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Abstract: We study the integrable structure of the Dirichlet boundary problem in two
dimensions and extend the approach to the case of planar multiply-connected domains.
The solution to the Dirichlet boundary problem in the multiply-connected case is given
through a quasiclassical tau-function, which generalizes the tau-function of the disper-
sionless Toda hierarchy. It is shown to obey an infinite hierarchy of Hirota-like equations
which directly follow from properties of the Dirichlet Green function and from the Fay
identities. The relation to multi-support solutions of matrix models is briefly discussed.

1. Introduction

The Dirichlet boundary problem [1] is to reconstruct a harmonic function in a bounded
domain from its values on the boundary. Remarkably, this standard problem of com-
plex analysis, related however to string theory and matrix models, possesses a hidden
integrable structure [2], which we clarify further in this paper. It turns out that variation
of a solution to the Dirichlet problem under variation of the domain is described by an
infinite hierarchy of non-linear partial differential equations known (in the simply-con-
nected case) as dispersionless Toda hierarchy. It is a particular example of the universal
hierarchy of Whitham equations introduced in [3, 4].

The quasiclassical tau-function or, more precisely, its logarithm F , is the main new
object associated with a family of domains in the plane.Any domain in the complex plane
with sufficiently smooth boundary can be parameterized by its moments with respect
to a basis of harmonic functions. The F -function is a function of the full infinite set of
the moments. The first order derivatives of F are then moments of the complementary
domain. This gives a formal solution to the inverse potential problem, considered for
the simply-connected case in [5, 6]. The second order derivatives are coefficients of the
Taylor expansion of the Dirichlet Green function and therefore they solve the Dirichlet
boundary problem. These coefficients are constrained by an infinite number of universal
(i.e. domain-independent) relations which, unified in a generating form, just constitute
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the dispersionless Hirota equations. For the third order derivatives (their role in problems
of complex analysis is not yet quite clear) there is a nice “residue formula” which allows
one to prove [7] that F obeys the WDVV equations.

Below we are going to demonstrate that for planar multiply-connected domains the
solution to the Dirichlet boundary problem can be performed in a similar way. Specifi-
cally, we consider domains which are obtained by cutting several “holes” in the complex
plane. Boundaries of the holes are assumed to be smooth simple non-intersecting curves.
In this case, the complete set of independent variables can be again identified with the set
of harmonic moments. However, a choice of the proper basis of harmonic functions in a
multiply-connected domain becomes crucial for our approach. It turns out that the Lau-
rent polynomials which were used in the simply-connected case should be replaced by
the basis analogous to the one introduced in [8] – a “global” generalization of the Laurent
basis for algebraic curves of arbitrary genus. The basis has to be also enlarged to include
harmonic functions with multi-valued analytic part. This results in an additional finite
set of extra variables. We construct the F -function and prove that its second derivatives
satisfy non-linear relations, which generalize the Hirota equations of the dispersionless
Toda hierarchy. These relations are derived from the Fay identities [9] for the Riemann
theta functions on the Jacobian of Riemann surface obtained as the Schottky double of
the plane with given holes.

We note that extra variables, specific for the multiply-connected case, can be cho-
sen in different ways and possess different geometric interpretations, depending on the
choice of basis of homologically non-trivial cycles on the Schottky double. The corre-
sponding F -functions are shown to be connected by a duality transformation – a (partial)
Legendre transform, with the generalized Hirota relations being the same.

Now let us give a bit more expanded description of the Dirichlet problem in planar
domains. Let Dc be a domain in the complex plane bounded by one or several non-inter-
secting smooth curves. It will be convenient to realize Dc as a complement to another
domain D, having one or more connected components, and to consider the Dirichlet
problem in Dc: to find a harmonic function u(z) in Dc such that it is continuous up to
the boundary, ∂Dc, and equals a given function u0(ξ) on the boundary. The problem has
a unique solution written in terms of the Dirichlet Green function G(z, ξ):

u(z) = − 1

2π

∮
∂Dc

u0(ξ)∂nG(z, ξ)|dξ | , (1.1)

where ∂n is the normal derivative on the boundary with respect to the second variable,
the normal vector �n is directed inward Dc, and |dξ | := dl(ξ) is an infinitesimal element
of the length of the boundary ∂Dc.

The main object to study is, therefore, the Dirichlet Green function. It is uniquely
determined by the following properties [1]:

(G1) The function G(z, z′) is symmetric and harmonic everywhere in Dc (including ∞
if Dc � ∞) in both arguments except z = z′, where G(z, z′) = log |z − z′| + · · ·
as z → z′;

(G2) G(z, z′) = 0 if any one of the variables z, z′ belongs to the boundary ∂Dc.

Note that the definition implies that G(z, z′) < 0 inside Dc. In particular, ∂nG(z, ξ) is
strictly negative for all ξ ∈ ∂Dc.

If Dc is simply-connected (note that we assume ∞ ∈ Dc), i.e., the boundary has only
one component, the Dirichlet problem is equivalent to finding a bijective conformal map
from Dc onto the complement to unit disk or any other reference domain for which the
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Green function is known explicitly. Such a bijective conformal map w(z) exists by virtue
of the Riemann mapping theorem, then

G(z, z′) = log

∣∣∣∣ w(z) − w(z′)
w(z)w(z′) − 1

∣∣∣∣ , (1.2)

where bar means complex conjugation. It connects the Green function at two points with
the conformal map normalized at some third point (say at z = ∞: w(∞) = ∞). It is
this formula which allows one to derive the Hirota equations for the tau-function of the
Dirichlet problem in the most economic and transparent way [2] (see also Sect. 2 below).

For multiply-connected domains, formulas of this type based on conformal maps
do not really exist. In general, there is no canonical choice of the reference domain,
moreover, the shape of a reference domain depends on Dc itself. In fact, as we demon-
strate in the paper, the correct extension of (1.2) needed for derivation of the generalized
Hirota equations follows from a different direction which is no longer explicitly related
to bijective conformal maps. Namely, logarithm of the conformal map log w(z) should
be replaced now by the Abel map from the Schottky double of Dc to the Jacobi variety of
this Riemann surface, and the rational function under the logarithm in (1.2) is substituted
by ratio of the prime forms or Riemann theta-functions.

We show that the Green function of multiply-connected domains admits a represen-
tation through the logarithm of the tau-function of the form

G(z, z′) = log

∣∣∣∣1z − 1

z′

∣∣∣∣+ 1

2
∇(z)∇(z′)F . (1.3)

Here ∇(z) is a certain vector field on the moduli space of boundary curves, therefore it
can be represented as a (first-order) differential operator w.r.t. harmonic moments with
constant (in moduli) coefficients depending, however, on the point z as a parameter.

In this paper we also obtain similar formulas for the harmonic measures of the bound-
ary components and for the Abel map. A combination of these formulas with the Fay
identities yields the generalized Hirota-like equations for the tau-function F .

Our main tool is the Hadamard variational formula [10] which gives the variation
of the Dirichlet Green function under small deformations of the domain in terms of the
Green function itself:

δG(z, z′) = 1

2π

∮
∂Dc

∂nG(z, ξ)∂nG(z′, ξ)δn(ξ)|dξ |. (1.4)

Here δn(ξ) is the normal displacement (with sign!) of the boundary under the deforma-
tion, counted along the normal vector at the boundary point ξ . It was shown in [2] that
this remarkable formula is a key to all integrable properties of the Dirichlet problem. An
extremely simple “pictorial” derivation of the formula (1.4) is presented in Fig. 1.

We start with a brief recollection of the results for the simply-connected case in
Sect. 2. However, instead of “bump” deformations used in [2] we work here with their
rigorously defined versions – a family of infinitesimal deformations which we call ele-
mentary ones. This approach is basically motivated by the theory of interface dynamics
in viscous fluids, which is known to be closely connected with the formalism developed
in [2] and in the present paper (see [5] for details).

In Sect. 3 we introduce local coordinates in the space of planar multiply-connected
domains and express the elementary deformations in these coordinates. Using the Had-
amard formula, we then observe remarkable symmetry or “zero-curvature” relations
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z

ξ
δ n

Fig. 1. A “pictorial” derivation of the Hadamard formula. We consider a small deformation of the domain,
with the new boundary being depicted by the dashed line. According to (G2) the Dirichlet Green function
vanishes, G(z, ξ) = 0, if ξ belongs to the old boundary. Then the variation δG(z, ξ) is simply equal
to the new value, i.e. in the leading order δG(z, ξ) = −δn(ξ)∂nG(z, ξ). Now notice that δG(z, ξ) is a
harmonic function (the logarithmic singularity cancels since it is the same for both old and new functions)
with the boundary value −δn(ξ)∂nG(z, ξ). Applying (1.1) one obtains (1.4). The argument is the same
for both simply-connected and multiply-connected domains

which connect elementary deformations of the Green function and harmonic measures.
The existence of the tau-function and the formula (1.3) for the Green function directly
follow from these relations. In Sect. 4 we make a Legendre transform to another set of
local coordinates in the space of algebraic multiply-connected domains, which is in a
sense dual to the original one. In these coordinates, Eq. (1.3) gives another version of the
Green function which solves the so-called modified Dirichlet problem. We also discuss
the relation to multi-support solutions of matrix models in the planar large N limit.

In Sect. 5 we combine the results outlined above with the representation of the Green
function in terms of the prime form on the Schottky double. This allows us to obtain an
infinite system of partial differential equations on the tau-function which generalize the
dispersionless Hirota equations.

2. The Dirichlet Problem for Simply-Connected Domains and Dispersionless
Hirota Equations

In this section we rederive the results from [2] for the simply-connected case in a slightly
different manner, more suitable for further generalizations. At the same time we show
that the results of [2] obtained for analytic curves can be easily extended to the smooth
case.

Let D be a connected domain in the complex plane bounded by a simple smooth
curve. We consider the exterior Dirichlet problem in Dc = C \ D which is the comple-
ment of D in the whole (extended) complex plane. Without loss of generality, we assume
that D is compact and contains the point z = 0. Then Dc is a simply-connected domain
on the Riemann sphere containing ∞.

2.1. Harmonic moments and deformations of the boundary. Let tk be moments of the
domain Dc = C \ D defined with respect to the harmonic functions {z−k/k}, k > 0:

tk = − 1

πk

∫
Dc

z−k d2z , k = 1, 2, . . . , (2.1)
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and {t̄k} be the complex conjugate moments, i.e. t̄k = − 1
πk

∫
Dc d2zz̄−k . The Stokes

formula represents the harmonic moments as contour integrals

tk = 1

2πik

∮
∂D

z−kz̄dz (2.2)

providing, in particular, a regularization of possibly divergent integrals (2.1). Besides,
we denote by t0 the area (divided by π ) of the domain D:

t0 = 1

π

∫
D

d2z . (2.3)

The harmonic moments of Dc are coefficients of the Taylor expansion of the potential

�(z) = − 2

π

∫
D

log |z − z′|d2z′ (2.4)

induced by the domain D filled by two-dimensional Coulomb charges with the uniform
density ρ = −1. Clearly, ∂z∂z̄�(z) = −1 if z ∈ D and vanishes otherwise, so around
the origin (recall that D � 0) the potential equals to −|z|2 plus a harmonic function, i.e.

�(z) − �(0) = −|z|2 +
∑
k≥1

(
tkz

k + t̄k z̄
k
)

, (2.5)

and one can verify that tk are just given by (2.1).
For analytic boundary curves, one may introduce the Schwarz function associated

with the curve. The function

∂z�(z) = − 1

π

∫
D

d2z′

z − z′

is continuous across the boundary and holomorphic for z ∈ Dc while for z ∈ D the func-
tion ∂z� + z̄ is holomorphic. If the boundary is an analytic curve, both these functions
can be analytically continued outside the regions where they were originally defined,
and, therefore, there exists a function, S(z), analytic in some strip-like neighborhood of
the boundary contour, such that S(z) = z̄ on the contour. In other words, S(z) is the
analytic continuation of z̄ away from the boundary contour, this function completely
determines the shape of the boundary and is called the Schwarz function [11]. In general
we are going to work with smooth curves, not necessarily analytic, when the Schwarz
function does not exist as an analytic function. Nevertheless, it appears to be useful
below to define the class of boundary contours with nice algebro-geometric properties.

The basic fact of the theory of deformations of closed smooth curves is that the (in
general complex) moments {tk, t̄k} ≡ {t±k} supplemented by the real variable t0 form
a set of local coordinates in the “moduli space” of smooth closed curves [12] (see also
[13]).
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Important remark . This means that: (a) under any small deformation of the domain the
set t = {t0, t±k} is subject to a small change; (b) on the space of smooth closed curves
there exist vector fields ∂tk such that ∂tk tn = δkn, which are represented in terms of infin-
itesimal normal displacements of the boundary that change xk = Re tk or yk = Im tk
keeping all the other moments fixed; (c) the corresponding infinitesimal displacements
can be locally integrated. The latter means that for each domain Dc with moments
{t0, t±k} and for an arbitrary integer N there exist constants εm, |m| ≤ N , such that for
any set {t ′0, t ′±k} with |t ′m − tm| < εm, m ≤ N , t ′m = tm, |m| > N , in the neighborhood
of Dc there is a unique domain with the moments {t ′0, t ′±k}. We adopt this restricted
notion of the local coordinates throughout the paper. It would be very interesting to find
conditions on the infinite sets εk for the corresponding rectangles to form an open set
in an infinite-dimensional variety of smooth curves. We plan to address this problem
elsewhere.

