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CHARACTERIZING JACOBIANS VIA FLEXES OF THE
KUMMER VARIETY

Enrico Arbarello, Igor Krichever, Giambattista Marini

Abstract. Given an abelian variety X and a point a ∈ X we denote by < a >
the closure of the subgroup of X generated by a. Let N = 2g − 1. We denote by
κ : X → κ(X) ⊂ P

N the map from X to its Kummer variety. We prove that an
indecomposable abelian variety X is the Jacobian of a curve if and only if there
exists a point a = 2b ∈ X \ {0} such that < a > is irreducible and κ(b) is a flex of
κ(X).

Introduction

Let us begin by briefly recalling a few aspects of the KP equation:

3uyy =
∂

∂x
[4ut − 6uux − uxxx] , u = u(x, y, t) .(1)

It admits the, so-called, zero-curvature representation ([ZS74, Dr74])[
L− ∂

∂y
, A− ∂

∂t

]
= 0 .(2)

where L and A are differential operators of the form

L =
∂2

∂x2
+ u ,

A =
∂3

∂x3
+

3
2
u

∂

∂x
+ w , w = w(x, y, t) .

(3)

Equation (2) is the compatibility condition for an over-determined system of the
linear equations: (

L− ∂

∂y

)
ψ = 0 ,(

A− ∂

∂t

)
ψ = 0 .

(4)

A solution ψ = ψ(x, y, t; ε) of equations (4) having the form

ψ(x, y, t; ε) = e
x
ε + y

ε2
+ t

ε3
(
1 + ξ1ε + ξ2ε

2 + . . .
)

.(5)
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is called the wave function. Here ε is a formal parameter and ξi = ξi(x, y, t).
In [Kri77a], [Kri77b] the general algebraic-geometrical construction of quasi-

periodic solutions of two-dimensional soliton equations of the KP type was pro-
posed. This construction is based on the concept of the Baker-Akhiezer function
ψ(x, y, t, Q), which is uniquely determined by its analytical properties on an
auxiliary Riemann surface C and a point Q ∈ C. The corresponding analytical
properties generalize the analytical properties of the Bloch functions of ordi-
nary finite-gap linear periodic Sturm-Liouville operators established by Novikov,
Dubrovin, Matveev and Its (see [DMN], [MNPZ] and references therein; see also
[L], [MM]).

Let C be an algebraic curve (smooth and connected) of positive genus g. Let
ϕ : C → J(C) be the Abel-Jacobi map with base point p0 ∈ C. In terms of a
local parameter ε around p0 and vanishing at p0, a local lifting to C

g of the map
1
2ϕ can be written as

ε �→ ζ(ε) = Uε + V ε2 + Wε3 + . . . , U, V, W ∈ C
g .(6)

Let (z1, . . . zg) be coordinates in C
g and set z = (z1, . . . zg). Let τ be the normal-

ized period matrix of C and consider the corresponding Riemann theta function

θ(z, τ) =
∑

n∈Zg

exp 2πi

(
1
2
nτ tn + ztn

)
.(7)

Then

u(x, y, t) = 2
∂2

∂x2
log θ(xU + yV + tW + z) + c(8)

is a solution of the KP equation (1), for any z ∈ C
g and c ∈ C. In this setting,

the wave function becomes the Baker-Akhiezer function

ψ(x, y, t; ε, z) = eΛ · θ(xU + yV + tW + ζ(ε) + z)
θ(xU + yV + tW + z)

,(9)

where

Λ =
x

ε
+

y

ε2
+

t

ε3
+ εΛ1 + ε2Λ2 + . . .(10)

with Λ1,Λ2, . . . are linear forms in x, y and t having as coefficients holomorphic
functions in z. Writing U = (U1, . . . , Ug), and similarly V and W , we introduce
the vector fields

D1 =
∑

Ui
∂

∂zi
, D2 =

∑
Vi

∂

∂zi
, D3 =

∑
Wi

∂

∂zi
.(11)

We now plug in the KP equation (1), the expression for u given in (8). We get
the equation

(12) D4
1θ · θ − 4D3

1θ ·D1θ + 3D2
1θ ·D2

1θ + 3D2
2θ · θ

− 3D2θ ·D2θ − 3D1D3θ · θ + 3D3θ ·D1θ − dθ · θ = 0 .

where θ = θ(z) and d ∈ C. This is the KP equation in Hirota bilinear form.
Now start from a general principally polarized abelian variety (X, Θ) where, as
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usual, Θ = {x ∈ X | θ(x) = 0}. Given constant vector fields D1 and D2 as in
(11), we may consider the subschemes

