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Integrable equations, addition theorems,
and the Riemann–Schottky problem

V.M. Buchstaber and I.M. Krichever

Abstract. The classical Weierstrass theorem claims that, among the ana-
lytic functions, the only functions admitting an algebraic addition theorem
are the elliptic functions and their degenerations. This survey is devoted to
far-reaching generalizations of this result that are motivated by the theory
of integrable systems. The authors discovered a strong form of the addition
theorem for theta functions of Jacobian varieties, and this form led to new
approaches to known problems in the geometry of Abelian varieties. It is
shown that strong forms of addition theorems arise naturally in the theory of
the so-called trilinear functional equations. Diverse aspects of the approaches
suggested here are discussed, and some important open problems are formu-
lated.
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§ 1. Introduction

Until 1986 the Riemann–Schottky problem remained one of the oldest and most
famous unsolved problems in algebraic geometry. Briefly, the Riemann–Schottky
problem is the problem of describing the Jacobians of algebraic curves among all
principally polarized Abelian varieties, that is, the problem of describing the image
of the map

B : Mg �−→ Ag = Hg/ Sp(2g, Z) (1.1)

of the moduli space Mg of smooth algebraic curves of genus g into the quotient of
the Siegel upper half-plane Hg by some natural action of the group Sp(2g, Z).
By the Siegel upper half-plane we mean here the space of symmetric g-dimensional
matrices with positive-definite imaginary part. The map (1.1) is induced by a
correspondence which, to any smooth algebraic curve Γ of genus g with a fixed
basis of one-dimensional cycles (ai, bj), 1 � i, j � g, with canonical intersection
matrix ai · aj = bi · bj = 0, ai · bj = δij , assigns the g × g-matrix of b-periods

Bij =
�

bj

ωi (1.2)

of the basis of normalized holomorphic differentials ωi that is uniquely determined

by the condition
�

aj

ωi = δij . According to the Torelli theorem, the map B is an

embedding. At the end of the 1970s, S. P. Novikov expressed the conjecture that
the Jacobi varieties are exactly the principally polarized Abelian varieties in whose
theta functions the Kadomtsev–Petviashvili (KP) equation is integrated. To be
more precise, every symmetric g × g matrix with positive-definite imaginary part
defines a Riemann theta function

B ∈ Hg �−→ θ(z) = θ(z |B), z = (z1, . . . , zg), (1.3)

by the formula

θ(z) =
�

m∈Zg

e2πi(z,m)+πi(Bm,m), (z,m) = m1z1 + · · · + mgzg. (1.4)

This is an entire function of the variables zk, k = 1, . . . , g. It readily follows
from (1.4) that θ(z) admits the following monodromy property:

θ(z + ek) = θ(z), θ(z + Bk) = e−2πizk−πiBkkθ(z), (1.5)
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where ek are the basis vectors in Cg and Bk is the vector equal to the kth column
of the matrix B. The relations (1.5) mean that θ is a section of the canonical vector
bundle L on the Abelian variety T g = Cg/(Zg + BZg).

Novikov conjecture. A symmetric matrix B with positive-definite imaginary part

is the matrix of b-periods of a basis of normalized holomorphic differentials on

some smooth algebraic curve Γ if and only if there are three g-dimensional vectors

U , V , W such that the function

u(x, y, t) = 2∂2
x log θ(Ux + V y + Wt + Z |B) (1.6)

for any Z ∈ Cg
is a solution of the KP equation

3uyy = (4ut − 6uux + uxxx)x. (1.7)

This conjecture was expressed by Novikov in the framework of his problem of

effectivization of theta function formulae of the theory of finite-gap integration.
The starting point of this theory is the following result of one of the authors of the
present paper.

Theorem 1.1 (Krichever [1]). If B is the period matrix of a basis of normalized

holomorphic differentials on some algebraic curve Γ, then the function u(x, y, t)
given by the formula (1.6) satisfies the KP equation (1.7). Here U , V , and W are

the vectors of b-periods of the normalized meromorphic differentials with poles at

some point P0 ∈ Γ of orders 2, 3, and 4, respectively.

This theorem is a special case of a general algebro-geometric construction that
assigns a solution of some soliton equation to a family of algebro-geometric data
{Γ, Pα, zα, Sg+k−1(Γ)}. Here Γ stands for a non-singular algebraic curve of genus g
with the distinguished points Pα in whose neighbourhoods some local coordinates zα

are fixed, and Sg+k−1(Γ) stands for the symmetric power of the curve. This con-
struction was proposed by one of the authors (see [1], [2]) and is based on the notion
of Baker–Akhiezer functions that are defined on the corresponding algebraic curve
by their analytic properties. In fact, these analytic properties are an axiomatiza-
tion of the analytic properties of Bloch functions of finite-gap Schrödinger operators
and were established at the initial period of development of the theory of finite-gap
integration of the Korteweg–de Vries equation [3]–[6].

The first advance in the proof of the Novikov conjecture was made by Dubrovin.
Before formulating his result, we must present a series of standard results of theta
function theory and the corresponding notation. First of all, we need the notion
of theta function with characteristic; this function is defined for any pair of real
numbers α, β ∈ R by a formula similar to (1.4):

θ[α, β](z |B) =
�

m∈Zg

exp
�
2πi(z + β, m + α) + πi(B(m + α),m + α)

�
. (1.8)

As is known, the theta functions

Θ[ε, 0](z) = θ[ε, 0](2z | 2B) (1.9)
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corresponding to all half-integer characteristics ε form a basis in the space of sections
of the bundle L 2, that is, a basis in the space of theta functions of weight 2
satisfying the following monodromy properties:

Θ(z + ek) = Θ(z), Θ(z + Bk) = e−4πizk−2πiBkkΘ(z). (1.10)

Theorem 1.2 (Dubrovin [7]). The function u(x, y, t) given by the formula (1.6) is

a solution of the KP equation if and only if the equality

∂4
UΘ[ε, 0]− ∂U∂W Θ[ε, 0] + ∂2

V Θ[ε, 0] + cΘ[ε, 0] = 0, c = const, (1.11)

holds for any half-integer characteristic ε ∈ 1
2Zg/Zg .

Here the symbol Θ[ε, 0] = Θ[ε, 0](0) is the standard notation for the so-called
theta constants. Similarly, the absence of an argument of the derivative of a theta
function means that the value of this derivative at the origin is taken. For instance,
∂4

UΘ[ε, 0] = ∂4
UΘ[ε, 0](0), where ∂U stands for the derivative in the direction of the

vector U .
Dubrovin also proved that the compatibility conditions for the equations (1.11)

single out a variety of dimension 3g− 3 = dimMg. It was thus proved that the KP
equation solves the Riemann–Schottky problem, at least locally (modulo possible
additional components). The proof of the Novikov conjecture was completed by
Shiota in 1986 [8]. For a detailed survey of works concerning the Riemann–Schottky
problem and the works about algebro-geometric integration of non-linear equations
of mathematical physics which finally led to the solution of the problem, see [9].

To give an impression of the role played by the new ideas introduced by the
Novikov conjecture into the solution of the Riemann–Schottky problem, we now
sketch the history of the problem and briefly describe the results obtained in the
framework of classical algebro-geometric approaches to this solution (for details,
see [9]).

For g = 2 and 3 the dimensions of the spaces Mg and Ag coincide, and therefore
it follows immediately from the Torelli theorem that, in this case, every generic
matrix B ∈ Hg is the period matrix of a Riemann surface. The only condition
is given by the Martens theorem claiming that the Jacobi variety of a Riemann
surface is indecomposable, that is, cannot be represented as the direct product of
Abelian varieties of positive dimension. This condition can be effectively described
in the language of theta constants.

A non-trivial identity for the period matrix of a Riemann surface of genus 4 was
obtained by Schottky in 1888. Since for g = 4 the space Mg is of codimension 1,
the corresponding Schottky relation gave a solution (at least local) of the character-
ization problem for the corresponding Jacobi varieties. The proof of the fact that
the variety singled out by the Schottky relation is irreducible was obtained by Igusa
only in 1981 [10]. Generalizations of this relation to the case of curves of arbitrary
genus were formulated as a conjecture in 1909 in the joint paper [11] of Schottky
and Jung and proved by Farkas and Rauch [12]. Van Geemen [13] proved later
on that the Schottky–Jung relations give a local solution of the Riemann–Schottky
problem. As is well known, these relations certainly give no complete solution of
the problem, because they distinguish a subvariety containing additional compo-
nents already for g = 5 (Donagi [14]).
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Among other results giving a local solution of the Riemann–Schottky problem
we note the Andreotti–Mayer theorem [15] according to which the condition that
the dimension of the set Sing Θ of singular points of the theta divisor is not less
than g − 4 distinguishes a subvariety of dimension 3g − 3, and one of components
of this subvariety coincides with the closure of Mg. This subvariety is reducible
already for g = 4 (Beauville [16]).

Necessary and sufficient conditions characterizing the Jacobi varieties of non-
hyperelliptic surfaces were obtained by Lie and Wirtinger. These conditions are
equivalent to the condition that the theta divisor has two distinct representations
in a neighbourhood of some non-singular point of the divisor, in the form of a
shifted sum of g − 1 copies of the surface C embedded in an Abelian variety, that
is,

Θ = C + · · · + C + κ. (1.12)

The problem of an effective description of geometric Lie–Wirtinger conditions in
terms of equations is by no means trivial and does not yet have a final solution (see
the survey [17]).

The characterization of Jacobians proposed by Gunning ([18], [19]) was also geo-
metric in its original formulation. This characterization is based on Fay’s trisecant
formula [20].

Let us consider a map of a principally polarized Abelian variety X into a complex
projective space CP2g−1, defined by a basis family (1.9) of theta functions of weight
two:

φ2(z) = Θ[ε1, 0](z) : · · · : Θ[ε2g , 0](z). (1.13)

These functions are even, and therefore the map φ2 can be decomposed into a
composition

X
π−→ X/σ

K−→ CP2g−1, (1.14)

where σ(z) = −z is the involution of the Abelian variety and π is the projection
onto the quotient space. The map K is referred to as the Kummer map and its
image K(X) is called the Kummer variety. As is known, the Kummer map is an
embedding of a variety with singularities. By an N -secant of the Kummer variety
we mean an (N − 2)-dimensional plane in CP2g−1 meeting K(X) at N points.
The existence of an N -secant passing through points K(Ai), i = 0, 1, . . . , N − 1,
is equivalent to the condition that these points are linearly dependent, that is, the
condition that there are constants ci for which

�N−1
i=0 ciK(Ai) = 0. An immediate

corollary to Fay’s trisecant formula is the following assertion: if X is the Jacobian of
an algebraic curve Γ, then any three distinct points of Γ determine a one-parameter

family of trisecants. In a somewhat rougher form, the main result of Gunning is that
the existence of such a one-parameter family of trisecants is not only necessary but
also sufficient for a given principally polarized Abelian variety to be the Jacobian
of some algebraic curve.

The problem of describing the Gunning geometric criterion in terms of equations
turned out to be quite non-trivial and required a series of serious steps in its solution.
The first steps were made by Welters in the papers [21] and [22] whose starting point
was seemingly Mumford’s remark [23] that the passage to the limit in Fay’s trisecant
formula gives the theta function formula (1.6) for algebro-geometric solutions of the
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KP equation (Theorem 1.1). An infinitesimal analogue of a trisecant is an inflection
point of the Kummer variety, that is, a point A at which there is a line in CP2g−1

containing the image of the formal 2-germ of some curve in X. By definition, the
last condition is equivalent to the existence of g-dimensional vectors U �= 0 and V
for which the 2g-dimensional vectors K(A), ∂UK(A), (2∂V + ∂2

U )K(A) are linearly
dependent. By [22], the existence of vectors U and V such that the set of the
corresponding inflection points contains a formal infinite germ of some curve in X
is a characteristic property of the Jacobians.

A fundamental fact of the theory of soliton equations is that corresponding to
each of these equations is an entire system of simultaneous equations, the so-called
hierarchy of equations. Algebro-geometric solutions of the KP hierarchy are given
by the formula

u(t1, t2, . . . ) = 2∂2
x log θ

��

i

Uiti + Z |B
�

, t1 = x, t2 = y, t3 = t. (1.15)

Using the results of Welters [22], Arbarello and De Concini [24] proved that the
Gunning theorem implies that a function u(t), t = {ti}, of the form (1.15) satisfies
the first N = N(g) = [( 3

2 )gg!] equations of the KP hierarchy if and only if the
matrix B is the b-period matrix of some algebraic curve. We note that the bound
obtained in [24] for the number of equations in the KP hierarchy that are needed
to characterize the Jacobians is certainly overestimated. A trivial consequence of
results of one of the authors about commuting ordinary differential operators is the
assertion that it suffices to take the first N = g +1 equations of the hierarchy. The
Novikov conjecture was that the number of equations does not depend on g and is
equal to N = 1.

The crucial step in the argument proposed by Shiota to prove the Novikov con-
jecture was the proof of the following statement: if a function u(x, y, t) given by
the formula (1.6) satisfies the KP equation, then one can find vectors Ui such
that the function u(t) given by the formulae (1.15) is a solution of the KP hierarchy.
The main problem faced by Shiota was that the possibility of the above extension
of a solution of the KP equation to a solution of the KP hierarchy is controlled by
some a priori non-trivial cohomological obstruction. A sufficient condition for this
obstruction to be trivial is that the theta divisor Θ contain no complex line parallel
to the vector U = U1. The proof of the last property was the most technically
complicated part of Shiota’s work, whose meaning was clarified in the paper [25].

The interest in topics connected with the Riemann–Schottky problem did not
disappear after the proof of the Novikov conjecture. First of all, this is related
to a series of other problems in the geometry of Abelian varieties, among which
we note the problem of characterizing the principally polarized Abelian varieties
that are Prymians of two-fold coverings of algebraic curves and also the remarkable
conjecture of Welters that the existence of a single trisecant is sufficient to char-
acterize the Jacobians. A simple comparison of the Welters conjecture with the
Gunning theorem requiring the existence of such a one-parameter family of secants
shows how strong the assertion of the conjecture is. We note that, at present,
it is proved that the existence of a trisecant distinguishes among the principally
polarized Abelian varieties a subvariety such that one of its components coincides
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with the variety of Jacobians [26]. Moreover, it is known that the corresponding
subvariety is irreducible for g = 4, 5 [27].

The objective of this paper is to present and analyze some new approaches
to problems of Riemann–Schottky type connected with integrable functional and
linear differential equations. Let us begin with the multidimensional vector ana-
logue of the Cauchy equation proposed by the authors in [28] and [29].

The classical Cauchy functional equation ([30], Chap. V, § 1, pp. 98–105)

ψ(x + y) = ψ(x)ψ(y), (1.16)

which arises in enormously many problems (see, for instance, [31]), completely
characterizes the exponential function ψ(x) = ekx, where k is a parameter. The
equation (1.16) is one example of the so-called addition theorems of the form

F (f(x), f(y), f(x + y)) = 0. (1.17)

Until recently, there were few examples of addition theorems of this kind. For
instance, by the Weierstrass theorem, if F is a polynomial in three variables, then
the only functions in the class of analytic functions f(x) admitting an addition
theorem of the above form are the elliptic functions (that is, the functions connected
with algebraic curves of genus g = 1) and their degenerations.

It is natural to refer to an equation of the form

F (f(x),φ(y),ψ(x + y)) = 0, (1.18)

where f(x) =
�
f1(x), . . . , fN (x)

�
, φ(y) = (φ1(y), . . . , φN (y)), ψ(z) = (ψ1(z), . . . ,

ψN (z)) are vector functions of the g-dimensional arguments x = (x1, . . . , xg),
y = (y1, . . . , yg), z = (z1, . . . , zg), and F is a function of 3N variables, as a vector

multidimensional addition theorem.
It should be noted that versions of theorems of this kind can be found already in

the classical paper [32] of Abel, in which the following problem is treated: determine

three functions φ, f , and ψ satisfying the equation

ψ(α(x, y)) = F (x, y, φ(x),φ�(x), . . . , f(y), f �(y), . . . ), (1.19)

where α and F are given functions of the corresponding number of variables. In
particular, in [32] this problem was solved for the equation

ψ(x + y) = φ(x)f �(y) + f(y)φ�(x). (1.20)

Vector addition theorems important for modern applications can be found in the
paper [33] of Frobenius and Stickelberger, where, for instance, it was shown that
the Weierstrass zeta function satisfies the functional equation

�
ζ(x) + ζ(y) + ζ(z)

�2 + ζ �(x) + ζ �(y) + ζ �(z) = 0, (1.21)

where x + y + z = 0.
As was noted above, the concept of Baker–Akhiezer functions plays the

crucial role in the algebro-geometric scheme for integrating soliton equations.
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The Baker–Akhiezer functions are uniquely determined by their analytic properties
on an auxiliary algebraic curve. These properties enable one to interpret the
Baker–Akhiezer functions as analogues of the exponential functions on algebraic
curves. The initial aim of the papers [28] and [29] was to try to find functional
equations characterizing the Baker–Akhiezer functions to the same extent to which
the Cauchy equation characterizes the ordinary exponential function. It turned out
that the Baker–Akhiezer functions satisfy a functional equation which is a ‘vector
analogue’ of the Cauchy equation (1.16).

The Cauchy equation is ‘rigid’ in a sense. The class of functions determined by
it remains practically the same if one weakens the equation (1.16) and considers
the equation

c(x + y)ψ(x)ψ(y) = 1,

whose solutions are given by the formulae ψ(x) = ek(x+x0), c(x) = e−k(x+2x0). By
the vector analogue of (1.16) we mean the functional equation

N+1�

k=1

ck(x + y)ψk(x)ψk(y) = 1 (1.22)

for vector functions c(x) =
�
c1(x), . . . , cN+1(x)

�
and ψ(x) =

�
ψ1(x), . . . ,ψN+1(x)

�
.

Important remark. In what follows we distinguish between the strong and weak

forms of the functional equation (1.22). The point is that, when assuming a kind of
genericity, the functions ck in this equation can be explicitly expressed by using the
functions ψk and their derivatives in the form of ratios of certain (N+1)-dimensional
determinants. Therefore, by a solution of the weak form of (1.22) we mean a vector
function ψ =

�
ψ1, . . . ,ψN+1

�
satisfying (1.22) for some family of functions ck. By

a solution of the strong form of (1.22) we mean a set of functions ck, ψk in which
the expressions for ck do not explicitly reduce to general determinantal formulae.