Let us present a proof of this statement which later will be easily adjusted to the
case of multiply-connected domains. At the same time this proof allows one to derive a
deformation of the domain with respect to the variables tk . Suppose there is a one-para-
metric deformation D(t) (with some real parameter t) of D = D(0) such that all tk are
preserved: ∂t tk = 0, k ≥ 0. Let us prove that such a deformation is trivial. The proof is
based on two key observations:

• The difference of the boundary values ∂tC
±(ζ )dζ of the derivative of the Cauchy

integral

C(z)dz = dz

2πi

∮
∂D

ζ̄ dζ

ζ − z
(2.6)

is a purely imaginary differential on the boundary of D.
Indeed, let ζ(σ, t) be a parameterization of the curve ∂D(t). Denote the value of the
differential (2.6) by C−(z)dz for z ∈ Dc and by C+(z)dz for z ∈ D. Taking the
t-derivative of (2.6) and integrating by parts one gets

∂tC(z)dz = dz

2πi

∮
∂D

(
ζ̄t ζσ + ζ̄ ζt, σ

ζ − z
− ζ̄ ζσ ζt

(ζ − z)2

)
dσ

= dz

2πi

∮
∂D

(
ζ̄t ζσ − ζ̄σ ζt

ζ − z

)
dσ . (2.7)

Hence,

(
∂tC

+(ζ ) − ∂tC
−(ζ )

)
dζ = ∂t ζ̄ dζ − ∂t ζdζ̄ = 2iIm

(
∂t ζ̄ dζ

)

is indeed purely imaginary.
• If a t-deformation preserves all the moments tk , k ≥ 0, the differential

∂t ζ̄ dζ − ∂t ζdζ̄ extends to a holomorphic differential in Dc.
If |z| < |ζ | for all ζ ∈ ∂D, then we can expand:

∂tC
+(z)dz = ∂

∂t

(
dz

2πi

∞∑
k=0

zk

∮
∂D

ζ−k−1ζ̄ dζ

)
=

∞∑
k=1

k (∂t tk) zk−1dz = 0 (2.8)
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and, since C+ is analytic in D, we conclude that ∂tC
+ ≡ 0. The expression ∂t ζ̄ dζ −

∂t ζdζ̄ is the boundary value of the differential −∂tC
−(z)dz which has at most simple

pole at the infinity and holomorphic everywhere else in Dc. The equality

∂t t0 = 1

2πi

∮
∂D

(∂t ζ̄ dζ − ∂t ζdζ̄ ) = 0

then implies that the residue at z = ∞ vanishes, therefore ∂tC
−(z)dz is holomorphic.

Any holomorphic differential which is purely imaginary along the boundary of a sim-
ply-connected domain must be zero in this domain. Indeed, the real part of the harmonic
continuation of the integral of this differential is a harmonic function with a constant
boundary value. Such a function must be constant by virtue of the uniqueness of the solu-
tion to the Dirichlet problem. Another proof relies on the Schwarz symmetry principle
and the standard Schottky double construction (see the next section for details). Consider
the compact Riemann surface obtained by attaching to Dc its complex conjugated copy
along the boundary. Since ∂tC

−dz is imaginary along the boundary, we conclude, from
the Schwarz symmetry principle, that ∂tC

−dz extends to a globally defined holomorphic
differential on this compact Riemann surface, which has genus zero. Therefore, such a
differential is equal to zero. Hence we conclude that ∂t ζ̄ dζ − ∂t ζdζ̄ = 0. This means
that the vector ∂t ζ is tangent to the boundary. Without loss of generality we can always
assume that a parameterization of ∂D(t) is chosen so that ∂t ζ(σ, t) is normal to the
boundary. Thus, the t-deformation of the boundary preserving all harmonic moments is
trivial.

The fact that the set of harmonic moments is not overcomplete follows from the
explicit construction of vector fields in the space of domains that changes any harmonic
moment keeping all the others fixed (see below).

2.2. Elementary deformations and the operator ∇(z). Fix a point z ∈ Dc and consider a
special infinitesimal deformation of the domain such that the normal displacement of the
boundary is proportional to the gradient of the Green function G(z, ξ) at the boundary
point (Fig. 2):

δn(ξ) = −ε

2
∂nG(z, ξ) . (2.9)

For any sufficiently smooth initial boundary this deformation is well-defined as ε → 0.
We call infinitesimal deformations from this family, parametrized by z ∈ Dc, the ele-
mentary deformations. The point z is referred to as the base point of the deformation.
Note that since ∂nG < 0 (see the remark after the definition of the Green function in the
Introduction), δn for the elementary deformations is either strictly positive or strictly
negative depending of the sign of ε.

Let δz be a variation of any quantity under the elementary deformation with the base
point z. It is easy to see that δzt0 = ε, δztk = εz−k/k. Indeed,

δzt0 = 1

π

∮
δn(ξ)|dξ | = − ε

2π

∮
∂nG(z, ξ)|dξ | = ε ,

δztk = 1

πk

∮
ξ−kδn(ξ)|dξ | = − ε

2πk

∮
ξ−k∂nG(z, ξ)|dξ | = ε

k
z−k

(2.10)
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z

Fig. 2. The elementary deformation with the base point z

by virtue of the Dirichlet formula (1.1). Note that the elementary deformation with the
base point at ∞ keeps all moments except t0 fixed. Therefore, the deformation which
changes only t0 is given by δn(ξ) = − ε

2∂nG(∞, ξ).
Now we can explicitly define the deformations that change only either xk = Re tk or

yk = Im tk keeping all other moments fixed. As is clear from (2.10), the corresponding
δn(ξ) is given by the real or imaginary part of normal derivative of the function

Hk(ξ) = 1

2πi

∮
∞

zk∂zG(z, ξ)dz (2.11)

at the boundary. Here the contour integral goes around infinity. Namely, the normal dis-
placements δn(ξ) = ε Re (∂nHk(ξ)) and δn(ξ) = ε Im (∂nHk(ξ)) change the real and
imaginary part of tk by ±ε respectively keeping all other moments fixed.

These deformations allow one to introduce the vector fields

∂

∂t0
,

∂

∂xk

,
∂

∂yk

in the space of domains which are locally well-defined. Existence of such vector fields
means that the variables tk are independent. For k > 0 it is more convenient to use their
linear combinations

∂

∂tk
= 1

2

(
∂

∂xk

− i
∂

∂yk

)
,

∂

∂t̄k
= 1

2

(
∂

∂xk

+ i
∂

∂yk

)

which span the complexified tangent space to the space of simply-connected domains
(with fixed area t0). If X is any functional of our domain locally representable as a func-
tion of harmonic moments, X = X(t), the vector fields ∂t0 , ∂tk , ∂t̄k can be understood as
partial derivatives acting to the function X(t).

Consider the variation δzX of a functional X = X(t) under the elementary deforma-
tion with the base point z. In the leading order in ε we have:

δzX =
∑

k

∂X

∂tk
δztk = ε∇(z)X (2.12)
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where the differential operator ∇(z) is given by

∇(z) = ∂t0 +
∑
k≥1

(
z−k

k
∂tk + z̄−k

k
∂t̄k

)
. (2.13)

The right-hand side suggests that for functionals X such that the series ∇(z)X converges
everywhere in Dc up to the boundary, δzX is a harmonic function of the base point z.

Note that in [2] we have used the “bump” deformation and continued it harmonically
into Dc. In fact, it was the elementary deformation (2.10) δz ∝ ∮ |dξ |∂nG(z, ξ)δbump(ξ)

that was really used. The “bump” deformation should be understood as a (carefully
taken) limit of δz when the point z tends to the boundary ∂Dc.

2.3. The Hadamard formula as integrability condition. Variation of the Green function
under small deformations of the domain is known due to Hadamard, see Eq. (1.4). To
find how the Green function changes under small variations of the harmonic moments,
we fix three points a, b, c ∈ C \ D and compute δcG(a, b) by means of the Hadamard
formula (1.4). Using (2.12), one can identify the result with the action of the vector field
∇(c) on the Green function:

∇(c)G(a, b) = − 1

4π

∮
∂D

∂nG(a, ξ)∂nG(b, ξ)∂nG(c, ξ)|dξ | . (2.14)

Remarkably, the r.h.s. of (2.14) is symmetric in all three arguments, i.e.

∇(a)G(b, c) = ∇(b)G(c, a) = ∇(c)G(a, b) . (2.15)

This is the key relation which allows one to represent the Dirichlet problem as an inte-
grable hierarchy of non-linear differential equations [2], (2.15) being the integrability
condition of the hierarchy.

It follows from (2.15) (see [2] for details) that there exists a function F = F(t) such
that

G(z, z′) = log

∣∣∣∣1z − 1

z′

∣∣∣∣+ 1

2
∇(z)∇(z′)F . (2.16)

We note that existence of such a representation of the Green function was first conjec-
tured by Takhtajan. For the simply-connected case, this formula was obtained in [14]
(see also [13] for a detailed proof and discussion). The function F is (logarithm of) the
tau-function of the integrable hierarchy. In [14] it was called the tau-function of the (real
analytic) curves – the boundary contours ∂D or ∂Dc.

2.4. Dispersionless Hirota equations. Combining (2.16) and (1.2), we obtain the rela-
tion

log

∣∣∣∣ w(z) − w(z′)
w(z)w(z′) − 1

∣∣∣∣
2

= log

∣∣∣∣1z − 1

z′

∣∣∣∣
2

+ ∇(z)∇(z′)F (2.17)

which implies an infinite hierarchy of differential equations on the function F . It is con-
venient to normalize the conformal map w(z) by the conditions that w(∞) = ∞ and
∂zw(∞) is real, so that

w(z) = z

r
+ O(1) as z → ∞ , (2.18)
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where the real number r = limz→∞ dz/dw(z) is called the (external) conformal radius
of the domain D (equivalently, it can be defined through the Green function as log r =
limz→∞(G(z, ∞) + log |z|), see [15]). Then, tending z′ → ∞ in (2.17), one gets

log |w(z)|2 = log |z|2 − ∂t0∇(z)F . (2.19)

The limit z → ∞ of this equality yields a simple formula for the conformal radius:

log r2 = ∂2
t0
F . (2.20)

Let us now separate holomorphic and antiholomorphic parts of these equations, intro-
ducing the holomorphic and antiholomorphic parts of the operator ∇(z) (2.13):

D(z) =
∑
k≥1

z−k

k
∂tk , D̄(z̄) =

∑
k≥1

z̄−k

k
∂t̄k . (2.21)

Rewrite (2.17) in the form

log

(
w(z) − w(z′)
w(z)w(z′) − 1

)
− log

(
1

z
− 1

z′

)
−
(

1

2
∂t0 + D(z)

)
∇(z′)F

= − log

(
w(z) − w(z′)
w(z′)w(z) − 1

)
+ log

(
1

z̄
− 1

z̄′

)
+
(

1

2
∂t0 + D̄(z̄)

)
∇(z′)F .

The l.h.s. is a holomorphic function of z while the r.h.s. is antiholomorphic. Therefore,
both are equal to a z-independent term which can be found from the limit z → ∞. As a
result, we obtain the equation

log

(
w(z) − w(z′)

w(z) − (w(z′))−1

)
= log

(
1 − z′

z

)
+ D(z)∇(z′)F (2.22)

which, as z′ → ∞, turns into the formula for the conformal map w(z):

log w(z) = log z − 1

2
∂2
t0
F − ∂t0D(z)F (2.23)

(here we also used (2.20)). Proceeding in a similar way, one can rearrange (2.22) in order
to write it separately for holomorphic and antiholomorphic parts in z′:

log
w(z) − w(z′)

z − z′ = − 1

2
∂2
t0

F + D(z)D(z′)F , (2.24)

− log

(
1 − 1

w(z)w(z′)

)
= D(z)D̄(z̄′)F . (2.25)

Writing down Eqs. (2.24) for the pairs of points (a, b), (b, c) and (c, a) and summing
up the exponentials of both sides of each equation one arrives at the relation

(a − b)eD(a)D(b)F + (b − c)eD(b)D(c)F + (c − a)eD(c)D(a)F = 0 (2.26)

which is the dispersionless Hirota equation (for the KP part of the two-dimensional
Toda lattice hierarchy) written in the symmetric form. This equation can be regarded as
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a very degenerate case of the trisecant Fay identity [9]. It encodes the algebraic rela-
tions between the second order derivatives of the function F . As c → ∞, we get these
relations in a more explicit but less symmetric form:

1 − eD(a)D(b)F = D(a) − D(b)

a − b
∂t1F (2.27)

which makes it clear that the totality of second derivatives Fij := ∂ti ∂tj F are expressed
through the derivatives with one of the indices put equal to unity.

More general equations of the dispersionless Toda hierarchy obtained in a similar
way by combining Eqs. (2.23), (2.24) and (2.25) include derivatives w.r.t. t0 and t̄k:

(a − b)eD(a)D(b)F = ae−∂t0 D(a)F − be−∂t0 D(b)F , (2.28)

1 − e−D(z)D̄(z̄)F = 1

zz̄
e∂t0 ∇(z)F . (2.29)

These equations allow one to express the second derivatives ∂tm∂tnF , ∂tm∂t̄nF with
m, n ≥ 1 through the derivatives ∂t0∂tkF , ∂t0∂t̄kF . In particular, the dispersionless Toda
equation,

∂t1∂t̄1F = e
∂2
t0

F (2.30)

which follows from (2.29) as z → ∞, expresses ∂t1∂t̄1F through ∂2
t0
F .

For a comprehensive exposition of Hirota equations for dispersionless KP and Toda
hierarchies we refer the reader to [16, 17].

