
Algebraic versus Liouville integrability 
of the soliton systems 
IGOR KRICHEVER* (Columbia U.) 

This is an updated version of the talk given at ICMP 2003, Lisbon on the algebraic 
and Hamiltonian integrability of the soliton systems. New integrable models arising 
form the discrete zero-curvature equations with the spectral parameter on algebraic 
curves are discussed. 

1. Introduction 

Since the beginning of the 1970s the complete Liouville integrability has been considered as 
common characteristic features of all the soliton systems constructed in the framework of the 
inverse spectral transform method. Bi-Hamiltonian formalism, classical r-matrix approach 
or representation of these systems, as a result of the Hamiltonian reduction of "free" systems, 
are often considered as the defining starting points of the Hamiltonian theory of the soliton 
equations. Although each of these approaches has its own advantages, none of them is 
applicable to all known integrable systems. 

More universal is the "definition" of the soliton equations as non-linear (ordinary or par-
tial) differential equations that are equivalent to compatibility conditions of over-determined 
systems of linear equations. In this approach the direct and the inverse spectral transforms 
"solve" the non-linear equations with no use of the Hamiltonian theory. In particular, for 
finite-dimensional systems that admit the Lax representation dtL = [M,L], where L(t,z) 
and M(t, z) are rational matrix functions of the spectral parameter z, the algebro-geometric 
scheme based on the concept of the Baker-Akhiezer functions, gives an explicit solution of 
the equations in terms of the Riemann theta-functions. This scheme identifies the phase 
space of the systems with the Jacobian bundle over the space of the spectral curves. The 
Abel transform linearizes the motion along the fibers of the bundle. Although in this descrip-
tion the corresponding soliton system clearly exhibits dynamics of the completely integrable 
system, until the end of the 1990s there was no universal answer to the question: why the 
Lax equations are Hamiltonian. 

The new approach to the Hamiltonian theory of the soliton equations developed in the 
works of D. H. Phong and the author [1,2] is based on the discovery of some universal 
two-form denned on a space of meromorphic matrix-functions. Essentially there are two 
such universal forms. They can be traced back to the fact that there are two basic algebraic 
structures on a space of operators. The first one is the Lie algebra structure defined by the 
commutator of operators. The second one is the Lie group structure. In the framework 
of the r-matrix approach to the Hamiltonian theory of the integrable systems the first one 
usually is referred to as linear brackets and the second one as quadratic or Sklyanin brackets 
(see the book [3], survey [4] and references therein). 
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A direct and simple corollary of the definition of the universal form is that its contraction 
by a vector-field defined by the Lax or the zero-curvature equations is an exact one-form. 
Therefore, whenever the form is non-degenerate the corresponding system is the Hamiltonian 
system. 

In [5] this approach was extended to the case of the Lax and the zero-curvature equations 
with the spectral parameter on an algebraic genus g > 0 curve. The corresponding zero-
curvature equations can be seen as a hierarchy of commuting flows on the space of admissible 
matrix-valued meromorphic functions L(x,z), z G I\ The admissible meromorphic matrix-
functions on a smooth genus g algebraic curve were identified with ^-connections on x-
parametric families V(x) of stable rank r and degree rg holomorphic vector bundles on T. 
In the stationary case, the factor-space CK/SLr of x-independent connections L(z) with the 
divisor of poles equivalent to the canonical divisor K. is isomorphic to the phase space of the 
Hitchin system. The latter is the cotangent space T*(M) of the moduli space M. of stable 
rank r and degree rg holomorphic vector-bundles on T. The non-stationary systems can be 
regarded as infinite-dimensional field analogs of the famous Hitchin system [7]. 

A discrete analog of z-parametric family of vector bundles is a sequence of vector bundles 
V „ e M . The discrete analog of a meromorphic z-connection with the pole divisor D+ is a 
chain Ln(z) of meromorphic homomorphisms Ln G iJ°(Hom(Vn+i, Vn(D+))). It is assumed 
that Ln is almost everywhere invertible and the inverse homomorphism has a fixed divisor 
of poles D_, i.e. L" 1 e i?°(Hom(Vn, V„+i(-D_))). In [6] it was shown that the space 
CM(D+, D_) of periodic chains, considered modulo gauge transformations L'n = gn+iLngn, 
gn £ GLr is algebraically integrable. Namely, it was shown that an open set of the factor-
space £N(D+,D-)/GL^ is isomorphic to an open set of Jacobian bundle over the space 
SD+'D- of the spectral curves T. The spectral curves are defined by the characteristic 
equation for the monodromy operator T = Ljv-kjv-i • • • L\, which represents them as an 
r-sheet cover of the base curve TT : T i—> I\ The spectral transform identifies an open set of 
the restricted chains, corresponding to the sequences of bundles V„ with fixed determinant, 
with an open set of the bundle over the family of the spectral curves SD+'D- with fibers 
J c ( r ) , which are preimages in J(T) of some point of J(T). The spectral transform linearizes 
discrete analogs of the zero-curvature equations, which can be explicitly solved in terms of 
the Riemann theta-function of the spectral curve. 

Although the algebraic integrability of the periodic chains on higher genus base curves goes 
almost identically to the genus zero case, their Hamiltonian theory exhibits new very unusual 
features. It turns out that in the case of rational and elliptic base curves the group version of 
the universal form ui restricted to the proper symplectic leaves V* C £N(D+7 D_) / GL^f is 
induced by the Sklyanin symplectic form on the space of the monodromy matrices. For g > 1 
the form u> is degenerate on V*. That does not allow us to treat the corresponding systems 
within the framework of conventional Hamiltonian theory. At the same time the space V* 
is equipped by ^-parametric family of two-forms u>dz, parameterized by the holomorphic 
differentials dz on T. For all of them the fibers J c ( r ) of the spectral bundle are maximum 
isotropic subspaces. For each of the flows defined by the Lax equations on V*, the contraction 
idt^dz is an exact form 5Hdz. Although each of the forms u)dz is degenerate on V*, their 
family is non-degenerate. 