As was proved in [28], the Baker–Akhiezer functions corresponding to algebraic
curves of genus g give a solution of the weak form of the equation (1.22) for N =g.
Explicit expressions of these functions in terms of theta functions of Riemann sur-
faces show that the corresponding solutions of the equation (1.22) have the following
special form up to an exponential factor:

ψk(x) =
τ(x + Ak)
τ(x + A0)

, (1.23)

where τ(z) is a function of the vector argument z = (z1, . . . , zg) which is a theta
function of an algebraic curve, Ak = (Ak,1, . . . , Ak,g) are g-dimensional vectors,
and k = 0, 1, . . . , N + 1. Explicit expressions for the functions ck in terms of theta
functions were proposed in the paper [29] of the authors, and these expressions
do not reduce to general determinantal formulae. Thus, the strong form of the
addition theorem for theta functions of algebraic curves was established.

The formula (1.23) enables one to introduce the notion of g-dimensional Cauchy

functional equation of rank N as a vector addition theorem of the following special
form.
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Definition. A function τ(z) of a g-dimensional vector argument z is said to be a
solution of the Cauchy equation of rank N if there are g-dimensional vectors A0,
A1, . . . , AN+1 and functions ck such that the following equation holds:

N+1�

k=1

ck(x + y)τ(x + Ak)τ(y + Ak) = τ(x + A0)τ(y + A0). (1.24)

Remark-definition. In general, one and the same function τ(z) can be a solution
of Cauchy functional equations of different ranks (due to special choices of the
vectors Ak). By the rank of such a function τ(z) we mean the minimal number N∗
of the possible ranks N of the equations (1.24) satisfied by the function.

One of the results of the papers [28] and [29] is the assertion that all solutions of
the equation (1.22) for N = 2 are Baker–Akhiezer functions of genus 2. This shows
that the vector analogue of the Cauchy equation (1.22) for N = 2 is equivalent to
the Cauchy functional equation of rank 2.

In this connection, we recall the question posed by us in [28]: are the functional

equations (1.22) and (1.24) equivalent for N > 2?
It follows from the classical addition theorem for the theta function τ = θ(z |B)

corresponding to a generic Abelian variety of dimension g (see the formula (1.25)
below) that these functions are solutions of the Cauchy functional equation (1.24)
of rank N � 2g − 1. This, when compared with the fact that the rank of the theta

functions does not exceed g for the Jacobians of curves, motivated the authors to
state the following conjecture.

Conjecture (Buchstaber [Bukhshtaber]–Krichever [28]). The rank of a given theta

function does not exceed g if and only if it is constructed from the matrix of b-periods
of holomorphic differentials on a Riemann surface of genus g.

Under the assumption that the vectors Ak are generic, this conjecture was
recently proved by Grushevskii [34], [35]. Before formulating the main idea of
his proof, we now present an approach, which is standard in the theory of theta
functions, to the reduction of certain quadratic relations for these functions to
the conditions of linearly dependence of the corresponding points of the Kummer
variety.

The theta function θ(z |B) corresponding to a generic Abelian variety of dimen-
sion g admits the classical addition theorem

θ(z1 + z2 |B) θ(z1 − z2 |B) =
�

ε

θ[ε, 0](2z1 | 2B) θ[ε, 0](2z2 | 2B), ε ∈ 1
2

Zg/Zg.

(1.25)
The weak form of our addition theorem for these functions becomes

N+1�

k=0

ck(x + y)θ(x + Ak)θ(y + Ak) = 0, (1.26)
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where c0(x) = −1. According to (1.25), by setting z1 + z2 = x + Ak and z1 − z2 =
y + Ak, we obtain

θ(x + Ak |B) θ(y + Ak |B)

=
�

ε

θ[ε, 0](x + y + 2Ak | 2B) θ[ε, 0](x− y | 2B), ε ∈ 1
2

Zg/Zg. (1.27)

Making the change x + y = 2u and x − y = 2v, we substitute this expression
into (1.26) and, using the notation (1.9), obtain

�

ε

� N+1�

k=0

ck(2u)Θ[ε, 0](u + Ak)
�
Θ[ε, 0](v) = 0. (1.28)

The family of functions Θ[ε, 0](v), where ε ranges over 1
2Zg/Zg, is linearly indepen-

dent. Hence, it follows from (1.28) that the (N + 2) points Ak, k = 0, 1, . . . , N + 1,
must satisfy the relations

N+1�

k=0

ck(2u)K(u + Ak) = 0 (1.29)

for any u ∈ Cg, where K is the Kummer map.
The above arguments establish the equivalence between the weak form (1.26) of

our addition theorem for theta functions of the Jacobians and a special case of a
more general result of the paper [19] (see Corollary 2.1 below). The main idea of
Grushevskii’s proof of our conjecture is that, under certain non-degeneracy condi-
tions on the vectors Ai, one can show that the functions ci(2u) in the equation (1.29)
for N = g are well defined as global meromorphic functions of the variable u ∈ Cg.
In this case the (g − 1) equations ci(2u) = 0, i > 2, single out a one-parameter
family of trisecants. The proof of our conjecture was thus reduced to the Gunning
theorem.

We stress that the necessity of additional non-degeneracy conditions on the vec-
tors Ai is related to the fact that the equivalence of strong and weak forms of the
addition theorems for theta functions is by no means trivial. The assertion that
the equation (1.29) for N = g characterizes the Jacobians of algebraic curves under
genericity assumptions which differ from those used in [35] was recently obtained
in [36]. The starting point of the latter paper, whose authors were seemingly not
acquainted with our conjecture, was a very interesting attempt to construct an
analogue of the Castelnuovo theory (see [37]) for Abelian varieties.

As was already mentioned above, in the paper [29] the authors proposed explicit
expressions for the functions ck in terms of theta functions, and these expressions
do not reduce to determinantal formulae. This strong form of the addition theorem
has a remarkably simple form of cubic relations for theta functions of Jacobian
varieties.

Theorem 1.3. For any family of (g + 2) pairwise distinct points Ak ∈ Γ ⊂ J(Γ),

g+1�

k=0

hk θ(Ak + x)θ(Ak + y)θ(Ak + z)
��
x+y+z=R

= 0. (1.30)
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The constants hk and the constant vector R in the formula (1.30) depend on
the family of points of the curve and are given by the formula (2.20). The expres-
sions take an especially simple form if all the points Ak are Weierstrass points of
hyperelliptic curves. This observation was made in [34] and used there to solve the
well-known problem on characterizing hyperelliptic Jacobians.

In § 2.4 we consider the addition theorem for theta functions of Jacobians that
corresponds to the limit case of coinciding points Ak. The weak form of this addition
theorem claims that the equality

g+1�

k=0

ck(u)D (k)
U1,...,Uk

K(A0 + u) = 0, u ∈ Cg, (1.31)

holds for any point A ∈ Γ ⊂ J(Γ), where the vectors Ui are determined by
the (g + 1)-germ of the curve Γ at the point A0, that is, by the congruence
A0 −

�g+1
s=1

1
sUszs ∈ Γ (mod zg+2) ⊂ J(Γ), and the differential operators D (k)

U1,...,Uk

are determined by the equality

exp
�
−

g+1�

s=1

zs

s
∂Us

�
=

g+1�

k=0

zkD (k)
U1,...,Uk

+ O(zg+2). (1.32)

The equality (1.31) can be regarded as the definition of the notion of (g+2)-multiple

flattening point. We note that, under this definition, the 3-multiple flattening points
are just the inflection points whose definition was given above. Under genericity
assumptions, when the coefficients ck can be uniquely recovered up to a common
factor, the equations ci(u) = 0, i > 1, define at least a one-parameter family of
inflection points. Hence, by the results of Welters, the equation (1.31) in general
position is characteristic for the Jacobians. In the opinion of the authors, the
following conjecture is natural.

Conjecture. The equation (1.31) characterizes the Jacobians without the genericity

assumption.

In principle, the proof of (1.31) presented in § 2.4 enables one to obtain formulae
for the coefficients ck, that is, to establish the strong form of the addition theorem.
However, the corresponding expressions are extremely awkward.

Problem. Find an effective form of the strong addition theorem (1.31).

The same problem is important for the intermediate addition theorems cor-
responding to the limit cases of the equality (1.29) for which only some of the
points Ak coincide. For instance, if the points A0, . . . , Ag are merged, then
the weak form of the corresponding addition theorem claims that the equality

K(A + u) =
g�

k=0

ck(u)D (k)
U1,...,Uk

K(A0 + u) = 0, u ∈ Cg, (1.33)

holds for any pair of distinct points A0, A ∈ Γ ⊂ J(Γ), where the vectors Ui

are determined by the g-germ of Γ at the point A0, that is, by the condition
A0 −

�g
s=1 Us

zs

s ∈ Γ (mod zg+1) ⊂ J(Γ). The problem of finding an effective
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version for the strong form of the equality (1.33) is of special interest because it is
related to the theory of continuous analogues of the so-called Krichever–Novikov
bases (KN-bases).

The KN-bases were introduced in [38] to solve the problem of operator quanti-
zation for closed bosonic strings. These bases are analogues of the Laurent bases in
the case of algebraic curves of arbitrary genus with a pair of distinguished points.
In essence, these bases ψn(A), A ∈ Γ, are a special case of the Baker–Akhiezer
functions of a discrete argument n ∈ Z. As was noted in [38], in this case the
discrete Baker–Akhiezer functions ψn satisfy the remarkable relation

ψn(A)ψm(A) =
g�

k=0

ck
n,mψn+m+k(A), (1.34)

which was a foundation of the notions of almost graded algebras and modules over
them.1

The notion of continuous analogue of KN-bases was introduced in the paper [39]
of Grinevich and Novikov, where it was proved that in a special case the corre-
sponding Baker–Akhiezer functions ψ(t1, A) of a continuous argument satisfy the
equation

ψ(t1, A)ψ(t�1, A) = L ψ(t1 + t�1, A), (1.35)

where L is a differential operator of order g with respect to the variable t1 and
replaces the difference operator on the right-hand side of (1.34).

The solution of the problem of explicit effective recovery of the coefficients
of the operator L (which is equivalent to the problem of finding the strong
form of the addition theorem (1.33)) is presented in the third and fourth sections
of the survey, which are devoted mainly to addition theorems derived from trilinear

equations recently introduced by one of the authors of this survey together with
D.V. Leikin (see [40] and [41]).

The role played by the Hirota bilinear equations [42] in the contemporary theory
of soliton equations is well known. The Hirota equations can be regarded as the
limit case of the weak form of the addition theorem (1.24). The authors have
no doubt that the trilinear equations will play the same role in the study of the
strong forms of addition theorems of the form (1.30) and their degenerations. The
formalism of the theory of trilinear equations turns out to be also extremely useful
when studying addition theorems of more general form than that in (1.22), namely,

N+1�

k=1

ck(x + y)ϕk(x)ψk(y) = 1. (1.36)

The equation (1.36) is an equation for three vector functions, namely, c(x), ϕ(x),
and ψ(x). If N = 0, then the solution of (1.36) is again given by exponential
functions. The case N = 1 was studied in detail in [43]. As above, the solution
in the class of analytic functions is expressed in terms of Baker–Akhiezer functions
of genus 1. Explicit solutions of this equation in the case of arbitrary N = g were
constructed in [29] in terms of theta functions of Jacobian varieties.

1For brevity we use in (1.34) an indexing that differs by the shift n→ n−g/2 from the notation
of the paper [38].
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Let us note that the classical form of the addition theorem (1.17), where F is
a polynomial in three variables, is obviously a special case of the equation (1.36).
There are many reasons to regard the following assertion as an analogue of the
famous Weierstrass theorem for the equation (1.36).

Conjecture. Up to exponential factors, every solution of an equation of the form

N+1�

k=1

ck(x + y)ϕk(x)ψk(y) = ϕ0(x)ψ0(y), (1.37)

in the class of analytic functions on Cg
is given by a family of theta functions on

an Abelian variety.

Additional conditions, like a dependence of N on g and an assumption about the
form of the functions ck(x), k = 1, . . . , N +1, yield in particular some conditions on
the Abelian varieties similar to the conditions which had led to the characterization
of the Jacobians. An addition theorem of the form

F (f1(x), f2(y), f3(x + y)) = 0, (1.38)

where fk(x), x ∈ Cg, is a vector function consisting of an N -tuple of partial deriva-
tives of the functions fk, k = 1, 2, 3, and F is a polynomial in 3N variables, gives
important equations of class (1.36).

The fifth and last section is devoted to the application of integrable linear

equations to problems related to the Riemann–Schottky problem. The KP equa-
tion (1.7) is the compatibility condition for the overdetermined system of auxiliary
linear problems

(∂y − L) ψ = 0, (∂t −A)ψ = 0 �−→ [∂y − L, ∂t −A] = 0, (1.39)

where L and A are differential operators of the form

L = −∂2
x + u(x, y, t), A = ∂3

x −
3
2

u ∂x + w(x, y, t). (1.40)

The equivalence between the non-linear equation and the compatibility condition
for the overdetermined system of linear problems can be regarded to some extent as
a definition of the soliton equations. Here the role of one of the auxiliary equations
is distinguished when constructing spectral transformations linearizing the corre-
sponding non-linear equation. The primary role of the linear problem is clearly
manifested in the scheme for constructing elliptic solutions of the KP equation
proposed in [44] and extended later to some other soliton equations in [45]–[47].

In a recent paper of one of the authors it was shown that the characterization
of Jacobians by using the KP equation contains superfluous information, and the
Riemann–Schottky problem can be solved with the help of only one of the auxiliary
linear problems (1.40).

Theorem 1.4 (Krichever [48]). A symmetric matrix B with positive-definite imag-

inary part is the b-period matrix of a basis of normalized holomorphic differentials
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on some smooth algebraic curve Γ if and only if there are two constants p and E
and three g-dimensional vectors U , V , A such that the linear equation

(∂y − ∂2
x + u(x, y))ψ = 0 (1.41)

with the potential

u = 2∂2
x log θ(Ux + V y + Z |B) (1.42)

has a solution of the form

ψ =
θ(A + Ux + V y + Z |B)

θ(Ux + V y + Z |B)
exp(px + Ey). (1.43)

Using the addition theorem (1.25), one can readily show that the equation (1.41)
with u and ψ defined by (1.42) and (1.43) is equivalent to the system of equations

∂yΘ[ε, 0](A/2)− ∂2
xΘ[ε, 0](A/2)− 2p ∂xΘ[ε, 0](A/2) + (E − p2)Θ[ε, 0](A/2) = 0,

(1.44)
which must hold for any half-integer characteristic ε.

The description of Jacobians of algebraic curves by means of the system of
equations (1.44) is stronger than the characterization using the system of equa-
tions (1.11). In terms of the Kummer map, the equations (1.44) are equivalent to
the condition that the corresponding Kummer variety has an inflection point. This
condition is a special case of the Welters trisecant conjecture [22].

In the opinion of the authors, the possibilities of the approaches described in
the present survey for diverse problems in the geometry of Abelian varieties are
far from being exhausted. As an acknowledgement, we note the recent paper [49]
in which the characterization problem for the Prymians was solved by using the
integrable ansatz for the two-dimensional Schrödinger operator.

§ 2. Baker–Akhiezer functions and addition theorems

As was already noted in the Introduction, the starting point of the papers [28]
and [29] in which the vector analogues (1.22), (1.24), and (1.36) of the Cauchy
equation were introduced was an attempt to find functional equations characterizing
the Baker–Akhiezer functions. Before presenting the results of these papers, we
formulate necessary facts about the Baker–Akhiezer functions.

2.1. Baker–Akhiezer functions. Let Γ be a non-singular algebraic curve of
genus g with distinguished points Pα and fixed local coordinates k−1

α (Q) in neigh-
bourhoods of these distinguished points, where k−1

α (Pα) = 0 for α = 1, . . . , l. Let
us fix a family q = {qα(k)} of polynomials,

qα(k) =
�

i

tα,ik
i. (2.1)

As was proved in [1], [2], for any generic family of points γ1, . . . , γg there is a
function ψ(t, Q), t = {tα,i}, unique up to proportionality, such that:

(a) ψ is meromorphic on Γ outside the points Pα and has at most simple poles at

the points γs (if they are distinct);
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(b) ψ can be represented in a neighbourhood of Pα as

ψ(t, Q) = exp
�
qα(kα)

�� ∞�

s=0

ξs,α(t)k−s

�
, kα = kα(Q). (2.2)

We choose a point P0 and normalize the function ψ by the condition

ψ(t, P0) = 1. (2.3)

It should be stressed that the Baker–Akhiezer function ψ(t, Q) is determined by its
analytic properties with respect to the variable Q. It depends on the coefficients
tα,i of the polynomials qα as on external parameters.

The existence of the Baker–Akhiezer function is proved by presenting an explicit
theta function formula [1]. We introduce some necessary notation. First of all,
we recall that fixing a basis ai, bi of cycles on Γ with canonical intersection matrix
enables us to define a basis of normalized holomorphic differentials ωi, the matrix B
of their b-periods, and the corresponding theta function θ(z) = θ(z |B). The basis
vectors ek and the vectors Bk = {Bkj} span a lattice in Cg, and the quotient by
this lattice is a g-dimensional torus J(Γ), the so-called Jacobian of the curve Γ.
The map A : Γ �−→ J(Γ) given by the formula

Ak(Q) =
� Q

Q0

ωk (2.4)

is referred to as the Abel map. If a vector Z is defined by the formula

Z = κ−
g�

s=1

A(γs), (2.5)

where κ is a vector of Riemann constants depending on the choice of basis cycles
and on the initial point of the Abel map Q0, then the function θ(A(Q) + z) (if it is
not identically zero) has exactly g zeros on Γ coinciding with the points γs,

θ(A(γs) + Z) = 0. (2.6)

We note that the function θ(A(Q) + Z) itself is multivalued on Γ, but the zeros
of this function are well defined. Let us introduce differentials dΩα such that
the differential dΩα,i is holomorphic outside Pα, has a pole at Pα of the form

dΩα = d(ki
α + O(k−1

α )), and is normalized by the condition
�

ai

dΩα = 0. We

denote by 2πiUα,i the vector of its b-periods with coordinates

2πiUα,i,k =
�

bk

dΩα,i. (2.7)

Using the translation properties of the theta function, one can show that the func-
tion ψ(t, Q) given by the formula

ψ(t,Q) = Φ(x,Q) exp
��

α,i

tα,i

� Q

P0

dΩα,i

�
, (2.8)
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where
Φ(x,Q) =

θ(A(Q) + x + Z) θ(A(P0) + Z)
θ(A(Q) + Z) θ(A(P0) + x + Z)

(2.9)

and
x =

�

α,i

tα,iUα,i, (2.10)

is a single-valued function of the variable Q on Γ. It follows from the definition of
the differentials dΩα,i that this function has the desired form of essential singularity
at the points Pα, and it follows from (2.6) that the function ψ has poles outside
these points at the points γs.