D1Θ = {x ∈ Θ | D1θ(x) = 0} ⊂ Θ ,

(D2
1 ±D2)Θ = {x ∈ D1Θ | (D2

1 ±D2)θ(x) = 0} ⊂ D1Θ .
(13)

Clearly the KP equation (12) implies a Weil-type relation

D1Θ ⊂ (D2
1 + D2)Θ ∪ (D2

1 −D2)Θ(14)

It is an easy matter [AD90] to show that this relation is in fact equivalent to the
KP equation (12). It is interesting to observe that in (14) only D1 and D2 are
involved, while D3 plays no role. Finally, we come to the interpretation of the

KP equation (12) in terms of the Kummer map

κ : X → |2Θ|∗ = P
N , N = 2g − 1 .(15)

To say that the image of a point b ∈ X, via the Kummer map is an inflectionary
point for the Kummer variety κ(X), is like saying that there is a line l ⊂ P

N such
that the preimage κ−1(l) contains the length 3 artinian subscheme b + Y ⊂ X
associated to some second order germ Y

Y : ε �→ ε2U + ε22V ⊂ X .(16)

We set

VY = {a = 2b ∈ X | b + Y ⊂ κ−1(l) for some line l ⊂ P
N} ⊂ X .(17)

Clearly VY ⊃ Y and for a general abelian variety X the subscheme VY could
simply coincide with Y . On the other hand, using Riemann’s bilinear relations
for second order theta-functions, one can see [AD90] that the KP equation (12)
is equivalent to the statement that VY contains a third order germ extending Y :

VY ⊃ Z : ε �→ ε2U + ε22V + ε32W ⊂ X .(18)

On the other hand, if X = J(C) is a Jacobian then VY is nothing but the
Abel-Jacobi image of C in J(C): much more than a tiny germ [Gun82], [Wel84].
As Novikov conjectured and Shiota proved [S] the KP equation characterizes
Jacobians among principally polarized abelian varieties. This theorem can be
stated in the following way.

Let (X, Θ) be an indecomposable, principally polarized abelian variety. Then
X is the Jacobian of a curve of genus g if and only if there exist vectors U , V ,
W in C

g (or equivalently constant vector fields D1, D2, D3 on X) such that one
of the following equivalent conditions holds.

(i) The KP equation (1) is satisfied with u as in (8),
(ii) The system (4) is satisfied with u as in (8), and ψ as in (9),
(iii) The KP equation in Hirota’s form (12) is satisfied,
(iv) The Weil relation (14) is satisfied,
(v) The Kummer variety of X admits a second order germ of inflectionary

tangent (i.e. (18) is satisfied).



112 ENRICO ARBARELLO, IGOR KRICHEVER, GIAMBATTISTA MARINI

Again, we notice that in (iv) the vector W (or equivalently the vector field D3)
makes no appearance. To state the result of the present paper we go back to

the system (4) and we consider only the first of the two equations:(
∂2

∂x2
− ∂

∂y
+ u

)
ψ = 0(19)

Given a ∈ X \ {0} we look for solutions of (19) given by

u = 2
∂2

∂x2
log θ(xU + yV + z) , ψ = eL · θ(xU + yV + a + z)

θ(xU + yV + z)
(20)

Where L = Ax + By. We next express equation (19) in terms of θ and we get
the bilinear equation

D2
1θ · θa + θ ·D2

1θa + D2θ · θa − θ ·D2θa − 2D1θ ·D1θa

+2AD1θa · θ − 2Aθa ·D1θ + (A2 −B)θ · θa = 0 ,
(21)

where θa(z) = θ(z + a). Changing D2 into D2 + AD1, we get

D2
1θ · θa + θ ·D2

1θa + D2θ · θa − θ ·D2θa − 2D1θ ·D1θa + cθ · θa = 0 .(22)

This equation looks much simpler than (12). Using the methods we mentioned
above, it is straightforward to show that this equation is equivalent to either of
the following Weil-type relations [Mar97]

Θ ∩ Θa ⊂ D1Θ ∪ D1Θa(23)

D1Θ ⊂ (D2
1 + D2)Θ ∪ Θa(24)

From the point of view of flexes of the Kummer variety the equation (22) simply
says that the there exists a point b ∈ X, with 2b = a �= 0, such that κ(b) is a
flex for the Kummer variety κ(X), or equivalently that

a = 2b ∈ VY(25)

It is natural to ask if these equivalent conditions are sufficient to characterize
Jacobians among all principally polarized abelian varieties. This question, in its
formulation (25), is a particular case of the so-called trisecant conjecture, first
formulated in [Wel84] (see also [D97]).