In a certain sense the state-of-art described above is dual to that in the theory of bi-
Hamiltonian systems. Usually the bi-Hamiltonian structure is defined on the Poisson man-
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ifold equipped by a family of compatible brackets. The vector-fields that are Hamiltonian 
with respect to one bracket are Hamiltonian with respect to the other ones, but correspond 
to different Hamiltonians. The drastic difference between the bi-Hamiltonian systems and 
the systems V* of restricted chains is in the nature of the symplectic leaves. For the bi-
Hamiltonian systems usually they are globally defined as levels of single-valued action-type 
variables. For V* the form UJ^Z becomes non-degenerate on levels of multi-valued angle-type 
functions. 

It is worth to understand if there exists the general Hamiltonian-type setting, in which 
these characteristic features of V* for g > 1 provide the basis for something that might be 
the notion of super-integrable systems. It is also possible, that there is no need for the new 
setting. The results presented in the last section provide some evidence that the Lax chains 
on the fixed base curve T might be "extended" to the conventional completely integrable 
Hamiltonian system. Namely, we show that for the rank r = 2 the space of the periodic Lax 
chains with variable base curve T is the Poisson manifold with leaves PA, corresponding to 
the chains (modulo gauge equivalence) with fixed determinant A of the monodromy matrix 
T, and with the fixed regular eigenvalue w of T at the punctures P^. The universal form 
defines the structure of a completely integrable system on PA- The Hamiltonians of the Lax 
equations on PA are in involution. They are given by the formula 

Hf = y j Tesq(f\nw)dlnA, 

where / is a meromorphic function on T with poles at the punctures Pj^. The common 
level of all the integrals Hf is identified with the Prim variety of the corresponding spectral 
curve. 

2. The zero-genus case 

Almost all (1 + l)-soliton equations admit zero-curvature representation ([8]) 

dtL-dxM+[L,M}=0, (1) 

where L(x,t,z) and M(x, t, z) are rational matrix functions of the spectral parameter z. 
The discrete analog of (1) is the equation 

dtLn = Mn+1Ln - LnMn, (2) 

where, as before, Ln = Ln(t,z) and Mn = Mn(t,z) are rational functions of the spectral 
parameter. In both the cases poles of L and M are fixed. The singular parts of L and M at 
the poles are dynamical variables. Their number equals the number of equations equivalent 
to (1) or (2), respectively. 

It is instructive to consider first the stationary solutions of (1) or (2), described by the 
conventional Lax equation 

dtL=[M,L}. (3) 

In this case the algebraic-geometrical and Hamiltonian integrability perfectly match each 
other. Their key ideas are as follows. 
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Let C(D) be a space of meromorphic (r x r) matrix functions 

m = l (=1 K m> 

with a fixed divisor of poles D = YZi=i hmZm- Let us assume for simplicity only that the 
matrix M has poles at points Pk distinct from the punctures zm. Then (3) implies that the 
commutator [M, L) is regular at p^- The corresponding equations are algebraic and can be 
solved for M in terms of L. For example, if M has one simple pole, then it can be chosen 
in the form 

Af„iP(z,L) = — K ~ , p^zm. (5) 
z —p 

If we identify the space C(D) with its own tangent space, then [MntP, L] can be regarded as 
a tangent vector field 9„iP to C(D), and the corresponding flow on C(D) 

dtn,pL=[Mn,p,L} (6) 

is a well-defined dynamical system. Standard arguments from the theory of solitons show 
that all these flows commute with each other. 

The spectral transform. The Lax equation (3) implies that the spectral curve T, defined 
by the characteristic equation 

r 
R(k, z) = det (k - L(t, z)) = kr + J2*i(«)Ar-< = 0, (7) 

i = l 

is time-independent. A space S(D) of the spectral curves is parameterized by the coefficients 
of the rational functions Si(z) having poles at the punctures zm of orders ihm. The dimension 
of S{D) equals Nr(r + l ) /2 , N = £ m hm = degD. 

By definition points Q = (fc, z) £ V of the spectral curve parameterize the eigenvectors of 
L(z) e C{D), 

L(zMQ) = W{Q). (8) 
Let us normalize ip by the constraint X^=i V'"' ~ 1- Then the coordinates of ip are rational 
expressions of z and k. Therefore, they are meromorphic functions on T with common 
divisor 7 of the poles. For generic case, when the spectral curve is smooth, the degree of 
this divisor equals g + r — 1, where g = Nr(r — l) /2 is the genus of V. 

The spectral curve is invariant under the gauge transformation L —> gLg-1, g G SLr. It 
turns out that the equivalence class [7] of the pole divisor g which is a point the Jacobian 
variety J(T) of T is also gauge invariant. Basic facts of the algebraic-geometrical integration 
theory (see [10] and references therein) are: 

— the spectral map L 1—> {r, 7} descends to bijective correspondence of generic points 

C(D)/SLr <-> {T, [7] e J ( r ) } ; (9) 

— the Lax equations (3), which are also gauge invariant, become linear flows on the 
Jacobian varieties and can be explicitly solved in terms of the Riemann theta-function. 