The uniqueness of the Baker–Akhiezer function reduces to the Riemann–Roch
theorem, according to which a meromorphic function on Γ having at most g generic
poles is constant. Indeed, suppose that the analytic properties of a function ψ̃
coincide with those of ψ. Then the function ψ̃ψ−1 is a meromorphic function on Γ
whose number of poles does not exceed g. Hence, this is a constant which is equal
to 1 due to the normalization condition (2.3).

We present another assertion which is needed in what follows and whose proof
also reduces to the Riemann–Roch theorem. For any positive divisor D =

�
niQi

we consider the linear space L(q, D) of functions having poles outside the points
Pα at the points Qi and of multiplicities at most ni and having the form (2.1) in a
neighbourhood of Pα. As was proved in [1], the dimension of this space is equal to
dim L(q, D) = d− g + 1 for generic divisors of degree d =

�
ni � g.

The function Φ(x, Q) given by formula (2.9) belongs to the class of the so-called
factorial functions [50]. This is a multivalued function on Γ. A single-valued branch
of it can be singled out if one draws cuts on Γ along a-cycles. In what follows we
use the notation Γ∗ for the curve Γ with such cuts.

Lemma 2.1. For any generic family of points γ1, . . . , γg the formula (2.9) with the

vector Z defined by (2.5) defines a unique function Φ(x, Q), where x = (x1, . . . , xg)
and Q ∈ Γ, having the following properties:

1) Φ is a single-valued meromorphic function of Q on Γ∗ having at most simple

poles at the points γs (if they are all distinct);
2) the boundary values Φ±

j (x, Q), Q ∈ aj , on the different sides of the cuts satisfy

the conditions

Φ+
j (x,Q) = e−2πixj Φ−j (x, Q), Q ∈ aj ; (2.11)

3) Φ is normalized by the condition

Φ(x, P0) = 1. (2.12)

As in the case of Baker–Akhiezer functions, for any effective divisor D =
�

niQi

one can introduce the notion of associated linear space L (x, D) as the space of
meromorphic functions on Γ∗ having poles at the points Qi of multiplicities not
exceeding ni and such that the boundary values on the sides of the cuts sat-
isfy (2.11). It follows from the Riemann–Roch theorem that for a generic divisor of
degree d = g the dimension of this space is equal to

dim L (x, D) = d− g + 1. (2.13)
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According to (2.13), the dimension of the space of factorial functions with poles of
multiplicity at most two at the points γs is equal to g + 1 for any generic family
of points γ1, . . . , γg. The following assertion can be regarded as an explicit repre-
sentation of a set of g functions which, together with the function Φ, define a basis
in this space.

Lemma 2.2. For any generic family of points γ1, . . . , γg the function Ck(x,Q)
given by the formula

Ck(x,Q) =
θ(A(Q) + Z + A(γk)−A(P0)) θ(A(Q) + x + Z −A(γk) + A(P0))

θ2(A(Q) + Z) θ(A(P0) + x + Z) θ(2A(γk)−A(P0) + Z)
,

(2.14)
where Z is defined by (2.5), is a unique function such that :

1) Ck, as a function of the variable Q ∈ Γ∗, is a meromorphic function with at

most simple poles at the points γs, s �= k, and a second-order pole of the form

Ck(x,Q) = θ−2(A(Q) + Z) + O(θ−1(A(Q) + Z)) (2.15)

at the point γk;
2) the boundary values C±

k,j(x,Q), Q ∈ aj , of the function Ck on the different

sides of the cuts satisfy the equations

C+
k,j(x, Q) = e−2πixj C−

k,j(x,Q), Q ∈ aj ; (2.16)

3)
Ck(x, P0) = 0. (2.17)

The uniqueness of a function Ck having the above properties is an immediate
corollary to the Riemann–Roch theorem. The fact that the function Ck given
by the formula (2.14) satisfies these conditions can be verified immediately. Indeed,
the function θ(A(Q) + Z) vanishes at the point γk, and hence the equality (2.14)
means that Ck has a second-order pole with normalized leading coefficient at this
point. It follows from the equality (2.5) that the first factor in the numerator
vanishes at the point P0 and at the points γs, s �= k. Since the first factor of the
denominator has a second-order pole at all points γs, the function Ck has first-order
poles at the points γs, s �= k, and a second-order pole at the point γk. The difference
between the arguments of the theta functions containing A(Q) in the numerator and
the denominator is equal to x. This, together with the monodromy relations (1.10),
implies (2.16).

2.2. Strong form of addition theorem for theta functions of Jacobians.

Let us consider the function Φ(x,Q)Φ(y, Q). It follows from the definition of Φ
that this product belongs to the space L (x + y, D), where D = 2γ1 + · · · + 2γg.
By (2.13), the dimension of this space is equal to g + 1. The functions Φ(x + y, Q)
and Ck(x + y, Q) are linearly independent. Hence, they form a basis of the space
L (x + y, D). The coefficients of the expansion of Φ(x,Q)Φ(y, Q) in this basis can
be found by comparing the second-order poles at the points γk and by using the
normalization condition (2.12). These simple considerations lead to the following
assertion, which is in essence the main result of this subsection.
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Theorem 2.1. The following identity holds:

Φ(x,Q)Φ(y, Q) = Φ(x + y, Q) +
g�

k=1

Ck(x + y, Q)φk(x)φk(y), (2.18)

in which the functions Φ and Ck are defined by the formulae (2.9) and (2.14),
respectively, and the functions φk(x) are given by the formula

φk(x) =
θ(A(γk) + x + Z)θ(A(P0) + Z)

θ(A(P0) + x + Z)
. (2.19)

In what follows we shall identify the algebraic curve Γ with its image under the
Abel map. Correspondingly, the points P0, γs, Q ∈ Γ are identified with the vectors
A0 = A(P0), As = A(γs), s = 1, . . . , g, and Ag+1 = A(Q).

Direct substitution of the formulae (2.9), (2.14), (2.19) into the equality (2.18),
determination of a common denominator, and then cancellation of some factors
leads to the following identity:

θ(A0 + x + y + Z)θ(Ag+1 + x + Z)θ(Ag+1 + y + Z)

=
g�

k=0

θ(Ag+1 + x + y + Z −Ak + A0)θ(Ag+1 + Z + Ak −A0)
θ(2Ak + Z −A0)

× θ(Ak + x + Z)θ(Ak + y + Z). (2.20)

The standard application of the bilinear addition formula (1.25) (as described in
the Introduction in the proof of the formula (1.29)) shows that the equality (2.20)
is equivalent to the equality
g+1�

k=0

(−1)δk,g+1
θ(Ag+1 + 2u− Z −Ak + A0) θ(Ag+1 + Z + Ak −A0)

θ(2Ak + Z −A0)
K(Ak+u) = 0,

(2.21)
where δk,g+1 is the Kronecker delta, which is non-zero only for k = g + 1, and the
variable u is defined by the equality 2u = x + y + 2Z.

The formula (2.20) (or the equivalent formula (2.21)) is a strong form of our
addition theorem for theta functions of Jacobian varieties. We stress once again
that these formulae hold for any family of points Ai ∈ Γ ⊂ J(Γ), i = 0, 1, . . . , g +1,
and for an arbitrary vector u ∈ Cg. Let us show that the formula (2.21) readily
implies both Fay’s trisecant formula and the following more general assertion of
Gunning.

Corollary 2.1 (Gunning, Theorem 2 in [19]). For any non-singular algebraic curve

Γ of genus g, for any number m, 1 � m � g, and for any family of (2m + 1) points

of the curve, which is identified with its image under the Abel map (that is, for

any A0, . . . , Am+1, Q1, . . . , Qm ∈ A(Γ) ⊂ J(Γ)), the (m + 2) points of the form

K(Ai + u) of the Kummer variety, where

2u =
m�

s=1

Qs −
m+1�

k=0

Ak, (2.22)

belong to an m-dimensional plane.
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We note first that if the vectors Z and u are given by the formulae (2.5)
and (2.22), then since the theta function is even, the first factor in the numera-
tor of the formula (2.21) has the form θ(Ak + Z �), where

Z � = κ−
m�

s=1

Qs −
g+1�

k=m+2

Ak. (2.23)

It follows from the formulae (2.5) and (2.6), applied to the family Q1, . . . , Qm,
Am+2, . . . , Ag+1, that θ(Ak + Z �) = 0 for k > m + 1. The last equality means
that if the vector u is given by the formula (2.22), then only the first (m+2) terms
in (2.21) are non-zero. This proves the assertion of the corollary. We note that for
m = g this assertion is equivalent to the weak form (1.29) of our addition theorem
and for m = 1 it coincides with Fay’s trisecant formula [20].

2.3. Riemann–Schottky problem. Simple dimensional considerations applied
to the equation (1.29) show that the equivalent equation (1.22) holds for N =
2g − 1 for an arbitrary Abelian variety. In its complete form, the conjecture that
the equation (1.22) with N = g characterizes the Jacobians of algebraic curves
remains unproved. Diverse degenerate situations cause fundamental difficulties.
For instance, the equation (1.29) for N = g does not exclude the possibility that
the points K(Ak + u) belong to a plane of dimension m with m < g. In this case it
is impossible to define the coefficients ck of the linear dependence as single-valued
functions of the variable u. The arguments used in the paper [34], where the
first attempt to prove the conjecture was made, turned out to be insufficient to
exclude such degeneracy. In [35] additional conditions were presented that exclude
any possible degeneracy and under which the remaining part of the proof of the
conjecture can be preserved.

Theorem 2.2 ([34], [35]). Suppose that for an irreducible principally polarized Abe-

lian variety X of dimension g there is a family of (g + 2) pairwise distinct points

Ak ∈ X such that the vectors K(Ak + u) are linearly dependent for any u ∈ X .
Assume also that there is a pair of indices k and l such that the vectors K(Ai + v),
where 2v = −(Ak +Al), span a linear subspace whose dimension is exactly equal to

g + 1. In this case, X is the Jacobian of some non-singular algebraic curve Γ, and

the points Ak belong to the image of Γ in J(Γ) under the Abel map.

The equation (1.29) for given Ak and u is an overdetermined system of linear
equations for the coefficients ck. Under the assumptions of the theorem, the rank
of this system for u = v is exactly equal to g + 1. Hence, there is a family of
characteristics ε0, . . . , εg such that the (g+1)×(g+2) matrix with matrix elements
{Θ[εs](Ak + u)} has rank g + 1 for any u in a small neighbourhood of the vector v.
This enables one to uniquely define the coefficients ci for any u ∈ Cg by the formula
ci(u) = (−1)i det{Θ[εs](Ak + u), k �= i}.

The functions ci(u), regarded up to proportionality, define a map c : Cg →
CPg+1. Our next objective is to prove that the rank of the differential of this
map at the point u = v is maximal. Without loss of generality we can assume that
the indices k and l in the statement of the theorem are equal to 0 and 1, respec-
tively. In this case, K(A0 + v) = K(A1 + v) by the definition of v and because the
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theta functions are even. Thus, ci(v) = 0 for i > 1, since the first two columns of
the matrix whose determinant defines ci coincide. By the definition of ci, we also
have c0(v) = c1(v) �= 0.

Suppose that the rank of the differential dc at the point v is not maximal. This
means that there is a vector V ∈ Cg such that the derivative of the map c(u) at v
in the direction of V vanishes. The last assertion, with the fact that c(u) is a point
of the projective space, is equivalent to the equalities ∂V ci

��
u=v

= λci(v), where λ is
a constant independent of i. Differentiating the equality (1.29) using what was said
above and the fact that the derivative of the theta function is odd, we obtain

g+1�

k=0

λci(2u)
�
λK(Ak + u) + ∂V K(Ak + u)

���
u=v

= 2c0∂V K(A0 + v) = 0. (2.24)

Since the Kummer map is an embedding of the quotient space X/(z = −z), it
follows from (2.24) that the vector A0 + v must be a point of second order in X.
This is possible only if A0 − A1 = 0 ∈ X, which contradicts the assumption of the
theorem that the points must be pairwise distinct.

An immediate consequence of the maximality of the rank of dc thus established
is the assertion that the equations ci = 0, i > 2, define a one-parameter family of
trisecants, which is a characteristic property of Jacobians by the Gunning theorem.
This completes the proof.

As was already noted in the Introduction, the assertion that the equation (1.29)
with N = g is characteristic for the Jacobians was proved in the recent paper [36]
under additional assumptions which differ from those formulated in [35]. Namely,
this assertion was proved under the assumption that the points Ak are in theta

general position, which means by definition that for any subset of (g + 1) points
Ai0 , Ai1 , . . . , Aig there is a vector z such that θ(Aik + z) = 0, k = 1, . . . , g, and
θ(Ai0 + z) �= 0.

2.4. Degenerate cases of addition theorems. In this subsection we present
addition theorems obtained when considering a special degenerate case of the
Baker–Akhiezer function. Namely, let us consider the Baker–Akhiezer function
ψ(t, A;A0) which, regarded as a function of a point A ∈ Γ ⊂ J(Γ) of the curve, is
holomorphic everywhere except for the distinguished point A0, at which it is of the
form

ψ(t, A;A0) =
� ∞�

s=−g

ξs(t, A0) zs

�
exp

� ∞�

i=1

tiz
−i

�
, (2.25)

where z = z(A) is a local coordinate in a neighbourhood of A0.2
A theta function expression for ψ(t, A;A0) is given by formulae that are practi-

cally identical to the formulae (2.8)–(2.10) in which the vector Z must be set equal
to Z0 = κ − gA0. By shifting the origin if necessary, one can always assume that
the vector of Riemann constants vanishes, κ = 0, and we do assume this in what

2We note that the symbols used in this subsection contain an explicit indication of the depen-
dence of ψ on the choice of a distinguished point, in contrast to the general case in which any
explicit indication of the dependence of the Baker–Akhiezer function on the choice of the distin-
guished points and the divisor of the poles was omitted for brevity.
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follows. Due to what was said above, the explicit formula for ψ(t, A;A0) becomes

ψ(t, A;A0) = Φ(x,A;A0) exp
� ∞�

j=1

tjΩj(A)
�

, (2.26)

where

Φ(x,A;A0) =
θ(A + x− gA0)

θ(A− gA0) θ(x + (g − 1)A(P0))
, x =

�

j

tjUj , (2.27)

and Ωj(A) is a normalized Abelian integral holomorphic outside the distinguished
point A0 in whose neighbourhood this integral has the form Ωj = z−j + O(1).

The classical bilinear Riemann relations establish a relationship between the
b-periods 2πiUj of the differential dΩj and the coefficients of the expansion of
the curve A(z) ∈ Γ ⊂ J(Γ) in a neighbourhood of the point A0:

A(z) = A0 −
∞�

k=1

1
k

Ukzk. (2.28)

The addition theorems related to the function ψ(t, A;A0) and concerning theta
functions of the Jacobians are a simple corollary to the assertion that the following

equality holds:

ψ(t, A;A0)ψ(t�, A;A0) = v0(t, t�, A0)ψ(t + t�, A;A0)

+
g�

k=1

vk(t, t�, A0)∂tkψ(t + t�, A;A0). (2.29)

The proof of this assertion, a substantive part of which is that the coefficients vk

do not depend on A, is standard. The product on the left-hand side of (2.29) is the
Baker–Akhiezer function corresponding to the parameters (t + t�) and the divisor
D = 2gA0. The space of such functions is of dimension g + 1. The functions
ψ(t + t�, A;A0) and ∂tkψ(t + t�, A;A0), k = 1, . . . , g, are linearly independent, and
hence form a basis in this space. Thus, the product of Baker–Akhiezer functions can
be expanded in this basis. The coefficients of the expansion can be found recursively
by comparing the leading coefficients of the expansion of right- and left-hand sides
with respect to the parameter z.

Let us now use the explicit theta function formulae for ψ. Substitution of them
into (2.29) leads to an equivalent equality of the form

θ(A + x− gA0) θ(A + y − gA0) = θ(A + x + y − gA0) θ(A− gA0)

×
�

w0(x, y, A0) +
g�

k=1

�
Ωk(A) + ∂Uk log θ(A + x + y − gA0)

�
wk(x, y, A0)

�
.

(2.30)

Using the addition theorem (1.25) just as in the proof of the formula (1.29), we see
that the coefficients wj in the equality (2.30) have the form

wj(x, y,A0) =
�

ε

Wj,ε(u, A0)Θ[ε, 0](v),

2u = x + y − 2gA0, 2v = x− y,

(2.31)
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and the equality itself is equivalent to

K(A + u) = θ(A + u + gA0) θ(A− gA0)

×
�

W0(u, A0) +
g�

k=1

�
Ωk(A) + ∂Uk log θ(A + u + gA0)

�
Wk(u, A0)

�
,

(2.32)

where Wj ∈ CP2g−1 are points of the projective space with the homogeneous coor-
dinates Wj,ε.

Expanding the equality (2.32) in a neighbourhood of A0, we see that the vector
Wj is a linear combination of the vectors D (k)K(A0 + u), k = 0, 1, . . . , g − j,
where the operators D (k) = D (k)

U1,...,Uk
are given by the formula (1.32). If the local

coordinate at the point A0 is given by zg = θ(A−gA0), then the system of equations
determining Wj acquires the especially simple form

D (j)K(A0 + u) =
j�

k=0

Wg−kD (j−k)θ(u + (g + 1)A0), j = 0, . . . , g. (2.33)

The formulae (2.32) and (2.33) represent a strong form of the addition theorem

given by (1.33).

Remark. The equation (2.32) is equivalent to the original equality (2.29), which
can be represented in another form. Namely, the functions ∂k

t1ψ(t + t�, A;A0),
k = 0, 1, . . . , g, form a basis in the space L(t + t�, 2gA0) of the corresponding
Baker–Akhiezer functions. Expanding the left-hand side of (2.29) in this basis,
we arrive at the following assertion: there is a unique differential operator L =�g

i=0 ṽ(t, t�, A0)∂i
t1 for which

ψ(t, A;A0)ψ(t�, A;A0) = L ψ(t + t�, A;A0). (2.34)

As was already mentioned in the Introduction, the relation (2.34) can be regarded
as a continuous analogue of the almost graded structure of KN-bases. We shall
return to a more detailed consideration of the equality (2.34) in the next section.

