first the case of the periodic potentials u(x + 1, y) = u(x, y) (see details in [13]).

Equations (2.7) are solved recursively by the formulae

ξs+1(x, y) = cs+1(y)+ ξ0
s+1(x, y), (2.13)

ξ0
s+1(x, y) =

1

2

∫ x

x0

(∂yξs − ξ ′′s + uξs)dx, (2.14)

where cs(y) are arbitrary functions of the variable y. Let us show that the periodicity
condition ξs(x + 1, y) = ξs(x, y) defines the functions cs(y) uniquely up to an
additive constant. Assume that ξs−1 is known and satisfies the condition that the
corresponding function ξ0

s is periodic. The choice of the function cs(y) does not
affect the periodicity property of ξs , but it does affect the periodicity in x of the
function ξ0

s+1(x, y). In order to make ξ0
s+1(x, y) periodic, the function cs(y) should

satisfy the linear differential equation

∂ycs(y)+ B(y)cs(y)+
∫ x0+1

x0

(∂yξ
0
s (x, y)+ u(x, y)ξ0

s (x, y))dx, (2.15)

where B(y) = ∫ x0+1
x0

udx. This defines cs uniquely up to a constant.
In the general case, when u is quasi-periodic, the normalization of the wave

functions is defined along the same lines.
Let YU = 〈Ux〉 be the closure of the group Ux in X. Shifting YU if needed, we

may assume, without loss of generality, that YU is not in the singular locus, YU /∈ �.
Then for a sufficiently small y, we haveYU+Vy /∈ � as well. Consider the restriction
of the theta-function onto the affine subspace Cd + Vy, where Cd = π−1(YU ), and
π : Cg → X = Cg/� is the universal cover of X:

τ(z, y) = θ(z+ Vy), z ∈ Cd . (2.16)

The function u(z, y) = −2∂2
1 ln τ is periodic with respect to the lattice�U = �∩Cd

and, for fixed y, has a double pole along the divisor 'U(y) = ('− Vy) ∩ Cd .

Lemma 2.3. Let equation (1.10) for τ(Ux + z, y) hold and let λ be a vector of the
sublattice �U = � ∩ Cd ⊂ Cg . Then

(i) equation (1.5) with the potential u(Ux + z, y) has a wave solution of the form
ψ = ekx+k2yφ(Ux + z, y, k) such that the coefficients ξs(z, y) of the formal
series

φ(z, y, k) = eby
(

1+
∞∑
s=1

ξs(z, y)k
−s
)

(2.17)

are λ-periodic meromorphic functions of the variable z ∈ Cd with a simple pole
along the divisor 'U(y),

ξs(z+ λ, y) = ξs(z, y) = τs(z, y)

τ (z, y)
; (2.18)
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(ii) φ(z, y, k) is unique up to a factor ρ(z, k) that is ∂1-invariant and holomorphic
in z,

φ1(z, y, k) = φ(z, y, k)ρ(z, k), ∂1ρ = 0. (2.19)

Proof. The functions ξs(z) are defined recursively by the equations

2∂1ξs+1 = ∂yξs + (u+ b)ξs − ∂2
1 ξs . (2.20)

A particular solution of the first equation 2∂1ξ1 = u+ b is given by the formula

2ξ0
1 = −2∂1 ln τ + (l, z)b, (2.21)

where (l, z) is a linear form on Cd given by the scalar product of z with a vector
l ∈ Cd such that (l, U) = 1, and (l, λ) �= 0. The periodicity condition for ξ0

1 defines
the constant b,

(l, λ)b = (2∂1 ln τ(z+ λ, y)− 2∂1 ln τ(z, y)), (2.22)

which depends only on a choice of the lattice vector λ. A change of the potential
by an additive constant does not affect the results of the previous lemma. Therefore,
equations (1.11) are sufficient for the local solvability of (2.20) in any domain, where
τ(z + Ux, y) has simple zeros, i.e., outside of the set 'U1 (y) = ('1 − Vy) ∩ Cd .
Recall that '1 = ' ∩ ∂1'. This set does not contain a ∂1-invariant line because
any such line is dense in YU . Therefore, the sheaf V0 of ∂1-invariant meromor-
phic functions on Cd \ 'U1 (y) with poles along the divisor 'U(y) coincides with
the sheaf of holomorphic ∂1-invariant functions. That implies the vanishing of
H 1(Cd \'U1 (y),V0) and the existence of global meromorphic solutions ξ0

s of (2.20)
which have a simple pole along the divisor 'U(y) (see details in [1, 11]). If ξ0

s

are fixed, then the general global meromorphic solutions are given by the formula
ξs = ξ0

s + cs , where the constant of integration cs(z, y) is a holomorphic ∂1-invariant
function of the variable z.