2.5. Integral representation of the tau-function. Equation (2.16) allows one to obtain a
representation of the tau-function as a double integral over the domain D. Set �̃(z) :=
∇(z)F . One is able to determine this function via its variation under the elementary
deformation:

δa�̃(z) = −2ε log
∣∣∣a−1 − z−1

∣∣∣+ 2εG(a, z) (2.31)

which is read from Eq. (2.16) by virtue of (2.12). This allows one to identify �̃ with the
“modified potential” �̃(z) = �(z)−�(0)+ t0 log |z|2, where � is given by (2.4). Thus
we can write

∇(z)F = �̃(z) = − 2

π

∫
D

log |z−1 − ζ−1|d2ζ = v0 + 2Re
∑
k>0

vk

k
z−k . (2.32)

The last equality is to be understood as the Taylor expansion around infinity. The coeffi-
cients vk are moments of the interior domain (the “dual” harmonic moments) defined
as

vk = 1

π

∫
D

zk d2z (k > 0) , v0 = −�(0) = 2

π

∫
D

log |z|d2z . (2.33)

From (2.32) it is clear that

vk = ∂tkF , k ≥ 0 , (2.34)
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i.e., the moments of the complementary domain D (the “dual” moments) are completely
determined by the function F of harmonic moments of Dc.

In a similar manner, one arrives at the integral representation of the tau-function.
Comparing (2.32) with (2.31) one can easily notice that the meaning of the elementary
deformation δξ or the operator ∇(ξ) formally applied at the boundary point ξ ∈ ∂D
(where G(z, ξ) = 0) is attaching a “small piece” to the integral over the domain D (the
“bump” operator from [2]). Using this fact and interpreting (2.32) as a variation δzF we
arrive at the double-integral representation of the tau-function

F = − 1

π2

∫
D

∫
D

log |z−1 − ζ−1|d2zd2ζ (2.35)

or

F = 1

2π

∫
D

�̃(z)d2z = 1

2π

∫
D

(�(z) − 2�(0)) d2z . (2.36)

As we see below, the main formulas from this paragraph remain intact in the multiply-
connected case.

3. The Dirichlet Problem and the Tau-Function in the Multiply-Connected Case

Let now Dα , α = 0, 1, . . . , g, be a collection of g + 1 non-intersecting bounded con-
nected domains in the complex plane with smooth boundaries ∂Dα . Set D = ∪g

α=0Dα ,
so that the complement Dc = C \ D becomes a multiply-connected unbounded domain
in the complex plane (see Fig. 3). Let bα be the boundary curves. They are assumed to
be positively oriented as boundaries of Dc, so that ∪g

α=0bα = ∂Dc while bα = −∂Dα

has the clockwise orientation.
Comparing to the simply-connected case, nothing is changed in posing the standard

Dirichlet problem. The definition of the Green function and the formula (1.1) for the
solution of the Dirichlet problem through the Green function remain to be the same.

A difference is in the nature of harmonic functions. Any harmonic function is still the
real part of an analytic function but in the multiply-connected case these analytic func-
tions are not necessarily single-valued (only their real parts have to be single-valued).
In other words, the harmonic functions may have non-zero “periods” over non-trivial
cycles1. In our case, the non-trivial cycles are the boundary curves bα . In general, the
Green function has non-zero “periods” over all boundary contours. Hence it is natural
to introduce new objects, specific to the multiply-connected case, which are defined as
“periods” of the Green function.

First, the harmonic measure ωα(z) of the boundary component bα is the harmonic
function in Dc such that it is equal to unity on bα and vanishes on the other boundary
curves. Thus the harmonic measure is the solution to the particular Dirichlet problem.
From the general formula (1.1) we conclude that

ωα(z) = − 1

2π

∮
bα

∂nG(z, ζ )|dζ |, α = 1, . . . , g (3.1)

so the harmonic measure is the period of the Green function w.r.t. one of its arguments.
From the maximum principle for harmonic functions it follows that 0 < ωα(z) < 1

1 Here and below by “periods” of a harmonic function f we mean the integrals
∮

∂nf dl over non-
trivial cycles.
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D1

D0

C \ D

1

3

0

b

b

b

b

z

z

z

z

3

2

1 0

2

3

= 0

D2

D

Fig. 3. A multiply-connected domain Dc = C \ D for g = 3. The domain D = ⋃3
α=0 Dα consists

of g + 1 = 4 disconnected parts Dα with the boundaries bα . To define the complete set of harmonic
moments, we also need the auxiliary points zα ∈ Dα which should be always located inside the corre-
sponding domains

in internal points. Obviously,
∑g

α=0 ωα(z) = 1. In what follows we consider the linear
independent functions ωα(z) with α = 1, . . . , g.

Further, taking “periods” in the remaining variable, we define

�αβ = − 1

2π

∮
bβ

∂nωα(ζ )|dζ |, α, β = 1, . . . , g . (3.2)

The matrix �αβ is known to be symmetric, non-degenerate and positively-definite. It
will be clear below that the matrix Tαβ = iπ�αβ can be identified with the matrix
of periods of holomorphic differentials on the Schottky double of the domain Dc (see
formula (3.5)). For brevity, we refer to both Tαβ and �αβ as period matrices.

For the harmonic measure and the period matrix there are variational formulas similar
to the Hadamard formula (1.4). They can be derived either by a direct variation of (3.1)
and (3.2) using the Hadamard formula or (much easier) by a “pictorial” argument like
in Fig. 1. The formulas are:

δωα(z) = 1

2π

∮
∂D

∂nG(z, ξ) ∂nωα(ξ) δn(ξ) |dξ | , (3.3)

δ�αβ = 1

2π

∮
∂D

∂nωα(ξ) ∂nωβ(ξ) δn(ξ) |dξ | . (3.4)

3.1. The Schottky double. It is customary to associate with a planar multiply-connected
domain its Schottky double (see, e.g., [18], Ch. 2.2), a compact Riemann surface without
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aα

b
α

αD

α
ξ

ξ0

cD   = C \ D

0D

Fig. 4. The domain Dc with the aα-cycle, going one way along the “upper sheet” and back along the
“lower sheet” of the Schottky double of Dc. For such a choice one clearly gets the intersection form
aα ◦ bβ = δαβ for α, β = 1, . . . , g.

boundary endowed with antiholomorpic involution, the boundary of the initial domain
being the set of the fixed points of the involution. The Schottky double of the multi-
ply-connected domain Dc can be thought of as two copies of Dc (“upper” and “lower”
sheets of the double) glued along the boundaries ∪g

α=0bα = ∂Dc, with points at infin-
ity added (∞ and ∞̄). In this set-up the holomorphic coordinate on the upper sheet is
z inherited from Dc, while the holomorphic coordinate2 on the other sheet is z̄. The
Schottky double of Dc with two infinities added is a compact Riemann surface � of
genus g = #{Dα} − 1. A meromorphic function on the double is a pair of meromorphic
functions f, f̃ on Dc such that f (z) = f̃ (z̄) on the boundary. Similarly, a meromorphic
differential on the double is a pair of meromorphic differentials f (z)dz and f̃ (z̄)dz̄ such
that f (z)dz = f̃ (z̄)dz̄ along the boundary curves.

On the double, one may choose a canonical basis of cycles. We fix the b-cycles to be
just the boundaries of the holes bα for α = 1, . . . , g. Note that regarded as the oriented
boundaries of Dc (not D) they have the clockwise orientation. The aα-cycle connects the
αth hole with the 0th one. To be more precise, fix points ξα on the boundaries, then the
aα cycle starts from ξ0, goes to ξα on the “upper” (holomorphic) sheet of the double and
goes back the same way on the “lower” sheet, where the holomorphic coordinate is z̄,
see Fig. 4.

Being harmonic, ωα can be represented as the real part of a holomorphic function:

ωα(z) = Wα(z) + Wα(z) ,

where Wα(z) are holomorphic multivalued functions in Dc. The differentials dWα are
holomorphic in Dc and purely imaginary on all boundary contours. So they can be

2 More precisely, the proper coordinates should be 1/z (and 1/z̄), which have first order zeros instead
of poles at z = ∞ (and z̄ = ∞̄).
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extended holomorphically to the lower sheet as −dWα(z). In fact this is the canonically
normalized basis of holomorphic differentials on the double: according to the definitions,

∮
aα

dWβ =
∫ ξα

ξ0

dWβ(z) +
∫ ξ0

ξα

(
−dWβ(z)

)
= 2Re

∫ ξα

ξ0

dWβ(z)

= ωβ(ξα)−ωβ(ξ0) = δαβ .

Then the matrix of b-periods of these differentials reads

Tαβ =
∮

bα

dWβ = − i

2

∮
bα

∂nωβdl = iπ�αβ , (3.5)

i.e. the period matrix Tαβ of the Schottky double � is a purely imaginary non-degenerate
matrix with positively definite imaginary part π�αβ (3.2).

3.2. Harmonic moments of multiply-connected domains. One may still use harmonic
moments to characterize the shape of a multiply-connected domain. However, the set
of harmonic functions should be extended by adding functions with poles in any hole
(not only in D0 as before) and functions whose holomorphic parts are not single-valued.
To specify them, let us mark points zα ∈ Dα , one in each hole (see Fig. 3). Without
loss of generality, it is convenient to put z0 = 0. Then one may consider single-valued

analytic functions in Dc of the form (z − zα)−k and harmonic functions log
∣∣∣1 − zα

z

∣∣∣2
with multi-valued analytic part.

The arguments almost identical to the ones used in the simply-connected case show
that the parameters t0, Mn,α, φα , where as in (2.3) t0 = Area(D)/π ,

Mn, α = − 1

π

∫
Dc

(z − zα)−nd2z, α = 0, 1, . . . , g, n ≥ 1 (3.6)

together with their complex conjugate, and

φα = − 1

π

∫
Dc

log

∣∣∣∣1 − zα

z

∣∣∣∣
2

d2z, α = 1, . . . , g (3.7)

uniquely define Dc, i.e. any deformation preserving these parameters is trivial. Note that
the extra moments φα are essentially the values of the potential (2.4) at the points zα,

φα = �(0) − �(zα) − |zα|2 . (3.8)

A crucial step for what follows is the change of variables from Mn,α to the variables
τk which are finite linear combinations of the Mn,α’s. They can be directly defined as
moments with respect to new basis of functions:

τ0 = t0, τk = 1

2πi

∮
∂D

Ak(z)z̄dz = − 1

π

∫
Dc

d2zAk(z), k > 0 . (3.9)
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The functions Ak(z) are analogous to the Laurent-Fourier type basis on Riemann sur-
faces introduced in [8]. They are explicitly defined by the following formulas (here the
indices α and β are understood modulo g + 1):

Am(g+1)+α = R−m(z)

α−1∏
β=0

(z − zβ)−1 ,

R(z) =
g∏

β=0

(z − zβ) . (3.10)

In a neighbourhood of infinity Ak(z) = z−k + O(z−k−1). Any analytic function in Dc

vanishing at infinity can be represented as a linear combination of Ak which is convergent
in domains such that |R(z)| > const. In the case of one hole (g = 0) the formulas (3.10)
give the basis used in the previous section: Ak = z−k . Note that A0 = 1, A1 = 1/z,
therefore τ0 = t0 and τ1 = M1,0 = t1.

3.3. Local coordinates in the space of multiply-connected domains. Now we are going
to prove that the parameters τk , φα can be treated as local coordinates in the space
of multiply-connected domains. (Here we use the same restricted notion of the local
coordinates, as in the simply connected case (see the remark in Sect.2)).

It is instructive and simpler first to prove this for another choice of parameters. Instead
of φα one may use the areas of the holes

sα = Area(Dα)

π
= 1

π

∫
Dα

d2z = 1

2πi

∮
∂Dα

z̄dz , α = 1, . . . , g . (3.11)

In order to prove that any deformation that preserves τk and sα is trivial, we introduce
the basis of differentials dBk which satisfy the defining “orthonormality” relations

1

2πi

∮
∂D

AkdBk′ = δk,k′ (3.12)

for all integer k, k′. It is easy to see that explicitly they are given by:

dBm(g+1)+α = dzRm(z)

z − zg

α−1∏
β=0

(z − zβ−1) , (3.13)

where we identify z−1 ≡ zg . The existence of a well-defined “dual” basis of differentials
obeying the orthonormality relation is the key feature of the basis functions Ak , which
makes τk good local coordinates comparing to the Mn,α . For the functions (z − zα)−n

one cannot define the dual basis.
The summation formulas

dzdζ

ζ − z
=

∞∑
n=1

dζAn(ζ )dBn(z), |R(z)| < |R(ζ )| ,

dzdζ

ζ − z
= −

∞∑
n=0

dζA−n(ζ )dB−n(z), |R(z)| > |R(ζ )| , (3.14)
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which can be checked directly, allow us to repeat arguments of Sect. 2. Indeed, the
Cauchy integral (2.6),

C(z)dz = dz

2πi

∮
∂D

ζ̄ dζ

ζ − z
, (3.15)

where the integration now goes along all boundary components, defines in each of the
holes Dα analytic differentials Cα(z)dz (analogs of C+(z)dz in the simply-connected
case). In the complementary domain Dc the Cauchy integral still defines the differential
C−(z)dz holomorphic everywhere in Dc except for infinity where it has a simple pole.
The difference of the boundary values of the Cauchy integral is equal to z̄:

Cα(z) − C−(z) = z̄ , z ∈ ∂Dα .

From Eq. (2.7), which can be written separately for each contour, it follows that

• The difference of the boundary values

(
∂tC

α(ζ ) − ∂tC
−(ζ )

)
dζ

of the derivative of the Cauchy integral (3.15) is, for all α, a purely imaginary differ-
ential on the boundary bα .

The expansion (3.14) of the Cauchy kernel implies that

• If a t-deformation preserves all the moments τk , k ≥ 0, then ∂t ζ̄ dζ − ∂t ζdζ̄ extends
to a holomorphic differential in Dc.