In the conclusion of the present section, we give a strong form of the equal-
ity (1.33). This form is obtained by equating the (g + 1)th coefficients of the
expansions of the right- and left-hand sides of the equality (2.32) in powers of z.

Theorem 2.3. The equality

D (g+1)K(A0 + u) =
� g�

k=0

Wg−kD (g−k+1)θ(u + (g + 1)A0)
�

+ θ(u + (g + 1)A0)
� g�

k=1

Wk

�
dk + ∂U1∂Uk log θ(u + (g + 1)A0)

��
(2.35)

holds for any point A0 ∈ Γ ⊂ J(Γ). In this equality the vectors Ws = Ws(u, A0) are

given by the equations (2.33) and the constants dk = dk(A0) are determined by the

expansion of the Abelian integrals Ωk at the point A0, namely, Ωk = z−k + dkz +
O(z2).
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§ 3. Trilinear equations

3.1. Definition of multilinear operator. Comparison with the Hirota

formalism. Let t1, . . . , tk−1, z ∈ Cg and let L be a linear differential operator
with respect to z with constant coefficients. To the operator L we assign a k-linear

operator L(f1, . . . , fk) by the formula

L(f1, . . . , fk)(t1, . . . , tk−1) = L
�
f1(t1+z) · · · fk−1(tk−1+z)fk(t1+· · ·+tk−1−z)

���
z=0

.

Any equation of the form L(f1, . . . , fk) = 0 is called a k-linear equation.
For k = 2 this construction gives bilinear differential operators that have long

been used in the theory of Abelian functions and invariant theory ([50], [51]). The
method of constructing solutions of non-linear evolution equations that was dis-
covered by Hirota [42] has made these bilinear operators widely known as Hirota

operators among experts in the theory of integrable systems. The Hirota bilinear
formalism has a natural generalization which is usually called the multilinear for-

malism (see [52]). If H is a linear differential operator with respect to t1, . . . , tk−1

with constant coefficients, then the Hirota k-linear operator H(f1, . . . , fk) can be
written out as follows:

H(f1, . . . , fk)(z) = H

� k�

j=1

fj

�
z +

k−1�

m=1

tm exp
�

jm
2πı

k

�������
t1=···=tk−1=0

,

where ı2 = −1. Non-linear partial differential equations of the form

H(f1, . . . , fk)(z) = 0

are studied in the framework of this approach, and it is natural to refer to them as
Hirota k-linear equations.

For k � 3 the equation L(f1, . . . , fk) = 0 is a functional equation. The relation-
ship between our k-linear functional equations and the Hirota k-linear differential
equations is the topic of a separate and promising investigation.

In this section our attention is focused on bilinear (differential) equations and
trilinear (functional) equations.

3.2. Formalism of bilinear and trilinear operators. Let u, v, w ∈ Cg. We
introduce the operators

Di =
∂

∂ui
+

∂

∂vi
− ∂

∂wi
, i = 1, . . . , g.

For every tuple of non-negative integers (that is, for any multi-index) of the form

ω = (ω1, . . . ,ωg) we set Dω = Dω1
1 · · ·Dωg

g and ∂ω = ∂ω1
1 · · · ∂ωg

g , where ∂i =
∂

∂zi
.

We define linear differential operators with constant coefficients

D =
�

|ω|�0

αωDω and L =
�

|ω|�0

αω∂ω,

where |ω| = ω1 + · · · + ωg.
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The following relations hold:

L(f1, f2)(u) = D(f1(u)f2(w))
��
w=u

,

L(f1, f2, f3)(u, v) = D(f1(u)f2(v)f3(w))
��
w=u+v

.

For the cases in which the triple of functions fi(z), i = 1, 2, 3, is clear, we shall use
the brief notation

B(D) =
D(f1(u)f2(w))

f1(u)f2(w)

����
w=u

, Q(D) =
D(f1(u)f2(v)f3(w))

f1(u)f2(v)f3(w)

����
w=u+v

.

In this notation the following formulae hold:

B(D) =
�

|ω|�0

αωB(Dω), Q(D) =
�

|ω|�0

αωQ(Dω).

The trilinear equation

D(f1(u)f2(v)f3(w))
��
w=u+v

= 0 (3.1)

reduces to a polynomial relation between the logarithmic derivatives of the functions
f1(u), f2(v), f3(u + v), and hence is a strong form of a functional equation of the
type (1.36),

N+1�

k=1

ck(x + y)ϕk(x)ψk(y) = 1.

We note that if entire functions fi(z), i = 1, 2, 3, give a solution of the functional
equation (3.1) for a given operator D , then the functions eβizfi(z), i = 1, 2, 3, where
the βi are constants and β3 = β1 + β2, also give a solution of this equation.

Example 3.1. Let g = 1. We set ρi(z) = (log fi(z))�. Then

Q(D1) = ρ1(u) + ρ2(v)− ρ3(u + v),

Q(D2
1) = (ρ1(u) + ρ2(v)− ρ3(u + v))2 + ρ�1(u) + ρ�2(v) + ρ�3(u + v).

The general solution of the functional equation Q(D1) = 0 is given by the linear
functions ρi, that is, fi(z) = exp(α(z−βi)2 +γi), where α, βi, and γi are constants
and β3 = β1 + β2.

A famous particular solution (see (1.21)) of the functional equation Q(D2
1) = 0

was obtained by Frobenius and Stickelberger [33]. This particular solution was
applied to exactly soluble problems in quantum mechanics ([53], [54]). The general
analytic solution of this functional equation was described in [55]. The functions fi

give the wave function for the ground state for the quantum three-body problem.
In the case of general position, the solution is given by functions of the form
ρi(z) = ζ(z − δi) − βi, that is, fi(z) = e−βiz+γiσ(z − δi), where ζ(z) and σ(z)
are the Weierstrass functions, βi, γi, and δi are constants, and β3 = β1 + β2 and
δ3 = δ1 + δ2. We also note the normalized particular solution

fi(z) =
1√
2π∆

exp
�
− (z − qi)2

2∆2

�
, (3.2)

where qi are constants and ∆ = (q1 + q2 − q3)/
√

3.
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Let g = 2. We set

ρ(j,k)
i (z) =

∂j+k log fi(z)
∂zj

1 ∂zk
2

. (3.3)

Then
Q(2D2 + D3

1) = 2r(0,1) + r(3,0) + 3r(2,0)r(1,0) + r3
(1,0),

where r(j,k) = ρ(j,k)
1 (u) + ρ(j,k)

2 (v) + (−1)j+kρ(j,k)
3 (u + v).

Theorem 3.1 (Buchstaber–Leikin [56]). The sigma function of genus 2 is subject

to the trilinear law of addition

[2D2 + D3
1]σ(u)σ(v)σ(w)

��
u+v+w=0

= 0,

where Dj = ∂uj + ∂vj + ∂wj .

3.3. Construction of generating functions for bilinear and trilinear oper-

ators. The extension of the above results to the case of higher genera is based on
the following general construction.

Let ξ be the coordinate in C. We choose a smooth map φ : C → Cg that is regular
at ξ = 0 and functions Gi : C → C, i = 1, 2, meromorphic in a neighbourhood of
ξ = 0, and we form the functions

F2(u, ξ) = G1(ξ)
f1(u + φ(ξ))

f1(u)
f2(u− φ(ξ))

f2(u)
,

F3(u, v, ξ) = G2(ξ)
f1(u + φ(ξ))

f1(u)
f2(v + φ(ξ))

f2(v)
f3(u + v − φ(ξ))

f3(u + v)
.

(3.4)

The functions F2(u, ξ) and F3(u, v, ξ) are generating functions of bilinear and tri-
linear operators. Indeed,

f1(u + z)
f1(u)

f2(u− z)
f2(u)

=
�

|ω|�0

zω

ω!
B(Dω),

f1(u + z)
f1(u)

f2(v + z)
f2(v)

f3(u + v − z)
f3(u + v)

=
�

|ω|�0

zω

ω!
Q(Dω),

z ∈ Cg.

Multiplication by the function Gi(ξ) = ξki(1 + O(ξ)), ki ∈ Z, and the substitution
z = φ(ξ) lead to the generating functions

F2(u, ξ) = ξk1
�

i�0

ξiB(Dbi
i ), F3(u, v, ξ) = ξk2

�

i�0

ξiQ(D tri
i ).

On the other hand, for given functions fi, Gj , and φ the series expansions of
F2(u, ξ) and F3(u, v, ξ) in powers of ξ can be computed immediately. We arrive at
the following result.

Lemma 3.1 (Buchstaber–Leikin [41]). If the coefficient [F2]k in the expansion

F2(u, ξ)=
�

[F2]iξi
does not depend on the variableu for some k, then the entire func-

tions fi(z), i = 1, 2, satisfy the bilinear differential equation B(Dbi
k−k1

− [F2]k) = 0.
If in the expansion F3(u, v, ξ) =

�
[F3]iξi

the coefficient [F3]k does not depend

on the variables u and v for some k, then the entire functions fi(z), i = 1, 2, 3,
satisfy the trilinear functional equation Q(D tri

k−k2
− [F3]k) = 0.
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Below in this section we show how this construction can be used to find bilinear
and trilinear equations satisfied by σ-functions of planar algebraic curves.

3.4. Necessary information. We begin with fundamental notions.
Let V be a representative of a family of planar algebraic curves, the so-called

(n, s)-curves,

V = {(x, y) ∈ C2 | f(x, y) = 0}, f(x, y) = yn−xs−
�

(n−j)(s−i)>ij

λ(n−j)(s−i)−ijx
iyj ,

where n and s are coprime positive integers with s > n > 1. The restriction of our
consideration to this class of curves leads to no loss of generality, because every
planar algebraic curve has an (n, s)-model.

Corresponding to a curve V is a Weierstrass sequence (w1, w2, . . . ). This is a set
of positive integers arranged in increasing order and not representable in the form
an + bs with non-negative integers a and b. Let w(ξ) =

�
i ξwi . We have

w(ξ) =
1

1− ξ
− 1− ξns

(1− ξn)(1− ξs)
.

The genus of a non-singular (n, s)-curve is equal to the length g = w(1) =
(n − 1)(s − 1)/2 of the Weierstrass sequence. We introduce a grading by setting
deg x = n, deg y = s, and deg λk = k. Then deg f(x, y) = ns. Let mk(x, y) be
a vector formed by the monomials (xiyj) and arranged in decreasing order of deg
for 0 � in + js < 2g + k, where i � 0 and 0 � j < n. The length of the vector
mk(x, y) is equal to g + k.

We define the vector of basis holomorphic differentials by the formula

dA(x, y) = m0(x, y)
dx

fy(x, y)
, fy(x, y) =

∂

∂y
f(x, y), (x, y) ∈ V.

For a base point A0 ∈ V we take the point at infinity on V . We define the Abel
map by the formula

A(x, y) =
� (x,y)

A0

dA(x, y).

We also introduce a local parametrization of the curve V in a neighbourhood of
the point A0. Namely, we set

�
x(ξ), y(ξ)

�
=

�
ξ−n, ξ−sρ(ξ)

�
, where ρ(ξ) = 1 +

�

i>0

ρi(λ)ξi, ρi(λ) ∈ Q[λ].

The coefficients ρi(λ) are determined from the equation f
�
x(ξ), y(ξ)

�
= 0, that is,

ρ(ξ)n = 1 +
�

(n−j)(s−i)>ij

ρ(ξ)jξ(n−j)(s−i)−ijλ(n−j)(s−i)−ij .

Then in a neighbourhood of A0 the Abel map has the expansion

A
�
x(ξ), y(ξ)

�
=

�
−ξw1

w1
(1 + a1(ξ)), . . . ,−

ξwg

wg
(1 + ag(ξ))

�t

, (3.5)

where the ai(ξ) are series in positive powers of ξ with coefficients in Q[λ].
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Let W be the universal Abelian covering over V . The points of the space W are
pairs ((x, y); [γ]), where (x, y) ∈ V and γ is a representative of the equivalence class
of paths from the base point to the point (x, y). Paths γ1 and γ2 belong to [γ] if
the contour γ1 ◦ γ−1

2 is homologous to zero. The integration of the vector of basis
holomorphic differentials along the path γ defines a single-valued map A : W → Cg.
For clear reasons, we denote this map in just the same way as the Abel map.

We write

ψ(x, y; [γ]) = exp
�
−

�

[γ]

�
A∗((x�, y�), [γ�]), dA(x�, y�)

��
, (3.6)

where the path γ� is a part of the path γ from the base point to the point (x�, y�),
�a, b� =

�
aibi, and A∗((x, y), [γ]) is the map dual to the Abel map and given

by basis integrals of the second kind with poles only at the base point, where the
following expansion with respect to the local parameter holds:

A∗�x(ξ), y(ξ)
�

=
�
ξ−w1(1 + a∗1(ξ)), . . . , ξ

−wg (1 + a∗g(ξ))
�t

,

the a∗i (ξ) being series in positive powers of ξ with coefficients in Q[λ].
The matrices of half-periods η, η� and ω, ω� of the maps A∗ and A are related

by the Legendre identity

ΩJΩt =
πı

2
J, where Ω =

�
ω ω�

η η�

�
, J =

�
0 −1g

1g 0

�
, ı2 = −1. (3.7)

The function ψ(x, y; [γ]) is a single-valued entire function on W having an isolated
zero of order g = (n− 1)(s− 1)/2 at the base point:

ψ
�
x(ξ), y(ξ); [γ]

�
= ξg exp{G(ξ,λ)}, (3.8)

where G(ξ, λ) is an entire function such that G(0,λ) = G(ξ, 0) = 0. If the genus is
g = 1, we have ψ(x, y; [γ]) = σ

�
−A(x, y; [γ])

�
.

When a cycle of the form χ =
�g

j=1(kjaj + k�jbj) is added to the contour γ
(recall that ai and bi denote the basis cycles; see p. 20), the function ψ(x, y; [γ]) is
transformed as follows:

ψ(x, y; [χ + γ])
ψ(x, y; [γ])

= exp
�
−

�
A∗[χ], A((x, y), [γ])+

1
2
A[χ]

�
+πı((k+�)t(k�+��)−�t��)

�
,

(3.9)
where A[χ] and A∗[χ] are the periods of A and A∗ for a circuit of the cycle χ. The
vectors � and �� are defined as follows. To a Weierstrass sequence we assign the
Weierstrass partition (π1, . . . ,πg) by the formula

πk = wg−k+1 − (g − k), k = 1, . . . , g.
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(In particular, wg = 2g − 1 and π1 = g.) Then

� = (1, . . . , 1) and �� = (π1, . . . ,πg).

By a sigma function we mean an entire function on Cg having the following
property:

σ(u+A[χ]) = σ(u) exp
�
−

�
A∗[χ], u+

1
2
A[χ]

�
+πı((k+�)t(k�+��)−�t��)

�
. (3.10)

As is known from the theory of Fourier series, it follows from (3.7) that the trans-
lation property (3.10) determines a σ-function up to factor constant with respect
to u.

The following formula relates the functions σ and θ:

σ(u) = ∆−1/8

�
πg

|ω| exp
�

1
2
uT ηω−1u

�
θ[εR](ω−1u |ω−1ω�), (3.11)

where ∆ stands for the discriminant of the curve V and θ[εR] for the theta function
with the characteristic (see (1.8)) of the vector of Riemann constants. We recall that
the discriminant ∆ of the curve given by an equation f(x, y) = 0 is an irreducible
polynomial in the parameters λk whose vanishing means that the given curve has
double points, that is, points at which the gradient of the function f(x, y) with
respect to (x, y) vanishes.

The formula (3.11) shows that if one characterizes an entire function by its
behaviour under translations by periods, using methods of the theory of Fourier
series, then the passage from σ to θ and conversely is a linear transformation of the
argument of the function and multiplication of the function by an exponential of a
quadratic form. Thus, the theories of the functions σ and θ are the theories of the
same object, though in different realizations, namely:

(θ) Fourier expansion with respect to z using the period matrix B (see (1.4));
(σ) power series with rational coefficients with respect to u and λ that are param-

eters of the curve.
For instance, for the Weierstrass function σ(u) of a curve given by the equation

y2 = 4x3 − g2x− g3 we have the expansion

σ(u) = u
�

i,j�0

ai,j

(4i + 6j + 1)!

�
g2u4

2

�i

(2g3u
6)j

with integral coefficients ai,j that are defined from the initial conditions

{a0,0 = 1; ai,j = 0, min(i, j) < 0}

by the recursion

ai,j = 3(i + 1)ai+1,j−1 +
16
3

(j + 1)ai−2,j+1 −
1
3
(2i + 3j − 1)(4i + 6j − 1)ai−1,j .
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The series for a sigma function of genus 2 is also defined by a linear recursion [41].
The initial segment of the series for the σ-function for the curve y2 = 4x5 +�3

k=0 λkxk is of the form

σ(u) = u1 −
u3

2

3
−

�
u1u4

2

48
+

u7
2

5 040

�
λ3 +

�
u3

1

24
− u2

1u
3
2

24
− u1u6

2

360
+

u9
2

22 680

�
λ2

+
�
−u3

1u
2
2

24
− u2

1u
5
2

120
− u1u8

2

5 040
+

u11
2

99 792

�
λ1

+
�
−u4

1u2

12
− u3

1u
4
2

72
− u2

1u
7
2

504
+

u1u10
2

22 680
+

u13
2

1 389 960

�
λ0 + · · · .

The Riemann vanishing theorem is an important property which is common
for the σ-functions and θ-functions of Jacobians. Using the parametrization (3.5)
of the Abel map, we can write the following consequence of the Riemann vanishing
theorem:

σ

� g�

i=1

A(ξi)
�

=
det

�
A(ξ1), . . . , A(ξg)

�

vand(ξ1, . . . , ξg)
exp{H(ξ1, . . . , ξg)},

where A(ξ) = A
�
x(ξ), y(ξ)

�
, vand(ξ1, . . . , ξg) is the Vandermonde determinant of

the variables ξi, and H(ξ1, . . . , ξg;λ) is an entire function of λ and ξi which is
symmetric with respect to ξi and such that H(0, . . . , 0;λ) = H(ξ1, . . . , ξg; 0) = 0.

Even ten years ago the θ-function served as a main tool of applications of Abelian
functions in problems of the theory of integrable systems. After the papers [57]
and [58], the development of approaches based on the theory of σ-functions was
started. At present, the circle of investigations in this direction is already rather
broad (see [41]).