Let us assume, as in the example above, that a λ-periodic solution ξs−1 is known
and that it satisfies the condition that there exists a periodic solution ξ0

s of the next
equation. Let ξ∗s+1 be a solution of (2.20) for fixed ξ0

s . Then it is easy to see that the
function

ξ0
s+1(z, y) = ξ∗s+1(z, y)+ cs(z, y)ξ0

1 (z, y)+
(l, z)

2
∂ycs(z, y) (2.23)

is a solution of (2.20) for ξs = ξ0
s +cs . A choice of a λ-periodic ∂1-invariant function

cs(z, y) does not affect the periodicity property of ξs , but it does affect the periodicity
of the function ξ0

s+1. In order to make ξ0
s+1 periodic, the function cs(z, y) should

satisfy the linear differential equation

(l, λ)∂ycs(z, y) = 2ξ∗s+1(z+ λ, y)− 2ξ∗s+1(z, y). (2.24)

This equation, together with an initial condition cs(z) = cs(z, 0) uniquely defines
cs(x, y). The induction step is then completed. We have shown that the ratio of two
periodic formal series φ1 and φ is y-independent. Therefore, equation (2.19), where
ρ(z, k) is defined by the evaluation of the two sides at y = 0, holds. The lemma is
thus proved. )�
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Corollary 2.1. Let λ1, . . . , λd be a set of linear independent vectors of the lattice�U
and let z0 be a point of Cd . Then, under the assumptions of the previous lemma, there
is a unique wave solution of equation (1.5) such that the corresponding formal series
φ(z, y, k; z0) is quasi-periodic with respect to �U , i.e., for λ ∈ �U

φ(z+ λ, y, k; z0) = φ(z, y, k; z0)µλ(k) (2.25)

and satisfies the normalization conditions

µλi (k) = 1, φ(z0, 0, k; z0) = 1. (2.26)

The proof is identical to that of [1, Lemma 12, part (b)]. Let us briefly present its
main steps. As shown above, there exist wave solutions corresponding to φ which
are λ1-periodic. Moreover, from statement (ii) above it follows that for any λ′ ∈ �U ,

φ(z+ λ, y, k) = φ(z, y, k)ρλ(z, k), (2.27)

where the coefficients of ρλ are ∂1-invariant holomorphic functions. Then the same
arguments as in [1] show that there exists a ∂1-invariant series f (z, k) with holomor-
phic in z coefficients and formal series µ0

λ(k) with constant coefficients such that the
equation

f (z+ λ, k)ρλ(z, k) = f (z, k)µλ(k) (2.28)

holds. The ambiguity in the choice of f and µ corresponds to the multiplication by
the exponent of a linear form in z vanishing on U , i.e.,

f ′(z, k) = f (z, k)e(b(k),z), µ′λ(k) = µλ(k)e(b(k),λ), (b(k), U) = 0, (2.29)

where b(k) =∑s bsk
−s is a formal series with vector-coefficients that are orthogonal

to U . The vector U is in general position with respect to the lattice. Therefore,
the ambiguity can be uniquely fixed by imposing (d − 1) normalizing conditions
µλi (k) = 1, i > 1. (Recall that µλ1(k) = 1 by construction.)

The formal series f φ is quasi-periodic and its multiplicators satisfy (2.26). Then,
by these properties it is defined uniquely up to a factor which is constant in z and y.
Therefore, for the unique definition of φ0, it is enough to fix its evaluation at z0 and
y = 0. The corollary is proved.

3 The spectral curve

In this section, we show that λ-periodic wave solutions of equation (1.5), with u as
in (1.7), are common eigenfunctions of rings of commuting operators and identify X
with the Jacobian of the spectral curve of these rings.