Indeed, since |R(z)| is small for z close enough to any of the points zα , one can expand
∂tC

α(z) for any α as

∂tC
α(z)dz = 1

2πi

∞∑
k=1

dBk∂t

(∮
∂D

Ak(ζ )ζ̄ dζ

)
=

∞∑
k=1

∂t τk dBk(z) , (3.16)

and conclude that it is identically zero provided ∂t τk = 0. Hence −∂tC
−(z)dz is the

desired extension of ∂t ζ̄ dζ−∂t ζdζ̄ . It has no pole at infinity due to the equation ∂t τ0 = 0.
Using the Schwarz symmetry principle we obtain that ∂tC

−(z)dz extends to a
holomorphic differential on the Schottky double. If the variables sα are also preserved
under the t-deformation, then this holomorphic differential has zero periods along all
the cycles bα . Therefore, it is identically zero. This completes the proof of the statement
that any deformation of the domain preserving τk and sα is trivial.

In this proof the variables sα were used only at the last moment in order to show
that the extension of ∂tC

−(z)dz as a holomorphic differential on the Schottky double is
trivial. The variables φα can be used in a similar way. Namely, let us show that if they
are preserved under t-deformation then aα-periods of the extension of ∂tC

−(z)dz are
trivial, and therefore this extension is identically zero. Indeed, the variable φα (3.7) can
be represented in the form

φα = − 2

π
Re
∫ zα

0
dz

∫
Dc

d2ζ

z − ζ
. (3.17)
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The differential dz
π

∫
Dc

d2ζ
z−ζ

is equal to Cα(z)dz for z ∈ Dα and (z̄ + C−(z))dz for
z ∈ Dc. Let ξ0, ξα be the points where the integration path from 0 to zα intersects the
boundary contours b0, bα . Then

φα = −2 Re

(∫ ξ0

0
C0(z)dz +

∫ zα

ξα

Cα(z)dz +
∫ ξα

ξ0

(z̄ + C−(z))dz

)
. (3.18)

It is shown above that if a t-deformation preserves the variables τk then all ∂tC
α(z)dz =

0. Thus vanishing of the t-derivative ∂tφα = 0 implies

0 = −∂tφα = 2 Re
∫ ξα

ξ0

∂tC
−(z)dz . (3.19)

The r.h.s. of this equation is just the aα-period of the holomorphic extension of the
differential ∂tC

−(z)dz.
Let us construct the deformations ∂

φ
xk

and ∂
φ
yk

of the boundary that change the real
or imaginary parts of the variable τk = xk + iyk , k ≥ 1, keeping all the other moments
and the variables φα fixed. It is convenient to set ∂

φ
τk

= 1
2 (∂

φ
xk

− i∂
φ
yk

). The argument is
similar to the proof of the fact that any deformation that preserves all the variables is
trivial.

• Suppose that the deformations ∂
φ
xk

and ∂
φ
yk

exist. Then the differential ∂φ
τk

ζ̄ dζ −∂
φ
τk

ζdζ̄

extends from ∂Dc to the Schottky double �. Its extension is a meromorphic differential
d�

φ
k with the only pole at the infinity point ∞ on the upper sheet. In a neighborhood

of ∞ it has the form

d�
φ
k (z) = dBk(z) + O(z−2)dz . (3.20)

The a-periods of d�
φ
k are equal to

∮
aα

d�
φ
k =

∫ zα

0
dBk . (3.21)

First of all, it is clear that the meromorphic differential d�
φ
k on � is uniquely defined

by its asymptotics at ∞ and by the normalization (3.21) of its a-periods. To deduce
these properties, we notice, using (3.16), that ∂xk

Cα(z)dz = dBk(z). Therefore, the

differential ∂
φ
xk

ζ̄ dζ − ∂
φ
xk

ζdζ̄ extends to Dc as

d�φ
xk

= −∂xk
C−(z)dz + dBk . (3.22)

Using the Schwarz symmetry principle we conclude that it extends to the Schottky dou-
ble as a meromorphic differential. Around the two infinities it has the form d�

φ
xk

=
z→∞

dBk + O(z−2)dz and d�
φ
xk

=
z̄→∞̄

−dB̄k + O(z̄−2)dz̄. In the same way one gets that

the differential ∂
φ
yn

ζ̄ dζ − ∂
φ
yn

ζdζ̄ extends to the double as a meromorphic differen-

tial d�
φ
yk

, which at the two infinities has the form d�
φ
yk

=
z→∞ idBk + O(z−2)dz and

d�
φ
yk

=
z̄→∞̄

idB̄k + O(z̄−2)dz̄ respectively. Since

2d�
φ
k = d�φ

xk
− id�φ

yk
,
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the first statement is proven. From ∂
φ
xk

φα = 0 and (3.17), (3.22) it follows that

0 = Re

(∫ ξ0

0
dBk +

∫ ξα

ξ0

(−d�φ
xk

+ dBk

)+
∫ zα

ξα

dBk

)
.

Hence ∮
aα

d�φ
xk

= 2Re
∫ zα

0
dBk .

In the same way one gets
∮

aα

d�φ
yk

= −2Im
∫ zα

0
dBk .

The last two equations are equivalent to (3.21).
Normal displacement of the boundary that accomplishes the deformations can be

explicitly found using the following elementary proposition:

• Let D(t) be a deformation with real parameter t such that the differential

d� = ∂t ζ̄ dζ − ∂t ζdζ̄

extends to a meromorphic differential d� globally defined on the Schottky double
�. Then the corresponding normal displacement of the boundary is proportional to
normal derivative of Re

∫ z
d� at the boundary point ξ :

δn(ξ) = 1

2
δt ∂n

(
Re
∫ ξ

d�

)
. (3.23)

Conversely, if δn(ξ) = 1
2δt ∂nH(ξ), where H is a real-valued function such that

dH = 0 along the boundary contours and ∂zH is meromorphic in Dc then the
differential ∂t ζ̄ dζ − ∂t ζdζ̄ is meromorphically extendable to the Schottky double as
2∂zHdz on the upper sheet and −2∂z̄Hdz̄ on the lower sheet.

In our case normal displacements of the boundary that change xk or yk keeping all the
other moments and the variables φα fixed are thus given by

δn(ξ) = 1

2
δxk ∂n

(
Re
∫ ξ

d�φ
xk

)
, δn(ξ) = 1

2
δyk ∂n

(
Re
∫ ξ

d�φ
yk

)
(3.24)

respectively. Note that since the differentials d�xk
(z), d�yk

(z) (but not d�k(z)!) are
purely imaginary on the boundaries, d Re �xk

(z) = d Re �yk
(z) = 0 along each com-

ponent of the boundary. With formulas (3.24) at hand, one can directly verify that these
deformations indeed change xk or yk only and keep fixed all other moments. We leave
this to the reader.

In terms of the differential d�
φ
k formulas (3.24) acquire the form

δn(ξ) = δxk ∂n

(
Re
∫ ξ

d�
φ
k

)
, δn(ξ) = −δyk ∂n

(
Im
∫ ξ

d�
φ
k

)
(3.25)

(cf. (2.11) for the simply-connected case). Indeed, taking the real part of 2�k(ξ) =
�xk

(ξ)− i�yk
(ξ), we get 2 Re �k(ξ) = Re �xk

(ξ)+ Im �yk
(ξ). But the normal deriv-

ative of Im �yk
(ξ) vanishes since, by virtue of the Cauchy-Riemann identities, it is equal
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to the tangential derivative of the conjugate harmonic function Re �yk
(ξ). This proves

the first formula in (3.25). The second one is proven in a similar way by taking imaginary
part of 2�k(ξ).

The construction of the vector fields ∂
φ
τ0 (which changes τ0 only) and ∂

φ
α (which

changes φα only) is quite similar and even simpler since the derivative (3.16) vanishes.
So, we present the results without going into details.

• The deformation ∂
φ
τ0 corresponds to the normal displacement

δn(ξ) = −1

2
δτ0 ∂nG(∞, ξ) .

The differential −(∂
φ
τ0 ζ̄ dζ − ∂

φ
τ0ζdζ̄ ) extends from ∂Dc to the Schottky double �.

Its extension is a meromorphic third-kind Abelian differential d�0 which has simple
poles at the infinities on the two sheets of the Schottky double (with residues ±1) and
vanishing a-periods.

• The deformation ∂
φ
α corresponds to the normal displacement

δn(ξ) = 1

4
δφα ∂nωα(ξ) ,

where ωα is the harmonic measure of the boundary component bα (see (3.1)). The
differential ∂

φ
α ζ̄ dζ − ∂

φ
α ζdζ̄ holomorphically extends from ∂Dc to the Schottky dou-

ble �. Its extension is the canonically normalized holomorphic differential dWα =
∂zωα(z)dz on the upper sheet (and dWα = −∂z̄ωα(z)dz̄ on the lower sheet).

So we see that ∂
φ
xk

, ∂
φ
yk

, ∂
φ
τ0 and ∂

φ
α are well-defined vector fields on the space of

multiply-connected domains. This fact allows us to treat φα , τk as local coordinates on
this space. At this stage it becomes clear why we prefer to use the moments τk rather than
Mk,α . Although the latter are finite linear combinations of the former, they can not be
treated as local coordinates because the vector fields ∂/∂Mk,α , being in general infinite
linear combinations of the ∂

φ
τk

, are not well-defined.

3.4. �-variables. Up to now the roles of the variables sα and φα have been in some
sense dual to each other. It is necessary to emphasize that this duality does not go beyond
the framework of our proof of the statement that the first or the second sets together with
the variables τk are local coordinates in the space of multiply-connected domains. For
analytic boundary curves one can define the Schwarz function, which is a unique function
analytic in some strip-like neighborhoods of all boundaries such that

S(z) = z̄ on the boundary curves . (3.26)

Then the variables sα are b-periods of the differential S(z)dz. At the same time, the vari-
ables φα in general can not be identified with periods of this differential (or its extension)
over any cycles on the Schottky double. Now we are going to introduce new variables,
�α , which can be called virtual a-periods of the differential S(z)dz on the Schottky
double, since in all the cases when the Schwarz function has a meromorphic extension
to the double they indeed coincide with the a-periods of the corresponding differential
(see below in this section).
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Let us consider the differential

d�k = d�
φ
k −

∑
α

Bk(zα)dWα (k ≥ 1) , (3.27)

where

Bk(z) =
∫ z

0
dBk (3.28)

is a polynomial of degree k. It is a meromorphic differential on � with the only pole at
∞ on the upper sheet, where it has the form

d�k(z) = dBk(z) + O(z−2)dz. (3.29)

From (3.21) it is clear that the differential d�k has vanishing a-periods∮
aα

d�k = 0 , (3.30)

i.e. it is a canonically normalized meromorphic differential. The normal displacements
of the boundary given by real and imaginary parts of the normal derivative ∂n�k define
a complex tangent vector field

∂�
τk

= ∂φ
τk

−
∑
α

Bk(zα)∂φ
α (3.31)

to the space of multiply-connected domains. These vector fields keep fixed the formal
variable

�α = φα + 2Re
∑

k

Bk(zα)τk. (3.32)

In a general situation this variable is only a formal one because the sum generally does
not converge. Thus, we call �α the virtual a-period of the Schwarz differential S(z)dz,
since in the case when the Schwarz function has a meromorphic extension to the dou-
ble �, the sum does converge and the corresponding quantity does coincide with the
aα-period of the extension of the Schwarz differential.

3.5. Elementary deformations and the operator ∇(z). Like in Sect. 2, we introduce the
elementary deformations

δa with δn(ξ) = − ε

2
∂nG(a, ξ) , a ∈ Dc ,

δ(α) with δn(ξ) = − ε

2
∂nωα(ξ) α = 1, . . . , g , (3.33)

where ωα(z) is the harmonic measure of the boundary component bα (see (3.1)). The
deformations δ(α) were considered in [19] in connection with the so-called quadrature
domains [19, 20].

In complete analogy with Sect. 2 one can derive the following formulas for variations
of the local coordinates under elementary deformations:

δaτk = εAk(a), δaφα = ε log
∣∣∣1− zα

a

∣∣∣2 , δ(α)τk = 0, δ(α)φβ = −2εδαβ . (3.34)
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The first two formulas are particular cases of

δa

∫
Dc

h(ζ )d2ζ = ε

2

∮
∂Dc

h(ζ )∂nG(a, ζ )|dζ | = −επh(a)

which is valid for any harmonic function h in Dc (the last equality is just the formula
for solution of the Dirichlet problem). Similarly,

δ(α)

∫
Dc

h(ζ )d2ζ = ε

2

∮
∂Dc

h∂nωα |dζ | = ε

2

∮
bα

∂nh |dζ | = −iε

∮
∂Dα

∂ζ h dζ

(the Green formula was used), and the last two formulas in (3.34) correspond to the
particular choices of h(z). Variations of the variables �α (in the case when they are
well-defined) then read:

δz�α = 0, δ(α)�β = −2εδαβ . (3.35)

Therefore, for any functional X on the space of the multiply-connected domains the
following equations hold:

δzX = ε∇(z)X , (3.36)

δ(α)X = −2ε∂φ
α X = −2ε∂�

α X . (3.37)

The differential operator ∇(z) in the multiply-connected case is defined by the formula

∇(z) = ∂�
τ0

+
∑
k≥1

(
Ak(z)∂

�
τk

+ Ak(z)∂
�
τ̄k

)
. (3.38)

The functional X can be regarded as a function X = Xφ(φα, τk) on the space of the
local coordinates φα, τk , or as a function X = X�(�α, τk) on the space of the local
coordinates �α, τk . We would like to stress once again, that although in the latter case
the variables �α are formal their variations under elementary deformations and the
vector-fields ∂�

τk
, which keep them fixed, are well-defined.

For completeness, let us characterize elementary deformations δa in terms of mer-
omorphic differentials on the Schottky double (as we have already seen, deformations
δ(α) correspond to holomorphic differentials).