3.5. Polynomials defining an algebraic law of addition. An arbitrary poly-
nomial φ(x, y) defines an entire rational function on a curve V . By a zero of the
function φ(x, y) on the curve V we mean a point (ξ, η) such that

{f(ξ, η) = 0,φ(ξ, η) = 0}.

The number of zeros of the function φ(x, y) is called its order.
The subsequent construction is based on the following fact.
Let the order of an entire rational function φ(x, y) on a curve V be equal to

2g+k, where k � 0. Then φ(x, y) is completely determined (up to a constant factor

independent of (x, y)) by any family of g + k zeros of it.
The converse assertion also holds.
Every family of g + k points on a curve V , k � 0, can be realized as a subset

of zeros of an entire rational function φ(x, y) of order 2g + k on V , and such a

function φ(x, y) is unique up to constant factor.
This fact follows from the classical Weierstrass gap theorem. In particular, ordi-

nary polynomials in one variable are entire rational functions on any curve of genus
g = 0 and are completely determined by all their zeros.
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Let X be the gth symmetric power of the curve V , that is, X = V g/Σg, where the
symmetric group Σg acts on the direct product by the permutations of coordinates.
A point U of the space X is an unordered family of g points (xi, yi) ∈ V , which
we denote by U = [(xi, yj)]. Let U � ∈ X and U � = [(xg+i, yg+i)]. We define entire
rational functions RU

2g(x, y) and RU,U �

3g (x, y) of orders 2g and 3g by the formulae

RU
2g(x, y) =

det(m1(x, y),m1(x1, y1), . . . ,m1(xg, yg))
det((1, 0, . . . , 0)t,m1(x1, y1), . . . ,m1(xg, yg))

, (3.12)

RU,U �

3g (x, y) =
det(mg+1(x, y),mg+1(x1, y1), . . . ,mg+1(x2g, y2g))
det((1, 0, . . . , 0)t,mg+1(x1, y1), . . . ,mg+1(x2g, y2g))

, (3.13)

where the mk(x, y) are the vectors of dimension g + k that were introduced at the
beginning of the previous subsection. By construction, RU

2g is completely deter-
mined by specifying the point U and RU,U �

3g is completely determined by specifying
the pair of points U and U �. The functions RU

2g and RU,U �

3g define a law of addition
U �U � on X as follows: the full family of zeros of an entire rational function on V is
assumed to be equivalent to zero. Therefore, the zeros of RU

2g on X are the point U

and the point U inverse to U ; correspondingly, the zeros of RU,U �

3g are the points U ,
U �, and U � U �.

By the Abel theorem, the Abel map A : X → J(V ) given by the formula

A(U) =
g�

i=1

A(xi, yi)

is a homomorphism with respect to the operation � , that is,

A(U) = −A(U), A(U � U �) = A(U) + A(U �).

As was proved in the paper [41], the polynomials Ru
2g(x, y) and Ru,v

3g (x, y) admit
a representation in the form (3.4) which can be constructed by using the σ-function,
the function ψ(x, y; [γ]), and the Abel map. Namely, the following formulae hold:

Ru
2g(x, y) =

σ(A((x, y); [γ])− u)
ψ(x, y; [γ])σ(u)

σ(A((x, y), [γ]) + u)
ψ(x, y; [γ])σ(u)

,

Ru,v
3g (x, y) =

σ(A((x, y), [γ])− u)
ψ(x, y; [γ])σ(u)

σ(A((x, y), [γ])− v)
ψ(x, y; [γ])σ(v)

σ(A((x, y), [γ]) + u + v)
ψ(x, y; [γ])σ(u + v)

,

(3.14)
where u and v denote points of X and at the same time their images in J(V ) under
the Abel map. The relations (3.14) can be derived from the Riemann vanishing
theorem and the formulae (3.10) and (3.9).

3.6. Trilinear equations for the σ-functions. We are now ready to realize the
construction of Lemma 3.1. Let us first consider an example in which Lemma 3.1
can be applied directly.
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Example 3.2. Let g = 1. In the classical Weierstrass parametrization we have
(x, y) = (℘(ξ),℘�(ξ)). In this case one can take ψ(ξ) = σ(ξ). Then φ(ξ) = −ξ and
Gi(ξ) = σ(ξ)−(i+1). Using the classical formulae, we obtain the following equalities:

℘(ξ)− ℘(u) = Ru
2 (℘(ξ),℘�(ξ)) = F2(u, ξ) =

1
σ(ξ)2

σ(u + ξ)
σ(u)

σ(u− ξ)
σ(u)

,

where the series on the left-hand side is even with respect to ξ with coefficients
constant with respect to u at all even powers of ξ except for the zero power;

������

1 ℘(ξ) ℘�(ξ)
1 ℘(u) ℘�(u)
1 ℘(v) ℘�(v)

������
����
1 ℘(u)
1 ℘(v)

����
= Ru,v

3 (℘(ξ),℘�(ξ)) = F3(u, v, ξ)

=
1

σ(ξ)3
σ(u− ξ)

σ(u)
σ(v − ξ)

σ(v)
σ(u + v + ξ)

σ(u + v)
,

where the series in powers of ξ on the left-hand side has coefficients that are constant
with respect to u and v at all odd powers of ξ. The coefficient of ξ−1 vanishes, which
gives a representation of the classical relation (1.21) in the trilinear form Q(D2) = 0.

We now return to the discussion of bilinear and trilinear operators annihilating
the σ-function of an (n, s)-curve V .

Let us consider a topological linear space LM in which a topological basis is
formed by the set M = {xiyj | i ∈ Z, 0 � j < n} of monomials arranged in
decreasing order of deg(xiyj) = in + js and a topological linear space LΞ in which
a topological basis is formed by the set Ξ = {ξk | k ∈ Z} arranged in increasing
order of the degree.

A local parametrization in a neighbourhood of the base point, (x, y) =
(ξ−n, ξ−sρ(ξ)), where ρ(ξ) = 1 + o(ξ), defines a continuous linear map T :
LM → LΞ by the formula T (xiyj) = ξ−(in+js)ρ(ξ)j . We show that this map is a
homeomorphism, that is, there is a continuous inverse map. Indeed, since
gcd(n, s) = 1, it follows that for δ ∈ {0, 1, . . . , n − 1} one can find an integer
k(δ) and an index �(δ) ∈ {0, 1, . . . , n − 1} which are uniquely defined by the
condition δ = k(δ)n + �(δ)s. Thus, for any integer m the set M contains one
and only one monomial xi(m)yj(m) such that i(m)n + j(m)s = m, namely, i(m) =
[m/n] + k(m − n[m/n]) and j(m) = �(m − n[m/n]). Hence, the matrix of the
transformation T is upper triangular and with 1s on the main diagonal.
Therefore, a continuous inverse linear map T−1 : LΞ → LM with lower triangular
matrix is defined.

We denote by M− (by M+) the subset of M formed by the monomials con-
taining x to a negative (non-negative) power, and we denote by π− (by π+) the
canonical projection of LM onto LM− (onto LM+ , respectively). The monomial
of highest weight in M− is yn−1x−1.
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Thus, let us expand the right-hand sides of the relations (3.14) in series of powers
of the local parameter ξ, that is, in the basis Ξ. We obtain the generating functions

F2(ξ) =
exp{�A(ξ), ∂z� − 2G(ξ, λ)}σ(z + u)σ(z − u)

ξ2gσ(u)2

����
z=0

=
�

i∈Z
ξiB(Dbi

i ),

F3(ξ) =
exp{�A(ξ), ∂z� − 3G(ξ, λ)}σ(z − u)σ(z − v)σ(z + v + u)

ξ3gσ(u)σ(v)σ(v + u)

����
z=0

=
�

i∈Z
ξiQ(D tri

i ),

where A(ξ) = A
�
x(ξ), y(ξ)

�
(see (3.5)), the function G(ξ,λ) is the same as in (3.8),

and ∂z = (∂z1 , . . . , ∂zg )t. It is convenient to represent the function F2(ξ) in the form
F2(ξ) = �B(Dbi),Ξ�, where Dbi = (Dbi

i )t, i ∈ Z. Let us apply the transformation
T−1 and pass to the basis M . We obtain

Ru
2g(x, y) = �B(Dbi), T−1M � = �(T−1)tB(Dbi),M �,

and, since R(u)
2g (x, y) is a polynomial, this implies that

R(u)
2g (x, y) = �(π+ ◦ T−1)tB(Dbi),M+�, �(π− ◦ T−1)tB(Dbi),M−� = 0.

Thus, on the one hand, the σ-function satisfies the system of bilinear equations

π− ◦ (T−1)tB(Dbi) = 0, and on the other hand, the coefficients of the polynomial

R(u)
2g (x, y) are values of the bilinear operators π+ ◦ (T−1)tB(Dbi).
Representing the function F3(ξ) in the form F3(ξ) = �Q(D tri),Ξ�, where D tri =

(D tri
i )t, i ∈ Z, and passing to the basis M , we obtain, on the one hand, the system

of trilinear equations π− ◦ (T−1)tQ(D tri) = 0 whose solution is the σ-function and,
on the other hand, the family of trilinear operators π+◦(T−1)tQ(D tri) whose values

determine the coefficients of the polynomial R(u,v)
3g (x, y).

In [41] the planned programme was completed for families of hyperelliptic curves,
that is, for (n, s) = (2, 2g + 1). We present the list of trilinear equations obtained
in [41] for the hyperelliptic σ-function. For the curve

V =
�

(x, y) ∈ C2 | y2 = x2g+1 +
2g+1�

i=2

λ2ix
2g−i+1

�

one can readily write out the generating function of the operators D tri
s in explicit

form (in what follows we speak only of trilinear operators, and thus we omit the
symbol tri indicating ‘trilinearity’). We have

�

s�0

ξsDs = exp
�g−1�

q=0

� ξ

0

�
−Dq+1

+
2g−q�

p=q+1

3(p− q) λ2(p+q+1)

� ξ�

0

(ξ��)2p dξ��

ρ(ξ��)

�
(ξ�)2q dξ�

ρ(ξ�)

�
,
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where ρ2 = 1 + Λ(ξ2) and Λ(t) = λ4t2 + λ6t3 + · · · + λ4g+2t2g+1. In particular,

D0 = 1,

D1 = −D1,

D2 =
1
2
D2

1,

D3 = −1
6
(D3

1 + 2D2),

D4 =
1
24

(D4
1 + 8D2D1 + 6λ4),

D5 = − 1
120

(D5
1 + 20D2D

2
1 + 24D3 + 18λ4D1),

D6 =
1

720
(D6

1 + 40D2D
3
1 + 144D3D1 + 40D2

3 + 18λ4D
2
1 + 144λ6), and so on.

For the operators Ds and the polynomials p2q(λ) given by the generating function

�

s�0

p2s(λ)x−s =
�

1 +
∞�

k=1

�
−1/2

k

�
Λ(x−1)k

�

we have the following equations satisfied by the hyperelliptic σ-function of genus g:
(a) if g = 2k, then

Q

� s�

q=0

p2q(λ)D2(s−q)+1

�
= 0, s � k,

Q(D2s) = 0, s � 3k + 1;

(b) if g = 2k + 1, then

Q(D2s+1) = 0, s � 3k + 2,

Q

� s�

q=0

p2q(λ)D2(s−q)

�
= 0, s � k + 1.

We present the operators of least weight for which the hyperelliptic σ-function
satisfies the equation Q(D) = 0 for small values of g:

g = 1, D = D2
1;

g = 2, D = D3
1 + 2D2;

g = 3, D = D4
1 + 8D2D1 − 6λ4;

g = 4, D = D5
1 + 20D2D

2
1 + 24D3 − 42λ4D1;

g = 5, D = D6
1 + 40D2D

3
1 + 144D3D1 + 40D2

2 − 162λ4D
2
1 − 216λ6.

Let us fix an expansion of the function R(u,v)
3g (x, y) in the monomials in the set

M+ in the form

R(u,v)
3g (x, y) = y1

�[g+1/2]�

i=0

hg+1−2ix
i

�
+ y0

�[3g/2]�

i=0

h3g−2ix
i

�
.
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In this case the coefficients hi(u, v) with i ∈ {0, 1, . . . , g− 1, g, g + 2, . . . , 3g− 2, 3g}
have the following form:

(a) if g = 2k, then

h2s+1(u, v) = Q

� s�

q=0

p2q(λ)D2(s−q)+1

�
, 0 � s < k,

h2s(u, v) = Q(D2s), 0 � s < 3k + 1;

(b) if g = 2k + 1, then

h2s+1(u, v) = Q(D2s+1), 0 � s < 3k + 2,

h2s(u, v) = Q

� s�

q=0

p2q(λ)D2(s−q)

�
, 0 � s < k + 1.

The expansion of the function R(u)
2g in monomials in the set M+ has a very simple

form in the hyperelliptic case, namely,

R(u)
2g (x, y) =

g�

i=0

b2(g−i)(u)xi.

The coefficients bi(u), i ∈ {0, 2, . . . , 2g}, are expressed in terms of the bilinear
operators Bi generated by the generating function

�

s�0

ξsBs = exp
�g−1�

q=0

� ξ

0

�
−Dq+1

+
2g−q�

p=q+1

2(p− q) λ2(p+q+1)

� ξ�

0

(ξ��)2pdξ��

ρ(ξ��)

�
(ξ�)2q dξ�

ρ(ξ�)

�

as follows:
b2s(u) = B(B2s), 0 � s � g.

The operators B2s+1 of odd orders are identically zero for any s > 0. The
hyperelliptic σ-function of genus g satisfies the system of bilinear equations
{B(B2s) = 0 | i > g}.

Remark 3.1. The operators Dbi
2s+1 with s > 0 are identically zero for all curves.

Therefore, in the general case the σ-function of genus g satisfies the system
{B(Dbi

2s) = 0 | s > g} of bilinear equations. Moreover, for the coefficients {bi(u)}
of the expansion of the function R(u)

2g (x, y) with respect to the family M+ the
index i indicating the value of the grading of a coefficient takes values in the set
I = {0, w1 + 1, . . . , wg + 1}, where the wi are the elements of the Weierstrass
sequence. It follows from considerations related to the solution of the Jacobi inver-
sion problem in terms of the σ-function that

b0(u) = 1 and bwi+1(u) = − ∂2

∂u1∂ui
log σ(u) =

1
2
B(D1Di), 0 < i � g.
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Hence, the system of bilinear equations {B(Dbi
2s) = 0 | s > g} of order > 2g can be

completed by bilinear equations of order < 2g for the σ-function,

{B(2Dbi
2s −D1Ds) = 0 | 0 < s � g}.

In the general case to complete the calculations explicitly, one must find the
series expansions in a neighbourhood of the point at infinity on V for the Abel
map (3.5) and for the logarithm of the function ψ(x, y; [γ]) (see (3.8)), and also find
the transition matrix T . From considerations related to the grading we arrive
at the following result (see [40], [41]).

Theorem 3.2. Consider a planar curve

V =
�

(x, y) ∈ C2 | yn − xs −
�

(n−j)(s−i)>ij

λ(n−j)(s−i)−ijx
iyj = 0

�
,

where gcd(n, s) = 1.
A linear differential operator D of the least order for which the σ-function associ-

ated with V is a solution of the trilinear functional equation Q(D) = 0 has order g+1
with respect to the variable u1. This operator is homogeneous, and deg D =g+1 with

respect to the grading deg x = n, deg y = s, deg λk = k.

3.7. Trilinear analogue of the weak form of the addition theorem. Let us
consider a functional equation of the following form:

f1(u + z)f2(v + z)f3(u + v − z) =
N�

k=1

ϕk(u, v)ψk(z), (3.15)

where all the functions are sought for a given N , namely, fi, ϕj , ψj , i = 1, 2, 3,
j = 1, . . . , N .

The following general result holds.

Lemma 3.2. Let a family of smooth functions fi, ϕj , ψj , i = 1, 2, 3, j = 1, . . . , N ,
give a solution of the equation (3.15). Then for any family I , #I > N , of pairwise

distinct multi-indices there is a non-trivial linear operator D =
�

ω∈I αωDω
such

that the functions f1, f2, and f3 are solutions of the equation Q(D) = 0.

This lemma immediately implies the following assertion.

Corollary 3.1. The theta functions of g-dimensional Abelian varieties always have

trilinear addition theorems.

Proof. Indeed, the function θ(u + z)θ(v + z)θ(u + v − z) of the variable z ∈ Cg is
an entire quasi-periodic function of order three. As is known, such functions form
a linear space of dimension N = 3g. Choosing a basis (ψ1(z), . . . ,ψ3g (z)) in this
space, we obtain a solution of the functional equation (3.15) in θ-functions.



54 V.M. Buchstaber and I. M. Krichever

§ 4. Continuous Krichever–Novikov basis

A special degenerate case of the Baker–Akhiezer function (see § 2.4), namely, the
basis KN-function with parameter u ∈ Cg, is realized in terms of the σ-function in
the form

Ψ
�
u, (x, y)

�
=

σ(A(x, y; [γ])− u)
ψ(x, y; [γ])σ(u)

exp
�
−�A∗(x, y; [γ]), u�

�
, (4.1)

where ψ(x, y; [γ]) is the function given by the formula (3.6) and A∗(x, y; [γ]) is the
vector of basis Abelian integrals of second kind with poles at the base point ∞ ∈ V
as above. The function Ψ is single-valued on Cg × V . As a function on V , it
has g zeros A−1(u) ∈ X and a unique essential singularity ∞ ∈ V , at which
it has the behaviour Ψ ∼ ξ−g exp{p(ξ−1)}(1 + O(ξ)), where p is a polynomial
of degree not exceeding 2g − 1. For instance, in the hyperelliptic case we have the
following expansion with respect to the local parameter ξ at this singular point:

Ψ
�
u, (x(ξ), y(ξ))

�
= ξ−g exp

�
−ρ(ξ)

� g�

i=1

uiξ
−2i+1

���
1 + O(ξ)

�
, (4.2)

where ρ(ξ)2 = 1 +
�

i>1 λ2iξ2i. Thus (see § 2.4), the function Ψ is a degeneration
of the Baker–Akhiezer function, corresponding to gluing an essential singularity
and g poles at the base point ∞ ∈ V . Due to these properties, Ψ is an extremely
convenient tool.

We recall (see § 2.4) that there is a unique linear operator

L =
g�

i=0

ai(u, v)∂i
v1

such that the following identity holds:

Ψ
�
u, (x, y)

�
Ψ

�
v, (x, y)

�
= L Ψ

�
u + v, (x, y)

�
.