Note that a simple shift z → z + Z, where Z /∈ �, gives λ-periodic wave
solutions with meromorphic coefficients along the affine subspaces Z + Cd . These
λ-periodic wave solutions are related to each other by a ∂1-invariant factor. Therefore,
choosing, in the neighborhood of any Z /∈ �, a hyperplane orthogonal to the vector
U and fixing initial data on this hyperplane at y = 0, we define the corresponding
series φ(z+Z, y, k) as a local meromorphic function of Z and global meromorphic
function of z.
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Lemma 3.1. Let the assumptions of Theorem 1.2 hold. Then there is a unique pseu-
dodifferential operator

L(Z, ∂x) = ∂x +
∞∑
s=1

ws(Z)∂
−s
x (3.1)

such that
L(Ux + Vy + Z, ∂x)ψ = kψ, (3.2)

whereψ = ekx+k2yφ(Ux+Z, y, k) is a λ-periodic solution of (1.5). The coefficients
ws(Z) of L are meromorphic functions on the abelian varietyX with poles along the
divisor '.

Proof. The construction of L is standard for the KP theory. First we define L as
a pseudodifferential operator with coefficients ws(Z, y), which are functions of Z
and y.

Let ψ be a λ-periodic wave solution. The substitution of (2.17) in (3.2) gives
a system of equations that recursively define ws(Z, y) as differential polynomials
in ξs(Z, y). The coefficients of ψ are local meromorphic functions of Z, but the
coefficients of L are well-defined global meromorphic functions on Cg \�, because
different λ-periodic wave solutions are related to each other by a ∂1-invariant factor,
which does not affect L. The singular locus is of codimension ≥ 2. Then Hartog’s
holomorphic extension theorem implies that ws(Z, y) can be extended to a global
meromorphic function on Cg .

The translational invariance of u implies the translational invariance of the λ-
periodic wave solutions. Indeed, for any constant s the series φ(V s + Z, y − s, k)
and φ(Z, y, k) correspond to λ-periodic solutions of the same equation. Therefore,
they coincide up to a ∂1-invariant factor. This factor does not affect L. Hence
ws(Z, y) = ws(Vy + Z).

The λ-periodic wave functions corresponding to Z and Z+λ′ for any λ′ ∈ � are
also related to each other by a ∂1-invariant factor:

∂1(φ1(Z + λ′, y, k)φ−1(Z, y, k)) = 0. (3.3)

Hencews are periodic with respect to� and therefore are meromorphic functions on
the abelian variety X. The lemma is proved. )�

Consider now the differential parts of the pseudodifferential operators Lm. Let
Lm+ be the differential operator such that Lm− = Lm − Lm+ = Fm∂−1 +O(∂−2). The
leading coefficient Fm of Lm− is the residue of Lm:

Fm = res∂ Lm. (3.4)

From the construction of L it follows that [∂y − ∂2
x + u,Ln] = 0. Hence

[∂y − ∂2
x + u,Lm+] = −[∂y − ∂2

x + u,Lm−] = 2∂xFm. (3.5)

The functions Fm are differential polynomials in the coefficients ws of L. Hence
Fm(Z) are meromorphic functions on X. The next statement is crucial for the proof
of the existence of commuting differential operators associated with u.
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Lemma 3.2. The abelian functions Fm have at most a second-order pole along the
divisor '.

Proof. We need a few more standard constructions from the KP theory. If ψ is as in
Lemma 3.1, then there exists a unique pseudodifferential operator � such that

ψ = �ekx+k2y, � = 1+
∞∑
s=1

ϕs(Ux + Z, y)∂−sx . (3.6)

The coefficients of � are universal differential polynomials on ξs . Therefore,
ϕs(z + Z, y) is a global meromorphic function of z ∈ Cd and a local meromor-
phic function of Z /∈ �. Note that L = �(∂x)�−1.