• Let ∂t(a) be the vector field in the space of multiply-connected domains corresponding
to the elementary deformation δa . Then the differential −(∂t(a) ζ̄ dζ −∂t(a)ζ dζ̄ ) extends
from ∂Dc to the Schottky double �. Its extension is a meromorphic third-kind Abelian
differential d�(a,ā) which has simple poles at the points a and ā on the two sheets of
the Schottky double (with residues ±1) and vanishing a-periods.

In terms of the Green function we have:

d�(a,ā) =
{

2∂zG(a, z)dz on the upper sheet
−2∂z̄G(a, z)dz on the lower sheet

(cf. (3.23) and (3.33)). Note that the differential d�0 introduced before coincides with
d�(∞,∞̄).
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Let K(z, ζ )dζ be a unique meromorphic Abelian differential of the third kind on �

with simple poles at z and ∞ on the upper sheet with residues ±1 normalized to zero
a-periods. (Note that as a function of the variable z it is multi-valued on �.) Then

2∂ζ G(z, ζ )dζ − 2∂ζ G(∞, ζ )dζ = K(z, ζ )dζ + K(z̄, ζ )dζ (3.39)

and the differential d�k(ζ ) can be represented in the form

d�k(ζ ) = dζ

2πi

∮
∞

K(u, ζ )dBk(u) , (3.40)

where the u-integration goes along a big circle around infinity. Using (3.14) we obtain
that

−
∑
k≥1

Ak(z)d�k(ζ ) = dζ

2πi

∮
∞

K(u, ζ )du

u − z
= K(z, ζ )dζ . (3.41)

Therefore, the following expansion of the derivative of the Green function holds:

2∂ζ G(z, ζ )dζ = d�0(ζ ) −
∑
k≥1

(
Ak(z)d�k(ζ ) + Ak(z)d�̄k(ζ )

)
. (3.42)

Here d�̄k is a unique meromorphic differential on � with the only pole at infinity on
the lower sheet with the principal part −dBk(z) and vanishing a-periods. This formula
generalizes Eq. (3.8) from [2] to the multiply-connected case.

3.6. The F -function. Applying the variational formulas (1.4), (3.3), (3.4), we can find
variations of the Green function, harmonic measure and period matrix under the elemen-
tary deformations. In this way we obtain a number of important relations which connect
elementary deformations of these objects:

δaG(b, c) = δbG(c, a) = δcG(a, b) ,

δaωα(b) = δ(α)G(a, b) = δbωα(a) ,

δ(α)ωβ(z) = δ(β)ωα(z) ,

δz�αβ = δ(α)ωβ(z) ,

δ(α)�βγ = δ(β)�γα = δ(γ )�αβ .

(3.43)

From (3.36), (3.37) it follows that the formulas (3.43) can be rewritten in terms of the
differential operators ∇(z) and ∂α := ∂/∂φα = ∂/∂�α:

∇(a)G(b, c) = ∇(b)G(c, a) = ∇(c)G(a, b) ,

∇(a)ωα(b) = −2∂αG(a, b) ,

∂αωβ(z) = ∂βωα(z) ,

∇(z)�αβ = −2∂αωβ(z) ,

∂α�βγ = ∂β�γα = ∂γ �αβ .

(3.44)

These integrability relations generalize formulas (2.15) to the multiply-connected case.
The first line just coincides with (2.15) while the other ones extend the symmetry of the
derivatives to the harmonic measure and the period matrix.
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Again, (3.44) can be regarded as a set of compatibility conditions of an infinite hier-
archy of differential equations. They imply that there exists a function F = F(�α, τ )

such that

G(a, b) = log
∣∣∣a−1 − b−1

∣∣∣+ 1

2
∇(a)∇(b)F , (3.45)

ωα(z) = − ∂α ∇(z)F , (3.46)

Tαβ = iπ�αβ = 2πi ∂α∂βF . (3.47)

The function F is the (logarithm of the) tau-function of multiply-connected domains.

3.7. Dual moments and integral representation of the tau-function. To obtain the inte-
gral representation of the function F , we proceed exactly in the same manner as in Sect. 2
(see also [2] for more details).

Again, set �̃(z) = ∇(z)F . Equations (3.45) and (3.46) determine the function �̃(z)

for z ∈ Dc via its variations under the elementary deformations:

δa�̃(z) = −2ε log
∣∣∣a−1 − z−1

∣∣∣+ 2εG(a, z) ,

δ(α)�̃(z) = 2εωα(z) .
(3.48)

It is easy to verify that the function

�̃(z) = − 2

π

∫
D

log |z−1 − ζ−1|d2ζ = �(z) − �(0) + τ0 log |z|2 (3.49)

satisfies (3.48). Indeed, using (3.33), variation of (3.49) reads

δa

(
− 2

π

∫
D

log |z−1 − ζ−1|d2ζ

)
= ε

π

∮
∂Dc

|dξ |∂nG(a, ξ) log |z−1 − ξ−1|

= ε

π

∮
∂Dc

|dξ |∂nG(a, ξ)
(

log |z−1 − ξ−1| − G(z, ξ)
)

= −2ε log
∣∣∣a−1 − z−1

∣∣∣+ 2εG(a, z) ,

where we have used properties of the Dirichlet Green function and the fact that the
Dirichlet formula restores harmonic function from its value at the boundary. Similarly,
for z ∈ Dc we obtain:

δ(α)

(
− 2

π

∫
D

log |z−1 − ζ−1|d2ζ

)
= ε

π

∮
∂Dc

|dξ |∂nωα(ξ) log |z−1 − ξ−1|

= ε

π

∮
∂Dc

|dξ |∂nωα(ξ)
(

log |z−1 − ξ−1| − G(z, ξ)
)

= ε

π

∮
bα

|dξ |∂n

(
log |z−1 − ξ−1| − G(z, ξ)

)

= 2εωα(z) .
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The same calculation for z ∈ D yields

δ(α)�̃(z) =
{

0 if z ∈ D0

2εδαβ if z ∈ Dβ , β = 1, . . . , g
. (3.50)

We see that the expression in (3.49) coincides with �̃ given by (2.32), where D is
now understood as the union of all Dα’s. The coefficients of an expansion of �̃ at infinity
define the dual moments νk:

∇(z)F = �̃(z) = − 2

π

∫
D

log |z−1 − ζ−1|d2ζ = v0 + 2Re
∑
k>0

νkAk(z) . (3.51)

The coefficients in the r.h.s. of (3.51) are moments of the union of the interior domains
with respect to the dual basis

νk = 1

π

∫
D

Bk(z)d
2z . (3.52)

From Eq. (3.51) it follows that

νk = ∂�
τk

F . (3.53)

The same arguments show that the derivatives

sα := − ∂αF (3.54)

are just areas of the holes (3.11). Indeed, Eqs. (3.46), (3.47) determine these quantities
via their variations: δasα = εωα(a), δ(β)sα = ε�αβ . A direct check, using (3.33), shows
that

∇(z)F = − 2

π

∫
D

log

∣∣∣∣1z − 1

ζ

∣∣∣∣ d2ζ , ∂αF = − Area(Dα)

π
. (3.55)

For example,

δ(α)F = 1

2π
δ(α)

(∫
D

�̃(z)d2z

)

= − ε

4π

∮
∂Dc

|dξ |∂nωα(ξ)�̃(ξ) + 1

2π

∫
D

δ(α)�̃(ζ ) d2ζ .

In the last term we use (3.50) and obtain the result:

δ(α)F = − ε

4π

∮
bα

|dξ |∂n�̃(ξ) + ε

π

∫
Dα

d2ζ = − ε

4π

∫
Dα

��̃ d2ζ + εsα = 2εsα

(here � = 4∂z∂z̄ is the Laplace operator).
The integral representation of F is found in the same way through its variations which

are read from (3.55). The result is given by the same formulas (2.35) and (2.36) as in
the simply-connected case with the understanding that D = ∪g

α=0Dα is now the union
of all Dα’s.
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3.8. Algebraic domains. In what follows we restrict our analysis by the class of algebraic
domains. In the simply-connected case dealt with in the previous section the algebraic
domains are simply images of the exterior of the unit disk under one-to-one conformal
maps given by rational functions whose singularities are all in the other “half” of the
plane, i.e. inside the unit circle. Note that the boundary of the unit circle is the set of
fixed points of the inversion w → 1/w̄ which is the antiholomorphic involution of the
w-plane compactified by a point at infinity (the Riemann sphere).

Planar multiply-connected algebraic domains can be defined as the domains for which
the Schwartz function has a meromorphic extension to a higher genus Riemann surface
(a complex algebraic curve) with antiholomorphic involution. More precisely, let � be
a real Riemann surface by which we mean a complex algebraic curve of genus g with
an antiholomorphic involution such that the set of fixed points consists of exactly g + 1
closed contours (such curves are sometimes called M-curves). Then � can be naturally
divided in two “halves” (say upper and lower sheets) which are interchanged by the
involution. Algebraic domains with g holes in the plane can be defined as images of
the upper half of the real Riemann surface under bijective conformal maps given by
rational (meromorphic) functions on � (see, e.g. [21]). For the purpose of this paper, it
is convenient to use another, more direct characterization of algebraic domains.

The domain Dc is algebraic if and only if the Cauchy integrals (3.15)

Cα(z) = 1

2πi

∮
∂D

ζ̄ dζ

ζ − z
for z ∈ Dα

are extendable to a rational (meromorphic) function J (z) on the whole complex plane
with a marked point at infinity (see [21]). It is important to stress that this function is
required to be the same for all α. The equality

S(z) = J (z) − C−(z)

valid by definition for z ∈ ∂Dc can be used for analytic extension of the Schwarz func-
tion. The function C−(z) is analytic in Dc. Therefore, J (z) and S(z) have the same
singular parts at their poles in Dc. One may treat S(z) as a function on the Schottky
double extending it to the lower sheet as z̄.

It is also convenient to introduce

V (z) =
∫ z

0
J (z)dz (3.56)

which is multi-valued if J (z) has simple poles (to fix a single-valued branch, we make
cuts from ∞ to all simple poles of J (z)). In fact we need only the real part of V (z). In
neighborhoods of the points zα one has

J (z)dz =
∑
k≥1

τkdBk(z), V (z) =
∑
k≥1

τkBk(z) . (3.57)

The formula (3.32)

�α = φα + 2 Re V (zα), zα ∈ Dα (3.58)

shows that for the algebraic domains the variables �α , introduced in the general case as
formal quantities, are well-defined. It is easy to show that they are equal to the a-periods
of the differential S(z)dz on the Schottky double �. Indeed, using the fact that C0(z)
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and Cα(z) represent restrictions of the same function J (z), one can rewrite (3.18) in the
form

φα = −2 Re

(∫ zα

0
J (z)dz +

∫ ξα

ξ0

(z̄ + C−(z) − J (z))dz

)
.

Under the second integral we recognize the Schwarz function. Combining this equality
with the definition of �α (3.32), we obtain:

�α = 2 Re
∫ ξα

ξ0

(S(z) − z̄)dz =
∫ ξα

ξ0

(
S(z)dz − z̄dS(z)

)
=
∮

aα

S(z)dz . (3.59)

As an example of algebraic domains, it is instructive to consider the case when only a
finite-number of the moments τk are non-zero. Let AN be the space of multiply-con-
nected domains such that

τk = 0, k > N . (3.60)

Then the arguments similar to the ones used above show that

• S(z) extends to a meromorphic function on � with a pole of order N − 1 at ∞ and a
simple pole at ∞̄.

The function z extended to the lower sheet of the Schottky double as S(z) has a simple
pole at ∞ and a pole of order N − 1 at ∞̄. For a domain Dc ∈ AN the moments with
respect to the Laurent basis (cf. (2.1))

tk = − 1

πk

∫
Dc

z−kd2z (3.61)

coincide with the coefficients of the expansion of the Schwarz function near ∞:

S(z) =
N∑

k=1

ktkz
k−1 + O(z−1), z → ∞ . (3.62)

The normal displacement of the bondary of an algebraic domain, which changes the
variable tk keeping all the other moments (and �α) fixed is defined by normal derivative
of the function 2 Re

∫ z
d�̃k . Here d�̃k is a unique normalized meromorphic differential

on � with the only pole at ∞ of the form

d�̃k = d(zk + O(z−1)),

∮
aα

d�̃k = 0 . (3.63)

Note that the differential d�̃k is well-defined for a generic, not necessarily algebraic
domain. Therefore, the normal derivative of the function 2 Re

∫ z
d�̃k defines a tangent

vector field ∂�
tk

on the whole space of multiply-connected domains.
The space AN is a particular case of algebraic orbits of the universal Whitham hier-

archy. In this case the general formula (7.42) from [4] for the τ -function of the Whitham
hierarchy, after proper change of the notation, acquires the form

2F = −1

2
τ 2

0 + τ0v0 + 1

2

∑
k≥1

(2 − k)(τkνk + τ̄k ν̄k) −
g∑

α=1

�αsα (3.64)
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which is a quasi-homogeneity condition obeyed by F (compare with formula (5.11)
from [2]).