In the present paper we give an affirmative answer to this question under the
additional hypothesis that the closure < a > of the group generated by a is
irreducible.

Theorem 1. Let (X, Θ) be an indecomposable, principally polarized abelian va-
riety. Then X is the Jacobian of a curve of genus g if and only if there exist
vectors U �= 0, V in C

g (or equivalently constant vector fields D1 �= 0, D2, on X)
and a point a ∈ X \ {0}, with < a > irreducible, such that one of the following
equivalent conditions holds.

(a) The equation (19) is satisfied with u and ψ as in (20),
(b) The equation (22) is satisfied,
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(c) Either one of Weil-type relation (23),(24) is satisfied,
(d) There is a point b ∈ X, with 2b = a �= 0, such that κ(b) is a flex of the

Kummer variety κ(X) (i.e. (25) is satisfied).

Observe that the ”only if” part of this theorem is clear: suppose X = J(C)
is the Jacobian of a curve C, and take a general point b ∈ 1

2ϕ(C). Then, on the
one hand, the image point κ(b) is a flex of the Kummer variety κ(X) and, on
the other, < 2b >= X. In [Kri80] the result, in its formulation (a), is proved
under a different hypothesis: namely, that the vector U spans an elliptic curve.

1. D1-invariant flows

In this section we will explain a dichotomy that was first proved in [Mar97].
The dichotomy is the following.

Dichotomy 1. Let (X, Θ) be an indecomposable principally polarized abelian
variety. Assume that equation (22) holds for some a ∈ X \ {0}. Then either
the KP equation (12) holds or the subscheme D1Θ ⊂ Θ contains a D1-invariant
component.

In the setting of the KP equation, a similar dichotomy was implicit in the
work of Shiota [Shi86] and was also observed in [AD90]. In that setting the
dichotomy was: assume that the KP equation (12) holds. Then either the entire
KP hierarchy is satisfied or the subscheme D1Θ ⊂ Θ contains a D1-invariant
component.

Let us prove the above dichotomy. From now on we will write

P = D2
1θ · θa + θ ·D2

1θa + D2θ · θa − θ ·D2θa − 2D1θ ·D1θa + cθ · θa(26)

so that equation (22) reads:

P = 0 .(27)

Assume that equation (27) holds and that the KP equation (12) does not. In
view of the equivalence of (iii) and (iv) in the previous section we may assume
that there is an irreducible component W of the subscheme D1Θ ⊂ Θ ⊂ X, such
that

(D2
1 + D2)θ · (D2

1 −D2)θ|W �= 0(28)

Let p be a general point of the reduced scheme Wred. A theorem of Ein-Lazarsfeld
[EL97] asserts that the theta divisor of an indecomposable abelian variety is
smooth in codimension 1. Since Wred is a divisor in Θ the point p is a smooth
point of Θ. Hence there exist an irreducible element h, invertible elements β, γ,
elements α̃ β̃, γ̃, in the local ring OX,p and integers m ≥ 1, r, s such that the
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ideal of Wred at p is (h, θ), and such that

D1θ = hm + α̃θ ,

θa = βhs + β̃θ ,

D2θ = γhr + γ̃θ .

(29)

In particular the ideal of W is I(W ) = (hm, θ). Our goal is to prove that h
divides D1(h). In fact, in this case, h divides Dn

1 (h) for every n, so that the
D1-line through p is contained in W ⊂ D1Θ. We proceed by contradiction and
we assume that h does not divide D1(h).

The next remark is that either r = 0 or r ≥ m. For this, use (29) to write the
identity D1D2θ = D2D1θ, mod (hr, θ). We get rγD1(h)hr−1−mD2(h)hm−1 =
0, modulo (hm, θ). Since γ is invertible, m can not exceed r, unless r = 0. Now
write (28), modulo (hm, θ), in terms of the local expressions (29). As γ is
invertible, we get that, if m ≥ 2, then 2r < m. In conclusion, either r = 0 or
r ≥ m = 1.

Look at the equation (19), where u and ψ are as in (20). Consider a general
point ηU + yV + z in the theta divisor Θ. We have expansions

ψ =
α

x− η
+ β + γ(x− η) + δ(x− η)2 + . . . ,(30)

− 2
(x− η)2

+ v + w(x− η) + . . . .(31)

We look at η, α, β, γ, δ, v, w, as function of y and we may assume α �= 0. Write
equation (19) looking at the coefficients of (x− η)i, for i = −2,−1, 0. We get

α
·
η + 2β = 0 ,

− ·
α + αv − 2γ = 0 ,

−β + γ
·
η + βv + αw = 0 .