We stress once again that the construction of the commuting flows on C(D), and their 
linearization via the spectral transform, do not depend on a Hamiltonian structure. 
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Hamiltonian approach. In spite of the diversity of integrable models their Lax repre-
sentation looks the same. The initial goal of [1,2] was an attempt to find intrinsic patterns 
of the Hamiltonian theory in the Lax equation. It turned out that the simplest two-form on 
a space of "operators", which can be written in terms of the operator and its eigenfunctions 
only, has all the desired properties. 

The case of Lax equations with the rational spectral parameter provides a transparent 
and instructive example of our approach. Let us define a two-form w on C(D) by the formula 

w = i ^ R e s Z a Q d . z , O = Tr (tf_1(z)<JL(,z) A 6V(z)). (10) 
a 

The sum is taken over the set of all the poles of L together with the pole of dz at ZQ = oo, 
i.e., za = {z0, z\,..., zn}. We shall assume for simplicity that the normalization point ZQ 
does not coincide with any of the other punctures zm. The case when ZQ coincides with 
one of the punctures can be treated with only slight technical modifications. The various 
components of the above formula are as follows. The entries of matrices uo,um[ can be 
viewed as coordinates on C{D). If we denote the exterior differentiation on C(D) by 5, then 
6L(z) can be regarded as a matrix valued one-form on C(D) 

m 1=1 [Z Zm) 

Let *$!(z) be the matrix whose columns are normalized eigenvectors of L(z), i.e. 

L(z)*(z) = *(z)K(z), e 0 * = e0, (12) 

where K is a diagonal matrix Kli = fci<Sy', and ki are the eigenvalues of L(z). The co-
vector eo defining the normalization of the eigenvectors is eo = ( 1 , 1 , . . . ,1). The external 
differential 8^ of ^ can be viewed as a one-form on C(D), and the formula (10) defines a 
two-form on C{D). 

This form does depend on the choice of the normalization of the eigenvectors. A change 
of normalization vector eo leads to a transformation $(z) —> ^(z)' = ty(z)h(z), where h(z) 
is a diagonal matrix. Under such transformation u> gets changed to 

J = ui+^J2Res^Tl(SKAShh~1)dz- (I3) 
a 

The last equation implies that the form u is independent of the normalization on the sub-
spaces of C(D), on which the one-form 5K dz is holomorphic at the punctures. 

Let us fix a set of diagonal matrices C = (Co, Cm) 

hm 

C0{z)^C0fi + C0,lZ-1, Cm(z)=J2CmAZ-Zm)~l, m > 0, (14) 
i=l 

and define a subspace Cc = £c(D) of C{D) by the constraints 

(A)K(z) = C0(z) + O(z-2), z^z0, (B)K(z) = Cm(z) + 0(l), z -> zm. (15) 
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The number of independent constraints is (N + 2)r — 1 because Tr K(z) = TrL(z) is a 
meromorphic function of z. Thus d im£c = {deg D)r(r — 1) — 2r + r2 + 1. The restriction 
of 5K to Cc is regular at the poles of L and has a zero of order 2 at ZQ. Therefore, the form 
u restricted to Cc is independent of the choice of the normalization of the eigenvectors. 

The space Cc is invariant under the adjoint action L —» gLg~l of SLr. Let 

Vc = Cc/SLr (16) 

be the quotient space. Its dimension equals d imPc = (deg D)r{r — 1) — 2r + 2. Then we 
have 

Theorem 2 .1 . (a) The two-form w defined by (10) restricted to Cc is gauge invariant and 
descends to a symplectic form on V. (b) The Lax equation (6) is Hamiltonian with respect 
to u. The Hamiltonian is 

ffn-" = - ( ^ T i ) , & L n + 1 ( p ) - (17) 

(c) All the Hamiltonians HntP are in involution with respect to LJ. 

The proof of the theorem is very general and does not rely on any specific form of L. With 
slight technical modifications it is applicable for (1 +1) and (2 + l)-soliton equation, as well. 

It is necessary to mention that in all the cases, when the Hamiltonian theory of a corre-
sponding integrable system has been known, the universal symplectic form coincides with 
the standard symplectic structure. For example, for the Lax equations with the rational 
parameter, it coincides with the symplectic structure which is a direct sum of the Kostant-
Kirillov forms on the orbits of adjoint action on the singular part of L at the punctures zm. 
One of the main advantages of the definition of the universal form u> is that it provides a 
straightforward way to construct the angle-action variables. 

By definition the form w equals to the sum of the residues of meromorphic form Ct dz at 
the punctures. The sum of all the residues of a meromorphic form equals zero. Therefore, LJ 
equals with a negative sign to the sum of residues of ildz at the poles outside the punctures. 
This simple observation leads to the following result. 

Theorem 2.2. Let j s be the poles on the spectral curve of the normalized eigenvector ip of 
the matrix function L ! Cc- Then the two-form to defined by (10) is equal to 

g + r - l 
u= J2 Sk(ys)A5z{ls). (18) 

s = l 

The meaning of the right hand side of this formula is as follows. The spectral curve is 
equipped by definition with the meromorphic function k(Q). The evaluations fc(7s), z(js) 
at the points 7S define functions on the space C(D), and the wedge product of their external 
differentials is a two-form on Cc-

The universal symplectic form: logarithmic version. The basic symplectic form 
introduced above is related to the Lie algebra structure on the space of operators. We present 
now a construction of another symplectic structure, related to the Lie group structure, 
defined on suitable leaves in C(D). 



