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A Characterization of Prym Varieties

I. Krichever

We prove that Prym varieties of algebraic curves with two smooth fixed points of involu-

tion are exactly the indecomposable principally polarized abelian varieties whose theta-

functions provide explicit formulae for integrable 2D Schrödinger equation.

1 Introduction

The problem of the characterization of the Prymians among principally polarized abelian

varieties is almost as old as the famous Riemann-Schottky problem on the characteriza-

tion of the Jacobian locus. Until now, despite all the efforts, it has remained unsolved.

Analogs of quite a few geometrical characterizations of the Jacobians for the case of

Prym varieties are either unproved or known to be invalid (see reviews [19, 22] and refer-

ences therein).

The first effective solution of the Riemann-Schottky problem was obtained by

Shiota [17], who proved Novikov’s conjecture: the Jacobians of curves are exactly the

indecomposable principally polarized abelian varieties whose theta-functions provide

explicit solutions of the KP equation. Attempts to prove the analog of Novikov’s conjec-

ture for the case of Prym varieties were made in [3, 18, 20]. In [20] it was shown that

Novikov-Veselov (NV) equation provides local solution of the characterization problem.

In [3, 18] the characterizations of the Prym varieties in terms of BKP and NV equations

were proved only under certain additional assumptions. Note that in [3] a counter exam-

ple showing that a BKP equation has theta-functional solutions which do not correspond

to the Prym varieties was constructed.
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2 I. Krichever

The goal of this work is to solve the characterization problem of the Prym vari-

eties using the new approach proposed in the author’s previous work [12], where it was

shown that a KP equation contains excessive information and the Jacobian locus can be

characterized only in terms of one of its auxiliary linear equations.

Theorem 1.1 [12]. An indecomposable symmetric matrix B with positive definite imag-

inary part is the matrix of the b-periods of normalized holomorphic differentials on a

curve of genus g if and only if there exist g-dimensional vectors U �= 0, V,A such that the

equation

(
∂y − ∂2

x + u
)
ψ = 0 (1.1)

is satisfied with

u = −2∂2
x ln θ(Ux + Vy + Z), ψ =

θ(A +Ux + Vy + Z)
θ(Ux + Vy + Z)

epx+Ey, (1.2)

where p, E are constants. �

Here θ(z) = θ(z | B), z = (z1, z2, . . . , zg) is the Riemann theta-function, defined by

the formula

θ(z) =
∑

m∈Zg

e2πi(z,m)+πi(Bm,m), (z,m) = m1z1 + · · · +mgzg. (1.3)

The addition formula for the Riemann theta-function directly implies that (1.1) with u

and ψ as in (1.2) is in fact equivalent to the system of equations

∂VΘ[ε, 0]
(
A

2

)
−∂2

UΘ[ε, 0]
(
A

2

)
−2p∂UΘ[ε, 0]

(
A

2

)
+
(
E − p2

)
Θ[ε, 0]

(
A

2

)
=0, (1.4)

where Θ[ε, 0](z) = θ[ε, 0](2z | 2B) are level-two theta-functions with half-integer charac-

teristics ε ∈ (1/2)Zg
2 .

The characterization of the Jacobian locus given by Theorem 1.1 is stronger than

that given in terms of the KP equation (see details in [2], where Theorem 1.1 was proved

under the assumption that the closure 〈A〉 of the subgroup of X generated by A is irre-

ducible). In terms of the Kummer map,

κ : Z ∈ X �−→ {Θ[ε1, 0
]
(Z) : · · · : Θ

[
ε2g , 0

]
(Z)
} ∈ CP

2g−1, (1.5)

the statement of Theorem 1.1 is equivalent to the characterization of the Jacobians via

flexes of the Kummer varieties, which is a particular case of the trisecant conjecture, first

formulated in [24].
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A Characterization of Prym Varieties 3

The Prym variety of a smooth algebraic curve Γ with involution σ : Γ �→ Γ is

defined as the odd subspace P(Γ) ⊂ J(Γ) of the Jacobian with respect to the involution

σ∗ : J(Γ) �→ J(Γ) induced by σ. It is principally polarized only if σ has no fixed points or

has two fixed points P±. In this work we consider only the second case.

Let Γ be a smooth algebraic curve with involution σ having two fixed points P±.

From the Riemann-Hurwitz formula it follows that if the genus of the factor-curve Γ0 =

Γ/σ equals g, then the genus Γ is equal to 2g. It is known that on Γ there exists a basis of

cycles ai, bi with the canonical matrix of intersections ai · aj = bi · bj = 0, ai · bj = δij,

1 ≤ i, j ≤ 2g, such that σ(ak) = −ag+k, σ(bk) = −bg+k, 1 ≤ k ≤ g. If dωi are normal-

ized holomorphic differentials on Γ , then the differential duk = dωk + dωg+k are odd

σ∗(duk) = −duk. By definition they are called the normalized holomorphic Prym differ-

entials. The matrix of their b-periods,

Πkj =

∮

bk

duj, 1 ≤ k, j ≤ g, (1.6)

is symmetric, has a positive definite imaginary part, and defines the Prym theta-function

θPr = θ(z | Π).

Before presenting our main result it is necessary to mention that the Prym vari-

ety remains nondegenerate (compact) under certain degenerations of the curve. No char-

acterization of Prym varieties given in terms of equations for the matrix Π of periods

of the Prym differentials can single out the possibility of such degenerations. An alge-

braic curve Γ that is smooth outside fixed points P+, P−,Q1,Q2, . . . , Qk of its involution

σ, where P± are smooth and Qk are simple double points at which σ does not permute

branches of Γ , will be denoted below by {Γ, σ, P±,Qk}.

Theorem 1.2. An indecomposable principally polarized abelian variety (X, θ) is the Prym

variety of a curve of type {Γ, σ, P±,Qk}, if and only if there exist g-dimensional vectors

U �= 0, V �= 0,A such that one of the following equivalent conditions holds.

(A) The equation

(
∂x∂t + u

)
ψ = 0 (1.7)

is satisfied with

u = 2∂2
xt ln θ(Ux + Vt + Z) + C, ψ =

θ(A +Ux + Vt + Z)
θ(Ux + Vt + Z)

epx+Et, (1.8)

where C, p, E are constants.
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4 I. Krichever

(B) The equations

∂2
UVΘ[ε, 0]

(
A

2

)
+ p∂VΘ[ε, 0]

(
A

2

)
+ E∂UΘ[ε, 0]

(
A

2

)
+ CΘ[ε, 0]

(
A

2

)
= 0 (1.9)

are satisfied for all ε ∈ (1/2)Zg
2 .

(C) The equation

∂Uθ∂Vθ
(
∂2

U∂
2
Vθ
)

+ ∂2
Uθ∂

2
Vθ
(
∂U∂Vθ

)
− ∂2

Uθ∂Vθ
(
∂U∂

2
Vθ
)

− ∂Uθ∂
2
Vθ
(
∂2

U∂Vθ
)∣∣

Θ
= 0

(1.10)

is valid on the theta-divisor {Z ∈ Θ : θ(Z) = 0}. �

The equivalence of (A) and (B) is a direct corollary of the addition formula for

the theta-function. The “if” part of (A) follows from the construction of integrable 2D

Schrödinger operators given in [23]. This construction is presented in the next section.

The statement (C) is actually what we use for the proof of the theorem. It is

stronger than (A). The implication (A)→ (C) does not require the explicit theta-

functional form of ψ. It is enough to require only that (1.7) with u as in (1.8) has local

meromorphic in x (or t) solutions which are holomorphic outside the divisor θ(Ux+Vt+

Z) = 0.

To put it more precisely, let us consider a function τ(x, t) which is a holomorphic

function of x in some domain where the equation τ(x, t) = 0 has a simple root η(t). It

turns out that (1.7) with the potential u = 2∂2
xt ln τ + C, where C is a constant, has a

meromorphic solution inD if this root satisfies the equation

η̈v − η̇v̇ + 2η̇2w = 0, (1.11)

where v = v(t),w = w(t) are the first coefficients of the Laurent expansion of u at η,

u(x, t) =
2η̇

(x − η)2
+ v +w(x − η) + · · · , (1.12)

and “dots” stand for t-derivatives. Straightforward but tedious computations with ex-

pansion of θ at the generic points of its divisor Θ show that (1.11) in the case when

τ = θ(Ux + Vt + Z) is equivalent to (1.10).

Note that (1.11) is analogous to the equations derived in [2] and called in [12] the

formal Calogero-Moser system. In a similar way, if we represent an entire function τ as a

product:

τ(x, t) = c(t)
∏

i

(
x − xi(t)

)
, (1.13)
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A Characterization of Prym Varieties 5

then (1.11) takes the form

∑

j �=i

[
ẍiẋj − ẋiẍj
(
xi − xj

)2 −
2ẋiẋj

(
ẋi + ẋj

)

(
xi − xj

)3

]

= 0. (1.14)

At the moment the only reason for presenting (1.14) is to show that in the case when τ

is a rational, trigonometric, or elliptic polynomial the system (1.11) gives well-defined

equations of motion for a multiparticle system.1

At the beginning of Section 3, we derive (1.11) and show that (1.10) is sufficient

for the local existence of wave solutions of (1.7) having the form

ψ±(x, t, k) = ekt±

(

1 +

∞∑

s=1

ξ±s (x, t)k−s

)

, t+ = x, t− = t, (1.15)

and such that

ξ±s =
τ±s
(
Ux + Vt + Z, t∓

)

θ(Ux + Vt + Z)
, Z /∈ Σ±, (1.16)

where τ±s (Z, t∓), as a function of Z, is holomorphic in some open domain in C
g. Here and

below Σ± ⊂ Θ are subsets of the theta-divisor invariant under the shifts along constant

vector fields ∂U or ∂V , respectively.