(32)

Taking the derivative of the first equation and using the last two equations, we
get

··
η = −2w .(33)

We compute w by recalling the expression of u given in (20), and
··
η by using the

identity θ(η(y)U + yV + z) ≡ 0. We then obtain the equation

−D2
1θ · (D2θ)2 + 2D1D2θ ·D2θ ·D1θ −D2

2θ · (D1θ)2 =

−(D2
1θ)

3 + 2D2
1θ ·D3

1θ ·D1θ −D4
1θ · (D1θ)2 ,

(34)

which is valid on Θ. We plug in (34) the local expressions given in (29). As we
already noticed, either r = 0, or r ≥ m = 1. In the first case we look at (34),
modulo I(W ) = (hm, θ) and we get(

γ2 −m2D1(h)2h2m−2
)
mhm−1D1(h) = 0 , mod (hm, θ) .(35)
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Since γ is invertible we must have m = 1. On the other hand, The hypothesis
(28) tells us that γ2 − D1(h)2 �= 0, modulo (hm, θ). It follows that h divides
D1(h), proving the dichotomy in this case. If r ≥ m = 1, we look at (34),
modulo (h, θ) and we get D1(h)3 = 0, modulo (h, θ), which again implies that h
divides D1(h).

2. The proof of the Theorem

We keep the notation of the preceding section. We assume that equation (22)
holds for the theta function of X. We consider the theta-divisor Θ ⊂ X and the
divisor D1Θ ⊂ Θ. We say that an irreducible component W of D1Θ is bad , if
(28) is satisfied. We consider the local expressions (29).

Lemma 1. Let X be an indecomposable principally polarized abelian variety.
Let a ∈ X \ {0}. Assume that (22) is satisfied. Then an irreducible component
W of D1Θ is bad if and only if

Wred is D1 - invariant , and 2r < m(36)

Moreover, if W is bad then s > m.

Proof. Suppose that W is bad. By the Dichotomy we know that Wred is D1-
invariant or, equivalently, that D1(h) ∈ (h, θ). Therefore Dn

1 θ ∈ (hm, θ) , ∀n ≥
0. From (28) we get: 2r < m. The opposite implication is trivial. Now suppose
that D1(h) ∈ (h, θ) and 2r < m. Computing P (θ) modulo (hmin{2m, m+s}, θ)
the only term that survives is D2θ · θa. On the other hand, this product is in
(hr+s, θ) and therefore r + s ≥ min{2m, m + s}. Since 2r < m, we obtain
r + s ≥ 2m. In particular s > m.

Lemma 2. Let X be an indecomposable principally polarized abelian variety.
Let a ∈ X \ {0}. Assume that < a > is irreducible and that (22) is satisfied. Let
W be a bad component of D1Θ. Then W is a-invariant.

Proof. We are going to use the following standard notation. Let Y be a
reduced, irreducible variety which is non-singular in codimension 1. Let Z be
an irreducible divisor in Y and let h be a generator for the ideal of Zred at a
general point p ∈ Zred. Let f be a regular function at p then we define the
symbol o[f ; Z; Y ] by the identity of ideals in the local ring Op, Y

(f) =
(
ho[f ; Z; Y ]

)
.(37)

Let now W be the set of bad irreducible components of D1Θ. We claim that if
W belongs to W, then W−a belongs to W as well. By (29) m = o[D1θ; W ; Θ],
s = o[θa; W ; Θ] and r = o[D2θ; W ; Θ]. We have 0 ≤ 2r < m < s and
o[D1θa; W ; Θ] = m < s. As a consequence,

o[D1θ; W−a; Θ] = o[D1θa; W ; Θa] = o[D1θa; W ; Θ] = m(38)
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and

o[D2θ; W−a; Θ] = o[D2θa; W ; Θa] = o[D2θa; W ; Θ] = r(39)

In view of Lemma 1, this proves that W−a ∈ W. Consider now the irreducible
abelian variety < a >. As a consequence we get:

⋃
n∈N

W−na ⊆ D1Θ. Thus,
taking the closure, we have: ⋃

x∈<a>

Wx ⊆ D1Θ .(40)

For dimensional reasons, we conclude that W is < a >-invariant.
Proof of Theorem 1. we will finish the proof of Theorem 1 by showing that if

X is indecomposable and if its theta function satisfies equation (22) with < a >
irreducible then D1Θ has no bad component. The basic result we need is the
following Lemma, which is reminiscent of Shiota’s Lemma B in [Shi86].