56 IGOR KRICHEVER 

Consider the open subspace of C(D) consisting of meromorphic matrix functions which 
are invertible at a generic point z, i.e. the subspace of matrices L(z) e £{D) such that 
L~1(z) is also a meromorphic function. We define subspaces of C(D) with fixed divisor for 
the poles of L"1{z) as follows. Fix a set JD_ of (deg-D)r distinct points z~ and define a 
subspace C{D,DJ) C C(D) by the constraints 

L(z) e £(£>, £>-) : det L(z) = c Jl'"1^ ~ Z ' | r , c = const ^ 0. (19) 
llm=l('z ~ zm)r 

If Cb(z) is the same as in (14), a subspace £^T c £(D,D-) can be defined by the first set 
(A) of the constraints (15). The following two-form on £gr is obviously a group version of 
(10) 

w9r = \ H Res*<> ̂  ( *~ l L _ 1 ( z ) SL(Z) A S*(z)) dz- (2°) 
Here the sum is taken over all the punctures za = {z0, zm, z~}. The subspace C9^ is invariant 
under the flows defined by the same Lax equations (6), which are also gauge invariant and 
therefore define flows on the quotient space V9Q = C9Q /SLr. 

Theorem 2.3. The two-form ojgr restricted to C9^ is independent on the normalization of 
the eigenvectors. It is gauge invariant and descends to a symplectic form on V^. The Lax 
equation (6) is Hamiltonian with respect to u>gr. The Hamiltonian is 

Hn-ltP = -±TrLn(p). (21) 

All the Hamiltonians Hn<p are in involution with respect to u>9T. 

The action-angle variables for the second symplectic form are group version of the action-
angle variables for the first symplectic structure. 

Theorem 2.4. Let 7S be the poles on the spectral curve of the normalized eigenvector ip of 
the matrix function L £ C9Q . Then the two-form wgr defined by (20) is equal to 

g+r—l 

tj9r= J^ 5\nk(ls)A6z(ls). (22) 
s = l 

Theorems 2.1 and 2.3 provide a framework for the existence of so-called bi-Hamiltonian 
structures. It was first observed by Magri that the KdV hierarchy possesses a bi-Hamiltonian 
structure, in the sense that all the flows of the hierarchy are Hamiltonian with respect to 
two different symplectic structures. If Hn is the Hamiltonian generating the n-th flow of the 
KdV hierarchy with respect to the first Gardner-Zakharov-Faddeev symplectic form, then 
the same flow is generated by the Hamiltonian Hn-\ with respect to the second Lenard-
Magri symplectic form. 

Periodic chains. The two symplectic structures w and uigr are equally good in the case of 
a single matrix function L(z), but there is a marked difference between them when periodic 
chains of operators are considered (see details in [13]). Let Ln(z) ! C{D) be a periodic 
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chain of matrix-valued functions with a pole divisor D, Ln = Ln+x. The total space of such 
chains is C(D)®N. The monodromy matrix 

Tn(z) = Ln+N-.i(z) Ln+N-2{z) • • • Ln(z) (23) 

is a meromorphic matrix function with poles of order Nhm at the puncture zm, i.e. Tn(z) e 
C{ND). For different n they are conjugated to each other. Thus the map 

C{D)®N .—* C(ND)/SLr (24) 

is well-defined. However, the natural attempt to obtain a symplectic structure on the space 
£(D)®N by pulling back the first symplectic form w on C(ND) runs immediately into 
obstacles. The main obstacle is that the form UJ is -only well-defined on the symplectic 
leaves of C{ND) consisting of matrices with fixed singular parts for the eigenvalues at the 
punctures. These constraints are non-local, and cannot be described in terms of constraints 
for each matrix Ln(z) separately. 

On the other hand, the second symplectic form w9r has essentially the desired local 
property. Indeed, let Ln be a chain of matrices such that Ln G £(D,D_). Then the 
monodromy matrix defines a map 

f:£{D,D-)®N ^C(ND,ND^)/SLr. (25) 

The group SL^f of .^-independent matrices gn ! SLr,gn — 9n+N 
actson£(D,£>_)®JV by 

the gauge transformation 
Ln -> gn+iLng'1 (26) 

which is compatible with the monodromy matrix map (25). Let the space 'Pchain be defined 
as the corresponding quotient space of a preimage under T of a symplectic leaf CBQ C 
£(ND,ND-)/SLr 

Pchain = ( f - 1 ( P 1
C o ) ) / 5 L ^ v . (27) 

The dimension of this space is equal to dimPchain = N(degD)r(r — 1) — 2r + 2. 

Theorem 2.5. The pull-back by T of the second symplectic form wchain = T*{u>gT), re-
stricted to T _ 1 (£Q>)> *S 9au9e invariant and descends to a symplectic form on Pchain- It 
can also be expressed by the local expression 

1 N 

Wchain = 2 5 Z ReS*« 5 1 ^ (^nllSLn(z) A « * „ ( * ) ) dz, (28) 
n = l 

where *„+i = i „ $ n , ^n+N — ^nK, ^ = diag(fcj)5lJ. All the coefficients of the char-
acteristic polynomial of T(z) are in involution with respect to this symplectic form. The 
number of independent integrals equals dimPchain/2. 

3. Periodic chains on algebraic curves 

The Riemann-Roch theorem implies that naive generalization of equations (1, 2) for matrix 
functions, which are meromorphic on an algebraic curve T of genus g > 0, leads to an over-
determined system of equations. Indeed, the dimension of r X r matrix functions of fixed 
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degree d divisor of poles in general position is r2(d — g + 1). If the divisors of L and M 
have degrees n and m, then the commutator [L, M] is of degree n + m. Thus the number of 
equations r2(n + m — g + 1) exceeds the number r2(n + m — 2g + 1) of unknown functions 
modulo gauge equivalence (see details in [5]). 