Consider the dual wave function defined by the left action of the operator �−1:
ψ+ = (e−kx−k2y)�−1. Recall that the left action of a pseudodifferential operator
is the formal adjoint action under which the left action of ∂x on a function f is
(f ∂x) = −∂xf . If ψ is a formal wave solution of (3.5), then ψ+ is a solution of the
adjoint equation

(−∂y − ∂2
x + u)ψ+ = 0. (3.7)

The same arguments, as before, prove that if equations (1.11) for poles of u hold
then ξ+s have simple poles at the poles of u. Therefore, if ψ as in Lemma 2.3, then

the dual wave solution is of the form ψ+ = e−kx−k2yφ+(Ux + Z, y, k), where the
coefficients ξ+s (z+ Z, y) of the formal series

φ+(z+ Z, y, k) = e−by
(

1+
∞∑
s=1

ξ+s (z+ Z, y)k−s
)

(3.8)

are λ-periodic meromorphic functions of the variable z ∈ Cd with a simple pole along
the divisor 'U(y).

The ambiguity in the definition of ψ does not affect the product

ψ+ψ = (e−kx−k2y�−1)(�ekx+k2y). (3.9)

Therefore, although each factor is only a local meromorphic function on Cg \�, the
coefficients Js of the product

ψ+ψ = φ+(Z, y, k)φ(Z, y, k) = 1+
∞∑
s=2

Js(Z, y)k
−s . (3.10)

are global meromorphic functions of Z. Moreover, the translational invariance of
u implies that they have the form Js(Z, y) = Js(Z + Vy). Each of the factors in
the left-hand side of (3.10) has a simple pole along ' − Vy. Hence Js(Z) is a
meromorphic function on X with a second-order pole along '.

From the definition of L, it follows that

resk(ψ
+(Lnψ)) = resk(ψ

+knψ) = Jn+1. (3.11)
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On the other hand, using the identity

resk(e
−kxD1)(D2e

kx) = res∂ (D2D1), (3.12)

which holds for any two pseudodifferential operators [14], we get

resk(ψ
+Lnψ) = resk(e

−kx�−1)(Ln�ekx) = res∂ Ln = Fn. (3.13)

Therefore, Fn = Jn+1 and the lemma is proved. )�
Let F̂ be a linear space generated by {Fm,m = 0, 1, . . . }, where we set F0 = 1.

It is a subspace of the 2g-dimensional space of the abelian functions that have at most
second-order pole along '. Therefore, for all but ĝ = dim F̂ positive integers n,
there exist constants ci,n such that

Fn(Z)+
n−1∑
i=0

ci,nFi(Z) = 0. (3.14)

Let I denote the subset of integers n for which there are no such constants. We call
this subset the gap sequence.

Lemma 3.3. Let L be the pseudodifferential operator corresponding to a λ-periodic
wave function ψ constructed above. Then for the differential operators

Ln = Ln+ +
n−1∑
i=0

ci,nLn−i+ = 0, n /∈ I, (3.15)

the equations

Lnψ = an(k)ψ, an(k) = kn +
∞∑
s=1

as,nk
n−s , (3.16)

where as,n are constants, hold.

Proof. First, note that from (3.5), it follows that

[∂y − ∂2
x + u,Ln] = 0. (3.17)

Hence if ψ is a λ-periodic wave solution of (1.5) corresponding to Z /∈ �, then Lnψ
is also a formal solution of the same equation. This implies the equation Lnψ =
an(Z, k)ψ , where a is ∂1-invariant. The ambiguity in the definition of ψ does not
affect an. Therefore, the coefficients of an are well-defined global meromorphic
functions on Cg \ �. The ∂1-invariance of an implies that an, as a function of Z,
is holomorphic outside of the locus. Hence it has an extension to a holomorphic
function on Cg . Equations (3.3) imply that an is periodic with respect to the lattice
�. Hence an is Z-independent. Note that as,n = cs,n, s ≤ n. The lemma is proved.)�
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The operatorLm can be regarded as aZ /∈ �-parametric family of ordinary differ-
ential operators LZm whose coefficients have the form

LZm = ∂nx +
m∑
i=1

ui,m(Ux + Z)∂m−ix , m /∈ I. (3.18)

Corollary 3.1. The operators LZm commute with each other,

[LZn , LZm] = 0, Z /∈ �. (3.19)

From (3.16) it follows that [LZn , LZm]ψ = 0. The commutator is an ordinary
differential operator. Hence the last equation implies (3.19).