The coefficients ξ±s of the wave solutions are defined recurrently by the equations

∂∓ξ±s+1 = −∂xtξs −uξs. The local existence of meromorphic solutions requires vanishing

of the residues of the nonhomogeneous terms, that is controlled by (1.11). At the local

level the main problem is to find the translational invariant normalization of ξ±s which

defines wave solutions uniquely up to an (x, t)-independent factor.

Following the ideas of [12, 14], we fix such a normalization using extensions of

ξ±s along the affine subspaces Z + C
d
±, where C

d
± are universal covers of the abelian sub-

varieties Y± ⊂ X which are closures of the subgroups Ux and Vt in X, respectively. The

corresponding wave solutions are called λ-periodic.

In the last section, we show that for each Z /∈ Σ± a local λ-periodic wave solution

is the common eigenfunction of a commutative ring AZ
± of ordinary differential opera-

tors. The coefficients of these operators are independent of ambiguities in the construc-

tion of ψ. The theory of commuting differential operators [4, 5, 8, 9] implies then that the

correspondence Z �→ AZ
± defines a map j of X \ Σ± into the space Pic(Γ) of torsion-free

1A. Zotov noticed that (1.14) is equivalent to the equations ẍi = 2
∑

j �=i ẋiẋj/(xi − xj) and, therefore, can be

regarded as a limiting case of the Ruijesenaars-Schneider system.
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6 I. Krichever

rang 1 sheafs F on Z-independent spectral curve of AZ. That allows us to make the next

crucial step and prove the global existence of the wave function. The global existence of

the wave function implies that for the generic Z /∈ Σ± the orbit of AZ under the NV flows

defines an imbedding iZ of the Prym variety P(Γ) of the spectral curve into X. Therefore,

the Prym variety is compact. That implies the explicit description of possible types of

singular points of Γ . The final step in the proof of the main theorem is to show that there

are not singular points of the multiplicity bigger than 2.

2 Integrable 2D Schrödinger operators

In this section, we present necessary facts from the theory of integrable 2D Schrödinger

equations and related hierarchies.

Let Γ be a smooth algebraic curve of genus g with fixed local coordinates k−1
± at

punctures P±, and let t(±) = {t
(±)
i } be finite sets of complex variables. Then according

to the general construction of the multipoint Baker-Akhiezer functions [8, 9] for each

nonspecial effective divisor D = {γ1, . . . , γg} of degree g, there exists a unique function

ψ0(t(+), t(−), P), which, as a function of the variable P ∈ Γ , is meromorphic on Γ \P±, where

it has poles at γs of degree not greater than the multiplicity of γs in D. In the neighbor-

hood of P± the function ψ0 has the form

ψ0 = e
∑

i kit
(±)
i

( ∞∑

s=0

ξ±s (t)k−s

)

, ξ+
0 = 1, (2.1)

where k = k−1
± (P) and t = {t(+), t(−)}.

The uniqueness of ψ0 implies that for each positive integer n there exists unique

differential operators B±
n in the variables t±1 :

B±
n = ∂n

± +

n−1∑

i=0

v±n,i(t)∂
n−i
± , ∂± =

∂

∂t±1
, (2.2)

such that

(
∂t±

n
− B±

n

)
ψ0 = 0. (2.3)

Equations (2.3) directly imply

[
∂t±

n
− B±

n , ∂t±
m

− B±
m

]
= 0. (2.4)

In other words, the operators B±
n satisfy zero-curvature equations which define two

copies of the KP hierarchy with respect to the times t±n .
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A Characterization of Prym Varieties 7

The two-point Baker-Akhiezer function with separated variables was introduced

in [7] where it was proved that in addition to (2.3) it satisfies the equation

Hψ0 =
(
∂+∂− +w∂+ + u

)
ψ0 = 0, (2.5)

where

w = −∂− lnξ−
0 , u = −∂+∂− lnξ+

1 . (2.6)

The operator H defined in the left-hand side of (2.5) “couples” two copies of the KP hier-

archy corresponding to the punctures P± via the equation

[
∂t+

n
− B+

n, ∂t−
m

− B−
m

]
= DnmH. (2.7)

The sense of (2.7) is as follows. Each differential operator D in the two variables t±1 can

be uniquely represented in the form

D = DH +D+ +D−, (2.8)

where D± are ordinary differential operators in the variables t±1 , respectively. Equation

(2.7) is just the statement that the second and the third terms in the corresponding repre-

sentation of the left-hand side of (2.7) are equal to zero. This implies n+m− 1 equations

on n +m − 1 unknown functions (the coefficients of B+
n and B−

m). Therefore, the operator

equation (2.8) is equivalent to the well-defined system of nonlinear partial differential

equations.

Explicit theta-functional formulae for the solutions of these equations follow

from the theta-functional formula for the Baker-Akhiezer function

ψ0 =

θ
(
A(P) +

∑

i

(
U+

i t
+
i +U−

i t
−
i

)
+ Z

)
θ
(
A
(
P+

)
+ Z

)

θ
(
A
(
P+

)
+
∑

i

(
U+

i t
+
i +U−

i t
−
i

)
+ Z

)
θ
(
A(P) + Z

)e
∑

i(t+
i Ω+

i (P)+t−
i Ω−

i (P)). (2.9)

Here,

(a) θ(z) = θ(z | B) is the Riemann theta-function defined by the matrix B of b-

periods of normalized holomorphic differentials dωk on Γ ;

(b) Ω±
i (P) =

∫P
dΩ±

i is the abelian integral corresponding to the normalized,
∮

ak
dΩ±

i = 0,meromorphic differential on Γ with the only pole of the form

dΩ±
i = dki

±
(
1 +O

(
k−i−1
±

))
(2.10)

at the puncture P±;

 at U
niversity of N

orthern C
olorado on A

pril 20, 2011
im

rn.oxfordjournals.org
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


8 I. Krichever

(c) 2πiU±
j is a vector of b-periods of the differential dΩ±

j with the coordinates

U±
j,k =

1

2πi

∮

bk

dΩ±
j ; (2.11)

(d) A(P) is the Abel transform, that is, it is a vector with the coordinates Ak(P) =
∫P
dωk;

(e) Z is an arbitrary vector (it corresponds to the divisor of poles of Baker-

Akhiezer function).

Taking the evaluation at P− and the expansion at P+ of the regular factor in (2.9),

one gets theta-functional formulae for the coefficients (2.6) of the corresponding 2D

Schrödinger operator:

w = −∂− ln

⎛

⎜
⎜
⎝

θ
(
A
(
P−

)
+
∑

i

(
U+

i t
+
i +U−

i t
−
i

)
+ Z

)

θ
(
A
(
P+

)
+
∑

i

(
U+

i t
+
i +U−

i t
−
i

)
+ Z

)

⎞

⎟
⎟
⎠ , (2.12)

u = ∂+∂− ln

(

θ

(

A
(
P+

)
+
∑

i

(
U+

i t
+
i +U−

i t
−
i

)
+ Z

))

+ C, (2.13)

where the constant C is equal to C = resP+
Ω−dΩ+. Note, that the second factors in the

numerator and denominator of the formula (2.9) are t-independent. Therefore, the func-

tion ψ given by the following formula:

ψ =

θ
(
A(P) +

∑

i

(
U+

i t
+
i +U−

i t
−
i

)
+ Z

)

θ
(
A
(
P+

)
+
∑

i

(
U+

i t
+
i +U−

i t
−
i

)
+ Z

)e
∑

i(t+
i Ω+

i (P)+t−
i Ω−

i (P)) (2.14)

is a solution of the same linear equations as ψ0. Below ψ given by (2.14) will be called

nonnormalized Baker-Akhiezer function.

Potential operators. From now on,we will consider only potential Schrödinger operators

H = ∂+∂− + u. The reduction of the above described algebraic-geometrical construction

to the potential case was found in [23]. The corresponding algebraic-geometrical data are

singled out by the following constraints:

(i) the curve Γ should be a curve with involution σ : Γ → Γ which has two fixed

points P±;

(ii) the equivalence class [D] ∈ J(Γ) of the divisorD should satisfy the equation

[D] +
[
σ(D)

]
= K + P+ + P− ∈ J(Γ), (2.15)
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A Characterization of Prym Varieties 9

where K is the canonical class, that is, the equivalence class of the zero-divisor of a holo-

morphic differential on Γ .

Equation (2.15) is equivalent to the condition that the divisorD+σ(D) is the zero

divisor of a meromorphic differential dΩ on Γ with simple poles at the punctures P±. The

differential dΩ is even with respect to the involution and descends to a meromorphic

differential on the factor-curve Γ0 = Γ/σ. The projection π : Γ �→ Γ0 = Γ/σ represents Γ as a

two-sheet covering of Γ0 with 2 branch points P±. In this realization the involution σ is a

permutation of the sheets. For P ∈ Γ we denote the point σ(P) by Pσ. From the Riemann-

Hurwitz formula it follows that the genus g of Γ equals g = 2g0, where g0 is the genus

of Γ0. Note that the divisors that satisfy (2.15) are parameterized by the points Z0 of the

Prym variety P(Γ) ⊂ J(Γ).

Theorem 2.1 [23]. Let a smooth algebraic curve Γ and an effective divisor D satisfy the

constraints (i), (ii). Let k−1
± (P) be odd local coordinates in the neighborhoods of the fixed

points P±, that is, k±(P) = −k±(σ(P)), and let all the even times vanish, that is, t±2i = 0.

Then the corresponding 2D Schrödinger operator is potential, that is,w = 0. �

In [23] it was also found that for the potential operators the formulae (2.9) and

(2.13) can be expressed in terms of the Prym theta-function. For further use it is enough

to present these formulae for the case of only two nontrivial variables x = t+1 , t = t−1 :

ψ =
θPr
(
APr(P) +Ux + Vt + Z

)

θPr
(
APr
(
P+

)
+Ux + Vt + Z

)exΩ+
1 +tΩ−

1

u = 2∂+∂− lnθPr
(
APr
(
P+

)
+ xU + tV + Z

)
+ C.