There are two ways to overcome this difficulty in defining zero curvature equations on 
algebraic curves. The first way is based on a choice of L with essential singularity at some 
point or with entries as sections of some bundle over the curve. The second way, based on a 
theory of high rank solutions of the Kadomtsev-Petviashvili equation, was discovered in [9]. 
There it was shown that if in addition to fixed poles the matrix functions L and M have rg 
moving poles of a special form, then the Lax equation is a well-defined system on the space 
of singular parts of L and M at fixed poles. 

In [9] it was found, that if the matrix functions L and M have moving poles with special 
dependence on x and t besides fixed poles, then equation (1) is a well-defined system on the 
space of singular parts of L and M at fixed poles. A theory of the corresponding systems 
was developed in [5]. In is instructive to present its discrete analog, that a theory of the 
discrete curvature equations (2) with the spectral parameter an a smooth algebraic curve. 

We begin by describing a suitable space of such functions Ln. Let T be a smooth genus 
g algebraic curve. According to [11], a generic stable, rank r and degree rg holomorphic 
vector bundle V on T is parameterized by a set of rg distinct points 7S on T, and a set of 
r-dimensional vectors as = (al

s), considered modulo scalar factor as —> \sas and a common 
gauge transformation a* —» <?ja ,̂ g 6 GLr, i.e. by a point of the factor-space 

Mo = Srg ( r x OP''1) J GLr. 

In [9,12] the data (7,a) = (7 s ,a s ) , s = l,...,rg, i = l , . . . , r , were called the Tyurin 
parameters. 

Let D± be two effective divisors on V of the same degree T>, Below, if it is not stated 
otherwise, it is assumed that all the points of the divisors D± = J2k=i ^ n a v e multiplicity 
1, Pj^~ =fi P*i, k / m. For any sequence of the Tyurin parameters (7(n), a(n)) we introduce 
the space £7(n)>a(n)(D+,D-) of meromorphic matrix functions Ln(q),q ! T, such that: 

1°. Ln is holomorphic except at the points 7S, and at the points P^ of D+, where it has 
at most simple poles; 

2°. the singular coefficient Ls(n) of the Laurent expansion of Ln at 7S 

Ln{z)==±M+0(l), za = z{ya), (29) 
z — zs 

is a rank 1 matrix of the form 

La(n) = Ps(n)aJ(n) <—> L^(n) = fi(n)<4(n), (30) 

where /3s(n) is a vector, and z is a local coordinate in the neighborhood of 7S; 
3°. the vector af(n + 1) is a left null-vector of the evaluation of Ln at 7s(^ + 1), i-e. 

a , (n + l ) L n ( 7 , ( n + l ) ) = 0; (31) 

4°. the determinant of Ln(q) has simple poles at the points p£~,*ya(ri), and simple zeros 
at the points Pj7,7s(n + 1). 
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The last condition implies the following constraint for the equivalence classes of the divi-
sors 

[D+] - [D-] = J2 Mn + !) - 7-(n)] G JF), (32) 
s 

where J(T) is the Jacobian of I\ If 2N > g(r + 1), then the Riemann-Roch theorem 
and simple counting of the number of the constraints (29)-(31) imply that the functional 
dimension of £7(n) i a (n)(D+,£)_) (its dimension as the space of functions of the discrete 
variable n) equals 2V(r — 1) — gr2 + g + r2. 

The geometric interpretation of £7(n) ) Q(n)(D+,D_) is as follows. In the neighborhood of 
js the space of local sections of the vector bundle V1^a, corresponding to (7, a), is the space 
Ta of meromorphic functions having a simple pole at ys of the form 

/(<>= / ^ L + O C 1 ) . AS£C. (33) 
z - z(7s) 

Therefore, if Vn is a sequence of the vector bundles on T, corresponding to the sequence 
of the Tyurin parameters (7(71), a(n)), then the equivalence class [Ln] of Ln modulo gauge 
transformation (26) can be seen as a homomorphism of the vector bundle Vn+\ to the 
vector bundle Vn(D+), obtained from Vn with the help of simple Hecke modification at the 
punctures P^", i.e. 

[Ln]eHom(Vn +i,Vn(Z?+)). (34) 

These homomorphisms are invertible almost everywhere. The inverse matrix-functions de-
fine the homomorphisms of the vector bundles 

[L-^GHomO'n.Vn+i (£>_)). (35) 

The total space £JV(-D+, DJ)\ of the chains, corresponding to all the sequences of the Tyurin 
parameters, is a bundle over the space of sequences of holomorphic vector bundles 

£(D+,D-) ^ { V „ } . (36) 

The fibers of this bundle are just the spaces £7(n))Q,(„)(D+, £>_). 
Our next goal is to show algebraic integrability of the total space CN(D+, D_) of the 7V-

periodic chains, Ln — Ln+N (see details in [6]). Equation (32) implies that the periodicity 
of chains requires the following constraint on the equivalence classes of the divisors D±: 

N([D+]-[D_]) = 0GJ(T), (37) 

which will be always assumed below. The dimension of £N(D+,D-) equals 

dimCN{D+, £>_) = 2NV{r - 1) + Nr2 + g. (38) 

Example . Consider the case of 1-periodic chains, i.e. the stationary case Ln — L. Let 
D+ = K. be the zero-divisor of a holomorphic differential dz, and let CK be a union of the 
spaces Ci(lC, £>_). Then the factor-space CK/SLr is isomorphic to a phase space of the 
Hitchin system that is the cotangent bundle T*{M) to the moduli space of rank r stable 
vector ([5]). 
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Let Ln G £N(D+,D-) be a periodic chain. Then the Floque-Bloch solutions of the 
equation 

V>„+i = Lnipn (39) 

are solutions that are eigenfunctions for the monodromy operator 

Tn1pn = i>n+N = Wt/jn, Tn = Ln+N^i • • • L „ + 1 L „ . (40) 