Let d�0 be a unique normalized meromorphic differential on � with simple poles
at the infinities ∞ and ∞̄. Its Abelian integral

log w(z) =
∫ z

ξ0

d�0 (3.65)

defines in the neighborhood of ∞ a function w(z) which has a simple pole at infinity. The
dependence of the inverse function z(w) on the variables tk is described by the Whitham
equations for the two-dimensional Toda lattice hierarchy. These equations have the form

∂�
tk

z(w) = {�̃k(w), z(w)} := d�̃k(w)

d log w
∂t0z(w) − ∂t0�̃k(w)

dz

d log w
. (3.66)

Algebraic domains of a more general form correspond to the universal Whitham hier-
archy. Let AN1,... ,Nl

be the space of domains such that the extension of the Schwarz
function S(z) to Dc has poles of orders Nj − 1 at some points zj (which possibly
include ∞ and ∞̄). Then, according to [4], the variables

t0,j =
∫ zj

ξ0

S(z)dz, tk,j = 1

k
reszj

(z − zj )
k−1S(z)dz, k = 1, . . . , Nj − 1 (3.67)

together with the variables sα (or �α) provide a set of local Whitham coordinates on the
space AN1,... ,Nl

. Note that the definition of the algebraic orbits of the universal Whitham
hierarchy is a bit more general than the definition of algebraic domains given above. It
corresponds to the case when the differential dS of the Schwarz function is extendable
to Dc as a meromorphic differential (in [21] such domains are called Abelian domains).
For example, let A(1)

N be the space of multiply-connected domains such that

T
(1)
k =

∮
∂D

AkdS =
∮

∂D
S′(z)Akdz = −

∮
∂D

A′
kS(z)dz = 0, k > N . (3.68)

This space is characterized by the following property: there are constants Kα such that
S(z) + Kα extends to a meromorphic function on Dc with a pole of order N at ∞. The
variables

Kα, sα, tk = 1

2πik

∮
∂D

z−kz̄dz, k ≥ 1, (3.69)

are local coordinates on A(1)
N .

The two cases when S(z) or its derivative S′(z) have a meromorphic extension to
Dc are particular examples of the whole hierarchy of integrable domains, which can be
defined in a similar way by the condition that the mth order derivative of the Schwarz
function S(z) admits a meromorphic extension to the Schottky double �. For example,
let A(2)

N be the space of multiply-connected domains such that

T
(2)
k =

∮
∂D

S′′(z)Akdz = −
∮

∂D
A′′

kS(z)dz = 0, k > N . (3.70)
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This space is characterized by the following property: there are linear functions kα(z) =
K0

α + K1
αz such that S(z) + kα(z) extends to a meromorphic function on Dc with a pole

of order N + 1 at ∞. The variables

Kα(z), sα, tk = 1

2πik

∮
∂D

z−kz̄dz, k ≥ 1, (3.71)

are local coordinates on A(2)
N . The other spaces A(m)

N with m > 2 can be defined in a
similar way.

4. The Duality Transformation

The independent variables �α (3.59) or φα used in the previous section are not as
transparent as the dual variables sα (3.11), which are simply areas of the holes Dα . In
this section we show how to pass to the set of independent variables s1, . . . , sg (3.11)
(together with the infinite set of τk’s). This transformation is similar to the passing from
“external” to “internal” moments in the simply-connected case (see Sect. 5 of [2]). The
difference is that only a finite number of times are subject to the transformation while
the infinite set of τk’s remains the same.

The change to the variables sα can be done in the general case of domains with
smooth boundaries. However, it is the change �α → sα rather than φα → sα that leads
to a transparent duality. Since �α’s are only defined as formal (“virtual”) variables for
domains with smooth boundaries, we shall restrict our consideration to the class of alge-
braic domains discussed at the end of the previous section. In this case the variables �α

are well defined.

4.1. The Legendre transform. Passing from �α to sα is a particular duality transforma-
tion which is equivalent to the interchanging of the a and b cycles on the Schottky double
�. This is achieved by the (partial) Legendre transform F(�α, τ ) −→ F̃ (sα, τ ), where

F̃ = F +
g∑

α=1

�αsα . (4.1)

The function F̃ is the “dual” tau-function. Below in this section, it is shown that F̃ solves
the modified Dirichlet problem and can be identified with the free energy of a matrix
model in the planar large N limit in the case when the support of eigenvalues consists of
a few disconnected domains (a so-called multi-support solution, see [22] and references
therein).

The main properties of F̃ follow from those of F . According to (2.34), (3.55) we
have dF = −∑α sαd�α +∑

k νkdτk (for brevity, k is assumed to run over all integer
values, τ−k ≡ τ̄k , etc.), so dF̃ = ∑

α �αdsα + ∑
k νkdτk . This gives the first order

derivatives:

�α = ∂F̃

∂sα
, νk = ∂F̃

∂τk

. (4.2)

The second order derivatives are transformed as follows (see e.g. [23]). Set

Fαβ = ∂2F

∂�α∂�β

, Fαk = ∂2F

∂�α∂τk

, Fik = ∂2F

∂τi∂τk
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and similarly for F̃ . Then

Fαβ = −(F̃−1)αβ ,

Fαk =
g∑

γ=1

(F̃−1)αγ F̃γ k ,

Fik = F̃ik −
g∑

γ,γ ′=1

F̃iγ (F̃−1)γ γ ′ F̃γ ′k .

(4.3)

Here (F̃−1)αβ means the matrix element of the matrix inverse to the g × g matrix F̃αβ .
Using these formulas, it is easy to see that the main properties (3.45), (3.46) and

(3.47) of the tau-function are translated to the dual tau-function as follows:

G̃(a, b) = log |a−1 − b−1| + 1

2
∇(a)∇(b)F̃ , (4.4)

2πi ω̃α(z) = − ∂sα∇(z)F̃ , (4.5)

2πi T̃αβ = ∂2F̃

∂sα∂sβ
, (4.6)

where τk-derivatives in ∇(z) are taken at fixed sα . The objects in the left-hand sides of
these relations are:

G̃(a, b) = G(a, b) + iπ

g∑
α,β=1

ωα(a)T̃αβ ωβ(b) , (4.7)

ω̃α(z) =
g∑

β=1

T̃αβ ωβ(z) , (4.8)

T̃ = −T −1 = i

π
�−1 . (4.9)

The function G̃ is the Green function of the modified Dirichlet problem to be discussed
below. The matrix T̃ is the matrix of a-periods of the holomorphic differentials dW̃α on

the double � (so that ω̃α(z) = W̃α(z)+ W̃α(z)), normalized with respect to the b-cycles

−
∮

bα

dW̃β = δαβ,

∮
aα

dW̃β = T̃αβ ,

i.e. more precisely, the change of cycles is aα → bα , bα → −aα .
An important remark is in order. By a simple rescaling of the independent variables

one is able to write the group of relations (4.4)–(4.6) for the function F̃ in exactly the
same form as the ones for the function F (3.45)–(3.47), so that they differ merely by the
notation. We use this fact in Sect. 5.
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4.2. The modified Dirichlet problem. The modified Green function (4.7) solves the mod-
ified Dirichlet problem which can be formulated in the following way.

One may eliminate all except for one of the periods of the Green function G, thus
making it similar, in this respect, to the Green function of a simply-connected domain
(recall that the latter has the non-zero period 2π over the only boundary curve b0). This
leads to the following modified Dirichlet problem (see e.g. [24]): given a function u0(z)

on the boundary, to find a harmonic function u(z) in Dc such that it is continuous up
to the boundary and equals u0(z) + Cα on the α’s boundary component. Here, Cα’s
are some constants. It is important to stress that they are not given a priori but have to
be determined from the condition that the solution u(z) has vanishing periods over the
boundaries b1, . . . , bg . One of these constants can be put equal to zero. We set C0 = 0.
This problem also has a unique solution. It is given by the same formula (1.1) in terms
of the modified Green function G̃(z, ζ ). The definition of the latter is similar to that of
the G(z, ζ ) but differs in two respects:

(G̃1) G̃(z, ζ ) is required to have zero periods over the boundaries b1, . . . , bg;
(G̃2) The derivative of G̃(z, ζ ) along the boundary (not G̃(z, ζ ) itself!) vanishes on the

boundary.

Under the condition that G̃(z, ζ ) = 0 on b0 such a function is unique. The function given
by (4.7) just meets these requirements. We conclude that the modified Green function is
expressed through the dual tau-function F̃ .

Note that variations of the modified Green function under small deformations of the
domain are described by the same Hadamard formula (1.4), where each Green function
is replaced by G̃. This follows, after some algebra, from the formula for G̃ in terms of
G, ωα and �αβ . Therefore, all the arguments of Sect. 3 could be repeated in a com-
pletely parallel way starting from the modified Dirichlet problem. One may also say that
the functions G and G̃ differ merely by a preferred basis of cycles on the double: the
differential ∂zGdz has vanishing periods over the a-cycles while ∂zG̃dz has vanishing
periods over the b-cycles.

The function wa(z) such that G̃(z, a) = − log |wa(z)| maps Dc onto the exterior of
the unit circle which is slit along g concentric circular arcs (see Fig. 5). Since the periods

Fig. 5. The image of a triply-connected domain under the conformal map wa(z) such that G̃(z, a) =
− log |wa(z)|. The function wa maps the domain onto the exterior of the unit (dashed) circle with g = 3
concentric circular cuts. Positions and lengths of the arcs depend on the shape of Dc in Fig. 3 and depend
also on the normalization point z = a which is mapped to ∞
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of the function G̃ vanish, the function wa is single-valued. Positions of the arcs depend
on the shape of Dc as well as on the point a which is mapped to ∞. The radii of the arcs,
Rα , are expressed through the dual tau-function as

log R2
α = ∂sα∇(a)F̃ . (4.10)

In particular, for a = ∞ we have log R2
α = ∂sα∂τ0 F̃ (cf. Eq. (2.20) for the conformal

radius).

4.3. Relation to multi-support solutions of matrix models. The partition function of the
model3, written as an integral over eigenvalues, reads:

ZN = 1

N !

∫
exp


 N∑

i<j

log |zi − zj |2 + 1

�

N∑
i=1

U(zi)


 N∏

j=1

d2zj . (4.11)

The matrix model potential U is usually chosen to be of the form

U(z) = −zz̄ + V (z) + V (z) , (4.12)

where V (z) is at the moment some polynomial; however, we will see immediately that
the coincidence of the notation with (3.57) is not accidental. The parameter �, in the
large N limit, tends to zero simultaneously with N → ∞ in such a way that t0 = N� is
kept finite and fixed. In the leading order, one can apply the saddle point method. The
saddle point condition is

�

N∑
j=1,�=i

1

zi − zj

+ ∂zi
U(zi) = 0 .

The density of eigenvalues is a sum of two-dimensional delta-functions:

ρ(z) = π�

∑
i

δ(2)(z − zi) .

In the large N limit, one treats it as a continuous function normalized as 1
π

∫
ρ(z)d2z =

t0. In terms of the continuous density the saddle point equation reads

1

π

∫
ρ(ζ )d2ζ

z − ζ
+ ∂zU(z) = 0 . (4.13)

The solution is well known and easy to obtain: the extremal density ρ0(z) is constant
in some domain D (the support of eigenvalues which can be a union of disconnected
domains Dα) and zero otherwise. More precisely,

ρ0(z) =
{

1 z ∈ D
0 z ∈ C \ D ≡ Dc .

3 One may have in mind the model of all complex or mutually hermitian conjugated or normal matrices.
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Note that the saddle point condition is imposed only for z inside the support of eigen-
values. Writing (cf. (3.57))

V (z) =
p∑

k=1

τkBk(z) ,

multiplying Eq. (4.13) by Ak(z) and integrating it over the boundary of the support of
eigenvalues, one finds that the domain D is such that the coefficients τk are moments
of its complement with respect to the basis functions Ak and the higher moments (with
numbers greater than p) vanish. As is proven in Sect. 3, these conditions, together with
the normalization condition for the density, locally determine the shape of the support of
eigenvalues. Equivalently, one might parametrize the polynomial as V (z) = ∑p

k=1 tkz
k ,

then tk are moments of the C \ D with respect to the functions z−k .
An interesting problem is to obtain, for a given value of t0, necessary and sufficient

conditions on the polynomial V for the support of eigenvalues to be a union of g + 1
disconnected domains (”droplets”) with non-zero filling. One may approach this prob-
lem from a “classical” limit of very small (point-like) droplets. Clearly, for our choice
of the signs in (4.11) and (4.12), the stable point-like droplets are located at minima of
−U(z), or equivalently at maxima of U(z). As soon as we use the basis which explicitly
depends on the marked points zα ∈ Dα , it is natural to consider the germ configuration
with point-like eigenvalue droplets at the points zα . It is easy to see that the sufficient
conditions for the potential (4.12) to have maxima at the points zα are

z̄α = V ′(zα), |V ′′(zα)| < 1 for all α . (4.14)

The first one means that there is an extremum of the potential U(z) at the point zα . The
second one ensures that eigenvalues of the matrix of second derivatives of the potential
at the extremum are both negative, i.e. the extremum is actually a maximum of U(z). The
first condition literally coincides with the one used in [22] for the completely degenerate
curve (point-like droplets) while the second one requires that not all extrema are filled, so
that the “smooth” genus g is always less than the maximal possible genus (p−1)2−1. Let
now V0(z) be a minimal degree polynomial that obeys these conditions. Then perturbed
polynomials of the form

V (z) = V0(z) +
∑

k≥g+2

τkBk(z)

obey the same conditions for sufficiently small τk , and this is the advantage of using the
basis (3.10), (3.13) from the perspective of matrix models.

The saddle point equation (4.13) just means that the “effective potential” 1
π

∫
D log |z−

ζ |2d2ζ + U(z) is constant in each Dα , i.e. for z ∈ Dα it holds:

2

π

∫
D

log |z − ζ |d2ζ + U(z) = v0 + �α , (4.15)

where v0 = 2
π

∫
D log |z|d2z, and so in our normalization �0 = 0.