In this section we describe the application of the apparatus of trilinear and bilinear
operators in § 3 to the problem of computing the coefficients of the operator L .
This application is based on the trilinear strong form of the addition theorem.

4.1. Trilinear strong form of the addition theorem. Let k > 1 and let
R

(t1,...,tk−1)
kg (x, y) be an entire rational function of order kg on V with k − 1 given

zeros at the points A−1(ti) ∈ X, i = 1, . . . , k − 1 (see the cases k = 2, 3 in the
previous section). In this case, using the function Ψ, we obtain a factorization

R
(t1,...,tk−1)
kg (x, y) =

� k�

i=1

Ψ
�
ti, (x, y)

������
tk=−

k−1P
j=1

tj

. (4.3)

The formula (4.3) immediately implies the following result that connects the
multiplication in the continuous KN basis with the algebraic law of addition on X
(see § 3.5).
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Lemma 4.1. The following identity holds:

Ψ
�
u, (x, y)

�
Ψ

�
v, (x, y)

�
=

R(u,v)
3g (x, y)

R(u+v)
2g (x, y)

Ψ
�
u + v, (x, y)

�
, u, v ∈ Cg.

We introduce the following family of functions on V with parameter w ∈ Cg:

G(w)
k (x, y) =

∂k
w1

Ψ(w, (x, y))
Ψ(w, (x, y))

, k = 0, 1, 2, . . . .

The function G(w)
k (x, y) is rational on V with g + k poles {k∞, A−1(w)}. The

coefficients of the function G(w)
k (x, y) are Abelian functions on the Jacobian of the

curve V . By definition, we have

G(w)
0 (x, y) = 1, G(w)

1 (x, y) = −
�
ζ1(A(x, y; [γ])− w) + ζ1(w) + �A∗(x, y; [γ]), e1�

�
.

We note that the formula for G(w)
1 (x, y) defines an Abelian function of w and a

single-valued function of (x, y), that is, a function independent of the contour γ,
because we take the same contour for the maps A and A∗.

For k > 0 the definition implies the recursion formula

G(w)
k+1(x, y) =

�
∂w1 + G(w)

1 (x, y)
�
G(w)

k (x, y), (4.4)

which results in the explicit expression

G(w)
k (x, y) = (∂w1 + G(w)

1 (x, y))k 1, k = 0, 1, . . . , g.

It follows from the Riemann–Roch theorem that the family formed by the func-
tions G(w)

0 (x, y), . . . , G(w)
� (x, y) is a basis of the linear space of functions whose sets

of poles, counting multiplicities, are subsets of the set {�∞, A−1(w)}.
Since the coefficients of the polynomials R(u)

2g (x, y) and R(u,v)
3g (x, y) are obtained

in the form of bilinear and trilinear operators, we arrive at the following result.

Theorem 4.1. The coefficients of the linear operator

L =
g�

i=0

ai(u, v)∂i
v1

defined by the equation (see (1.35))

Ψ
�
u, (x, y)

�
Ψ

�
v, (x, y)

�
= L Ψ

�
u + v, (x, y)

�
,

are related to bilinear and trilinear operators by the following formula:

R(u,v)
3g (x, y) =

g�

k=0

ak(u, v)S(u+v)
k (x, y), (4.5)

where

S(w)
k (x, y) = Ψ(−w, (x, y))∂k

w1
Ψ(w, (x, y)) = R(w)

2g (x, y)G(w)
k (x, y). (4.6)

The formula (4.5) is a trilinear strong form of the addition theorem.
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Remark 4.1. By formula (4.6), the functions S(w)
k (x, y), k = 0, 1, 2, . . . , are entire

rational functions on V , and moreover, all of them vanish at A−1(−u − v) ∈ X.
Thus, since the function R(u,v)

3g (x, y) also vanishes at A−1(−u − v) ∈ X, there are
among the (2g+1) equations following from (4.5) exactly g equations having a sim-
ple geometric meaning, namely, they express the fact that the right- and left-hand

sides of (4.5) vanish simultaneously and independently of the values of the coeffi-

cients ai(u, v) for (x, y) ∈ A−1(−u − v). Therefore, in the construction of Theo-
rem 4.1, only g + 1 equations are essential for determining the values of the (g + 1)
coefficients ai(u, v), and the remaining g equations are the compatibility equations.

We note an analogy between the function S(w)
k (x, y) given by the formula (4.6)

and the ordinary symbol of ∂k
w1

defined by the formula symb(∂k
w1

) = e−w1x∂k
w1

ew1x.
It is reasonable to call the function S(w)

k (x, y) the symbol of the operator ∂k
w1

on

the curve V . Obviously, this definition can be extended to an arbitrary linear oper-
ator L by the formula symbV L = Ψ(−w, (x, y))LΨ(w, (x, y)). Thus, the trilinear
strong form of the addition theorem (4.5) expresses the fact that the symbol of the

operator L on the curve V is equal to R(u,v)
3g (x, y).

If a model of the curve V is given, then one can obtain explicit formulae for
G(w)

k (x, y) in the form of rational functions in x and y. In the next subsection we give
an application of the trilinear strong form of addition theorem in the hyperelliptic
case. It is useful to consider this case separately, making it possible to show the
main stages of application of the theorem in a form not obscured by the technical
details of the general case.

4.2. Hyperelliptic case. We set

℘i1,...,ik(w) = − ∂

∂wi1

· · · ∂

∂wik

log σ(w).

In the hyperelliptic case the formula (3.12) becomes

R(w)
2g (x, y) = xg −

g−1�

i=0

℘1,g−i(w)xi. (4.7)

The formula (3.13) yields the expansion

R(u,v)
3g (x, y) = yr1(x) + xgr2(x) + r3(x),

where

r1(x) =
l�

i=0

hg−2i−1(u, v)xi,

r2(x) =
g−l−1�

i=0

hg−2i(u, v)xi,

r3(x) =
g−1�

i=0

h3g−2i(u, v)xi,

with l =
� g−1

2

�
and h0 = 1.
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The following formulae hold:

G(w)
1 (x, y) =

1
2

2y +
�g−1

i=0 ℘1,1,g−i(w)xi

xg −
�g−1

i=0 ℘1,g−i(w)xi
, G(w)

2 (x, y) = x + 2℘1,1(w).

We set
G(w)

k (x, y) = C(w)
k (x, y) + B(w)

k (x, y)G(w)
1 (x, y). (4.8)

The general recursion formula (4.4) leads to the following recursion for the coeffi-
cients C(w)

k (x, y) and B(w)
k (x, y):

C(w)
k+1(x, y) = ∂w1C

(w)
k (x, y) + G(w)

2 (x, y)B(w)
k (x, y),

Bk+1(w) = ∂w1B
(w)
k (x, y) + C(w)

k (x, y)
(4.9)

with the initial data (C(w)
0 (x, y), B(w)

0 (x, y))=(1, 0). Since G(w)
2 (x, y)=x+2℘1,1(w)

is a linear function of x, it follows from this recursion that C(w)
k (x, y) and B(w)

k (x, y)
are polynomials in x.

Let us now describe the polynomials S(w)
k (x, y) = R(w)

2g (x, y)G(w)
k (x, y). We have

S(w)
0 (x, y) = R(w)

2g (x, y) = xg −
g−1�

i=0

℘1,g−i(w)xi,

S(w)
1 (x, y) = y +

1
2

g−1�

i=0

℘1,1,g−i(w)xi.

Using the recursion (4.8), we see that the polynomials S(w)
k (x, y), k > 1, are given

by the recursion formula

S(w)
k (x, y) = Ck(w)S(w)

0 (x, y) + Bk(w)S(w)
1 (x, y),

where Ck(w) and Bk(w) are defined by the recursion (4.9).
Thus, we have obtained effective formulae for all polynomials S(w)

k (x, y). It
follows from these formulae that

S(w)
2s (x, y) = xg+s + �S(w)

2s (x, y) and S(w)
2s+1(x, y) = yxs + �S(w)

2s+1(x, y),

where the polynomial �S(w)
k (x, y) is formed by monomials xiyj ∈ M whose grading

is less than 2g + k and whose coefficients depend only on w.
Combining the above manipulations, we see that in the hyperelliptic case the

formula (4.5) becomes

y

� l�

i=0

(hg−2i−1 − a2i+1)xi

�
+ xg

�g−l−1�

i=0

(hg−2i − a2i)xi

�
+

g−1�

i=0

h3g−2ix
i

=
g�

k=0

ak(u, v)�S(u+v)
k (x, y). (4.10)
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The formula (4.10) corresponds to the system of (2g + 1) equations obtained by
equating the coefficients of the monomials

1, x, . . . , x2g−1−l, y, yx, . . . , yxl,

where l =
� g−1

2

�
, for the polynomials on the left- and right-hand sides of this

formula.
We note that the (g + 1) equations corresponding to the monomials

xg, . . . , x2g−1−l, y, yx, . . . , yxl,

determine the coefficients ak(u, v) in the form of functions of hi(u, v), and the
remaining g equations corresponding to the monomials 1, x, . . . , xg−1 determine
relations among the hi that are compatibility equations in the form of trilinear
functional equations for the hyperelliptic σ-function σ(u).

Example 4.1 (g = 1, l = 0). In this example

L = a0(u, v) + a1(u, v)∂w1 ,

S(w)
0 (x, y) = x− ℘1,1(w),

S(w)
1 (x, y) = y +

1
2

℘1,1,1(w).

We obtain the formula

y(h0 − a1) + x(h1 − a0) + h3 = −a0(u, v)℘1,1(u + v) +
1
2

a1(u, v)℘1,1,1(u + v).

Hence,

a1 = h0 = 1, a0 = h1,

h3 = −a0(u, v)℘1,1(u + v) +
1
2

℘1,1,1(u + v),

h3 + h1℘1,1(u + v) =
1
2

℘1,1,1(u + v).

Using the results of the paper [41] that are presented in the previous section, we
see from the first two equations (cf. [39]) that

a1 = Q(1) = 1, a0(u, v) = Q(−D1) = ζ(u + v)− ζ(u)− ζ(v),

where ζ = (log σ)� is the Weierstrass function. The third equality leads to the
compatibility condition

Q(D3
1) + ℘(u + v)Q(6D1) + 3℘�(u + v) = 0,

which becomes the following identity in the developed form:

(ζ(u + v)− ζ(u)− ζ(v))
�
(ζ(u + v)− ζ(u)− ζ(v))2 + 3(℘(u + v)− ℘(u)− ℘(v))

�

+ 2℘�(u + v) + ℘�(u) + ℘�(v) = 0

(this can readily be verified in this classical case by using known addition theorems
for elliptic functions).
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The recursion (4.9) gives

{B(u+v)
k (x, y)} = {0, 1, 0, G2, . . . },

{C(u+v)
k (x, y)} = {1, 0, G2, ∂w1G2, . . . }.

Example 4.2 (g = 2, l = 0). In this example we have

L = a0(u, v) + a1(u, v)∂w1 + a2(u, v)∂2
w1

,

S(w)
0 (x, y) = x2 − ℘1,1(w)x− ℘1,2(w),

S(w)
1 (x, y) = y +

1
2

(℘1,1,1(w)x + ℘1,1,2(w)),

S(w)
2 (x, y) = C2(w)S(w)

0 (x, y) + B2(w)S(w)
1 (x, y) = (x + 2℘1,1(w))S(w)

0 (x, y).

In this case,

R(u,v)
6 (x, y) = h0(u, v)x3 + h1(u, v)y + h2(u, v)x2 + h4(u, v)x2 + h6(u, v).

According to the construction presented in the previous section, the coefficients
hk(u, v), k ∈ {0, 1, 2, 4, 6}, of the function R(u,v)

6 (x, y) are of the form Q(D) for the
corresponding linear differential operators D . Namely,

h0(u, v) = Q(1) = 1, h1(u, v) = −Q(D1), h2(u, v) =
1
2
Q(D2

1),

h4(u, v) =
1
24

Q(D4
1 + 8D2D1 + 6λ4),

h6(u, v) =
1

720
Q(D6

1 + 40D2D
3
1 + 18λ4D

2
1 + 144λ6).

We carry out the calculations according to (4.5).
The equations corresponding to the monomials x2, x3, y give

a2(u, v) = 1, a1(u, v) = h1(u, v), a0(u, v) = h2(u, v)− ℘1,1(u + v).

Thus, we see finally that for g = 2 the operator L is defined by the following
coefficients:

a2(u, v) = 1,

a1(u, v) = ζ1(u + v)− ζ1(u)− ζ1(v),

a0(u, v) =
1
2
��

ζ1(u + v)− ζ1(u),−ζ1(v)
�2 − 3℘1,1(u + v)− ℘1,1(u)− ℘1,1(v)

�
,

where ζ1(w) = ∂w1σ(w).
The relations between the functions {hi}, that is, the compatibility conditions,

are given by the equations corresponding to the monomials x and 1,

h4(u, v) +h2(u, v)℘1,1(u + v)−h1(u, v)℘1,1,1(u + v) +℘2
1,1(u + v) +℘1,2(u + v) = 0,

h6(u, v) + h2(u, v)℘1,2(u + v)− h1(u, v)℘1,1,2(u + v) + ℘1,1(u + v)℘1,2(u + v) = 0,
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and, as one can immediately see, the validity of these equations ensures (as was
already noted above in Remark 4.1) the simultaneous vanishing of the right- and
left-hand sides of (4.5) if a point (x, y) is a common zero of the functions S(u+v)

0 (x, y)
and S(u+v)

1 (x, y).

In the general case the manipulations are quite similar to those in the examples.
We note that for an (n, s)-curve with n > 2 the function Ψ(w, (x, y)) satisfies a
linear differential equation of the form

�
∂n

w1
−

n−1�

i=0

bi(w)∂i
w1

�
Ψ(w, (x, y)) = xΨ(w, (x, y)). (4.11)

We present the corresponding analogues of the recursion (4.9) and of the for-
mula (4.8) to compute the functions G(w)

k (x, y). We write

G(w)
k (x, y) =

n−1�

j=0

C(w)
j,k (x, y)G(w)

j (x, y). (4.12)

Then the general recursion formula (4.4) and the formula (4.11) imply the recursion

C(w)
0,k+1(x, y) = ∂w1C

(w)
0,k (x, y) +

�
x + b0(w)

�
C(w)

n−1,k(x, y),

Ci,k+1(w)(x, y) = ∂w1C
(w)
i,k (x, y) + C(w)

i−1,k(x, y) + bi(w), i = 1, . . . , n− 1,
(4.13)

with the initial data (C(w)
0,0 (x, y), C(w)

1,0 (x, y), . . . , C(w)
n−1,0(x, y)) = (1, 0, . . . , 0). As in

the case of the recursion (4.9), the recursion (4.13) generates a family of polynomials
C(w)

i,k (x, y), i = 0, 1, . . . , n− 1, depending only on the variable x. Thus, in this case,
to explicitly compute the coefficients of the operator L by using Theorem 4.1, one
must know not only the functions R(u)

2g (x, y) and R(u,v)
3g (x, y) but also the explicit

form of the functions G(w)
i (x, y) and bi(w) for 0 � i < n.

4.3. Algebras associated with continuous Krichever–Novikov bases. We
represent the relation (4.6) in the form

Ψ(u, P )Ψ(v, P ) = L Ψ(u + v, P ) =
g�

k=0

ak(u, v)∂kΨ(u + v, P ), (4.14)

where P = (x, y) ∈ V and ∂ = ∂/∂v1. Without loss of generality we can assume
that ag(u, v) = 1.

For a fixed point P we set

Ψ(u, P ) = Ψ(0,u) and Ψ(k,u) = ∂kΨ(0,u). (4.15)

We can see from the formulae obtained for ak(u, v) that the coefficients of the oper-
ator L are obtained by substituting the relation w = u + v into the corresponding
functions �ak(u, v, w). It is convenient to stress this fact below by writing

ak(u, v) = C(k,u+v)
(0,u),(0,v). (4.16)
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In this case (4.14) becomes

Ψ(0,u)Ψ(0,v) =
g�

k=0

C(k,u+v)
(0,u),(0,v)Ψ(k,u+v). (4.17)

Applying the operator ∂i
u1

∂j
v1

to (4.17), we obtain the formula

Ψ(i,u)Ψ(j,v) =
g+i+j�

k=0

C(k,u+v)
(i,u),(j,v)Ψ(k,u+v), (4.18)

where the functions C(k,u+v)
(i,u),(j,v), due to the linear independence of the functions

Ψ(k,u), k = 0, 1, 2, . . . , are uniquely determined by the family of functions ak(u, v)
and their partial derivatives with respect to u1 and v1.

The following recursion formulae hold:

C(0,u+v)
(i+1,u),(j,v) = ∂u1C

(0,u+v)
(i,u),(j,v);

C(k,u+v)
(i+1,u),(j,v) = ∂u1C

(k,u+v)
(i,u),(j,v) + C(k−1,u+v)

(i,u),(j,v) , k = 1, 2, . . . ;

C(0,u+v)
(i,u),(j+1,v) = ∂v1C

(0,u+v)
(i,u),(j,v);

C(k,u+v)
(i,u),(j+1,v) = ∂v1C

(k,u+v)
(i,u),(j,v) + C(k−1,u+v)

(i,u),(j,v) , k = 1, 2, . . . .

We note that C(g+i+j,u+v)
(i,u),(j,v) = 1 for all i � 0, j � 0. Thus, (4.18) describes the

multiplication law in the continuous KN-basis of a commutative associative algebra
over the field of meromorphic functions on the Jacobian of the curve V . This is the
algebra associated with the continuous KN-basis on the curve V .