The monodromy matrix Tn(q) belongs to the space of the Lax matrices introduced in [5], 
Tn G CND+, T~l G £ND~. The Floque-Bloch solutions are parameterized by the points 
Q = (w, q), q ! r , of the spectral curve T defined by the characteristic equation 

r - l 
R(w, q) = det (w • 1 - TnQ(q)) = wr + ^ r ^ w * = 0. (41) 

i=0 

The coefficients ri(q) of the characteristic equation are meromorphic functions on T with the 
poles at the punctures Pj!~. Equation (7) defines an afhne part of the spectral curve. Let us 
consider its compactification over the punctures Pjf. As shown in [6], in the neighborhood 
of P£ one of the roots of the characteristic equation has the form 

w = (z- z{P+))~N (c+ + 0(z - z(P+))) . (42) 

The corresponding compactification point of T is smooth, and will be denoted by P£. In 
the general position all the other branches of w(z) are regular at P£. The coefficients ri{z) 
are the elementary symmetric polynomials of the branches of w(z). Hence, all of them have 
poles at P£ of order N. Note that the coefficient ro(z) — detT„0 has zero of order N at 

The same arguments applied to Ln
 x show that over the puncture Pk there is one point 

of f denoted by P^ in the neighborhood of which w has zero of order N, i.e., 

w = {z-z (P^))N (c~ + 0(z - Z(P-))) . (43) 

Let us fix a normalization of the Floque-Bloch solution by the condition that the sum of 
coordinates ipQ of the vector ipo equals 1, Y%=i ^o = 1- Then, the corresponding Floque-
Bloch solution ipn(Q) is well-defined for each point Q of T. 

Theorem 3.1. The vector-function ipn(Q) is a meromorphic vector-function on T, such 
that: (i) outside the punctures P^ (which are the points of T situated on marked sheets over 
Pj!r) the divisor 7 of its poles % is n-independent; (ii) at the punctures P£ and P^ the 
vector-function ipn(Q) has poles and zeros of the order n, respectively; (Hi) in the general 
position, when T is smooth, the number of these poles equals g + r — 1, where 

g = NV(r-l)+r{g-l) + l (44) 

is the genus ofY. 

Let SD+'D- be the space of the spectral curves, which can be seen as a space of the mero-
morphic functions r^z) on T with poles of order N at the punctures P£, and such that 
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r0 has zeros of order N at the punctures Pk . The Riemann-Roch theorem implies that 
gD+,D- j s 0£ dimension 

dim5D+"D- = NV{r -l)-(g- l)(r - 1) + 1. (45) 

The characteristic equation (41) defines a map CN{D+,D-) —> SD+'D-. Usual arguments 
show that this map on an open set is surjective. These arguments are based on solution of 
the inverse spectral problem, which reconstruct Ln, modulo gauge equivalence (26) from a 
generic set of spectral data: a smooth curve T defined by {r;} G SD+'D-, and a point of the 
Jacobian J(F). 

Theorem 3.2. The map described above Ln —> {T, 7} descends to a bijective correspondence 
of open sets 

CN(D+,D.) I GL? ^ { f e SD+-D~, [7] G J(T)}. (46) 

Restricted chains. Let us introduce subspaces CN
+Q A~ C CN(D+,D-) of the Lax chains 

with fixed equivalence classes of the divisors of Tyurin parameters 

[7(„)] =C7 + n ([£>+]-[£>_]) e J ( r ) , (47) 

and with fixed determinant detT = A = ro(q)- The subspace of the corresponding spectral 
curves will be denoted by S& G SD+'D~. The points of 5 A are sets of functions ri(q), i = 
1 , . . . , r — 1, with the poles of order N at P£. For the restricted chains the equivalence class 
[7] G J ( f ) of the poles of the Floque-Bloch solutions belongs to the abelian subvariety 

Jc{?)=K1(C + N(r-l)[D+]/2), IT, : J(f) —• J(T). (48) 

Corollary 3.1. The correspondence 

£^DA I GLN
T <-» {f G SA, [7] G Jc(t)} (49) 

is one-to-one on the open sets. 

Lax equations. In order to treat the zero-curvature equations (2) as a dynamical system 
on the space of chains, it is necessary to solve first a part of the equations and define Mn 

in terms of Lm. Unlike the stationary case considered above that can not be done, if Mn 

has fixed poles outside the punctures P^ . The singular parts of suitable matrix functions 
Mn at these points can be constructed locally in a way identical to the theory of discrete 
zero-curvature equations with the rational spectral parameter. 

Note that detL„ has simple pole at P£. Therefore, the residue of Ln is a matrix of rank 
1, and can be written in the form /ifc(n)p^(n), where hk(n) and Pk{n) are r-dimensional 
vectors 

Lemma 3.1. Let Ln be a formal series of the form 

00 

Ln = /i(n)p(n)TA-1 + £ ^(nJA* (50) 
i=0 
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where h(ri),p(n) are vectors and Xi(n) are matrices. Then the equations 

<?Wl = Ln<j>n, 4>n+lLn = 4>*n, (51) 

where <f>n and </>* are r-dimensional vectors and co-vectors over the field of the Laurent series 
in the variable X, have (r — 1)-dimensional spaces of solutions of the form 

$n = £ £ ( n ) A \ * ; = £ £ ( n ) A \ (52) 

The equations (51) have unique formal solutions of the form 

such that 

( $ > „ ) = « $ n ) = 0, (<#>„) = 1, (54) 

and normalized by the conditions 

i 
Xo(0 )=g ( - l ) , 5^x^(0) = 0, i>0. (55) 

For the proof of the lemma it is enough to substitute the formal series (52) or (53) in (51) 
and use recurrent relations for the coefficients of the Laurent series. 