Let Nα be the number of eigenvalues in Dα , then limN→∞ �Nα = sα . First we find
the free energy with some fixed sα:

lim
N→∞

(
�

2 log ZN

)∣∣∣∣
sα fixed

= 1

π2

∫ ∫
ρ0(z) log |z − ζ |ρ0(ζ )d2zd2ζ

+ 1

π

∫
ρ0(z)U(z)d2z,
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where one should substitute (4.15). The result is

lim
N→∞

(
�

2 log ZN

)∣∣∣∣
sα fixed

= − 1

π2

∫
D

∫
D

log |z−1 − ζ−1|d2zd2ζ +
g∑

α=1

�αsα

= F̃ (sα, τ ) . (4.16)

This quantity depends on sα’s. It is given by the value of the integrand in (4.11) at the
saddle point with fixed sα .

If one wants to take into account the “tunneling” of eigenvalues between different
components of the support, sα are no longer free parameters, and the free energy F (0) of
the “planar limit” of the matrix model should be obtained by extremizing F̃ with respect
to sα (with fixed t0). It follows from the above that ∂sα F̃ = �α and so the extremum is
at �α = 0. Therefore,

F (0) = F

∣∣∣
�α=0

, (4.17)

where F is given by (2.35). The results of Sect. 3 imply that the growth of the support of
eigenvalues, when N → N +δN and the tunneling is taken into account, is given by the
normal displacement of the boundary proportional to the normal derivative of the Green
function with the minus sign, like in (2.9). Since this quantity is always non-negative, we
conclude that if a point belongs to the support of eigenvalues, it does so as t0 increases.
In particular, if one starts with point-like droplets at the points zα , as is discussed above,
then these points always remain inside the droplets.

Let us note that different aspects of multi-support solutions of the 2-matrix model
and matrix models with complex eigenvalues were discussed in [22, 26, 25].

For matrix models one usually restricts oneself to the algebraic case of a finite
amount of nonvanishing moments playing the role of the coefficients of the matrix model
potential (4.12). In such a case the corresponding complex curve can be described by an
algebraic equation [22], which can be thought of as an auxiliary constraint to the second
derivatives of F . These auxiliary constraints look similar to the reduction conditions in
the case of Landau-Ginzburg topological theories (see, for example, discussion of such
conditions in the context of dispersionless Hirota equations and WDVV equations in
[7]). Their meaning is that the derivatives w.r.t. the times {τk} for k > g + 1 (where g is
the genus of the corresponding algebraic complex curve) can be expressed through the
derivatives restricted to k ≤ g + 1.

5. Green Function on the Schottky Double and Generalized Hirota Equations

Let us now turn to the generalization of the dispersionless Hirota equations to the mul-
tiply-connected case.

For a unified treatment of the two “dual” representations of the Dirichlet problem
discussed in the two previous sections, we make a simple change of variables. Namely,
let us introduce the generic “period” variables Xα which are identified either with �α

or 2πi sα depending on the choice of the set of cycles, and the function F(Xα, τ )

equal to F(Xα, τ ) or F̃ ( Xα

2πi
, τ ) respectively. Then the main relations (3.45)–(3.47) and

(4.4)–(4.6) acquire the form

G(a, b) = log |a−1 − b−1| + 1

2
∇(a)∇(b)F , (5.1)
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ωα(z) = − ∂α∇(z)F , (5.2)

Tαβ = 2πi ∂α∂βF , (5.3)

where ∂α := ∂Xα and G, ω and T stand for the corresponding objects with or without
tilde, depending on the chosen basis of cycles.

We will see below that, in analogy to the simply-conected case, any second order
derivative of the function F w.r.t. τk (and τ̄k), Fik , will be expressed through the deriva-
tives {Fαβ}, where α, β = 0, . . . , g together with {Fατi

} and their complex conjugated.
To be more precise, one can consider all second derivatives as functions of {Fαβ, Fαk}
modulo certain relations on the latter, like the relation (5.14) to be discussed below.
Sometimes on this “small phase space” more extra constraints arise, which can be writ-
ten in the form similar to the Hirota or WDVV equations [27]; we are not going to discuss
this issue here, restricting ourselves to the generic situation.

5.1. The Abel map. To derive equations for the function F = F in Sect. 2, we used the
representation (2.23) for the conformal map w(z) in terms of F and Eq. (1.2) relating
the conformal map to the Green function which, in its turn, is expressed through the
second order derivatives of F . In the multiply-connected case, our strategy is basically
the same, with the suitable analog of the conformal map w(z) (or rather of log w(z))
being the embedding of Dc into the g-dimensional complex torus Jac, the Jacobi variety
of the Schottky double. This embedding is given, up to an overall shift in Jac, by the
Abel map z �→ W(z) := (W1(z), . . . , Wg(z)), where

Wα(z) =
∫ z

ξ0

dWα (5.4)

is the holomorphic part of the harmonic measure ωα . By virtue of (5.2), the Abel map is
represented through the second order derivatives of the function F :

Wα(z) − Wα(∞) =
∫ z

∞
dWα = −∂αD(z)F , (5.5)

2 Re Wα(∞) = ωα(∞) = −∂τ0∂αF . (5.6)

The last formula immediately follows from (5.2).

5.2. The Green function and the prime form. The Green function of the Dirichlet bound-
ary problem, appearing in (5.1), can be written in terms of the prime form (A.4) on the
Schottky double (cf. (1.2)):

G(z, ζ ) = log

∣∣∣∣E(z, ζ )

E(z, ζ̄ )

∣∣∣∣ . (5.7)

Here by ζ̄ we mean the (holomorphic) coordinate of the “mirror” point on the Schottky
double, i.e. the “mirror” of ζ under the antiholomorphic involution. The pairs of such

mirror points satisfy the condition Wα(ζ ) + Wα(ζ̄ ) = 0 in the Jacobian (i.e., the sum
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should be zero modulo the lattice of periods). The prime form4 is written through the
Riemann theta functions and the Abel map as follows:

E(z, ζ ) = θ∗(W(z) − W(ζ ))

h(z) h(ζ )
(5.8)

when the both points are on the upper sheet and

E(z, ζ̄ ) = θ∗(W(z) + W(ζ ))

ih(z) h(ζ )
(5.9)

when z is on the upper sheet and ζ̄ is on the lower one (for other cases we define

E(z̄, ζ̄ ) = E(z, ζ ), E(z̄, ζ ) = E(z, ζ̄ )). Here θ∗(W) ≡ θδ
∗(W|T ) is the Riemann theta

function (A.2) with the period matrix Tαβ = 2πi ∂α∂βF and any odd characteristics δ∗,
and

h2(z) = −z2
g∑

α=1

θ∗,α(0)∂zWα(z) = z2
g∑

α=1

θ∗,α(0)
∑
k≥1

A′
k(z)∂α∂τk

F . (5.10)

Note that in the l.h.s. of (5.9) the bar means the reflection in the double while in the r.h.s.
the bar means complex conjugation. The notation is consistent since the local coordinate
in the lower sheet is just the complex conjugate one. However, one should remember that
E(z, ζ̄ ) is not obtained from (5.8) by a simple substitution of the complex conjugated
argument. On different sheets so defined prime “form” E is represented by different
functions. In our normalization (5.9) iE(z, z̄) is real (see also Appendix B) and

lim
ζ→z

E(z, ζ )

z−1 − ζ−1 = 1 .

In particular, limz→∞ zE(z, ∞) = 1.

5.3. The prime form and the tau-function. In (5.7), the h-functions in the prime forms
cancel, so the analog of (2.17) reads

log

∣∣∣∣θ∗(W(z) − W(ζ ))

θ∗(W(z) + W(ζ ))

∣∣∣∣
2

= log

∣∣∣∣1z − 1

ζ

∣∣∣∣
2

+ ∇(z)∇(ζ )F . (5.11)

This equation already explains the claim made in the beginning of this section. Indeed,
the r.h.s. is the generating function for the derivatives Fik while the l.h.s. is expressed
through derivatives of the form Fαk and Fαβ only. The expansion in powers of z, ζ

allows one to express the former through the latter.
The analogs of Eqs. (2.19), (2.20) are, respectively:

log

∣∣∣∣θ∗(W(z) − W(∞))

θ∗(W(z) + W(∞))

∣∣∣∣
2

= − log |z|2 + ∂τ0∇(z)F , (5.12)

4 Given a Riemann surface with local coordinates 1/z and 1/z̄ we trivialize the bundle of − 1
2 -differ-

entials and “redefine” the prime form E(z, ζ ) → E(z, ζ )(dz)1/2(dζ )1/2 so that it becomes a function.
However for different coordinate patches (the “upper” and “lower” sheets of the Schottky double) one
gets different functions, see, for example, formulas (5.8) and (5.9) below.
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log

∣∣∣∣ h2(∞)

θ∗(ω(∞))

∣∣∣∣
2

= ∂2
τ0

F . (5.13)

Here ω(z) ≡ 2 Re W(z) = (ω1(z), . . . , ωg(z)) and

h2(∞) = lim
z→∞ z θ∗

(∫ z

∞
dW

)
= −

g∑
α=1

θ∗,α(0)∂α∂τ1F .

A simple check shows that the l.h.s. of (5.13) can be written as −2 log(iE(∞, ∞̄)).
As is seen from the expansion G(z, ∞) = − log |z| − log(iE(∞, ∞̄)) + O(z−1) as
z → ∞, (iE(∞, ∞̄))−1 is a natural analog of the conformal radius, and (5.13) indeed
turns to (2.20) in the simply-connected case (see Appendix B for an explicit illustrative
example). However, now it provides a nontrivial relation on Fαβ ’s and Fαi’s:

(∑
α

θ∗,α∂α∂τ1F
)
∑

β

θ∗,β∂β∂τ̄1F

 = θ2

∗ (ω(∞))e
∂2
τ0

F (5.14)

so that the “small phase space” contains the derivatives modulo this relation.
The next steps are exactly the same as in Sect. 2: we are going to decompose these

equalities into holomorphic and antiholomorphic parts. The results are conveniently
written in terms of the prime form. The counterpart of (2.22) is

log
E(ζ, z)E(∞, ζ̄ )

E(ζ, ∞)E(z, ζ̄ )
= log

(
1 − ζ

z

)
+ D(z)∇(ζ )F . (5.15)

Tending ζ → ∞, we get:

log
E(z, ∞̄)

E(z, ∞)
= log z + log E(∞, ∞̄) − ∂τ0D(z)F . (5.16)

Separating holomorphic and antiholomorphic parts of (5.15) in ζ , we get analogs of
(2.24) and (2.25):

log
E(z, ζ )

E(z, ∞)E(∞, ζ )
= log(z − ζ ) + D(z)D(ζ )F (5.17)

− log
E(z, ζ̄ )E(∞, ∞̄)

E(z, ∞̄)E(∞, ζ̄ )
= D(z)D̄(ζ̄ )F . (5.18)

Combining these equalities (with merging points z → ζ in particular), one is able to
obtain the following representations of the prime form itself:

E(z, ζ ) = (z−1 − ζ−1)e− 1
2 (D(z)−D(ζ))2F , (5.19)

iE(z, ζ̄ ) = e− 1
2 (∂τ0 +D(z)+D̄(ζ̄ ))2F . (5.20)

Note also the nice formula

iE(z, z̄) = e− 1
2 ∇2(z)F . (5.21)
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5.4. Generalized Hirota relations. For higher genus Riemann surfaces there are no sim-
ple universal relations connecting values of prime forms at different points, which, via
(5.19), (5.20), could be used to generate equations on F . The best available relation
[9] is the celebrated Fay identity (A.5). Although it contains not only prime forms but
Riemann theta functions themselves, it is really a source of closed equations on F , since
all the ingredients are in fact representable in terms of second order derivatives of F in
different variables.

An analog of the KP version of the Hirota equation (2.26) for the function F can
be obtained by plugging Eqs. (5.5) and (5.19) into the Fay identity (A.5). As a result,
one obtains a closed equation which contains second order derivatives of the F only
(recall that the period matrix in the theta-functions is essentially the matrix of the deriv-
atives Fαβ ). A few equivalent forms of this equation are available. First, shifting Z →
Z − W3 + W4 in (A.5) and putting z4 = ∞, one gets the relation

(a − b)eD(a)D(b)F θ

(∫ a

∞
dW +

∫ b

∞
dW − Z

)
θ

(∫ c

∞
dW − Z

)

+ (b − c)eD(b)D(c)F θ

(∫ b

∞
dW +

∫ c

∞
dW − Z

)
θ

(∫ a

∞
dW − Z

)

+ (c − a)eD(c)D(a)F θ

(∫ c

∞
dW +

∫ a

∞
dW − Z

)
θ

(∫ b

∞
dW − Z

)
= 0 . (5.22)

The vector Z is arbitrary (in particular, zero). We see that (2.26) gets “dressed” by the
theta-factors. Each theta-factor is expressed through F only. For example,

θ

(∫ z

∞
dW

)
=
∑
nα∈Z

exp


−2π2

∑
αβ

nαnβ∂2
αβF − 2πi

∑
α

nα∂αD(z)F

 .

Another form of this equation, obtained from (5.22) for a particular choice of Z, reads

(a − b)c−1e
1
2 (D(a)+D(b))2Fh(c)θ∗

(∫ a

∞
dW

+
∫ b

∞
dW

)
+ [cyclic per-s of a, b, c] = 0 . (5.23)

Taking the limit c → ∞ in (5.22), one gets an analog of (2.27):

1 − θ(
∫ a

∞ dW + ∫ b

∞ dW − Z) θ(Z)

θ(
∫ a

∞ dW − Z) θ(
∫ b

∞ dW − Z)
eD(a)D(b)F

= D(a) − D(b)

a − b
∂τ1F + 1

a − b

g∑
α=1

∂

∂Zα

log
θ(
∫ a

∞ dW − Z)

θ(
∫ b

∞ W − Z)
∂α∂τ1F , (5.24)

which also follows from another Fay identity (A.6).
Equations on F with τ̄k-derivatives follow from the general Fay identity (A.5) with

some points on the lower sheet. Besides, many other equations can be derived as var-
ious combinations and specializations of the ones mentioned above. Altogether, they
form an infinite hierarchy of consistent differential equations of a very complicated
structure which deserves further investigation. The functions F corresponding to differ-
ent choices of independent variables (i.e., to different bases in homology cycles on the
Schottky double) provide different solutions to this hierarchy.
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5.5. Higher genus analogs of the dispersionless Toda equation. Let us show how the
simplest equation of the hierarchy, the dispersionless Toda equation (2.30), is modified
in the multiply-connected case. Applying ∂z∂ζ̄ to both sides of (5.18) and setting ζ = z,
we get:

(∂D(z))(∂̄D̄(z̄))F = −∂z∂z̄ log E(z, z̄) .