(2.16)

HereAPr : Γ �→ P(Γ) is the Abel-Prym map defined by the Prym differentials, that is,APr(P)

is a vector with the coordinates APr
k (P) =

∫P
duk.

In [11, 21] it was proved that for the case of smooth periodic potentials u(x, t)

(considered as a function of real variables x, t) the conditions found by Novikov and

Veselov are sufficient and necessary.

3 λ-periodic wave solutions

To begin with, let us show that (1.11) is the necessary condition of the existence of a

meromorphic solution to (1.7).

Let τ(x, t) be a smooth t-parametric family of holomorphic functions of the vari-

able x in some open domainD ⊂ C. Suppose that inD the function τ has a simple zero,

τ
(
η(t), t

)
= 0, τx

(
η(t), t

) �= 0. (3.1)
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10 I. Krichever

Lemma 3.1. If (1.7) with the potential u = 2∂2
xt ln τ(x, t) +C, where C is a constant, has a

meromorphic solution ψ0(x, t), then (1.11) holds. �

Proof. Consider the Laurent expansions of ψ0 and u in the neighborhood of η:

u =
2η̇

(x − η)2
+ v +w(x − η) + · · · ,

ψ0 =
α

x − η
+ β + γ(x − η) + · · · .

(3.2)

(All the coefficients in these expansions are smooth functions of the variable t.) Substi-

tution of (3.2) into (1.7) gives a system of equations. The first three of them are

α̇ − 2η̇β = 0,

2η̇γ + αv = 0,

γ̇ + vβ + αw = 0.

(3.3)

Taking the t-derivative of the second equation and using two others we get (1.11). �

Let us show that (1.11) is sufficient for the existence of meromorphic wave solu-

tions.

Lemma 3.2. Suppose that (1.11) for the zero of τ(x, t) holds. Then (1.7) has wave solu-

tions of the form

ψ = ekt

(

1 +

∞∑

s=1

ξs(x, t)k−s

)

(3.4)

such that the coefficients ξs have simple poles at η and are holomorphic everywhere else

inD. �

Proof. Substitution of (3.4) into (1.7) gives a recurrent system of equations

ξ ′
s+1 = −∂2

xtξs − uξs. (3.5)

We are going to prove by induction that this system has meromorphic solutions with

simple poles at η.

Let us expand ξs at η:

ξs =
rs

x − η
+ rs0 + rs1(x − η) + · · · . (3.6)
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A Characterization of Prym Varieties 11

Suppose that ξs is defined, and (3.5) has a meromorphic solution. Then the right-hand

side of (3.5) has the zero residue at x = η, that is,

resη

(
∂2

xtξs + uξs

)
= vrs + 2η̇rs1 = 0. (3.7)

We need to show that the residue of the next equation also vanishes. From (3.5) it follows

that the coefficients of the Laurent expansion for ξs+1 are equal to

rs+1 = −ṙs + 2η̇rs0,

rs+1,1 = −vrs0 −wrs − ṙs1.
(3.8)

These equations and (3.7) imply

−
(
vrs+1 + 2η̇rs+1,1

)
= 2η̇wrs + vṙs + 2η̇ṙs,1

= ∂t

(
vrs + 2η̇rs,1

)
−

(
v̇ −

η̈

η̇
v − 2η̇w

)
rs = 0,

(3.9)

and the lemma is proved. �

Our next goal is to fix a translation-invariant normalization of ξs which defines

wave functions uniquely up to an (x, t)-independent factor. It is instructive to consider

first the case of the periodic potentials u(x + 1, t) = u(x, t) (compare with [14]).

Equations (3.5) are solved recursively by the formulae

ξs+1(x, t) = cs+1(t) + ξ0
s+1(x, t),

ξ0
s+1(x, t) = −∂tξs −

∫x

x0

uξs dx,
(3.10)

where cs(t) are arbitrary functions of the variable t. Let us show that the periodicity con-

dition ξs(x+1, t) = ξs(x, t) defines these functions uniquely up to constants. Assume that

ξs−1 is known and satisfies the condition that the corresponding function ξ0
s is periodic.

The choice of the function cs(t) does not affect the periodicity property of ξs, but it does

affect the periodicity in x of the function ξ0
s+1(x, t). In order to make ξ0

s+1(x, t) periodic,

the function cs(t) should satisfy the linear differential equation

∂tcs(t) +

∫x0+1

x0

u(x, t)
(
cs(t) + ξ0

s(x, t)
)
dx = 0. (3.11)

This defines cs uniquely up to a constant.
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12 I. Krichever

In the general case, when u given by (1.8) is quasiperiodic, the normalization of

the wave functions is defined along the same lines.

Let Θ1 be defined by the equations Θ1 = {Z : θ(Z) = ∂Uθ(Z) = 0}, where ∂U is

a constant vector-field on C
g, corresponding to the vector U in (1.8). The ∂U-invariant

subset Σ of Θ1 will be called the singular locus.

Consider the closure YU = 〈Ux〉 of the group Ux in X. Shifting YU if needed, we

may assume, without loss of generality, that YU is not in the singular locus, YU /∈ Σ. Then,

for a sufficiently small t,we have YU+Vt /∈ Σ as well. Consider the restriction of the theta-

function onto the affine subspace C
d + Vt, where C

d = π−1(YU), and π : C
g → X = C

g/Λ

is the universal cover of X:

τ(z, t) = θ(z + Vt), z ∈ C
d. (3.12)

The function u(z, t) = 2∂U∂t ln τ + C is periodic with respect to the lattice ΛU = Λ ∩ C
d

and, for fixed t, has a double pole along the divisor ΘU(t) = (Θ − Vt) ∩ C
d.

Lemma 3.3. Let (1.10) hold and let λ be a vector of the sublatticeΛU = Λ∩C
d ⊂ C

g. Then

(i) equation (1.7) with the potential u(Ux + z, t) has a wave solution of the form

ψ = ekt+bxk−1

φ(Ux + z, t, k) such that the coefficients ξs(z, t) of the formal series

φ(z, t, k) = 1 +

∞∑

s=1

ξ̃s(z, t)k−s (3.13)

are λ-periodic meromorphic functions of the variable z ∈ C
d with a simple pole at the

divisor ΘU(t), that is,

ξ̃s(z + λ, t) = ξ̃s(z, t) =
τs(z, t)
τ(z, t)

; (3.14)

(ii) φ(z, t, k) is unique up to a factor ρ(z, k) that is t-independent, ∂U-invariant,

and holomorphic in z,

φ1(z, t, k) = φ(z, t, k)ρ(z, k), ∂Uρ = 0. (3.15)
�

Proof. The functions ξ̃s(z) are defined recursively by the equations

∂Uξ̃s+1 = −∂U∂tξ̃s − (u + b)ξ̃s − b∂tξ̃s−1. (3.16)

A particular solution of the first equation ∂Uξ̃1 = −u − b is given by the formula

ξ̃0
1 = −2∂t ln τ − (l, z)(b + C), (3.17)
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A Characterization of Prym Varieties 13

where (l, z) is a linear form on C
d given by the scalar product of z with a vector l ∈ C

d

such that (l, U) = 1. By definition, the vector λ is in YU. Therefore, (l, λ) �= 0. The periodic-

ity condition for ξ̃0
1 defines the constant b, which depends only on a choice of the lattice

vector λ. From the monodromy properties of θ it follows that without loss of generality

we may assume that λ is chosen such that the corresponding constant b is not equal to

zero, that is,

b = −C + (l, λ)−1
(
2∂t ln τ(z, t) − 2∂t ln τ

(
z + λ, t)

) �= 0. (3.18)

Note that the second factor in (3.4) and the series φ in (3.13) differ by the factor ebxk−1

,

which does not affect the results of the previous lemma. Therefore, (1.11) is sufficient

for the local solvability of (3.16) in any domain, where τ(z +Ux, t) has simple zeros, that

is, outside the set ΘU
1 (t) = (Θ1 − Vt) ∩ C

d. Recall that Θ1 = Θ ∩ ∂UΘ. This set does not

contain a ∂U-invariant line because such line is dense in YU. Therefore, the sheaf V0 of

∂U-invariant meromorphic functions on C
d \ΘU

1 (t) with poles along the divisorΘU(t) co-

incides with the sheaf of holomorphic ∂U-invariant functions. That implies the vanish-

ing of H1(Cd \ ΘU
1 (t),V0) and the existence of global meromorphic solutions ξ0

s of (3.16)

which have a simple pole at the divisor ΘU(t) (see details in [1, 17]).

Let us assume, as in the example above, that a λ-periodic solution ξ̃s−1 is known

and that it satisfies the condition that there exists a λ-periodic solution ξ̃0
s of the next

equation such that the equation

∂Uχs = −(u + b)ξ̃0
s − b∂tξ̃s−1 (3.19)

has a λ-periodic solution. If ξ̃0
s and a particular solution χ∗s of (3.19) are fixed, then ξ̃∗s+1 =

∂tξ̃
0
s + χ∗s is a λ-periodic solution of (3.16) for ξ̃0

s .

A choice of a λ-periodic ∂U-invariant function cs(z, t) does not affect the periodic-

ity property of ξ̃s = cs + ξ̃0
s . It changes the right-hand side of (3.19). A particular solution

of the new equation is given by the formula χ0
s = χ∗s + csξ̃

0
1. Therefore, ξ̃0

s+1 = ∂tξ̃s + χ0
s is

a λ-periodic solution of (3.16) for ξ̃s. The choice of cs does affect the existence of periodic

solutions of the equation

∂Uχs+1 = −(u + b)ξ̃0
s+1 − b∂tξ̃s. (3.20)

Let χ̃s+1 be a solution of the equation

∂Uχ̃s+1 = −(u + b)ξ̃∗s+1 − b∂tξ̃
0
s . (3.21)
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14 I. Krichever

Then the function

χs+1(z, t) = χ̃s+1(z, t) +
1

2
cs(z, t)

(
ξ0

1(z, t)
)2

+
(
ξ0

1(z, t) − (l, z)b
)
∂tcs(z, t) (3.22)

is a solution of (3.20). In order to make χs+1 periodic, the function cs(z, t) should satisfy

the linear differential equation

∂tcs(z, t) =
(
(l, λ)b

)−1(
χ̃s+1(z + λ, t) − χ̃s+1(z, t)

)
. (3.23)

This equation, together with the initial condition cs(z) = cs(z, 0) uniquely defines cs(z, t).