Let us fix a point Po on T and local coordinates in the neighborhoods of the punctures P£. 
Then the Laurent expansion of Ln at the punctures defines with the help of the previous 
Lemma the formal series 4>n ,<pn' • The same arguments, applied to the inverse give us 
formal solution (j>n ,<fin'~ in the neighborhoods of the points Pj7. They have the form 

C = A"ffX(n)AM, # - = A - n f £ c - ( " ) A (56) 

From the Riemann-Roch theorem (see details in [5]) it follows that there is a unique matrix 
function M„ ' such that: 

(i) at the points 7s(n) it has simple poles of the form: 

Mn = ft(n)Q;(f+Q(l), z.(n) = z(lt(n)), (57) 
Z Zs\Tl) 

where /xs(n) is a vector; 
(ii) outside of the divisor 7 it has pole at the point P * , only, where 

M ^ = (z - z{P±)Yl <t>tk)4>^'±k) + 0(1); (58) 

(iii) MA ' is normalized by the condition MA ' (-Po) = 0. 

Note, that although <£„ and <pn' are formal series, the constraint (58) involves only a 
finite number of their coefficients, and therefore, is well-defined. 
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Theorem 3.3. 

(i) The equations 

daLn = M£+1Ln - LnM«, da = d/dta, a = (±k,l), (59) 

define a hierarchy of commuting flows on an open set of£jy(D+, -D-), which descends 
to the commuting hierarchy on an open set of £N(D+,D-) j GL^. 

(ii) The flows (59) are linearized by the spectral transform and can be explicitly solved 
in terms of the Riemann theta functions. 

In general the flows (59) do not preserve the leaves of the foliation CN
+c A~ C CN{D+,D-). 

The linear combinations of basic flows which preserve the subspaces of the restricted chains 
are constructed as follows. Let / be a meromorphic function on T with poles only at the 
punctures P^. Then we define 

K^E^"- ( 6 ° ) 
a 

where c£ are the coefficients of the singular part of the Laurent expansion 

f = Hi±k,i)i.z-^Pt)Tl +O0). (61) 
!>0 

Theorem 3.4. The equations 

8fLn = M^+1Ln - LnMl, df = d/Otf, (62) 

define a hierarchy of commuting flows on an open set of CN
+£ A~, which descends to the 

commuting hierarchy on an open set of £N
+c A~ / GL^f. 

Hamiltonian approach. At first glance the construction of the Hamiltonian theory for 
the periodic chains goes equally well on an arbitrary genus algebraic curve. The two-form 
Q(z) on £N(D+,D-) with values in the space of meromorphic functions on T by the formula 
identical to that in the genus zero case. 

J V - l 

il(z) = J 3 Tr {V-l
+l5Ln A 8^n) . (63) 

n=0 

Let us fix a meromorphic differential dz on T with poles at a set of points qm. Then the 
formula 

w = --^vesgttdz, 1= {js,Pjt,qm}, (64) 
\ e i 

defines a scalar-valued two-form on CN(D+,D-). This form depends on a choice of the 
normalization of \I>n. A change of the normalization corresponds to the transformation 
^i'n = tynV, where V = V(z) is a diagonal matrix, which might depend on a point z of T. 
The corresponding transformation of Q has the form: 

n' = n + S(Tr(lnWv)), v = SVV'1. (65) 

Let XD+,D- be asubspace of the chains £N(D+,D-) such, that the restriction of 5(\nw)dz 
to XD+'D- is a differential holomorphic at all the preimages on t of the punctures Pk . 
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Theo rem 3.5. 

(i) The two-form w, defined by (64) and restricted to XD+'D-, is independent of the 
choice of normalization of the Floque-Bloch solutions, and is gauge invariant, i. e. it 
descends to a form onV = XD+*D- j GL^. 

(ii) Let j s be the poles of the normalized Floque-Bloch solution tpn. Then 

g+r—l 
w = J2 Slnw(%)ASz(%). (66) 

By definition, a vector field dt on a symplectic manifold is Hamiltonian, if the contraction 
id,Lo(X) = uj(dt, X) of the symplectic form is an exact one-form dH{X). The function H is 
the Hamiltonian corresponding to the vector field dt. The proof of the following theorem is 
almost identical to the proof of Theorem 4.2 in [5]. 

Theorem 3.6. Let da be the vector fields corresponding to the Lax equations (59). Then 
the contraction of w, defined by (64) and restricted to V, equals 

i9auj = SHa, (67) 

where 
H(±k,i) = resp± (z-z (P*))~ (lnw) dz. (68) 

The theorem implies that Lax equations (59) are Hamiltonian whenever the form w is non-
degenerate. 

The spectral map (46) identifies an open set of £N
+Q A~ / GL^ with an open set of the 

Jacobian bundle over <SA C SD+'D-, i.e. 

£%!&-/GL? ^ SA. (69) 

The fibers of this bundle are isotropic subspaces for u. Therefore, the form w can be non-
degenerate only if the base and the fibers of the bundle (69), restricted to V, have the same 
dimension. 