Lemma 3.4. Let AZ , Z /∈ �, be a commutative ring of ordinary differential opera-
tors spanned by the operators LZn . Then there is an irreducible algebraic curve  of
arithmetic genus ĝ = dim F̂ such that AZ is isomorphic to the ringA(, P0) of mero-
morphic functions on  with the only pole at a smooth point P0. The correspondence
Z → AZ defines a holomorphic imbedding of X \ � into the space of torsion-free
rank-1 sheaves F on ,

j : X\� �−→ Pic(). (3.20)

Proof. It is a fundamental fact of the theory of commuting linear ordinary differential
operators [5, 6, 9, 10, 15] that there is a natural correspondence

A ←→ {,P0, [k−1]1,F} (3.21)

between regular at x = 0 commutative rings A of ordinary linear differential oper-
ators containing a pair of monic operators of coprime orders, and sets of algebraic-
geometrical data {,P0, [k−1]1,F}, where  is an algebraic curve with a fixed first
jet [k−1]1 of a local coordinate k−1 in the neighborhood of a smooth point P0 ∈ 
and F is a torsion-free rank-1 sheaf on  such that

H 0(,F) = H 1(,F) = 0. (3.22)

The correspondence becomes one-to-one if the rings A are considered modulo con-
jugation, A′ = g(x)Ag−1(x).

Note that in [5, 6, 9, 10] the main attention was paid to the generic case of com-
mutative rings corresponding to smooth algebraic curves. The invariant formulation
of the correspondence given above is due to Mumford [15].

The algebraic curve  is called the spectral curve of A. The ring A is isomorphic
to the ringA(, P0) of meromorphic functions on with the only pole at the puncture
P0. The isomorphism is defined by the equation

Laψ0 = aψ0, La ∈ A, a ∈ A(, P0). (3.23)

Here ψ0 is a common eigenfunction of the commuting operators. At x = 0, it is a
section of the sheaf F ⊗O(−P0).
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Important Remark. The construction of the correspondence (3.21) depends on a
choice of initial point x0 = 0. The spectral curve and the sheaf F are defined
by the evaluations of the coefficients of generators of A and a finite number of their
derivatives at the initial point. In fact, the spectral curve is independent of the choice
of x0, but the sheaf does depend on it, i.e., F = Fx0 .

Using the shift of the initial point it is easy to show that the correspondence
(3.21) extends to commutative rings of operators whose coefficients are meromorphic
functions of x at x = 0. The rings of operators having poles at x = 0 correspond to
sheaves for which the condition (3.22) is violated.

Let Z be the spectral curve corresponding to AZ . Note that, due to the remark
above, it is well defined for all Z /∈ �. The eigenvalues an(k) of the operators LZn
defined in (3.16) coincide with the Laurent expansions at P0 of the meromorphic
functions an ∈ A(Z, P0). They are Z-independent. Hence the spectral curve is
Z-independent as well,  = Z . The first statement of the lemma is thus proved. )�

The construction of the correspondence (3.21) implies that if the coefficients of the
operators A holomorphically depend on parameters then the algebraic-geometrical
spectral data are also holomorphic functions of the parameters. Hence j is holomor-
phic away from '. Then using the shift of the initial point and the fact, that Fx0

holomorphically depends on x0, we get that j holomorphically extends over ' \ �,
as well. The lemma is proved.

Recall that a commutative ring A of linear ordinary differential operators is called
maximal if it is not contained in any bigger commutative ring. Let us show that for
a generic Z the ring AZ is maximal. Suppose that it is not. Then there exists α ∈ I ,
where I is the gap sequence defined above, such that for each Z /∈ � there exists an
operatorLZα of orderαwhich commutes withLZn , n /∈ I . Therefore, it commutes with
L. A differential operator commuting with L up to order O(1) can be represented in
the form Lα = ∑m<α ci,α(Z)Li+, where ci,α(Z) are ∂1-invariant functions of Z. It
commutes with L if and only if

Fα(Z)+
n−1∑
i=0

ci,α(Z)Fi(Z) = 0, ∂1ci,α = 0. (3.24)

Note the difference between (3.14) and (3.24). In the first equation the coefficients
ci,n are constants. The λ-periodic wave solution of equation (1.5) is a common
eigenfunction of all commuting operators, i.e., Lαψ = aα(Z, k)ψ , where aα =
kα +∑∞

s=1 as,α(Z)k
α−s is ∂1-invariant. The same arguments as those used in the

proof of equation (3.16) show that the eigenvalue aα is Z-independent. We have
as,α = cs,α , s ≤ α. Therefore, the coefficients in (3.24) are Z-independent. This
contradicts the assumption that α /∈ I .