The induction step is then completed. We have shown that the ratio of two periodic for-

mal series φ1 and φ is t-independent. Therefore, (3.15), where ρ(z, k) is defined by the

evaluation of both sides at t = 0, holds. The lemma is thus proven. �

Corollary 3.4. Let λ1, . . . , λd be a set of linear independent vectors of the lattice ΛU and

let z0 be a point of C
d. Then, under the assumptions of the previous lemma, there is a

unique wave solution of (1.7) such that the corresponding formal series φ(z, t, k; z0) is

quasiperiodic with respect toΛU, that is, for λ ∈ ΛU

φ
(
z + λ, t, k; z0

)
= φ

(
z, t, k; z0

)
μλ(k), (3.24)

and satisfies the normalization conditions

μλi
(k) = 1, φ

(
z0, 0, k; z0

)
= 1. (3.25)

�

The proof is identical to that in [17, Lemma 12, part (b)] (compare with the proof

of the corollary in [12]).

4 The spectral curve

In this section, we show that λ-periodic wave solutions of (1.7), with u as in (1.8), are

common eigenfunctions of rings of commuting operators and identify X with the Prym

variety of the spectral curve of these rings.

Note that a simple shift z → z + Z, where Z /∈ Σ, gives λ-periodic wave solu-

tions with meromorphic coefficients along the affine subspaces Z + C
d. These λ-periodic

wave solutions are related to each other by t-independent, ∂U-invariant factor. There-

fore choosing in the neighborhood of any Z /∈ Σ a hyperplane orthogonal to the vector

U and fixing initial data on this hyperplane at t = 0, we define the corresponding series
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A Characterization of Prym Varieties 15

φ(z + Z, t, k) as a local meromorphic function of Z and the global meromorphic function

of z.

Lemma 4.1. Let (1.10) hold. Then there is a unique pseudodifferential operator,

L
(
Z, ∂t

)
= ∂t +

∞∑

s=1

ws(Z)∂−s
t , (4.1)

such that for Z + Vt /∈ Σ

L
(
Ux + Vt + Z, ∂t

)
ψ = kψ, (4.2)

whereψ = e(kt+bxk−1)φ(Ux+Z, t, k) is a λ-periodic solution of (1.7). The coefficientsws(Z)

of L are meromorphic functions on the abelian variety X with poles along the divisor Θ.

�

Proof. The construction of L is standard for the KP theory. First, we define L as a pseu-

dodifferential operator with coefficientsws(Z, t), which are functions of Z and t.

Let ψ be a λ-periodic wave solution. The substitution of (3.13) into (4.2) gives a

system of equations that recursively defines ws(Z, t) as differential polynomials in ξ̃s(Z,

t). The coefficients of ψ are local meromorphic functions of Z, but the coefficients of L

are well-defined global meromorphic functions on C
g \ Σ, because different λ-periodic

wave solutions are related to each other by t-independent factor, which does not affect L.

The singular locus is of codimension ≥ 2. Then Hartogs’ holomorphic extension theorem

implies thatws(Z, t) can be extended to a global meromorphic function on C
g.

The translational invariance of u implies the translational invariance of the λ-

periodic wave solutions. Indeed, for any constant s, the series φ(Vs + Z, t − s, k) and

φ(Z, t, k) correspond to λ-periodic solutions of the same equation. Therefore, they co-

incide up to a t-independent, ∂U-invariant factor. This factor does not affect L. Hence,

ws(Z, t) = ws(Vt + Z).

The λ-periodic wave functions corresponding to Z and Z + λ ′ for any λ ′ ∈ Λ are

also related to each other by a t-independent, ∂U-invariant factor. Hence,ws are periodic

with respect toΛ and therefore are meromorphic functions on the abelian variety X. The

lemma is proved. �

Lemma 4.2. Let L be a pseudodifferential operator corresponding to a λ-periodic solu-

tion and L∗ be its formal adjoint operator. Then the following equation:

L∗ = −∂tL∂
−1
t , (4.3)

holds. �
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16 I. Krichever

Recall that the operator which is formally adjoint to (w∂i) is the operator (−∂)i·w,
where w stands for the operator of multiplication by the function w. Below we will use

the notion of the left action of an operator which is identical to the formal adjoint action,

that is, by definition we assume that for a function f the identity

(fD) = D∗f (4.4)

holds.

Proof. If ψ is as in Lemma 3.3, then there exists a unique pseudodifferential operator Φ

such that

ψ = Φekt, Φ = 1 +

∞∑

s=1

ϕs(Ux + Z, t)∂−s
t . (4.5)

The coefficients of Φ are universal differential polynomials on ξ̃s. Therefore, ϕs(z + Z, t)

is a global meromorphic function of z ∈ Cd and a local meromorphic function of Z /∈ Σ.

Note that L = Φ(∂t)Φ−1, and the equationHψ = 0 is equivalent to the operator equation

∂t ·Φx + uΦ = 0, (4.6)

whereΦx is the pseudodifferential operator with the coefficients ∂xϕ. Note that (4.6) im-

plies

∂xL =
[
∂−1

t · u,L]. (4.7)

Let us define the dual wave function ψ∗ by the formula

ψ∗ =
(
e−kt∂t ·Φ−1 · ∂−1

t

)
=
(
∂−1

t

(
Φ−1

)∗
∂t

)
e−kt. (4.8)

Equation (4.6) implies Hψ∗ = 0. The dual wave function ψ∗ is λ-periodic. Therefore, the

same arguments as used above show that if (1.11) is satisfied, then the dual wave func-

tion is of the form ψ∗ = e−(kt+bxk−1)φ∗(Ux + Z, t, k), where the coefficients ξ̃∗s(z + Z, t) of

the formal series

φ∗(z + Z, t, k) = 1 +

∞∑

s=1

ξ̃∗s(z + Z, t)k−s (4.9)

have simple poles at the divisor ΘU(t). They are λ-periodic. Therefore,

φ∗(z + Z, t, k) = φ(z + Z, t,−k)ρ(z + Z, k), (4.10)
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A Characterization of Prym Varieties 17

where ρ is a t-independent, ∂U-invariant factor. Equation (4.10) implies (4.3) and the

lemma is proved. �

Commuting differential operators. Let us denote strictly the positive differential part of

the pseudodifferential operator Lm by Lm
+ , that is, if Lm =

∑∞
i=−m F

(i)
m∂

−i
t , then2

Lm
+ =

m∑

i=1

F(−i)
m ∂i

t, Lm
− = Lm − Lm

+ = F(0)
m + F(1)

m ∂−1
t +O

(
∂−2

)
. (4.11)

By definition of the residue of a pseudodifferential operator, the first leading coefficients

of Lm
− are

F(0)
m = res∂

(
Lm∂−1

t

)
, F(1)

m = res∂ Lm. (4.12)

Lemma 4.3. The operators Lm
+ satisfy the equations

HL2m
+ = −F

(0)
2m,x∂t −

1

2
F

(0)
2m,xt + B2mH, (4.13)

HL2m+1
+ = −F

(1)
2m+1,x + B2m+1H, (4.14)

where Bm is a pseudodifferential operator in the variable t. �

Proof. First, we prove the equation

HLm
+ = −F(0)

m,x∂t −
(
F

(0)
m,xt + F(1)

m,x

)
+ BmH. (4.15)

Each operator D of the form D =
∑∞

i=N(a + b∂x)∂−i
t can be uniquely represented in the

form D = D1 +D2H, where D1,2 are pseudodifferential operators in the variable t. Con-

sider such a representation for the operatorHLm = D1 +D2H. From the definition of L it

follows thatHLmψ = 0. That impliesD1 = 0 or the equation

HLm = D2H. (4.16)

We have the identity

[
∂x∂t + u,Lm

+

]
= Lm

+,xt + Lm
+,x∂t +

[
u,Lm

+

]
− Lm

+,t∂
−1
t · u + Lm

+,t · ∂−1
t ·H. (4.17)

2Note that this definition differs from the one used in the KP theory, where plus subscript denotes the nonneg-
ative part of a pseudodifferential operator.
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18 I. Krichever

The first three terms are differential operators in the t variable. By definition of Lm
+ the

fourth term is also a differential operator. Therefore, the pseudodifferential operatorD1

in the decompositionHLm
+ = Dm,1 + BmH is a differential operator.

In the same way we get the equation

HLm
− = D̃m,1 + B̃2mH, (4.18)

where

D̃m,1 = Lm
−,xt + Lm

−,x∂t +
[
u,Lm

−

]
− Lm

−,t∂
−1
t · u. (4.19)

By definition of Lm
− the operator D̃m,1 is a pseudodifferential operator of order not

greater than 1. Equation (4.16) implies HLm
+ = −HLm

− + D2H. Hence, Dm,1 = −D̃m,1 is

a differential operator of the order 1, that is, has the form a∂t + b. The coefficients of this

operator can be easily found from the leading coefficients of the right-hand side of (4.19).

Direct computations give (4.15).

Now in order to complete the proof of (4.13) and (4.14) it is enough to use (4.3).

From (4.3) and the relation res∂D = − res∂D
∗ it follows that

F
(1)
2m = − res∂

(
L∗)2m

= − res∂

(
∂tL

m∂−1
t

)
= −F

(0)
2m,t − F

(1)
2m. (4.20)

In the same way we get

F
(0)
2m+1 = res∂

(
L2m+1∂−1

t

)
= res∂

(
L2m+1∂−1

t

)∗
= −F

(0)
2m+1 = 0. (4.21)

Equations (4.15), (4.20), (4.21) imply (4.13) and (4.14). The lemma is proved. �

The following statement is a direct corollary of (4.20), (4.21).