Consider the case g > 0. Let dz be a holomorphic differential on T. Then, for each 
branch of w = Wi(z) the differential 5(\nw)dz is always holomorphic at P * . Hence, V = 
CN{D+,D-)/GL?. Recall that 

dimSA = (r-l)(NV-g + l), dimJ(f) = (r-l)(NV + g-l)+g. (70) 

Therefore, for g > 0 the form w is degenerate on V. For 3 = 1 the space V is a Poisson 
manifold with the symplectic leaves, which are factor-spaces 

?*=£%}& /GL? (71) 

of the restricted chains. In that case dim S& = dim J c ( r ) = NV(r — 1). As in the genus 
zero case, the arguments identical to that used at the end of Section 4 in [5] prove that the 
form OJ is non-degenerate on V*. 
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Corollary 3.2. For g = 0 and g = 1 the form OJ defined by (64) descends to the symplectic 
form on V*, which coincides with the pull-back of the Sklyanin symplectic structure restricted 
to the space of the monodromy operators. The Lax equations (62) are Hamiltonian with the 
Hamiltonians 

Hf = ] T xesq(lnw)fdz. (72) 

The Hamiltonians Hf are in involution {Hf,Hh} = 0. 

Now we are in the position to discuss the case g > 1 mentioned in the Introduction. The 
space V* is equipped by g-parametric family of two-forms ivdz, parameterized by the holo-
morphic differentials dz on T. For all of them the fibers J c ( r ) of the spectral bundle 
are maximum isotropic subspaces. For each vector-field df defined by (62) the equation 
hf^dz = 5HfZ holds. 

Equation (10) implies that each of the forms u>dz is degenerate on V*. Let us describe the 
kernel of w<jz. According to Theorem 3.2, the tangent vectors to Jc ( f ) are parameterized 
by the space A(T,P±) of meromorphic functions / on T with the poles at P^ modulo the 
following equivalence relation. The function / is equivalent to / i , if there is a meromorphic 
function F e A(t, P*) on T with the poles at Pj^, such that in the neighborhoods of these 
punctures the function ir*(f — f\) — F is regular. Let Kdz C A(T,P±) be the subspace of 
functions such that there is a meromorphic function F on T with poles at P^ and at the 
preimages n*(qs), dz(qs) = 0 of the zero-divisor of dz, and such that / — F is regular at Pj^. 
Then, from equations (67) and (72) it follows that: / £ Kdz '—• id,^dz = 0. Let Kdz be 
the factor-space of Kdz modulo the equivalence relation. Then the Riemann gap theorem 
implies that in the general position Kdz is of dimension 2(g — l)(r — 1), which equals the 
dimension of the kernel of u>dz- Therefore, the kernel of u>dz is isomorphic to K-dz- Using 
this isomorphism, it is easy to show that the intersection of all the kernels of the forms Udz 

is empty, and thus the family of these forms is non-degenerate. 

4. Variable base curves 

Until now it has been always assumed that the base curve is fixed. Let MA he the space 
of smooth genus g algebraic curves T with the fixed meromorphic function A, having poles 
and zeros of order TV at punctures Pjr, k = 1 , . . . ,V. For simplicity, we will assume that 
the punctures P^ are distinct. The space M.& is of dimension dim At A = 2(D + g — 1). 
The total space £AT,A of all the restricted chains corresponding to these data and the trivial 
equivalence class C = 0 £ J(T) can be regarded as the bundle over M.& with the fibers 
CN

+Q A~ = J C J / O ' A - ^ ) - ^ v definition, the curve T corresponding to a point (I\ A) 6 At A 
is equipped by the meromorphic differential dz = din A. The function A defines local 
coordinate everywhere on T except at zeros of its differential. Let WA be the form defined 
by (64), where dz = din A and the variations of Ln and \ t n are taken with fixed A, i.e. 

1 N~1 

WA = - 2 E r e s * E ^ (*;rJi(A)*Ln(A) AtfMA)) din A, / = { 7 . , ^ } . (73) 
q!l n=0 

Then WA is well-defined on leaves XA of the foliation on £JV,A defined by the condition: 
the differential <51nw(A)dlnA restricted to XA is holomorphic at the punctures Pk . This 
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condition is equivalent to the following constraints. In the neighborhood of Pfc there are 
(r — 1) regular branches wi of the multi-valued function w, defined by the characteristic 
equation (41): 

w f = c f + 0 ( A = F l ) , * = l , . . . , r - l . (74) 

The leaves X& are denned by 22?(r — 1) constraints: 

Scf = 0 i—• cf = constf . (75) 

Note that the differential 5 In w(A)din A is regular at P * for the singular branches of w, 
because the coefficients c^ of the expansions (42) and (43) are also fixed due to the equation 

The factor-space 
P A = XA/GL™ is of dimension d i m P A = 2NV(r - 1) - 2V{r - 1) + 

2(2? + g — 1). The space <SA C S'A of the corresponding spectral curves is of dimension 
dim<SA = (r - 1)(JVP -g + 1)- 2V(r - 1) + 2(2? + g - 1). The second and the third terms 
in the last formulae are equal to the number of the constraints (75) and the dimension of 
MA, respectively. 

For the case r = 2 the last formulae imply the match of the dimensions dim P A = 
2 dim <SA. For r = 2 the spectral curves are two-sheet cover of the base curves, and the fiber 
of the spectral bundle is the Pr im variety JQ(F) = Jpr im(r) . 
T h e o r e m 4 . 1 . For r = 2 the form w^ defined by (73), and restricted to P A is non-
degenerate. Ifjs are the poles of the normalized Floque-Bloch solution ipn, then 

g+i—1 g+i—1 

WA = Yl 5lnw(ls) A(51nA(7s) = ^ Shiw(js) A 6h\w(j°), (76) 
S = l 3 = 1 

where a : F —* T is the involution, which permutes the sheets of F over F. 
For every function f £ , 4 ( r , P * ) the Lax equations (62) are Hamiltonian with the Hamil-

tonians 
Hj = 2_\ resg ( / I n w) d in A. 

The Hamiltonians Hf are in involution. Their common level sets are fibers Jp r im(r) of the 
spectral map. 
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