The associativity equations for the multiplication in this algebra form the system
of functional equations

Q1(m)�

�=0

C(�,v+w)
(j,v),(k,w)C

(m,u+v+w)
(i,u),(�,v+w) =

Q2(m)�

�=0

C(�,u+v)
(i,u),(j,v)C

(m,u+v+w)
(�,u+v),(k,w), 0 � m � Q,

(4.19)
where

Q = 2g+i+j+k,Q1(m) = min(Q−m, g+j+k), and Q2(m) = min(Q−m, g+i+j),

and hence a system of functional-differential equations for the functions ak(u, v).
According to [59], this system, in the notation

Lw
u,v = L =

g�

k=1

ak(u, v)∂k
w1

,

is equivalent to the operator equation

Lv
u,vLv

u+v,w − Lv
v,wLv

u,v+w = 0. (4.20)

We write Aj
i,k(u, v, w) = ai(u, v)∂j

v1
ak(u + v, w)− ai(v, w)∂j

v1
ak(u, v + w).
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Corollary 4.1. The operator equation (4.20) is a system {Ki = 0 | 0 � i < 2g} of

functional equations with respect to the functions a0(u, v), . . . , ag−1(u, v), where

Ki =
min(g,i)�

j=max(0,i−g)

g�

k=j

�
k

j

�
Ak−j

k,i−j(u, v, w). (4.21)

For instance, for g = 1 we obtain the equations K1 = 0 and K0 = 0, where

K1 = K1(a0(u, v)) = a0(u, v)− a0(v, w) + a0(u + v, w)− a0(u, v + w)
K0 = K0(a0(u, v)) = a0(u, v)a0(u + v, w)− a0(v, w)a0(u, v + w)

+ ∂va0(u + v, w)− ∂va0(u, v + w).

Let δ1 and δ2 be differentials in the standard cochain function complex, namely,

(δ1a)(u, v) = a(u) + a(v)− a(u + v), where a = a(u),
(δ2a)(u, v, w) = −a(u + v, w) + a(v, w) + a(u, v + w)− a(u, v), where a = a(u, v).

We note that K1(a0(u, v)) = (δ2a)(u, v, w). Hence, the equation K1 = 0 is
exactly the cocycle equation (δ2a0)(u, v, w) = 0. Since the two-dimensional coho-
mology of the complex in question is zero, we see that there is a unique function
h(u) such that (δ1h)(u, v) = a0(u, v). Thus, the general solution a0(u, v) of the
equation K1 = 0 is of the form

a0(u, v) = h(u) + h(v)− h(u + v).

A simple calculation shows that

K0((δ1h)(u, v)) = δ2[(δ1h)(u, v)h(u + v) + ∂v1h(u + v)− h(u)h(v)].

Hence, by the equation K0 = 0, there is a unique function η(u) such that

(δ1η)(u, v) = [(δ1h)(u, v)h(u + v) + ∂v1h(u + v)− h(u)h(v)].

Thus, we obtain a functional equation on the function h(u) whose general solution
is the Weierstrass function ζ(u).

The general scheme for constructing a commutative associative algebra with
basis {E(i,u)} by using a linear differential operator Lw

u,v =
�g

k=1 ak(u, v)Dk
w was

described in a paper of one of the authors and D.V. Leikin (see [59]). The above
manipulations show immediately that if Dw = ∂w1 and g = 1, then any such algebra
coincides with the algebra associated with the continuous KN-basis on an elliptic
curve.

Let us return to the general case for Dw =∂w1 (see [59]). The equations Kg+j =0,
where 0 � j < g, can be represented in the form

(δ2aj)(u, v, w) =
g−j−1�

k=0

g−j−k�

�=0, k+�>0

�
j + k + �

j + k

�
A�

j+k+�,g−k(u, v, w). (4.22)

Hence, (δ2ag−1)(u, v, w) = 0 for any g � 1, and therefore there is a unique function
h1(u) such that ag−1(u, v) = δ1h1(u).
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Theorem 4.2. Let h1(u), . . . , hg(u) be differentiable functions, u ∈ Cg . Then the

recursion formulae

ag−k(u, v) = (δ1hk)(u, v) +
k−1�

�=1

h�(u)hk−�(v)

−
k−1�

�=0

k−�−1�

m=1

�
g − �

k − �−m

�
ag−�(u, v)D(k−�−m)

v hm(u + v) (4.23)

with k = 1, . . . , g give the general solution of the system {Kg+j = 0 | 0 � j < g}.

The function Ψ(u, P ), which is a degenerate Baker–Akhiezer function (see (4.1)),
is completely characterized by its behaviour near a unique singular point of Ψ
(see (4.2)),

Ψ(u, P ) ∼ ξ−g exp{p(u, ξ−1)}
�

1 +
�

i>0

ηi(u)ξi

�
, (4.24)

where p(u, t) =
�g

j=1 ujχj(t) is a function linear with respect to u and a poly-
nomial in t of degree not exceeding (2g − 1). Here it is important that χ1(t) = t.
Direct calculations show that the functions ηj(u) and the coefficients ak(u, v), k =
0, 1, . . . , g − 1, of the operator L such that

Ψ(ξ, u)Ψ(ξ, v) = L Ψ(ξ, u + v)

are connected by the system {Bs = 0 | s = 1, 2, . . . } of relations, where

Bs =
� g�

j=q(s)

g�

k=j

�
k

j

�
ak(u, v)Dk−j

v ηs+j−g(u + v)
�
−

s�

�=0

η�(u)ηs−�(v),

q(s) = max(0, g − s).

Theorem 4.3 (see [59]). If the functions ηi(u), i=1, . . . , g, in the expansion (4.24)
are taken as the functions hi(u) in Theorem 4.2, then the system BI =
{Bs = 0 | s � g} of equations is transformed into the recursion system (4.23)
determining the coefficients ak(u, v) of the operator L .

The system BII = {Bs = 0 | s > g} passes into the system {(δ1ηg+m)(u, v) =
Fm, m = 1, 2, . . . } of equations, where

Fm =
�g−1�

j=0

g�

k=j

�
k

j

�
ak(u, v)Dk−j

v ηm+j(u + v)
�
−

g+m−1�

�=1

η�(u)ηg+m−�(v).

Since δ2δ1 = 0, we arrive at the equations {δ2Fm = 0} of compatibility of the
system BII in the form of functional-differential recursion equations in η1, . . . , ηg.

The description of the multiplication in the algebras associated with the contin-
uous KN-basis is completed by the following result.

Theorem 4.4 (see [59]). With regard to the assertions of Theorems 4.2 and 4.3,
the system

�K = {Kj = 0 | j = 0, . . . , g − 1}
ensures the compatibility conditions of the system BII = {Bs = 0 | s > g}.



64 V.M. Buchstaber and I. M. Krichever

§ 5. Integrable linear problems and applications

In this section we present the main ideas of a new approach to the solution of
problems of Riemann–Schottky-type that was suggested in a recent paper of one
of the authors [48]. This approach is based on the use of integrable linear problems.
It should be noted that we include neither more nor less rigorous sense in the notion
of integrable linear problem. In the framework of the present survey this notion will
mean linear equations whose solutions are given by explicit theta function formulae.

5.1. Infinite-dimensional analogue of the Calogero–Moser system. As
was already noted in the Introduction, an immediate consequence of the addi-
tion theorem (1.25) for theta functions is the equivalence of the integrable linear
problem (1.41)–(1.43) and the equations (1.44) signifying that the point K(A/2) is
an inflection point of the Kummer variety.

The equivalence of the assertion of Theorem 1.4 to another formulation charac-
terizing the Jacobian varieties in terms of some infinite-dimensional analogue of the
Calogero–Moser system is by no means trivial.

Let us consider an entire function τ(x, y) of a complex variable x which depends
smoothly on the parameter y. Suppose that this function satisfies the equation

resx

�
∂2

y log τ + 2(∂2
x log τ)2

�
= 0, (5.1)

which means that the meromorphic function of x given by the expression on the
left-hand side of (5.1) has no residues. If xi(y) is a simple zero of τ , that is,
τ(xi(y), y) = 0, ∂xτ(xi(y), y) �= 0, then it follows from (5.1) that

ẍi = 2wi, (5.2)

where the dots stand for the derivatives with respect to the variable y and wi is the
third coefficient of the Laurent expansion of the function u(x, y) = −2∂2

xτ(x, y) at
the point xi, that is,

u(x, y) =
2

(x− xi(y))2
+ vi(y) + wi(y)(x− xi(y)) + · · · . (5.3)

Formally, if we represent τ in the form of the infinite product

τ(x, y) = c(y)
�

i

(x− xi(y)), (5.4)

then the equation (5.1) turns out to be equivalent to the infinite system of equations

ẍi = −4
�

j �=i

1
(xi − xj)3

, (5.5)

which coincides with the equations of motion of a rational, trigonometric, or elliptic
Calogero–Moser system if τ is a rational, trigonometric, or elliptic polynomial,
respectively.

The equations (5.2) for the zeros of the function τ = θ(Ux + V y + Z) were
first introduced in the paper [60] as an immediate corollary to the assumptions of
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Theorem 1.4. Expanding the function θ in neighbourhoods of the points z ∈ Θ of its
divisor such that θ(z) = 0, we can readily see that the equation (5.1) is equivalent
to the equation

[(∂2θ)2 − (∂2
1θ)2]∂2

1θ + 2[∂2
1θ ∂3

1θ

− ∂2θ ∂1∂2θ]∂1θ + [∂2
2θ − ∂4

1θ](∂1θ)2 = 0 (mod θ), (5.6)

which must hold at all points of the divisor Θ. Here and below, ∂1 and ∂2 are
constant vector fields on Cg corresponding to the vectors U and V .

Theorem 5.1. An indecomposable principally polarized Abelian variety (X, θ) is

the Jacobian variety of a smooth algebraic curve of genus g if and only if there

are g-dimensional vectors U �= 0 and V such that the equation (5.6) holds on the

divisor Θ.

The main idea of the proof of Theorem 1.4 is to show that the linear problem
(1.41)–(1.43) admits the introduction of a spectral parameter. More precisely, to
show that, under the assumptions of the theorem, the equation (1.41) has a formal
wave solution, that is, a solution of the form

ψ(x, y, k) = ekx+(k2+b)y

�
1 +

∞�

s=1

ξs(x, y) k−s

�
. (5.7)

An attempt to directly construct a formal wave solution whose coefficients are of
the form

ξs =
τs(Ux + V y + Z)
θ(Ux + V y + Z)

, (5.8)

where τs(Z) is a holomorphic function of the variable Z ∈ Cg, leads to problems
similar to those faced by Shiota in constructing the τ -function of the KP hierarchy.

The substitution of the series (5.7) in the equation (1.41) gives a recursive system
of equations for the coefficients ξs of the wave function. The assertions of the
following two lemmas show that the equations (5.2) are necessary and sufficient
conditions for the local solubility of these equations in the class of meromorphic
functions.

Lemma 5.1 [60]. Let τ(x, y) be a holomorphic function of the variable x ∈ D ⊂ C
and let τ depend smoothly on the variable y. Suppose that the zeros of τ are simple:

τ(xi(y), y) = 0, τx(xi(y), y) �= 0. (5.9)

In this case, if the equation (1.41) with the potential u = −2∂2
x log τ(x, y) has a

meromorphic solution ψ0(x, y), then the equations (5.2) are satisfied.

Let us consider the Laurent expansions of ψ0 and u in a neighbourhood of one
of the zeros xi of the function τ ,

u =
2

(x− xi)2
+ vi + wi(x− xi) + · · · , (5.10)

ψ0 =
αi

x− xi
+ βi + γi(x− xi) + δi(x− xi)2 + · · · . (5.11)
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(The coefficients are smooth functions of the variable y.) The substitution of the
series (5.10) and (5.11) into (1.41) gives a chain of equations, the first three of which
have the form

αiẋi + 2βi = 0, (5.12)
α̇i + αivi + 2γi = 0, (5.13)

β̇i + viβi − γiẋi + αiwi = 0. (5.14)

Differentiating the first of these with respect to y and using the other two, we
obtain (5.2).

Lemma 5.2. Suppose that the equations (5.2) hold for the zeros of the function

τ(x, y). In this case there is a meromorphic wave solution of the equation (1.41)
which has only simple poles at the points xi.

Proof. The substitution of (5.7) into (1.41) gives the system of equations

2ξ�s+1 = ∂yξs + uξs − ξ��s . (5.15)

We prove by induction that, under the assumptions of the lemma, this system has
a meromorphic solution with simple poles at the points xi.

Let us expand the variable ξs in a neighbourhood of xi:

ξs =
rs

x− xi
+ rs0 + rs1(x− xi) (5.16)

(for brevity we omit the index i in the notation for the coefficients of this expansion).
Suppose that ξs is known and the equation (5.15) has a meromorphic solution. This
means that the right-hand side of (5.15) has zero residue at the point x = xi:

resxi(∂yξs + uξs − ξ��s ) = ṙs + virs + 2rs1 = 0. (5.17)

We must show that the residue of the next equation is equal to zero. It follows
from (5.15) that the coefficients of the expansion for ξs+1 are given by

rs+1 = −ẋirs − 2rs0, (5.18)
2rs+1,1 = ṙs0 − rs1 + wirs + virs0. (5.19)

Thus,

ṙs+1 + virs+1 + 2rs+1,1 = −rs(ẍi − 2wi)− ẋi(ṙs − virss + 2rs1) = 0, (5.20)

which proves the lemma.

Local solubility of the equations (5.15) does not automatically imply global sol-
ubility, that is, the existence of a wave function with the coefficients ξs of the
form (5.8). Arguments that are quite the same as those used in [8] in construct-
ing the τ -functions of the KP hierarchy show that the existence of a global wave
function is controlled by a cohomological obstruction which is an element of the
group H1(Cg \ Σ,M), where Σ is the ∂1-invariant subset of Θ and M is the sheaf
of ∂1-invariant meromorphic functions that are holomorphic outside Θ.
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5.2. λ-periodic wave solutions. In contrast to [8], we do not immediately claim
that the set Σ is empty. It should be noted that, in order to construct an algebraic
curve which turns out in what follows to be the very curve whose Jacobian is
isomorphic to X, it suffices to use the global existence of the functions ξs along
certain affine hyperplanes in Cg.

We denote by YU = �Ux� the closure of the group Ux in X. Shifting YU if
necessary, we can assume without loss of generality that YU does not belong to the
bad subset, YU /∈ Σ. In this case, YU + V y /∈ Σ for sufficiently small y. Let us
consider the restriction of the theta function to the affine subspace Cd +V y, where
Cd = π−1(YU ) and π : Cg → X = Cg/Λ is the universal covering of X:

τ(z, y) = θ(z + V y), z ∈ Cd. (5.21)

The function u(z, y) = −2∂2
1 log τ is periodic with respect to ΛU = Λ ∩ Cd and for

a fixed y it has a second-order pole along the divisor ΘU (y) = (Θ− V y) ∩ Cd.

Lemma 5.3. Let us fix a vector λ of the lattice ΛU = Λ ∩ Cd ⊂ Cg . Suppose that

the equations (5.1) hold for any τ(Ux + z, y). In this case:
(i) the equation (1.41) with the potential u(Ux + z, y) admits a wave solution of

the form ψ = ekx+k2yφ(Ux + z, y, k) such that the coefficients ξs(z, y) of the

formal series

φ(z, y, k) = eby

�
1 +

∞�

s=1

ξs(z, y) k−s

�
(5.22)

are λ-periodic meromorphic functions of z ∈ Cd
with a simple pole along the

divisor ΘU (y),

ξs(z + λ, y) = ξs(z, y) =
τs(z, y)
τ(z, y)

; (5.23)

(ii) the series φ(z, y, k) is unique up to a factor ρ(z, k) which is ∂1-invariant and

holomorphic with respect to the variable z,

φ1(z, y, k) = φ(z, y, k)ρ(z, k), ∂1ρ = 0. (5.24)

Proof. The functions ξs(z) are determined by the equations

2∂1ξs+1 = ∂yξs + (u + b)ξs − ∂2
1ξs. (5.25)

A particular solution of the first of these equations 2∂1ξ1 = u + b is given by the
formula

2ξ0
1 = −2∂1 log τ + (l, z) b, (5.26)

where (l, z) is a linear form on Cd given by the inner product of z with a vector
l ∈ Cd such that (l, U) = 1. By definition, λ ∈ YU . Hence, (l,λ) �= 0. The
periodicity condition for ξ0

1 determines the constant b, namely,

b = (l, λ)−1(2∂1 log τ(z + λ, y)− 2∂1 log τ(z, y)), (5.27)

which depends only on the choice of the vector λ. The addition of a constant to
the potential does not influence the result of the previous lemma. Therefore, the



68 V.M. Buchstaber and I. M. Krichever

equations (5.2) are sufficient for the local solubility of the equations (5.25) in any
domain in which the function τ(z + Ux, y) has simple zeros, that is, outside the
set ΘU

1 (y) = (Θ1 − V y) ∩ Cd, where Θ1 = Θ ∩ ∂1Θ. This set does not contain
any ∂1-invariant line, because every such line is dense in YU . Hence, the sheaf of
∂1-invariant meromorphic functions on Cd\ΘU

1 (y) with the poles along ΘU (y) coin-
cides with the sheaf of holomorphic ∂1-invariant functions. Therefore, the group
H1(Cd \ ΘU

1 (y),M0) is trivial, and global meromorphic solutions ξ0
s of the equa-

tions (5.25) with simple poles along the divisor ΘU (y) exist (for details, see [8], [25]).
If a particular solution ξ0

s is chosen, then the general global meromorphic solution
is given by the formula ξs = ξ0

s + cs, where the constant of integration cs(z, y) is
a holomorphic ∂1-invariant function of the variable z. Let us show that the con-
dition of λ-periodicity fixes the dependence of this constant of integration on the
variable y.

We carry out the proof by induction. Suppose that a λ-periodic solution ξs−1

is known and satisfies the condition that there is a periodic solution ξ0
s of the next

equation. We denote by ξ∗s+1 the solution of the equation (5.25) for a fixed ξ0
s . One

can readily see that the function

ξ0
s+1(z, y) = ξ∗s+1(z, y) + cs(z, y) ξ0

1(z, y) +
(l, z)

2
∂ycs(z, y) (5.28)

is a solution of (5.25) for ξs = ξ0
s + cs. The choice of a λ-periodic ∂1-invariant func-

tion cs(z, y) does not influence the periodicity of ξs but influences the periodicity of
ξ0
s+1. For the function ξ0

s+1 to be periodic it is necessary that the function cs(z, y)
satisfy the linear differential equation

∂ycs(z, y) = 2(l,λ)−1(ξ∗s+1(z + λ, y)− ξ∗s+1(z, y)). (5.29)

This equation and the initial conditions cs(z) = cs(z, 0) uniquely determine the
function cs(x, y). The induction step is completed. We have proved that the ratio
of two periodic formal series φ1 and φ does not depend on y. This implies the
equality (5.24), in which the factor ρ(z, k) is determined by the two sides of
the equality at y = 0.

5.3. Spectral curve. Our next objective is to prove that the λ-periodic wave
solutions of the equation (1.41), (1.42) are joint eigenfunctions of commuting oper-
ators and to identify X with the Jacobian of the corresponding spectral curve.