Our next goal is to finally prove the global existence of the wave function.

Lemma 3.5. Let the assumptions of Theorem 1.2 hold. Then there exists a com-
mon eigenfunction of the corresponding commuting operators LZn of the form
ψ = ekxφ(Ux + Z, k) such that the coefficients of the formal series
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φ(Z, k) = 1+
∞∑
s=1

ξs(Z)k
−s (3.25)

are global meromorphic functions with a simple pole along '.

Proof. It is instructive to consider first the case when the spectral curve  of the rings
AZ is smooth. Then as shown in [5, 6], the corresponding common eigenfunction of
the commuting differential operators (the Baker–Akhiezer function), normalized by
the condition ψ0|x=0 = 1, is of the form [5, 6]

ψ̂0 = θ̂ (Â(P )+ Ûx + Ẑ)θ̂ (Ẑ)
θ̂ (Ûx + Ẑ)θ̂ (Â(P )+ Ẑ)e

x	(P ). (3.26)

Here θ̂ (Ẑ) is the Riemann theta-function constructed with the help of the matrix
of b-periods of normalized holomorphic differentials on ; Â :  → J () is the
Abel map; 	 is the abelian integral corresponding to d	; d	 is the meromorphic
differential of the second kind and has the only pole at the puncture P0, where its
singularity is of the form dk; and 2πiÛ is the vector of its b-periods.

Remark. Let us emphasize, that the formula (3.26) is not the result of solution of
some differential equations. It is a direct corollary of analytic properties of the
Baker–Akhiezer function ψ̂0(x, P ) on the spectral curve:

(i) ψ̂0 is a meromorphic function of P ∈  \P0; its pole divisor is of degree g̃ and is
x-independent. It is nonspecial if the operators are regular at the normalization
point x = 0.

(ii) In the neighborhood of P0 the function ψ̂0 has the form (1.16) (with y = 0).

From the Riemann–Roch theorem, it follows that, if ψ̂0 exists, then it is unique. It is
easy to check that the function ψ̂0 given by (3.26) is single-valued on  and has all
the desired properties.

The last factors in the numerator and the denominator of (3.26) are x-independent.
Therefore, the function

ψ̂BA = θ̂ (Â(P )+ Ûx + Ẑ)
θ̂ (̂Ux + Ẑ) ex	(P ) (3.27)

is also a common eigenfunction of the commuting operators.
In the neighborhood of P0 the function ψ̂BA has the form

ψ̂BA = ekx
(

1+
∞∑
s=1

τs(Ẑ + Ûx)
θ̂(Ûx + Ẑ) k

−s
)
, k = 	, (3.28)

where τs(Ẑ) are global holomorphic functions.
According to Lemma 3.4, we have a holomorphic imbedding Ẑ = j (Z) ofX \�

into J (). Consider the formal series ψ = j∗ψ̂BA. It is globally well defined away
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from�. IfZ /∈ ', then j (Z) /∈ '̂ (which is the divisor on which the condition (3.22)
is violated). Hence the coefficients ofψ are regular away from'. The singular locus
is at least of codimension 2. Hence, once again using Hartog-type arguments, we can
extend ψ on X.

If the spectral curve is singular, we can proceed along the same lines using the
generalization of (3.27) given by the theory of the Sato τ -function [16]. Namely, a
set of algebraic-geometrical data (3.21) defines a point of the Sato Grassmannian, and
therefore the corresponding τ -function: τ(t;F). It is a holomorphic function of the
variables t = (t1, t2, . . . ), and is a section of a holomorphic line bundle on Pic().