Corollary 4.4. The operators Lm
+ satisfy the relation

(
Lm

+

)∗
= (−1)m∂t · Lm

+ · ∂−1
t . (4.22)

�

The next step is crucial for the construction of commuting operators.

Lemma 4.5. The functions F(0)
2m, F

(1)
2m+1 have at most a second-order pole on the divisorΘ.

�

Proof. The ambiguity in the definition of ψ does not affect the product

ψ∗ψ =
(
e−kt∂tΦ

−1∂−1
t

)(
Φekt

)
. (4.23)
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A Characterization of Prym Varieties 19

Therefore, although each factor is only a local meromorphic function on C
g \ Σ, the coef-

ficients J(0)
s of the product

ψ∗ψ = φ∗(Z, t, k)φ(Z, t, k) = 1 +

∞∑

s=2

J(0)
s (Z, t)k−s (4.24)

are global meromorphic functions of Z. Moreover, the translational invariance of u im-

plies that they have the form Js(Z, t) = Js(Z+Vt). Each of the factors in the left-hand side

of (4.24) has a simple pole on Θ − Vt. Hence, Js(Z) is a meromorphic function on Xwith a

second-order pole at Θ.

From the definition of L it follows that

resk

(
ψ∗(Lnψ

))
k−1dk = resk

(
ψ∗knψ

)
k−1dk = J(0)

n . (4.25)

On the other hand, using the identity

resk

(
e−kxD1

)(
D2e

kx
)
dk = res∂

(
D2D1

)
, (4.26)

we get

resk

(
ψ∗(Lnψ

))
k−1dk = resk

(
e−kt∂tΦ

−1∂−1
t

)(
LnΦ∂−1

t ekt
)
dk

= res∂

(
Ln∂−1

t

)
= F(0)

n .
(4.27)

Therefore, F(0)
n = J

(0)
n has the second-order pole at Θ.

Consider now the coefficients J(1)
s of the series

ψ∗ψt −ψ∗
tψ = 2k +

∞∑

s=1

2J(1)
s (Z, t)k−s. (4.28)

They are meromorphic functions on Xwith the second-order pole at Θ. We have

2J(1)
n = resk

((
ψ∗Ln

)
ψt −ψ∗

t

(
Lnψ

))
k−1dk = res∂

(
Ln + ∂tL

n∂−1
t

)
= 2F(1)

n + F
(0)
n,t.

(4.29)

Then from (4.21) it follows that F(1)
2m+1 = J

(1)
2m+1 and the lemma is proved. �

Let F be a direct sum of the linear spaces F̂α, α = 0, 1, spanned by {F
(α)
2m+α, m =

0, 1, . . .}. They are subspaces of the 2g-dimensional space of the abelian functions with at
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20 I. Krichever

most second-order pole at Θ. Therefore, for all but ĝα = dim F̂α positive integers 2n + α,

there exist constants c(α)
i,n such that

F
(α)
2n+α(Z) +

n∑

i=1

c
(α)
i,nF

(α)
2n−2i+α(Z) = 0. (4.30)

Let I(α) denote the subset of integers 2n + α for which none of such constants exist. We

call the union I = I(0) ∪ I(1) the gap sequence.

Lemma 4.6. Let L be the pseudodifferential operator corresponding to a λ-periodic

wave function ψ constructed above. Then, for the differential operators

L2n+α = L2n+α
+ +

n∑

i=1

c
(α)
i,nL2n+α−2i

+ , 2n + α /∈ Iα, (4.31)

the equations

L2n+αψ = a2n+α(k)ψ, a2n+α(k) = k2n+α +

∞∑

s=1

as,nk
2n+α−s, (4.32)

where as,n are constants, hold. �

Proof. First, note that from (4.13) and (4.14) it follows that HL2n+αψ = 0. Hence, if ψ is

a λ-periodic wave solution of (1.7) corresponding to Z /∈ Σ, then L2n+αψ is also a formal

solution of the same equation. That implies the equation L2n+αψ = a2n+α(Z, k)ψ, where

a2n+α(Z, k) is a t-independent and ∂U-invariant function of the variable Z. The ambi-

guity in the definition of ψ does not affect a2n+α. Therefore, the coefficients of a2n+α are

well-defined global meromorphic functions on C
g\Σ. The ∂U- invariance of a2n+α implies

that a2n+α, as a function of Z, is holomorphic outside the locus. Hence it has an exten-

sion to a holomorphic function on C
g. The λ-periodic wave functions corresponding to

Z and Z + λ ′ for any λ ′ ∈ Λ are related to each other by a t-independent, ∂U-invariant

factor. Hence, a2n+α is periodic with respect to Λ and therefore is Z-independent. Note

that a2s+1,n = 0 and a2s,n = cs,n if s ≤ n. The lemma is proved. �

The operator Lm can be regarded as a (Z, x)-parametric family of ordinary differ-

ential operators LZ
m whose coefficients have the form

LZ,x
m = ∂m

t +

m∑

i=1

ui,m(Ux + Vt + Z)∂m−i
t , m /∈ I. (4.33)

where ui,m(Z) are abelian function regular outside of Θ. For Z +Ux /∈ Σ− the coefficients

of LZ,x
m are meromorphic functions of the variable t, which are not identically equal in-

finity. Recall that Σ− is a ∂V-invariant set of Θ.
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A Characterization of Prym Varieties 21

Corollary 4.7. The operators LZ,x
m commute with each other,

[
LZ,x

n , LZ,x
m

]
= 0. (4.34)

�

From (4.32) it follows that [LZ,x
n , LZ,x

m ]ψ = 0. The commutator is an ordinary dif-

ferential operator. Hence, the last equation implies (4.34).

Lemma 4.8. Let AZ,x, Z + Ux /∈ Σ−, be a commutative ring of ordinary differential oper-

ators spanned by the operators LZ,x
n . Then there is an irreducible algebraic curve Γ such

that AZ,x is isomorphic to the ring A−(Γ, P+, P−) of the meromorphic functions on Γ with

the only pole at a smooth point P− vanishing at another smooth point P+. The correspon-

dence Z→ AZ,0 defines a holomorphic map of X \Σ− into the space of torsion-free rank 1

sheaves F on Γ :

j : X\Σ− �−→ Pic(Γ). (4.35)

On an open set the map j is an imbedding. �

The proof of the lemma is almost identical to the proof of [12, Lemma 3.4]. It is

the fundamental fact of the theory of commuting linear ordinary differential operators

[4, 5, 8, 9, 15] that there is a natural correspondence

A←→
{
Γ, P−,

[
k−1

]
1
,F
}

(4.36)

between regular at t = 0 commutative rings A of ordinary linear differential operators

in the variable t, containing a pair of monic operators of co-prime orders, and sets of

algebraic-geometrical data {Γ, P−, [k−1]1,F},where Γ is an algebraic curve with a fixed first

jet [k−1]1 of a local coordinate k−1 in the neighborhood of a smooth point P− ∈ Γ and F is

a torsion-free rank 1 sheaf on Γ such that

H0(Γ,F) = H1(Γ,F) = 0. (4.37)

The correspondence becomes one-to-one if the rings A are considered modulo conjuga-

tion A ′ = g(t)Ag−1(t).

Note, that in [4, 5, 8, 9] the main attention was paid to the generic case of the

commutative rings corresponding to smooth algebraic curves. The invariant formulation

of the correspondence given above is due to Mumford [15].

The algebraic curve Γ is called the spectral curve of A. The ring A is isomorphic

to the ring A(Γ, P−) of meromorphic functions on Γ with the only pole at the puncture P−.
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22 I. Krichever

The isomorphism is defined by the equation

Laψ0 = aψ0, La ∈ A, a ∈ A(Γ, P−

)
. (4.38)

Hereψ0 is a common eigenfunction of the commuting operators. At t = 0 it is a section of

the sheaf F ⊗ O(−P−).

Important remark. The construction of the correspondence (4.36) depends on a choice of

the initial point t0 = 0. The spectral curve and the sheaf F are defined by the evaluations

of the coefficients of generators of A and a finite number of their derivatives at the initial

point. In fact, the spectral curve is independent on the choice of t0, but the sheaf does

depend on it, that is, F = Ft0
.

Using the shift of the initial point it is easy to show that the correspondence

(4.36) extends to the commutative rings of operators whose coefficients are meromor-

phic functions of t at t = 0. The rings of operators having poles at t = 0 correspond to

sheaves for which the condition (4.37) is violated.

As it was mentioned above, the operators Ln, Lm can be seen as a (Z,x)-parametric

family of commuting ordinary differential operators in the variable t. Let ΓZ,x be the cor-

responding spectral curve. The eigenvalues an(k) of the operators LZ,x
n defined in (4.32)

coincide with the Laurent expansions at P− of the meromorphic functions an ∈ A(ΓZ,x,

P−). They are (Z, x)-independent. Hence, the spectral curve is (Z, x)-independent, as well,

Γ = ΓZ,x.

Equations (1.10), which are equivalent to (1.11) and are sufficient for the con-

struction of the λ-periodic wave solutions, are symmetric with respect to x and t. There-

fore, the simple interchange of the variables x and t shows that if (1.10) hold then there

exist commuting ordinary differential operators L+
m of the form

L+
m = ∂m

x +

m∑

i=1

u+
i,m(Ux + Vt + Z)∂m−i

x , m /∈ I+, (4.39)

where I+ is the gap sequence associated with the variable x. These operators satisfy the

equation

L+
mH = B+

mH, (4.40)

where B+
m are differential operators in the variable x.
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A Characterization of Prym Varieties 23

Let ψ be a λ-periodic solution of (1.7). Then the same arguments as in the proof

of Lemma 4.6 show that (4.40) imply

L+
nψ = a+

n(k)ψ, a+
n =

∞∑

s=1

a+
s,nk

−s, (4.41)

where a+
s,n are constants. From (4.41) it follows that the operators Ln, L

+
m satisfy the

equation

[
Ln, L

+
m

]
= BH, (4.42)

where B is a differential operator in the variables x, t. Equation (4.41) also implies that

there exists a polynomial R̃ such that R̃(Ln, L
+
m)ψ = 0, that is, eigenvalues an, a

+
m of Ln

and L+
m satisfy the equation R̃(an, a

+
m) = 0. Therefore, the spectral curves of commutative

rings AZ and AZ
+ coincide. Note, that (4.41) implies that a+

m vanishes at P−. The symmetry

between x and t variables implies that the ring AZ
+ is isomorphic to the ringA+(Γ, P+, P−)

of meromorphic functions on Γ with the only pole at P+ that vanishes at P−.