Lemma 3. Let (S,L) be a polarized abelian variety. Let Y be a 2-dimensional
disk with analytic coordinates t and λ and let θ be a non-zero section of OY ⊗
H0(S,L). Let a be a point of S \ {0}. Assume that < a > is irreducible. Let
D1 �= 0, D̃2 ∈ T0(S) and assume that S = 〈D1, a〉. Assume that

Pθ = D2
1θ · θa − 2D1θ ·D1θa + θ ·D2

1θa +

+
(
∂t + D̃2

)
θ · θa − θ · (∂t + D̃2

)
θa + c · θ · θa = 0 ,

(41)

θ(t, λ, x) =
∑

i,j≥0

θi,j(x) · tiλj , x ∈ S .(42)

Write:

θ(t, λ, x) = tνλρ [θν,ρ(x) + tα(t, x)] + λρ+1β(t, λ, x) ,(43)

where θν,ρ �≡ 0. Furthermore, assume ν ≥ 1. Then there exist local sections at
zero f ∈ OY and ψ ∈ OY ⊗H0(S,L) such that

θ(t, λ, x) = λρ · f(t, λ) · ψ(t, λ, x) ,(44)

where ψ(0, 0, ·) �≡ 0, f(0, 0) = 0 and f(·, 0) �≡ 0.

It is important to observe that the geometrical meaning of (44) is the the
following:

{θ(t, λ, x) = 0} ∩ {D1θ(t, λ, x) = 0} ⊃ {λρ · f(t, λ) = 0} .(45)

We assume this Lemma for the time being and we continue the proof of The-
orem 1. We proceed by contradiction. We then suppose that a bad component
W of D1Θ exists. Let S be the Zariski closure of the subgroup generated by the
D1-flow and the point a. We shall write S = 〈D1, a〉 and we set L = O(Θ)|S .
Since D1 �= 0 we have S �= 0 on the other hand, by Lemma 2, W contains a
translate of S therefore S �= X. Note that Wred is T0(S)-invariant. Let B be
the complement of S in X relative to the polarization Θ. In the sequel we shall
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work on B × S via the natural isogeny π : B × S → X. We shall also write θ
instead of π�θ while working on B × S. Our abuse of notation reflect the fact
that θ and π�θ coincide as theta functions on the common universal cover of X
and B × S. Let us fix a general point p of Wred. Clearly, up a translation of Θ,
we are free to assume p = 0 ∈ X. Let R = (W ∩B)red. Observe that Wred is the
T0(S)-span of R, that is: Wred = R+ S. Also observe that R has codimension
2 in B.

Let us decompose D2 as D̃2 + D2, where D̃2 ∈ T0(S) and D2 ∈ T0(B). Since
t�xθ ∈ (hm, θ) ,∀x ∈ S, then D̃2θ ∈ (hm, θ). On the other hand D2θ �∈ (hm, θ).
It follows that D2 �= 0. Let L be the analytic germ at zero of the D2-integral
line in B through zero, let C be the germ at 0 of a smooth curve in B meeting
L transversally only at 0, and let Y be the surface C + L in B. Let λ be a
parameter on C vanishing at 0 and let t be the coordinate on L, vanishing at
zero, with ∂t = D2. Thus λ and t are parameters on Y . Set Ω = Y ×S ⊂ B×S.
On Ω we write

θ(t, λ, x) =
∑

i,j≥0

ti · λj · θi,j(x) , x ∈ S .(46)

As B and S are complementary with respect to Θ, the θ(t, λ, ·)’s, as well as their
derivatives θi,j = 1

i!·j!
(

∂j

∂λj
∂i

∂ti θ
)

(0, 0, ·) , belong to H0(S, Θ|S).
Our analysis will distinguish two cases corresponding to whether the variety

R is D2-invariant, or not.
Let us first assume that R is not D2-invariant. In this case, to reach a

contradiction, our gaol will be twofold. On the one hand, we will choose C in
such a way that

Ω ∩ π−1(Wred) = {λ = t = 0} × S .(47)

On the other, we will show that θ(t, λ, x) satisfies the hypotheses of Lemma 3
with ρ = 0:

θ(t, λ, x) = f(t, λ) · ψ(t, λ, x) ,

where f(0, 0) = 0. The conclusion will be that

Ω ∩ π−1W = Ω ∩ {θ = 0} ∩ {D1θ = 0} ⊇ Ω ∩ {f = 0} .(48)

But since f(0, 0) = 0, it would follow that Ω ∩ π−1W has codimension 1 in Ω
contradicting (47).