Here ∂D(z) is the z-derivative of the operator D(z): ∂D(z) = ∑
k A′

k(z)∂τk
. To trans-

form the r.h.s., we use the identity (A.8) (Appendix A) and specialize it to the particular
local parameters on the two sheets:

|z|4∂z∂z̄ log E(z, z̄) = θ(ω(z) + Z)θ(ω(z) − Z)

θ2(Z)E2(z, z̄)

+|z|4
∑
α,β

(log θ(Z)), αβ ∂zWα(z)∂z̄Wβ(z) .

Tending z to ∞, we obtain a family of equations (parametrized by an arbitrary vector
Z) which generalize the dispersionless Toda equation for the tau-function:

∂τ1∂τ̄1F = θ(ω(∞)+Z)θ(ω(∞)−Z)

θ2(Z)
e
∂2
τ0

F

−
g∑

α,β=1

(log θ(Z)), αβ (∂α∂τ1F)(∂β∂τ̄1F). (5.25)

(Here we used the z → ∞ limits of (5.5) and (5.21).) The following two equations
correspond to special choices of the vector Z:

∂τ1∂τ̄1F +
g∑

α,β=1

(log θ(0)), αβ (∂α∂τ1F)(∂β∂τ̄1F) = θ2(ω(∞))

θ2(0)
e
∂2
τ0

F
, (5.26)

∂τ1∂τ̄1F = −
g∑

α,β=1

[
log θ∗(ω(∞))

]
,αβ

(∂α∂τ1F)(∂β∂τ̄1F) . (5.27)

Finally, let us specify Eq. (5.25) for the genus g = 1 case. In this case there is only
one extra variable X := X1 (�1 or 2πis1). The Riemann theta-function θ(ω(∞)+Z) is
then replaced by the Jacobi theta-function ϑ

(
∂X∂τ0F − Z

∣∣ T ) ≡ ϑ3
(
∂X∂τ0F − Z

∣∣ T ),
where the elliptic modular parameter is T = 2πi ∂2

XF , and the vector Z ≡ Z has only
one component. The equation has the form:

∂τ1∂τ̄1F = ϑ3
(
∂X∂τ0F+Z

∣∣ 2πi ∂2
XF)ϑ3

(
∂X∂τ0F−Z

∣∣ 2πi ∂2
XF)

ϑ2
3

(
Z| 2πi ∂2

XF) e
∂2
τ0

F

− ∂2
Z log ϑ3

(
Z| 2πi ∂2

XF
)

(∂X∂τ1F)(∂X∂τ̄1F) .

(5.28)

Note also that Eq. (5.14) acquires the form

(∂X∂τ1F)(∂X∂τ̄1F) =
(

ϑ1
(
∂X∂τ0F

∣∣ 2πi ∂2
XF)

ϑ ′
1

(
0| 2πi ∂2

XF)
)2

e
∂2
τ0

F
, (5.29)
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where ϑ∗ ≡ ϑ1 is the only odd Jacobi theta-function. Combining (5.28) and (5.29) one
may also write the equation

∂τ1∂τ̄1F =
[

ϑ3
(
∂X∂τ0F+Z

∣∣ 2πi ∂2
XF)ϑ3

(
∂X∂τ0F−Z

∣∣ 2πi ∂2
XF)

ϑ2
3

(
Z| 2πi ∂2

XF)

−
(

ϑ1
(
∂X∂τ0F

∣∣ 2πi ∂2
XF)

ϑ ′
1

(
0| 2πi ∂2

XF)
)2

∂2
Z log ϑ3

(
Z| 2πi ∂2

XF
) e

∂2
τ0

F (5.30)

whose form is close to (2.30) but differs by the nontrivial “coefficient” in the square
brackets. In the limit T → i∞ the theta-function ϑ3 tends to unity, and we obtain the
dispersionless Toda equation (2.30).

6. Conclusions

In this paper we have considered the Dirichlet boundary problem in planar multiply-
connected domains. A planar multiply-connected domain Dc is the complex plane with
several holes. We study how the solution of the Dirichlet problem depends on small
deformations of boundaries of the holes.

General properties of such deformations allow us to introduce the quasiclassical
tau-function associated to the variety of planar multiply-connected domains. By the
tau-function, we actually mean its logarithm, which only makes sense for the quasiclas-
sical or Whitham-type integrable hierarchies. Namely, the key properties are the specific
“exchange” relations (3.43) which follow from the Hadamard variational formula for the
Green function and the harmonic measure. They have the form of integrability conditions
and thus ensure the existence of the tau-function. The tau-function corresponds to a par-
ticular solution of the universal Whitham hierarchy [4] and generalizes the dispersionless
tau-function which describes deformations of simply-connected domains.

The algebro-geometric data associated with the multiply-connected geometry include
a Riemann surface with antiholomorphic involution, the Schottky double of the domain
Dc = C\D endowed with particular holomorphic coordinates z and z̄ on the two sheets of
the double, respecting the involution. This Riemann surface has genus g = #{holes}−1.
The (logarithm of) tau-function, F , describes small deformations of these data as func-
tions of an infinite set of independent deformation parameters which are basically har-
monic moments of the domain. These variables can be equivalently redefined as periods
of the generating one-form S(z)dz over non-trivial cycles on the double and the residues
of the one-forms Ak(z)S(z)dz, where Ak(z) �

z→∞ z−k is some proper global basis (3.10)

of harmonic functions.
We have obtained simple expressions for the period matrix, the Abel map and the

prime form on the Schottky double in terms of the function F . Specifically, all these
objects are expressed through second order derivatives of the F in its independent vari-
ables.

The generalized dispersionless Hirota equations on F for the multiply-connected
case (equivalent to the Whitham hierarchy) are obtained by incorporating the above
mentioned expressions into the Fay identities. As a result, one comes to a series of
quite non-trivial equations for (second derivatives of) the function F , which have not
been written before (except for certain relations for the second derivatives of the Sei-
berg-Witten prepotential [28]). When the Riemann surface degenerates to the Riemann
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sphere with two marked points, they turn into Hirota equations of the dispersionless
Toda hierarchy.

Algebraic orbits of the universal Whitham hierarchy describe the class of domains
which can be obtained as conformal images of a “half” of a complex algebraic curve
with the antiholomorphic involution under conformal maps given by rational functions
on the curve. In particular, all domains having only a finite amount of non-vanishing
harmonic moments, are in this class. In this case one can define the curve by a poly-
nomial equation written explicitly in [22]. This situation is an analog of the (Laurent)
polynomial conformal maps in the simply-connected case and literally corresponds to
multi-support solutions of matrix models with polynomial potentials. The definition of
the tau-function for multiply-connected domains proposed above holds in a broader
set-up of general algebraic domains. It does not rely on the finiteness of the amount
of non-vanishing moments. In general any effective way to describe the complex curve
associated to a multiply-connected domain by a system of polynomial or algebraic equa-
tions is not known. The curve may be thought of as a spectral curve corresponding to a
generic finite-gap solution to the Toda lattice hierarchy.
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Appendix A. Theta Functions and Fay Identities

Here we present some definitions and useful formulas from [9]. The Riemann theta
function θ(W) ≡ θ(W|T ) is defined as

θ(W) =
∑

n∈Zg

eiπn·T ·n + 2πin·W . (A.1)

The theta function with (half-integer) characteristics δ = (δ1, δ2), where δα = Tαβδ1,β+
δ2,α and δ1, δ2 ∈ 1

2 Zg is

θδ(W) = eiπδ1·T ·δ1+2πiδ1·(W+δ2)θ(W + δ)

=
∑

n∈Zg

eiπ(n+δ1)·T ·(n+δ1)+2πi(n+δ1)·(W+δ2) . (A.2)

Under shifts by a period of the lattice, it transforms according to

θδ(W + eα) = e2πiδ1,α θδ(W) ,

θδ(W + Tαβeβ) = e−2πiδ2,α−iπTαα−2πiWαθδ(W) . (A.3)

The prime form E(z, ζ ) is defined as

E(z, ζ ) = θ∗(W(z) − W(ζ ))√∑
α θ∗,αdWα(z)

√∑
β θ∗,βdWβ(ζ )

, (A.4)
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where θ∗ is any odd theta function, i.e., the theta function with any odd characteristic δ∗
(the characteristics is odd if 4δ∗

1 · δ∗
2 = odd). The prime form does not depend on the

particular choice of the odd characteristics. In the denominator,

θ∗,α = θ∗,α(0) = ∂θ∗(W)

∂Wα

∣∣∣∣
W=0

is the set of θ -constants.
The data we use in the main text contain also distinguished coordinates on a Rie-

mann surface: the holomorphic co-ordinates z and z̄ on two different sheets, and we
do not distinguish, unless it is necessary between the prime form (A.4) and a function
E(z, ζ ) ≡ E(z, ζ )(dz)1/2(dζ )1/2 “normalized” onto the differentials of a distinguished
co-ordinate.

Let us now list the Fay identities [9] used in the paper. The basic one is Fay’s trisecant
formula (Eq. (45) from p. 34 of [9])

θ (W1 − W3 − Z) θ(W2 − W4 − Z) E(z1, z4)E(z3, z2)

+ θ(W1 − W4 − Z) θ(W2 − W3 − Z) E(z1, z3)E(z2, z4)

= θ(W1 + W2 − W3 − W4 − Z) θ(Z) E(z1, z2)E(z3, z4) . (A.5)

Here Wi ≡ W(zi). This identity holds for any four points z1, . . . , z4 on a Riemann
surface and any vector Z ∈ Jac. In the limit z3 → z4 ≡ ∞ one gets (formula (38) from
p. 25 of [9])

θ(
∫ z1
∞ dW + ∫ z2

∞ dW − Z) θ(Z)

θ(
∫ z1
∞ dW − Z) θ(

∫ z2
∞ dW − Z)

E(z1, z2)

E(z1, ∞)E(z2, ∞)

= d�(z1,z2)(∞) +
g∑

α=1

dWα(∞) ∂Zα log
θ(
∫ z1
∞ dW − Z)

θ(
∫ z2
∞ dW − Z)

, (A.6)

where

d�(z1,z2)(∞) = dz log
E(z, z1)

E(z, z2)
(A.7)

is the normalized Abelian differential of the third kind with simple poles at z1 and z2
and residues ±1.

Another relation from [9] we use (see e.g. (29) on p.20 and (39) on p.26) is

θ(W1 − W2 − Z)θ(W1 − W2 + Z)

θ2(Z)E2(z1, z2)

= ω(z1, z2) +
g∑

α,β=1

(log θ(Z)),αβ dWα(z1)dWβ(z2), (A.8)

where

(log θ(Z)), αβ = ∂2 log θ(Z)

∂Zα∂Zβ

and

ω(z1, z2) = dz1dz2 log E(z1, z2) (A.9)

is the canonical bi-differential of the second kind with the double pole at z1 = z2.
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Appendix B. Degenerate Schottky Double

For an illustrative purpose we would like to adopt some of the above formulas to the
simplest possible case, which is the Riemann sphere realized as the Schottky double of
the complement to the disk of radius r . In this case

dW = dz

z
= idϕ = −dz̄

z̄
(B.1)

is purely imaginary on the circle and obviously satisfies the condition dW(z)+dW(z̄) =
0. Further, (cf. (3.65))

W(z) =
∫ z

ξ0

dW =
∫ z

r

dW = log
z

r
(B.2)

and

w(z) = eW(z) = z

r
(B.3)

which is nothing but the conformal map of the exterior of the circle |z| ≥ r onto the
exterior of the unit circle |w| ≥ 1. Note that on the “lower” sheet of the double

W(z̄) =
∫ z̄

r

dW = log
r

z̄
, (B.4)

and instead of (B.3) one gets

w(z̄) = r

z̄
(B.5)

which is the conformal map of the exterior of the disk |z̄| ≥ r on the lower sheet onto the
interior of the unit circle |w| ≤ 1. The prime form on the genus zero Riemann surface
is (cf. (A.4))

E(z1, z2) = w1 − w2√
dw1

√
dw2

, (B.6)

where wi ≡ w(zi). Let us compute E(∞, ∞̄), which is understood in the main text,
as “normalized” on the values of the local coordinates z∞ = 1/z and z̄∞ = 1/z̄ in the
points ∞ and ∞̄ on two sheets of the double. One gets (cf. (5.9))

E2(∞, ∞̄) = − (w(∞) − w(∞̄))2

(dw(∞)/dz∞)(dw(∞̄)/dz∞̄)
. (B.7)

Substituting into (B.7) the formulas (B.3), (B.5) and

dw(∞) = lim
z→∞

dz

r
= − lim

z→∞
z2

r
dz∞ ,

dw(∞̄) = r dz∞̄ , (B.8)

one finally gets

E(∞, ∞̄)2 = lim
z→∞

z2/r2

(z2/r)r
= 1

r2 , (B.9)

and this demonstrates that (5.14) indeed turns into (2.20) in the limit.
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