Let us fix x = 0 and consider the commuting operators LZ
n = LZ,0

n . The construc-

tion of the correspondence (4.36) implies that if the coefficients of the operators in A

holomorphically depend on parameters, then the algebraic-geometrical spectral data are

also holomorphic functions of the parameters.

Therefore, j is holomorphic out of Θ. Then, using the shift of the initial point and

the fact that Ft0
holomorphically depends on t0, we get that j holomorphically extends

on Θ \ Σ−, as well.

The theta-divisor is not invariant under the shifts by constant vectors. Hence, for

the generic Z and Z ′ the operators in AZ and AZ ′
have different poles. Hence, those rings

do not coincide. Thus, the map j is an imbedding on an open set. The lemma is proved.

It implies the global existence of the wave function.

Lemma 4.9. Let (1.10) hold. Then there exists a common eigenfunction of the operators

LZ
n of the form ψ = ektφ(Vt + Z, k) such that the coefficients of the formal series

φ(Z, k) = 1 +

∞∑

s=1

ξs(Z)k−s (4.43)

are global meromorphic functions with a simple pole at Θ. �

The proof of the lemma is identical to the proof of [12, Lemma 3.5]. The functionψ

is first defined for Z /∈ Σ− as the inverse imageψ = j∗ψ̂BA of the Baker-Akhiezer function,
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24 I. Krichever

which is known to be globally defined on Pic(Γ). Then, Hartogs’ extension theorem im-

plies that ψ has a meromorphic extension on Cg. The Baker-Akhiezer function is regular

out of divisor corresponding to the commutative rings of operators whose coefficients

have poles at t = 0. Hence, ψ is holomorphic out of Θ.

Let us show now that the correspondenceψ→ ψ∗ defines an involution of Γ under

which P± are fixed.

Lemma 4.10. The eigenvalues a2n+α of the commuting operators L2n+α satisfy the rela-

tion

a2n+α(k) = (−1)αa2n+α(−k). (4.44)

�

Proof. From (4.10), (4.22), (4.31) it follows that

ψ∗
t

(
L2n+αψ

)
= a2n+α(k)

(
ψ∗

tψ
)
,

(
ψ∗

tL2n+α

)
ψ =

((
L∗2n+αψ

∗
t

)
ψ
)

= (−1)αa2n+α(−k)
(
ψ∗

tψ
)
.

(4.45)

The left and right actions of pseudodifferential operators are formally adjoint, that is, for

any two operators the equality (e−ktD1)(D2e
kt) = e−kt(D1D2e

kt)+∂t(e−kt(D3e
kt)) holds.

Here D3 is a pseudodifferential operator whose coefficients are differential polynomials

in the coefficients of D1 and D2. Therefore, (4.45) imply

(
a2n+α(k) − (−1)αa2n+α(−k)

)(
ψ∗

tψ
)

= ∂tQ2n+α. (4.46)

The coefficients of the series Q2n+α are differential polynomials on the coefficients of

the wave operator Φ defined by (4.5). For the globally defined wave function ψ, which

exists according to the previous lemma, the coefficients of the wave operator are global

meromorphic functions. Hence,

Q2n+α =

∞∑

s=1

Q2n+α,s(Vt + Z), (4.47)

whereQ2n+α,s(Z) are meromorphic functions regular out of Θ.

In a similar way we have

ψ∗
tψ =

(
e−kt∂tΦ

−1
)(
Φekt

)
= k + ∂tQ

(1). (4.48)
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A Characterization of Prym Varieties 25

The seriesQ(1) has the form

Q(1) =

∞∑

s=1

Q(1)
s (Vt + Z), (4.49)

whereQ(1)
s (Z) are meromorphic functions regular out of Θ.

Let us fix a neighborhood of the theta-divisor in X. It defines the neighborhood

S of Θ in C
ĝ. Outside of S the functions Q(1)

s are bounded. Consider a sequence of real

numbers li →∞ such that Z± Vli is not in S. Then, from (4.48) it follows that

〈
ψ∗

tψ
〉

= lim
li→∞

1

2li

∫ li

−li

(
ψ∗

tψ
)
dt = k. (4.50)

The integration (4.50) is taken along a curve connecting points Z + ±Vli and which does

not intersect Θ.

The same arguments imply that under “averaging” in t the right-hand side of

(4.46) vanishes. Hence, (4.46) implies (4.44). The lemma is proved. �

The series an(k) are the expansions at P− of meromorphic functions on Γ . There-

fore, from (4.44) it follows that there exists a holomorphic involution σ : Γ → Γ of the

spectral curve such that

aσ
n = an

(
σ(P)

)
= (−1)nan(P). (4.51)

The point P− is fixed under σ and the local parameter is odd with respect to σ, that is,

σ∗k = −k. In the same way using x variable instead of t we get that the second puncture

P+ ∈ Γ is also fixed under σ.

The involution σ induces an involution on the generalized Jacobian J(Γ) which is

by definition is the group of the equivalence classes of zero-degree divisors on Γ , that is,

J(Γ) = Pic0(Γ). The odd subgroup of J(Γ) with respect to the induced involution σ∗ is the

Prym variety of the spectral curve, P(Γ) = ker(1 + σ∗). Our next goal is to show that P(Γ)

of the spectral curve is compact.

Lemma 4.11. There exist g-dimensional vectors V2m+1 = {V2m+1,k} and constants v2m+1

such that

F
(1)
2m+1(Z) =

g∑

k=1

V2m+1,k∂Vhk(Z) + v2m+1, (4.52)

where F(1)
2m+1 = res∂ L2m+1 and hk = ∂zk

ln θ(Z). �
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26 I. Krichever

Proof. From (4.28), (4.29) and (4.48) it follows that F(1)
2m+1 = −2∂VQ

(1)
2m+1, whereQ(1)

2m+1 is

a meromorphic function with a pole along Θ. The function F(1)
2m+1 is an abelian function.

Hence, for any vector λ in the period lattice Q(1)
2m+1(Z + λ) = Q

(1)
2m+1(Z) + cm,λ. There is

no abelian function with a simple pole on Θ. Hence, there exists a constant qn and g-

dimensional vectors lm and V2m+1, such thatQ(1)
2m+1 = qm+(lm, Z)+(V2m+1, h(Z)), where

h(Z) is a vector with the coordinates hk(Z). Therefore, F(1)
2m+1 = (lm, V)+ (V2m+1, ∂Vh(Z)).

The lemma is proved. �

In order to complete the proof of our main result we need few more facts of the

KP theory: flows of the KP hierarchy define deformations of the commutative rings A of

ordinary linear differential operators. The spectral curve is invariant under these flows.

If a commutative ring A of linear ordinary differential operators is maximal, that is, it is

not contained in any bigger commutative ring, then the KP orbit of A is isomorphic to the

generalized Jacobian J(Γ) = Pic0(Γ) of the spectral curve of A (see details in [8, 9, 16, 17]).

The KP hierarchy in the Sato form is a system of commuting differential equa-

tions for a pseudodifferential operator L:

∂tnL =
[
Ln

+,L
]
. (4.53)

If the operator L is as above. That is, if it is defined by λ-periodic wave solutions of (1.7),

then (4.14) implies that for odd n (4.53) are equivalent to the equations

∂t2n+1
u = ∂xF

(1)
2m+1(Ux + Vt + Z). (4.54)

The first time of the hierarchy is identified with the variable t1 = t.

Equations (4.54) identify the space generated by the functions ∂UF
(1)
2m+1 with the

tangent space at AZ of the orbit of the part of the NV hierarchy associated with the punc-

ture P−. In terms of u the deformation with respect to zi is given by the equation

∂zi
u = ∂x∂Vhi, hi = ∂zi

lnθ(Z). (4.55)

Equations (4.52), (4.54), and (4.55) imply

∂t2n+1
= ∂V2n+1

=

g∑

k=1

V2n+1,k∂zk
. (4.56)

Hence, the orbit of AZ is isomorphic to the factor of Z + Y/T(Z) of the affine subvariety

Z + Y ⊂ X, where Y is the closure in X of the subgroup 〈∑n V2n+1t2n+1〉, and T(Z) is a

lattice in the universal cover of Y.
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A Characterization of Prym Varieties 27

Lemma 4.12. For the generic Z /∈ Σ−, the orbit of AZ under the NV flows defines an iso-

morphism:

iZ : P(Γ) �−→ Z + Y ⊂ X. (4.57)
�

Proof. Recall that according to [18] the NV orbit of a maximal commutative ring is iso-

morphic to the Prym variety of the corresponding spectral curve. The arguments show-

ing that AZ is maximal for the generic Z are identical to those used in [12]. Indeed, sup-

pose that AZ is not maximal for all Z. Then there exits 2n + α ∈ I, where I is the gap

sequence defined above, such that for each Z /∈ Σ− there exists an operator LZ
2n+α of or-

der 2n+ αwhich commutes with all the operators LZ
m ∈ AZ. Therefore, it commutes with

L. That implies the equality

F
(α)
2n+α(Z) +

n∑

i=1

c
(α)
i,n(Z)F(α)

2n−2i+α(Z) = 0. (4.58)

Note the difference between (4.30) and (4.58). In the first equation the coefficients c(α)
i,n

are constants.