To achieve our goals, we choose C in such a way that it meets R transversally
only at 0 and that ∂λ does not belong to 〈T0(R), D2〉 ∪ T0(Θ). This is possible
because R has codimension 2 in B. Note that the locus {t = 0} which is C × S,
is transverse to Θ. As a consequence, we are free to assume that the function t is
the restriction h|Y ×S . We have Y ∩R = {λ = t = 0}. Thus (47) holds. Observe
now, that the two restrictions Θ|Y ×S and {t = 0}|Ω, meet along Ω ∩ π−1(Wred)
and they are smooth at the general point of Ω ∩ π−1(Wred). It follows that
θi,0|S �≡ 0 for some i. On the other hand, since Θ ⊃ {0} × S, we must have
θ0,0|S = 0. We can therefore apply lemma 3 with ρ = 0.
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Let us now assume that R is D2-invariant. In this case we will choose C in
such a way that

Ω ∩ π−1(Wred) = {λ = 0} .(49)

At the same time we will prove that, also in this case, Lemma 3 applies so that:

θ(t, λ, x) = λρ · f(t, λ) · ψ(t, λ, x) ,

so that f divides both θ|Ω and D1θ|Ω. It would then follow that

Ω ∩ π−1(Wred) ⊃ Ω ∩ {f = 0} .(50)

We would also have f(0, 0) = 0 and f(·, 0) �≡ 0. But then (51) would tell us that
the locus Ω ∩ π−1(Wred) contains, locally at p, a component which is not the
component {λ = 0} contradicting (49).

To follow this line of reasoning, we choose C in such a way that it is contained
in Θ and meets R transversally only at 0. Since the loci {h = 0} and Θ are
transverse and C meets R transversally at 0, we may assume that λ is the
restriction of h to C × {s} ∼= C. Thus (49) holds. Now write

θ(t, λ, x) = λρ ·
∑

i

ti · θi,ρ(x) +
∑

i, j>ρ

ti · λj · θi,j(x) ,(51)

The hypotheses of Lemma 3 require us to show that θ0,ρ(x) ≡ 0. Since S is
generated by a and by the flow of D1, it suffices to prove that Di

1θ0,ρ(na) = 0
for all i and n in N. Now, on one hand we have

Di
1θna(0, λ, 0) = λρ ·Di

1θ0,ρ(na) , mod λρ+1 .(52)

On the other hand, with the same notation from (29) and lemma 1, we can write
Di

1θna = δhm + δ̃θ, furthermore, since D2 does not involve λ we have that r ≥ ρ,
so that, again in view of lemma 1, we have m > ρ. Working modulo λρ+1 we
get Di

1θna(0, λ, 0) = (δhm + δ̃θ)|t=x=0 = δ̃(0, λ, 0)θ(0, λ, 0) = 0 , where the last
equality holds since C is contained in Θ. This proves that Di

1θ0,ρ(na) = 0 as
required.

This ends the proof of Theorem 1. It remains to prove Lemma 3.

Proof of Lemma 3. Set ω(t, x) =
∑

i≥ν θi,ρ(x) · ti−ν so that

θ = λρtν · ω , mod (λρ+1) ,

ω(0, x) = θν,ρ(x) �≡ 0 .
(53)

The reader is advised to follow the computations by setting ν = 1. The nota-
tion needed for the general case, somewhat overwhelms the reasoning. We first
construct the function f(t, λ) and the section ψ(t, λ, x) as formal power series in
t and λ. To this end, we look for constants and sections

ci,j ∈ C , 0 ≤ i ≤ ν − 1 , j ≥ 1 , gi,j(x) ∈ H0(S,L) , i ≥ ν , j ≥ 1 ,(54)
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such that

θ(t, λ, x) = λρ ·

tν +

∑
j≥1

fj(t) · λj


 ·


ω(t, x) +

∑
j≥1

ωj(t, x) · λj


 ,(55)

where, for j ≥ 1, we define

fj(t) =
ν−1∑
i=0

ci,j · ti , ωj(t, x) =
∑
i≥ν

gi,j(x) · ti−ν .(56)

Define P̃ (r, s) = 1
2 [P (r + s) − P (r) − P (s)]. It is straightforward to verify the

following properties:

P (r) = P̃ (r, r) , and P̃ , is a symmetric C[λ]− bilinear operator ,(57)

P̃ (g · r, g · s) = g2 · P̃ (r, s) , for g = g(t, λ) not depending on x ,(58)

P̃ (ti · r, tj · s) = ti+j · P̃ (r, s) +
1
2
(i− j)ti+j−1 · (r · su − ru · s) .(59)

In particular, P (λρ · r) = λ2ρ · P (r) and therefore we are free to assume ρ = 0.
Furthermore, writing θ = tν · ω + λθ′ one has

0 = P (θ) = t2ν P̃ (ω, ω) , mod (λ) .(60)