The variable x is identified with the first time of the KP-hierarchy, x = t1.
Therefore, the formula for the Baker–Akhiezer function corresponding to a point
of the Grassmannian [16] implies that the function ψ̂BA given by the formula

ψ̂BA = τ(x − k,− 1
2k

2,− 1
3k

3, . . . ;F)
τ (x, 0, 0, . . . ;F) ekx (3.29)

is a common eigenfunction of the commuting operators defined by F . The rest of the
arguments proving the lemma are the same as in the smooth case. )�
Lemma 3.6. The linear space F̂ generated by the abelian functions {F0 = 1, Fm =
res∂ Lm}, is a subspace of the space H generated by F0 and by the abelian functions
Hi = ∂1∂zi ln θ(Z).

Proof. Recall that the functions Fn are abelian functions with at most second-order
poles on '. Hence a priori ĝ = dim F̂ ≤ 2g. In order to prove the statement of the
lemma, it is enough to show that Fn = ∂1Qn, where Qn is a meromorphic function
with a pole along'. Indeed, ifQn exists, then, for any vector λ in the period lattice,
we haveQn(Z+λ) = Qn(Z)+cn,λ. There is no abelian function with a simple pole
on '. Hence there exists a constant qn and two g-dimensional vectors ln, l′n, such
that Qn = qn + (ln, Z) + (l′n, h(Z)), where h(Z) is a vector with the coordinates
hi = ∂zi ln θ . Therefore, Fn = (ln, U)+ (l′n,H(Z)).

Let ψ(x,Z, k) be the formal Baker–Akhiezer function defined in the previous
lemma. Then the coefficients ϕs(Z) of the corresponding wave operator � (3.6) are
global meromorphic functions with poles along '.

The left and right actions of pseudodifferential operators are formally adjoint,
i.e., for any two operators the equality (e−kxD1)(D2e

kx) = e−kx(D1D2e
kx) +

∂x(e
−kx(D3e

kx)) holds. Here D3 is a pseudodifferential operator whose coefficients
are differential polynomials in the coefficients of D1 and D2. Therefore, from (3.9)–
(3.13) it follows that

ψ+ψ = 1+
∞∑
s=2

Fs−1k
−s = 1+ ∂x

( ∞∑
s=2

Qsk
−s
)
. (3.30)

The coefficients of the series Q are differential polynomials in the coefficients ϕs of
the wave operator. Therefore, they are global meromorphic functions ofZ with poles
along '. The lemma is proved. )�
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In order to complete the proof of our main result, we need one more standard fact
of the KP theory: flows of the KP hierarchy define deformations of the commutative
rings A of ordinary linear differential operators. The spectral curve is invariant under
these flows. For a given spectral curve the orbits of the KP hierarchy are isomorphic
to the generalized Jacobian J () = Pic0(), which is the set of equivalence classes
of zero degree divisors on the spectral curve (see details in [1, 5, 6, 16]).

The KP hierarchy in the Sato form is a system of commuting differential equation
for a pseudodifferential operator L,

∂tnL = [Ln+,L]. (3.31)

If the operator L is as above, i.e., if it is defined by λ-periodic wave solutions of
equation (1.5), then equations (3.31) are equivalent to the equations

∂tnu = ∂xFn. (3.32)

The first two times of the hierarchy are identified with the variables t1 = x, t2 = y.
Equations (3.32) identify the space F̂1 generated by the functions ∂1Fn with the

tangent space of the KP orbit at AZ . Then from Lemma 3.6, it follows that this
tangent space is a subspace of the tangent space of the abelian variety X. Hence
for any Z /∈ �, the orbit of the KP flows of the ring AZ is in X, i.e., it defines a
holomorphic imbedding:

iZ : J () �−→ X. (3.33)

From (3.33), it follows that J () is compact.
The generalized Jacobian of an algebraic curve is compact if and only if the curve

is smooth [17]. On a smooth algebraic curve a torsion-free rank-1 sheaf is a line
bundle, i.e., Pic() = J (). Then (3.20) implies that iZ is an isomorphism. Note
that for the Jacobians of smooth algebraic curves the bad locus� is empty [1], i.e., the
imbedding j in (3.20) is defined everywhere on X and is inverse to iZ . Theorem 1.2
is proved.
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