The λ-periodic wave solution of (1.7) is a common eigenfunction of all commuting

operators, that is, L2n+αψ = a2n+α(Z, k)ψ, where a2n+α is ∂V-invariant. The compact-

ness of X implies that a2n+α is Z-independent. The first n coefficients of a2n+α coincide

with the coefficients in (4.58). Hence, these coefficients are Z-independent. That contra-

dicts the assumption that 2n + α ∈ I.
The map j defined in Lemma 4.8 restricted to Z + Y ⊂ X is inverse to iZ. For the

generic Z it is an imbedding. Hence for the generic Z the lattice T(Z) is trivial. The lemma

is thus proven. �

Corollary 4.13. The Prym variety P(Γ) of the spectral curve Γ is compact. �

The compactness of the Prym variety is not as restrictive as the compactness

of the Jacobian (see [6]). Nevertheless, it implies an explicit description of the singu-

lar points of the spectral curve. The proof of the following statement is due to Robert

Friedman and is presented in the appendix.

Corollary 4.14 (R. Friedman). The spectral curve Γ is smooth outside of fixed points P±,

Qk of the involution σ. The branches of Γ atQk are linear and are not permuted by σ. �

An equivalent formulation of the corollary is as follows: there is a smooth alge-

braic curve Γ̃ with involution σ̃ and a regular equivariant map p : Γ̃ → Γ which is one-to-

one out of preimagesQi
k, i = 1, . . . , νk, on Γ̃ of the singular pointsQk.
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28 I. Krichever

The common eigenfunction of commuting differential operators is well defined

up to a constant factor for all smooth points of the spectral curve. It can be analytically

extended along the branches of the spectral curve passing through the singular points,

that is, the preimage ψ̃ of the Baker-Akhiezer on Γ̃ can be regarded as a section of a line

bundle on Γ̃ . From the construction of the correspondence (4.36) it follows that the eval-

uations of ψ̃ at the preimages of the singular pointsQk satisfy linear relations

νk∑

i=1

ci
k,jψ̃

(
t,Qi

k

)
= 0, j = 1, . . . , nk. (4.59)

The coefficients of these relations and the zero divisor D of ψ̃(0, P̃) can be regarded the

data defining the corresponding sheaf F. The divisorD is the pole divisor of the normal-

ized eigenfunction ψ̃0(t, P̃) = ψ̃(t, P̃)/ψ̃(0, P̃).

The following theta-functional formula (4.63) for ψ̃ is crucial for the final steps

of the proof. First note that using the transformationψ �→ e(l(k),Z)ψ, where l(k) is a series

such that (l(k), V) = 0, we may assume without loss of generality that the series φ in

(4.43) satisfies the following monodromy properties:

φ
(
Z + ej, k

)
= φ(Z), φ

(
Z + Bj

)
= φ(Z)ρj(k), (4.60)

where ej are the basis vectors in C
g and Bj are vectors defined by the columns of the

matrix B, corresponding to the principle polarization of X.

Equations (4.60) and the fact that the coefficients of φ are meromorphic func-

tions with simple poles along Θ imply that there is a series A(k) such that

φ =
θ
(
A(k) + Z

)

θ(Z)
. (4.61)

The series A(k) defines an imbedding of the neighborhood of P− into X.

The same arguments show that there is a holomorphic map

Ã : Γ̃ �−→ X (4.62)

such that the function ψ̃(t, P̃), P̃ ∈ Γ̃ , given by the formula

ψ̃ =
θ
(
Ã(P̃) + Vt + Z

)

θ(Vt + Z)
etΩ(P̃), (4.63)

is the common eigenfunction of the operators in AZ. Here Ω(P̃) is an abelian integral

on Γ̃ having the form Ω = k + O(k−1) at P−. Then the normalized eigenfunction of the
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A Characterization of Prym Varieties 29

commuting operators is given by the formula

ψ̃0 =
θ
(
Ã(P̃) + Vt + Z

)
θ(Z)

θ
(
Ã(P̃) + Z

)
θ(Vt + Z)

etΩ(P̃). (4.64)

Our next goal is to show that the pole divisorD of ψ̃0 satisfies the condition analogous to

(2.15) found by Novikov and Veselov in the case of the smooth spectral curves.

Lemma 4.15. The equivalence class of [D] ∈ J(Γ̃) of the divisorD satisfies the equation

[D] +
[
σ̃(D)

]
= K + P+ + P− +

∑

k,i

Qi
k ∈ J(Γ̃), (4.65)

where K is the canonical class, that is, the equivalence class of the zero-divisor of a holo-

morphic differential on Γ̃ . �

Proof. Equation (4.65) is equivalent to the condition that the divisorD+σ(D) is the zero

divisor of a meromorphic differential dΩ on Γ̃ with simple poles at the punctures P± and

the pointsQi
k. The differential dΩ is even with respect to the involution and descends to

a meromorphic differential on the factor-curve Γ0.

The existence of such differential can be proved almost identically to the proof

of the statement that the conditions (2.15) are necessary conditions for the potential re-

duction of the 2D Schrödinger operators given in [11, (Theorem 3.1)].

Let ψ̃0(x, t, P) be the normalized solution of the Schrödinger operator. It is ob-

tained by the deformation along the x-flow from the normalized eigenfunction of the op-

erators in AZ considered above. Therefore, it has the form (2.16) with θpr and Apr re-

placed by θ and Ã, respectively. Following [10] we present another real form of ψ̃0. Let us

introduce real coordinates of a complex vector Z ∈ C
g by the formula Z = ζ ′ +Bζ ′′, where

ζ ′, ζ ′′ are g-dimensional real vectors, and B is the matrix of b-periods of the normal-

ized holomorphic differentials on Γ . Then the absolute value |φ| of the function φ(ζ, P),

ζ = (ζ ′, ζ ′′) given by the formula

φ(ζ, P) =
θ
(
Ã(P) + Z

)

θ(Z)
e2πi(Ã(P),ζ ′′) (4.66)

is a periodic function of the coordinates ζ ′k, ζ
′′
k . For real x, t the function ψ can be repre-

sented in the form

ψ̃0 =
φ(Ûx + V̂t + ζ, P)

φ(ζ, P)
etp−+xp+. (4.67)
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30 I. Krichever

Here Û = (U+ ′
1 , U

+ ′′
1 ), V̂ = (U− ′

1 , U
− ′′
1 ) are 2g-dimensional real vectors corresponding to

the complex vectors U, V ; dp± are meromorphic differentials on Γ̃ with poles of the sec-

ond order at P± and whose periods are pure imaginary.

The differential dψ̃0 is also a solution of the same Schrödinger equation. That

implies the equality

∂x

(
∂tψ̃

σ
0dψ̃0 − ψ̃σ

0∂tdψ̃0

)
= ∂t

(
∂xψ̃

σ
0dψ̃0 − ψ̃σ

0∂xdψ̃0

)
. (4.68)

The “averaging” of this equation in the variables x, t gives the equation

〈
∂tψ̃

σ
0 ψ̃0 − ψ̃σ

0∂tψ̃0

〉
x
dp− =

〈
∂xψ̃

σ
0 ψ̃0 − ψ̃σ

0∂xψ̃0

〉
t
dp+. (4.69)

Here 〈·〉t stands for the mean value in t defined as in (4.50), and 〈·〉x stands for the mean

value in x defined in a similar way. The same arguments as in [11] show that the differen-

tial

dΩ =
dp+〈

∂tψ̃
σ
0 ψ̃0 − ψ̃σ

0∂tψ̃0

〉
x

=
dp−〈

∂xψ̃
σ
0 ψ̃0 − ψ̃σ

0∂xψ̃0

〉
t

(4.70)

is holomorphic on Γ̃ except at the branch points where it has simple poles. It has zeros at

the poles of ψ̃0 and ψ̃σ
0 . The lemma is proved. �

The differential ψ̃0ψ̃
σ
0dΩ is a meromorphic differential on Γ̃ . Its residues at the

points P± are equal to ±1, respectively. Therefore, sum of its residues at the points Qi
k

equals zero, that is,

∑

i,k

r̃ i
kψ̃0

(
t,Qi

k

)
ψ̃σ

0

(
t,Qi

k

)
= 0, r̃ i

k = resQi
k
dΩ. (4.71)

Note, that (4.71) is sufficient for the potential reduction of the Schrödinger operator,

which is equivalent to the equation ψ̃0(t, P+) = 1.

From (4.59) it follows that the evaluations of ψ̃0 at the points Qi
k satisfy linear

equations

νk∑

i=1

c̃ i
k,jψ̃0

(
t,Qi

k

)
= 0, j = 1, . . . , nk. (4.72)

Note, that the normalization of ψ0 at t = 0 implies

νk∑

i=1

c̃ i
k,j = 0. (4.73)
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The coefficients c̃ i
k,j in (4.72) are unique up to the transformations c̃ i

k,j →
∑

l g
l
k,jc̃

i
k,l,

where gk = {gl
k,j} are t-independent nondegenerate matrices. In what follows we normal-

ize c̃k by the condition

c̃ i
k,j = δi

j, i = 1, . . . , nk. (4.74)

In that gauge the matrix elements c̃ i
k,j(Z), i > nk, become well-defined abelian functions

on X.

Equations (4.71) should follow from (4.72). The evaluations of ψ̃0 at the preim-

ages of any two distinct singular pointsQk,Q
′
k, k �= k ′ are independent. That implies the

following orthogonality relations

nk∑

j=1

r̃
j
kc̃

i
k,jc̃

i
k,j = −r̃ i

k,

nk∑

j=1

r̃
j
kc̃

i
k,jc̃

i ′
k,j = 0, nk < i �= i ′ ≤ νk. (4.75)

(Compare (4.75) with the orthogonality conditions established in [18].)