As a consequence,

P (ω(t, x)) = 0 .(61)

We now proceed by induction. Let k be a positive integer, and assume that we
found constants ci,j , for all 1 ≤ j ≤ k − 1, i ≤ ν − 1, and sections gi,j(x), for all
1 ≤ j ≤ k − 1, i ≥ ν, such that (55) holds modulo (λk). Set

g(t, λ) = tν +
k−1∑
j=1

fj(t) · λj , φ(t, λ, x) = ω +
k−1∑
j=1

ωj(t, x) · λj ,(62)

and define ω′(t, x) by

θ = g · φ + λk · ω′ , mod (λk+1) .(63)

We need to prove that there exist constants ci,k , i ≤ ν−1, and sections gi,k , i ≥
ν, such that

ω′(t, x) =
ν−1∑
i=0

ci,k · ti · ω(t, x) +
∑
i≥ν

gi,k(x) · ti .(64)
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In fact, defining fk, ωk as (56) requires, it is clear that (55) holds modulo (λk+1).
Working modulo (λk+1) one has

0 = P (θ) = g2 · P (φ) + 2λkP̃ (tν · ω, ω′) , mod (λk+1) .(65)

In particular we get g2 ·P (φ) = 0, modulo (λk). Since g2(t, λ) = t2ν , modulo (λ),
is non-zero, we get P (φ) = 0, modulo (λk). Since g2 ·P (φ)+2λkP̃ (tν ·ω, ω′) = 0,
modulo (λk+1), and (again) g2(t, λ) = t2ν modulo (λ), we get

P̃ (tν · ω, ω′) = 0 , mod (t2ν) .(66)

To prove (64) we now proceed by induction on i. We assume there exists i0,
satisfying 0 ≤ i0 ≤ ν − 1, such that

ω′(t, x) =
i0−1∑
i=0

ci,k · ti · ω(t, x) + η(x) · ti0 , mod (ti0+1) ,(67)

and we have to prove that η(x) is a multiple of ω(t, x) modulo (t). Equivalently,
we have to prove that η(x) is a multiple of ω(0, x). Since P̃ (ω, ω) = P (ω) = 0,
(see (61)), applying (59) we get P̃ (tν · ω, ti · ω) = 0. Now, substituting (67) in
(66) and using again (59), we get the following equality modulo (tν+i0):

0 =P̃

(
tν · ω ,

i0−1∑
i=0

ci,k · ω · ti + η(x) · ti0
)

=(ν − i0) · tν+i0−1 · ω(0, x) · ω(0, x− a) ·
(

η(x)
ω(0, x)

− η(x− a)
ω(0, x− a)

)
.

(68)

It follows that the meromorphic function on S

ci0,k(x) =
η(x)

ω(0, x)
(69)

is invariant under translation by a. We want to show that ci0,k(x) is constant.
We proceed by contradiction. Suppose it is not. As ci0,k(x) is a-invariant, its
poles are a-invariant, so that the zero locus of ω(0, x) contains an a-invariant
divisor U . Since < a > is irreducible we may well assume that U is irreducible.
We want to show that

Dα
1 ω|U = 0 , ∀α ∈ N .(70)

We assume (70) and we postpone for the moment its proof. As S is generated
by a and the D1 flow, (70) gives ω(0, x) ≡ 0. This is a contradiction. Thus,
η(x) = cj0,k · ω(0, x), so that ω′(t, x) =

∑i0
i=0 ci,k · ti · ω(t, x), modulo (ti0+1).

At this stage both f and ψ are constructed as formal power series. Now
we prove that they are in fact regular. As ψ(0, 0, ·) �≡ 0 we are allowed to
fix a point x0 such that ψ(0, 0, x0) �= 0 and consider the formal power series
q(t, λ) defined by ψ(t, λ, x0) · q(t, λ) = 1. Set f̃(t, λ) = f(t, λ) · ψ(t, λ, x0) and
ψ̃(t, λ, x) = ψ(t, λ, x) · q(t, λ). It is clear that θ(t, λ, x) = λρ · f̃(t, λ) · ψ̃(t, λ, x).
As ψ̃(t, λ, x0) = 1 and θ(t, λ, x0) are both convergent, f̃(t, λ) is convergent as
well. But now the convergence of ψ̃(t, λ, x) follows from the one of θ(t, λ, x) and
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f̃(t, λ). Note that tν divides f̃(t, 0) = 0 , that f̃(t, 0) �≡ 0 and that ψ̃(0, 0, ·) �≡ 0.
Thus the properties we need hold for f̃ and ψ̃.