We note that the simple shift z → z+Z enables one to define the λ-periodic wave
solutions with meromorphic coefficients along the affine subspaces Z + Cd, Z /∈ Σ.
These λ-periodic solutions are connected with each other by ∂1-invariant factors.
Hence, choosing a hyperplane orthogonal to the vector U in a neighbourhood of
any point Z /∈ Σ and fixing the initial conditions on this hyperplane at y = 0, we
determine the coefficients of the series φ(z +Z, y, k) as local meromorphic functions
of the variable Z and as global meromorphic functions of the variable z.

Lemma 5.4. Under the assumptions of Theorem 5.1, there is a unique pseudo-

differential operator

L (Z, ∂x) = ∂x +
∞�

s=1

ws(Z)∂−s
x (5.30)
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such that

L (Ux + V y + Z, ∂x) ψ = k ψ , (5.31)

where ψ = ekx+k2yφ(Ux + Z, y, k) is a λ-periodic solution of the equation (1.41).
The coefficients ws(Z) of this operator are meromorphic functions on the Abelian

variety X that are holomorphic outside the divisor Θ.

Proof. The construction of L is standard in the KP theory. We first define L as
a pseudodifferential operator with the coefficients ws(Z, y) depending on Z and y.

Let us consider a λ-periodic wave solution ψ. The substitution of the for-
mula (5.22) into (5.31) gives a system of equations, uniquely determining the coef-
ficients ws(Z, y), in the form of differential polynomials in the coefficients ξs(Z, y)
of the expansion of ψ. The coefficients of ψ are local meromorphic functions of
the variable Z. Since λ-periodic wave solutions are connected with each other by
∂1-invariant factors, the non-uniqueness of ψ does not affect the coefficients of L .
Hence, these coefficients are well defined as global meromorphic functions on Cg \Σ.
The codimension of the singular locus is not less than 2. Hence, by the Hartogs the-
orem, the functions ws(Z, y) admit continuations to global meromorphic functions
on Cg.

It follows from the translation invariance of u that for any constant s the series
φ(V s + Z, y − s, k) and φ(Z, y, k) correspond to λ-periodic solutions of the same
equation. Thus, they differ by a ∂1-invariant factor. Hence, ws(Z, y) = ws(V y+Z).

For the same reasons,

∂1

�
φ1(Z + λ�, y, k)φ−1(Z, y, k)

�
= 0. (5.32)

Thus, the functions ws are periodic with respect to the lattice Λ, and hence are
meromorphic functions on X. This proves Lemma 5.4.

As usual, we denote by L m
+ the differential part of the operator L m. By

definition, the leading coefficient Fm of the integral part L m
− = L m − L m

+ =
Fm∂−1 + O(∂−2) is called the residue of L m,

Fm = res∂ L m. (5.33)

It follows from the construction of L that [∂y − ∂2
x + u, L n] = 0. Thus,

[∂y − ∂2
x + u, L m

+ ] = −[∂y − ∂2
x + u, L m

− ] = 2∂xFm. (5.34)

The functions Fm are differential polynomials in the coefficients ws of the opera-
tor L . Hence, these functions are meromorphic on X.

Lemma 5.5. The orders of the poles of the Abelian functions Fm on Θ do not

exceed two.

Proof. We use another standard construction of the KP theory. An arbitrary wave
solution determines a unique pseudodifferential operator Φ such that

ψ = Φekx+k2y, Φ = 1 +
∞�

s=1

ϕs(Ux + Z, y)∂−s
x . (5.35)
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The coefficients of Φ are differential polynomials in the coefficients ξs of the wave
solution. Hence, if ψ is the same wave solution as in the assertion of Lemma 5.3,
then the coefficients ϕs(z + Z, y) of the corresponding operator Φ are global mero-
morphic functions of the variable z ∈ Cd and local meromorphic functions of the
variable Z /∈ Σ. We note that L = Φ(∂x) Φ−1.

We define the dual wave function by the left action of the operator Φ−1, that
is, ψ+ = e−kx−k2yΦ−1. We recall that the left action of a pseudodifferential oper-
ator is formally adjoint to the right action, that is, it is defined by the formula
(f∂x) = −∂xf . If ψ is a formal wave solution of the equation (1.41), then ψ+ is
a solution of the conjugate equation

(−∂y − ∂2
x + u)ψ+ = 0. (5.36)

As above, one can prove that the coefficients ξ+
s of the dual solution have simple

poles at the poles of u. Hence, ψ+ is of the form

ψ+ = e−kx−k2yφ+(Ux + Z, y, k),

where the coefficients ξ+
s (z + Z, y) of the formal series

φ+(z + Z, y, k) = e−by

�
1 +

∞�

s=1

ξ+
s (z + Z, y) k−s

�
(5.37)

are λ-periodic meromorphic functions of the variable z ∈ Cd with simple poles
on ΘU (y).

The ambiguity in the definition of ψ does not influence the product

ψ+ψ = (e−kx−k2yΦ−1)(Φekx+k2y). (5.38)

Hence, the coefficients Js of this product

ψ+ψ = φ+(Z, y, k)φ(Z, y, k) = 1 +
∞�

s=2

Js(Z, y)k−s (5.39)

are global meromorphic functions of the variable Z. Moreover, it follows from
the translation invariance of u that these functions are of the form Js(Z, y) =
Js(Z + V y). Each of the factors has a simple pole on Θ − V y. Thus, Js(Z) is a
meromorphic function on X with a second-order pole on Θ.

It follows from the definition of L that

resk(ψ+(L nψ)) = resk(ψ+knψ) = Jn+1. (5.40)

On the other hand, using the equality

resk(e−kxD1)(D2e
kx) = res∂(D2D1), (5.41)

which holds for any pseudodifferential operators, we obtain

resk(ψ+L nψ) = resk(e−kxΦ−1)(L nΦekx) = res∂ L n = Fn. (5.42)

This implies that Fn = Jn+1 and completes the proof of Lemma 5.5.
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We denote by �F the linear space generated by the functions {Fm, m = 0, 1,
2, . . . }, where we formally set F0 = 1. It follows from what was proved above that
this is a subspace of the 2g-dimensional space of Abelian functions with a pole on Θ
of order at most two. Hence, for all but �g = dim �F positive numbers n there are
constants ci,n such that

Fn(Z) +
n−1�

i=0

ci,nFi(Z) = 0. (5.43)

The set I of integers for which there are no such constants is called the gap sequence.

Lemma 5.6. Let L be a pseudodifferential operator constructed from λ-periodic

wave functions ψ. In this case the operators

Ln = L n
+ +

n−1�

i=0

ci,nL n−i
+ = 0, n /∈ I, (5.44)

satisfy the equalities

Ln ψ = an(k)ψ, an(k) = kn +
∞�

s=1

as,nkn−s, (5.45)

in which the coefficients as,n are constant.

Proof. Let us note first that the formula (5.34) implies the equality

[∂y − ∂2
x + u, Ln] = 0. (5.46)

Thus, if the function ψ is a λ-periodic wave solution of the equation (1.41), then the
function Lnψ is also a λ-periodic wave solution. This yields Lnψ = an(Z, k)ψ, where
a is a ∂1-invariant series. The ambiguity in the definition of ψ does not influence
the functions an. Hence, the coefficients an are well-defined global meromorphic
functions on Cg \Σ. It follows from the ∂1-invariance of an that every function an is
holomorphic outside Σ as a function of Z. Thus, it admits a holomorphic extension
to Cg. It follows from (5.32) that the function an is periodic with respect to the
period lattice Λ. Thus, an does not depend on Z. We note that as,n = cs,n, s � n.
This completes the proof of Lemma 5.6.

The operator Lm can be regarded as a (Z /∈ Σ)-parameter family of ordinary
differential operators LZ

m whose coefficients are of the form

LZ
m = ∂n

x +
m�

i=1

ui,m(Ux + Z) ∂m−i
x , m /∈ I. (5.47)

Corollary 5.1. The operators LZ
m commute with each other:

[LZ
n , LZ

m] = 0, Z /∈ Σ. (5.48)

It follows from (5.45) that [LZ
n , LZ

m]ψ = 0. The commutator is an ordinary
differential operator, and therefore the last relation implies (5.48).
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Lemma 5.7. There is an irreducible algebraic curve Γ such that for any Z /∈ Σ
the commutative ring A Z

generated by the operator LZ
n is isomorphic to the ring

A(Γ, P0) of meromorphic functions on Γ with a unique pole at a smooth point P0.
The correspondence Z → A Z

defines a holomorphic embedding of X \ Σ in the

space Pic(Γ) of torsion-free sheaves Φ of rank 1 on Γ:

j : X \ Σ �−→ Pic(Γ). (5.49)

Proof. The fundamental assertion of the theory of commuting differential operators
([1], [2], [61], [62], [23]) is that there is a natural correspondence

A ←→ {Γ, P0, [k−1]1,Φ} (5.50)

between commutative rings A of ordinary linear differential operators containing
a pair of operators that have coprime orders and are regular in a neighbourhood of
x = 0, on the one hand, and families of algebro-geometric data {Γ, P0, [k−1]1,Φ},
where Γ is an algebraic curve with a fixed first germ [k−1]1 of the local coordinate
k−1 in a neighbourhood of the smooth point P0 ∈ Γ and Φ is a torsion-free sheaf
of rank 1 on Γ such that

H0(Γ,Φ) = H1(Γ,Φ) = 0, (5.51)

on the other hand. The correspondence becomes one-to-one if one considers the
commutative rings A up to conjugation A � = g(x)A g−1(x).

The algebraic curve Γ is called a spectral curve of the ring A . The ring A is
isomorphic to the ring A(Γ, P0) of meromorphic functions on Γ with a single pole
at the distinguished point P0. The isomorphism is defined by the equality

Laψ0 = aψ0, La ∈ A , a ∈ A(Γ, P0). (5.52)

Here ψ0 stands for a common eigenfunction of the commuting operators. For x = 0
this function is a section of the sheaf Φ⊗ O(−P0).

Important remark. The correspondence (5.50) depends on the choice of the initial
point x0 = 0. Both the spectral curve and the sheaf Φ are determined by the values
of the coefficients of the generators of the ring A and of finitely many derivatives of
these coefficients at the initial point. We note that the dependence of the spectral
curve on the initial point is trivial, whereas this is not the case for the sheaf,
Φ = Φx0 .

Using a shift of the initial point, one can show that the correspondence (5.50)
can be extended to the case of commutative rings of operators whose coefficients
are meromorphic functions of the variable x. The rings of operators having a pole
at the point x = 0 correspond to sheaves for which the condition (5.51) is violated.

Let us consider the spectral curve ΓZ corresponding to the ring A Z . By the
above remark, this curve is well defined for Z /∈ Σ. The eigenvalues an(k) of
the operator LZ

n that are defined in (5.45) coincide with the Laurent expansions
of the meromorphic functions an ∈ A(ΓZ , P0) in a neighbourhood of P0. These
eigenvalues do not depend on Z. Hence, the spectral curve also does not depend
on Z, that is, Γ = ΓZ . This proves the first assertion of the lemma.
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It follows from the construction of the correspondence (5.50) that if the
coefficients of the operators in the ring A depend holomorphically on parameters,
then the corresponding algebro-geometric spectral data also depend holomorphi-
cally on these parameters. This implies that the map j is holomorphic outside the
divisor Θ. Using a shift of the initial point and the fact that Φx0 depends holomor-
phically on x0, we see that the map j can be holomorphically continued to Θ \ Σ.
This completes the proof of the lemma.

Our next objective is to prove the existence of a global wave function.

Lemma 5.8. Under the assumptions of Theorem 5.1, there is a joint eigen-

function of the corresponding commuting operators LZ
n that has the form ψ =

ekxφ(Ux + Z, k), where the coefficients of the formal series

φ(Z, k) = 1 +
∞�

s=1

ξs(Z) k−s (5.53)

are global meromorphic functions of the variable Z with simple poles on Θ.

Proof. Let us first consider the case of a smooth spectral curve. In this case, by
[1] and [2], the joint eigenfunction of the commuting operators, normalized by the
condition ψ0

��
x=0

= 1, can be expressed explicitly in terms of the theta function:

�ψ0 =
�θ( �A(P ) + �Ux + �Z) �θ( �Z)
�θ(�Ux + �Z) �θ( �A(P ) + �Z)

ex Ω(P ). (5.54)

Here �θ( �Z) is the Riemann theta function constructed from the period matrix of
normalized holomorphic differentials on Γ, �A : Γ → J(Γ) is the Abel map, Ω is
the Abelian integral corresponding to the normalized Abelian differential dΩ with
a single pole of the form dk at the point P0, and 2πi�U is the vector of b-periods
of dΩ.

Remark. We stress once more that the formula (5.54) was by no means obtained as
a result of solving any differential equations. This formula is a consequence of the
analytic properties (presented above at the beginning of § 2) of the Baker–Akhiezer
function on the spectral curve.

The last factors in the numerator and the denominator of the formula (5.54) do
not depend on x. Hence, the non-normalized Baker–Akhiezer function

�ψBA =
�θ( �A(P ) + �Ux + �Z)

�θ(�Ux + �Z)
ex Ω(P ) (5.55)

is also an eigenfunction of the commuting operators. In a neighbourhood of P0 the
function �ψBA is of the form

�ψBA = ekx

�
1 +

∞�

s=1

τs( �Z + �Ux)
�θ(�Ux + �Z)

k−s

�
, k = Ω, (5.56)

where τs( �Z) are holomorphic functions.
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By the assertion of Lemma 5.7, there is a holomorphic embedding �Z = j(Z) of
the complement X \ Σ in J(Γ). Let us consider the function ψ = j∗ �ψBA. It is well
defined outside Σ. If Z /∈ Θ, then j(Z) /∈ �Θ. Hence, the coefficients of ψ are regular
outside Θ. The codimension of the singular locus is not less than two. Hence, the
function ψ can be continued to the whole of X by the Hartogs theorem.

In the case of a singular spectral curve, the proof does not differ in fact from that
in the case of smooth curve treated above. It suffices to replace the formula (5.55) by
its generalization given by the Sato τ -function theory (for details, see [63]). Namely,
the family of algebro-geometric spectral data in (5.50) determines a point of the
Sato Grassmannian and, as a consequence, the corresponding τ -function, τ(t;F ).
This is a holomorphic function of the variable t = (t1, t2, . . . ) and a section of the
line bundle on Pic(Γ). The variable x is identified with the first ‘time’ variable
of the KP hierarchy, x = t1. It follows from the formula for the Baker–Akhiezer
function corresponding to a point of the Grassmannian [63] that the function �ψBA

given by the formula

�ψBA =
τ(x− k,− 1

2k2,− 1
3k3, . . . ;F )

τ(x, 0, 0, . . . ;F )
ekx (5.57)

is a joint eigenfunction of commuting operators. The remaining part of the proof is
identical to the smooth case.

Lemma 5.9. The linear space �F spanned by the Abelian functions {F0 = 1, Fm =
res∂ L m} is a subspace of the space H of Abelian functions generated by F0 and

the functions Hi = ∂1∂zi log θ(Z).

Proof. We recall that the functions Fn are Abelian functions with a pole of order at
most two on Θ. Thus, the a priori estimate for the dimension of the space spanned
by these functions is �g = dim �F � 2g. To prove the assertion of the lemma, it
suffices to show that Fn = ∂1Qn, where Qn is a meromorphic function with a pole
on Θ. Indeed, if Qn exists, then the equality Qn(Z + λ) = Qn(Z) + cn,λ holds
for any vector λ in the period lattice. Hence, one can find a constant qn and two
g-dimensional vectors ln and l�n such that Qn = qn + (ln, Z) + (l�n, h(Z)), where
h(Z) is the vector with the coordinates hi = ∂zi log θ. The last identity means
that Fn = (ln, U) + (l�n,H(Z)).

Let us consider the global wave function ψ(x,Z, k) whose existence was proved
above. The coefficients ϕs(Z) of the corresponding wave operator Φ in (5.35) are
global meromorphic functions with poles along Θ.

The left and right actions of the operators are formally conjugate. Thus, for
any two pseudodifferential operators we have the equality (e−kxD1)(D2ekx) =
e−kx(D1D2ekx) + ∂x(e−kx(D3ekx)). The coefficients of the operator D3 are differ-
ential polynomials in the coefficients of the operators D1 and D2. Thus, it follows
from the equalities (5.38)–(5.42) that

ψ+ψ = 1 +
∞�

s=2

Fs−1k
−s = 1 + ∂x

� ∞�

s=2

Qsk
−s

�
. (5.58)
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The coefficients Q are differential polynomials in the coefficients ϕs of the wave
operator. Hence, they are global meromorphic functions with poles along Θ. This
proves Lemma 5.9.

To complete the proof of the theorem, we use another fact of the KP theory:
the flows of the KP hierarchy determine deformations of the commutative rings A
of ordinary linear differential operators. For a fixed spectral curve Γ the orbits of
flows of the KP hierarchy are isomorphic to the generalized Jacobian of the curve
J(Γ) = Pic0(Γ), which is by definition the group of equivalence classes of divisors
of degree zero (for details, see [1], [2], [8], [63]).

In the Sato form, a KP hierarchy is a system of equations for a pseudodifferential
operator L ,

∂tnL = [L n
+ ,L ]. (5.59)

If L is defined by using a λ-periodic wave solution of the equation (1.41), then the
equations (5.59) are equivalent to the equations

∂tnu = ∂xFn. (5.60)

The first two ‘time’ variables of the hierarchy are identified with the variables x
and y: t1 = x and t2 = y.

The equations (5.60) identify the space �F1 spanned by the functions ∂1Fn with
the tangent space to the orbit of the KP hierarchy at the point A Z . By the assertion
of the previous lemma, this space is a subspace of the tangent space X. Hence, for
any Z /∈ Σ the deformations of the ring A Z caused by the action of the flows of
the KP hierarchy belong to X, that is, a holomorphic embedding is defined:

iZ : J(Γ) �−→ X. (5.61)

It follows from (5.61) that J(Γ) is compact.
The generalized Jacobian of an algebraic curve is compact if and only if the

curve is smooth [64]. Every torsion-free rank-one sheaf on a smooth algebraic curve
is a vector bundle, that is, Pic(Γ) = J(Γ). In this case it follows from (5.49)
that iZ is an isomorphism. We note that the singular locus Σ of the Jacobian of a
smooth algebraic curve is empty [8], that is, the embedding j in (5.49) is everywhere
defined and is inverse to iZ . This proves Theorem 5.1 and thus completes the proof
of Theorem 1.4.
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