Corollary 4.16. The multiplicity νk of the singular pointQk of the spectral curve is equal

to νk = 2nk, where nk is the number of the linear relations in (4.72). �

Proof. As it was shown above, for the generic Z the ring AZ is maximal. The ring AZ is

maximal if and only if for each k the linear subspaceWk ⊂ C
2νk defined by the equations

∑
i c̃

i
k,j(Z)wi

k = 0 is invariant under the multiplication by a diagonal matrix Hk only if

Hk is a scalar matrix. The last condition implies that each (nk × nk) minor of the matrix

ck = {c̃ i
k,j} with nk < i ≤ νk is nondegenerate. The columns of the matrix c̃ i

k,j with i >

nk are “orthogonal” to each other. Then, nondegeneracy of all the corresponding minors

implies that the number νk − nk of such columns is not bigger than the dimension nk of

the column vectors, that is, νk ≤ 2nk.

From (4.65) it follows that the degree of the pole divisor D equals degD = g̃ +

1/2
∑

k νk, where g̃ is the genus of Γ̃ . The uniqueness of the function ψ0 defined byD and

the relations (4.72) imply that degD = g̃ +
∑

k nk. The latter equations imply
∑

k(2nk −

νk) = 0. As shown above, each term of the sum is nonnegative. Hence, νk = 2nk and the

corollary is thus proven. �

Lemma 4.17. There exist constants rik such that the equation

2nk∑

i=1

rikθ
(
Ai

k + Z
)
θ
(
Ai

k − Z
)

= 0, Ai
k = Ã

(
Qi

k

)
, (4.76)

holds. �
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32 I. Krichever

Proof. Taking the square of (4.73) and using (4.75) we get the equation

2nk∑

i=1

r̃ i
k = 0. (4.77)

The residues of the differential dΩ are well-defined abelian functions r̃ i
k(Z) on X. The

pole divisor of all the residues coincides with the zero divisor of θ. The residue of dΩ at

Qi
k equals zero, when the pole divisor of ψ̃0 contains the puncture P−. Therefore, from

(4.64) it follows that r̃ i
k has the form

r̃ i
k(Z) = rik

θ
(
Ai

k + Z
)
θ
(
Ai

k − Z
)

θ2(Z)
, (4.78)

where rik are constants. Equations (4.77) and (4.78) imply (4.76) and the lemma is proved.

�

Our next and the final goal is to show thatnk = 1, that is, all of the singular points

of Γ are simple double points, as it is stated in the main theorem.

If nk > 1, then from indecomposability of the matrix c̃ i
k,j(Z) at the generic Z it

follows that all the points Ai
k are distinct, Ai

k �= A
j
k. That and the formula (4.64) for ψ̃0

imply that in the gauge (4.74) the coefficient c̃ i
k,j for i > nk has pole at the divisor θ(Aj

k +

Z) = 0 and zero at the divisor θ(Ai
k + Z) = 0.

Let us fix a pair of indicesm, l > nk and define a set Dm,l
k ⊂ X by the equations:

c̃ i
k,1(Z) = 0, nk < i �= m, l. (4.79)

On Dm,l
k (4.73) takes the form

1 + c̃m
k,1(Z) + c̃ l

k,1(Z) = 0, Z ∈ Dm,l
k . (4.80)

From (4.79) and the orthogonality conditions (4.75) it follows that on Dm,l
k the equation

c̃ l
k,1(Z) = 0 implies

c̃m
k,j(Z) = 0, j = nk + 2, . . . , 2nk. (4.81)

Then, from (4.81) it follows that

Z ∈ Dm,l
k , c̃ l

k,1(Z) = 0 =⇒ r̃ 1
k + r̃m

k = 0. (4.82)
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Hence, c̃ l
k,1, restricted to Dm,l

k , is of the form

c̃ l
k,1 =

r̃ 1
k + r̃m

k

h(Z)
· θ
(
Al

k + Z
)

θ
(
A1

k + Z
) · θ2(Z), Z ∈ Dm,l

k , (4.83)

where h is a holomorphic section of the line bundle of |2Θ − Al
k + A1

k| restricted to Dm,l
k .

(Recall that c̃ i
k,j and r̃ i

k are abelian functions.)

The same arguments imply that on Dm,l
k zeros of c̃m

k,1 are in the zero divisor of

r̃ 1
k + r̃ l

k. Then using (4.80) we get

c̃m
k,1 = g

r̃1k + r̃ l
k

h(Z)
· θ
(
Am

k + Z
)

θ
(
A1

k + Z
) · θ2(Z), Z ∈ Dm,l

k , (4.84)

where g is a constant. Therefore, h is a section of the restriction to Dm,l
k of the line bundle

|2Θ − Am
k + A1

k|. Hence, Am
k = Al

k. The choice of points Am
k , Al

k was arbitrary. Therefore,

we have proved that all the points Ai
k = Ak do coincide. In that case, (4.72) are equiva-

lent to (2nk − 1) equations ψ̃0(t,Qi
k) = ψ̃0(t,Qj

k). That implies 2nk − 1 = nk = 1, that is,

Γ has only simple double singular points. For such a curve all the sheafs F are line bun-

dles. Therefore, the map j in (4.35) is inverse to iZ in (4.57) and the main theorem is thus

proven.

Appendix

Theorem A.1 (R. Friedman). Let Γ be an irreducible projective curve, with an involution

σ, and suppose that the generalized Prym variety P(Γ, σ) is compact. Then every singular

point x of Γ is a fixed point of σ, the singularity at x is locally analytically isomorphic to

a union of coordinate axes in a neighborhood of the origin in C
N for some N, and in a

neighborhood of such a singular point σ fixes each of the local analytic branches. �

Proof. Let p : Γ̃ → Γ be the normalization of Γ . The involution σ lifts to an involution on Γ̃ ,

also denoted σ. The sheaf p∗(OΓ̃ )/OΓ is supported at the finitely many points of Γsing. The

cohomology long exact sequence for

0 −→ OΓ −→ p∗
(
OΓ̃

) −→ p∗
(
OΓ̃

)
/OΓ −→ 0 (A.1)

yields a long exact sequence

0 −→ H0
(
Γ ; OΓ

) −→ H0
(
Γ ;p∗

(
OΓ̃

))
= H0

(
Γ̃ ; OΓ̃

) −→ H0
(
Γ ;p∗

(
OΓ̃

)
/OΓ

)

−→ H1
(
Γ ; OΓ

) −→ H1
(
p∗
(
OΓ̃

))
= H1

(
Γ̃ ; OΓ̃

) −→ 0.

(A.2)
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34 I. Krichever

Since Γ̃ is irreducible, thenH0(Γ̃ ; OΓ̃ ) = C, so that there is an exact sequence

0 −→ H0
(
Γ ;p∗

(
OΓ̃

)
/OΓ

) −→ H1
(
Γ ; OΓ

) −→ H1
(
Γ̃ ; OΓ̃

) −→ 0. (A.3)

Here H1(Γ ; OΓ ) is the tangent space to the generalized Jacobian of Γ and the subspace

H0(Γ ;p∗(OΓ̃ )/OΓ ) is the tangent space to its noncompact part. If V is a vector space on

which σ acts, letV− denote the anti-invariant part ofV, that is, the (−1)-eigenspace. Then

the tangent space TP(Γ,σ) to P(Γ, σ) fits into an exact sequence

0 −→ H0
(
Γ ;p∗

(
OΓ̃

)
/OΓ

)− −→ TP(Γ,σ) −→ TP(Γ̃ ,σ) −→ 0. (A.4)

It follows that P(Γ, σ) is compact if and only ifH0(Γ ;p∗(OΓ̃ )/OΓ )− = 0.

First let us show that, for all x ∈ Γsing, σ(x) = x. There is an isomorphism

H0
(
Γ ;p∗

(
OΓ̃

)
/OΓ

)
=
⊕

x∈Γsing

R̃x/Rx, (A.5)

where Rx is the local ring OΓ,x and R̃x is its normalization. Clearly, σ induces an iso-

morphism R̃x/Rx
∼= R̃σ(x)/Rσ(x). If σ(x) �= x, and α is a nonzero element of R̃x/Rx, then

α − σ(α) ∈ H0(Γ ;p∗(OΓ̃ )/OΓ ) is nonzero, a contradiction. Hence σ(x) = x. Moreover, for all

α ∈ R̃x/Rx, σ(α) = α.

We now fix attention on a given x ∈ Γsing, and write R = Rx and R̃ = R̃x. Note that

if y1, . . . , yn are the preimages of x in Γ̃ , and ti is a local analytic coordinate for Γ̃ at yi,

then R̃ ∼=
⊕

i C{ti}. Moreover, R is a subalgebra of R̃, and dimC(R̃/R) < ∞; on particular, R̃

is a finite R-module. Let mi = tiC{ti}. Clearly, R is contained in the subalgebra C ⊕⊕i mi,

and the claim about the analytic nature of the singularities is just the statement that

R = C ⊕⊕i mi.

Next we claim that σ does not permute the analytic branches through x. If it did,

then the action of σ on R̃would exchange two factors C{ti} and C{tj} for j �= i. In this case,

let ei be the image of 1 ∈ C{ti} in R̃. Then σ(ei)−ei ∈ (R̃)−, and σ(ei)−ei /∈ R. Thus σ(ei)−ei

is a nonzero class in (R̃/R)− = (R̃)−/R−, a contradiction. Thus, for every i, σ fixes C{ti} and

induces a holomorphic involution on the corresponding branch of Γ̃ .

We can thus choose the coordinate ti so that σ(ti) = −ti. Since (R̃/R)− = (R̃)−/R−

= 0, ti ∈ R for every i. Clearly, ti ∈ m, where m is the maximal ideal of the local ring R.

Now let R̂ = C ⊕⊕i mi ⊆ R̃. As noted above, R ⊆ R̂ and we must show that R = R̂. In

any case, R̂ is a finite R-module. Given r ∈ R̂, there exists a c ∈ C ⊆ R ⊆ R̂ such that

r − c ∈⊕i mi = (t1, . . . , tn)R̂ ⊆ mR̂. Thus R̂ = R + mR̂, and so by Nakayama’s lemma R = R̂.

�
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