To finish the proof of Lemma 3, it now remains to prove (70). By hypothesis
ω(t, x) ∈ O∆ ×H0(L, S), where ∆ is a 1-dimensional disc centered at the origin
and with coordinate t. Also ω satisfies

Pω = D2
1ω · ωa − 2D1ω ·D1ωa + ω ·D2

1ωa +
+ D2ω · ωa − ω ·D2ωa + c · ω · ωa = 0 ,

(71)

where D2 = ∂t + D̃2, while D1 and D̃2 are constant vector fields on S. Moreover
there is an irreducible a-invariant divisor U in {0} × S on which ω vanishes.
Under these hypotheses we want to prove (70). We proceed by contradiction.
We assume that there exists b > 0 such that Db

1ω|U �≡ 0. Let

βγ = min{β | Dβ
1 Dγ

2ω|U �≡ 0} ,

w = min{βγ + 2γ} ,

σ = max{γ | βγ + 2γ = w} ,

(72)

Observe that w ≤ β0 ≤ b <∞, σ ≤ 1
2w <∞, w = βσ + 2σ and w ≤ βγ + 2γ

for all γ. As ω|U ≡ 0 we have β0 > 0. Moreover Dβ
1 Dγ

2ω|U = 0, for all β < βγ .
It follows that

if β + 2γ < w , then Dβ
1 Dγ

2ω|U = 0 ,

if γ > σ and β + 2γ ≤ w , then Dβ
1 Dγ

2ω|U = 0 .
(73)

Let now
w̃ = min{βγ + 2γ | γ < σ} ,

σ̃ = max{γ | γ < σ, βγ + 2γ = w̃} .
(74)

Since w = σ + βσ ≤ w̃ = σ̃ + βσ̃, we have βσ̃ ≥ 2. Then,

0 = Dβσ̃−2
1 Dσ̃+σ

2 P ω |U
=

(
σ̃ + σ

σ

) (
Dβσ̃

1 Dσ̃
2 ω ·Dσ

2 ωa + Dβσ̃

1 Dσ̃
2 ω ·Dσ

2 ωa

)
|U .

(75)

Now, observe that Dβ′
1 Dγ′

2 ω|U ∈ H0(U,L), provided that lower order derivatives
vanish on U , i.e.: Dβ

1 Dγ
2ω|U = 0 for β ≤ β′, γ ≤ γ′, β + γ < β′ + γ′. In

particular,

Dβσ̃

1 Dσ̃
2 ω|U , Dσ

2 ω|U ∈ H0(U,L) .(76)

On the other hand, this two sections are non-trivial, therefore we have on U a non

zero meromorphic function f := D
βσ̃
1 Dσ̃

2
Dσ

2 ω |U which, by (75), satisfies f = −fa.
As < a > is irreducible and of positive dimension, there exists a sequence of odd
multiples of a converging to the origin of < a >. As U is < a >-invariant, for
general x ∈ U there exists a sequence of points xi converging to x and such that
f(x) = −f(xi). This gives f = 0 which is a contradiction.
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3. Final remarks

We end this note by connecting equation (22), or better (21), with the KP
hierarchy. As is well known (see for instance formula (3.29) in [AD90]) the KP
hierarchy for the theta function can be written in the form

ε
(
D2

1θ · θ2ζ(ε) + θ ·D2
1θ2ζ(ε) + D2θ · θ2ζ(ε) − θ ·D2θ2ζ(ε) − 2D1θ ·D1θ2ζ(ε)

)
+D1θ2ζ(ε) · θ − θ2ζ(ε) ·D1θ + d(ε)θ · θ2ζ(ε) = 0 ,

(77)

where

ζ(ε) = εU + ε2V + ε3W + . . . , d(ε) = d3ε
3 + d4ε

4 + . . .(78)

The similarity of this equation with (21) is obvious. In fact write (21) with

a = a(ε) = 2ζ(ε)(79)

A = A(ε) =
1
ε

+ ε2(a0 + a1ε + . . . )(80)

B(ε) =
1
ε2

+ ε(b0 + b1ε + . . . )(81)

with 2a0 = b0. Then change parameter from ε to 1
A , multiply the resulting

equation by this parameter to get exactly the KP hierarchy (77).
In view of the equivalence of (19) and (21), the KP hierarchy can also be

expressed by saying that equation (19) holds, where now

u = 2 log
∂2

∂x2
θ(xU + yV + z) , ψ = eL · θ(xU + yV + a(ε) + z)

θ(xU + yV + z)
,(82)

and L = A(ε)x + B(ε)y and a(ε), A(ε) and B(ε) as in (79), (80), and (81).
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