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Abstract

The Laplacian growth (the Hele-Shaw problem) of multiply-connected domains in the case of zero surface tension is proven
to be equivalent to an integrable system of Whitham equations known in soliton theory. The Whitham equations describe slowly
modulated periodic solutions of integrable hierarchies of nonlinear differential equations. Through this connection the Laplacian
growth is understood as a flow in the moduli space of Riemann surfaces.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

It is not uncommon that nonlinear differential equations which possess an integrable structure emerge in important
problems of hydrodynamics[1]. The Korteweg de Vries equation describing nonlinear waves in dispersive media
is perhaps the most familiar example.
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Fig. 1. The Hele-Shaw cell (arrows show direction of the flow forced by a pump).

In recent years, integrable structures were found in another class of hydrodynamics problems leading to a pattern
formation in a regime far from equilibrium[2]. Growth problems of this type are unified by the name Laplacian
growth. In this paper, we further develop a link between growth processes and soliton theory. We extend the results
of Ref. [2] to the case of multiply-connected domains and identify the set of growth processes with a universal
Whitham hierarchy of integrable equations. The latter unveils the mathematical structure of the growth and set a
place for growth models in the realm of soliton theory.

Laplacian growth, also known as the Hele-Shaw problem, refers to dynamics of a moving front (an interface)
between two distinct phases driven by a harmonic scalar field. This field is a potential for the growth velocity
field. The Laplacian growth problem appears in different physical and mathematical contexts and has a number of
important practical applications. The most known ones are filtration processes in porous media, viscous fingering
in the Hele-Shaw cell, electrodeposition and solidification in undercooled liquids. A comprehensive list of relevant
papers published prior to 1998 can be found in Ref.[3].

The most interesting and the most studied dynamics occurs in two-dimensional spatial geometry. To be definite,
we shall speak about an interface between two incompressible fluids with very different viscosities on the plane.
In practice the 2D geometry is realized in a Hele-Shaw cell—a narrow gap between two parallel plates (Fig. 1). In
this version, the problem is also known as the Saffman–Taylor problem or viscous fingering. For a review, see[4].
Importance of studies of the Laplacian growth with more than one non-viscous droplet speaks for itself. When rates
of flow are considerable, then, because of fingering instability, new droplets are pinched off and change their shapes,
so the whole dynamics considerably changes in comparison with a single bubble dynamics. (See, e.g., experimental
works[5].)

To be more precise, consider the case when there are several disconnected domains in the Hele-Shaw cell
occupied by a fluid with low viscosity (water). We call them water droplets. Their exterior, which is in general
a multiply-connected domain, is occupied by a viscous fluid (oil). All components of the oil/water interface are
assumed to be smooth curves. Oil is sucked out with fixed ratesQj through sinks placed at some finite pointsaj
or at infinity (edges of the Hele-Shaw cell). Water is injected into each water droplet with ratesqα, some of which
may be negative or equal to zero. Hele-Shaw flows in general setting, including the multiply-connected case, were
discussed in Refs.[6–11].

Viscous flows are governed by gradient of the pressure field in fluids. In the oil domain, the local velocity
�V = (Vx, Vy) of the fluid is proportional to the gradient of pressurep = p(x, y) (Darcy’s law): �V = −κ∇p, where
κ is called the filtration coefficient. In what follows, we choose units in such a way thatκ = 1/4. In particular, the
Darcy law holds on the outer side of the interface thus governing its dynamics

Vn = −1
4∂np. (1)

Here∂n is the normal derivative.
This simple dynamics results to complicated unstable patterns often growing beyond control. The most recent

experimentally produced pattern can be seen in Ref.[5].
In this paper we discuss only the idealized problem, namely that surface tension equals zero. We call itthe

idealized Laplacian growth (ILG). Zero surface tension means that pressure does not jump across the boundary.
Assuming that viscosity of water is small enough comparing to the viscosity of oil, pressure is constant inside each
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water droplet. However, the values of pressure may be different in different droplets and may also depend on time.
Letpα be pressure in theαth droplet, then zero surface tension implies thatp = pα on the outer side of the interface
as well.

Since fluids are incompressible (∇ �V = 0) the Darcy law implies that the pressure fieldp is a harmonic function
in the exterior (oil) domain except at the points where the oil pumps are located. In the case of zero surface tension,
pressure is a solution of the time-dependent boundary problem for the Laplace equation withp = pα on the boundary
components. The interface moves according to the Darcy law (1), so that the boundary problem changes with time.
Note that the problem is non-local since the gradient of pressure around boundary depends on the shape of the
domain as a whole.

When the interface bounds a simply-connected domain, an effective tool for dealing with the Laplacian growth
is the time-dependent conformal mapping technique (see e.g.[4]). Passing to the complex coordinatesz = x + iy,
z̄ = x − iy on the physical plane, one may describe dynamics in terms of a moving conformal map from a simple
reference domain, say the unit disk in a “mathematical plane”, onto a growing domain in the physical plane.

If the interface has several disconnected components the conformal map approach meets fundamental difficul-
ties. Uniformizing maps of multiply-connected domains are essentially more complicated mainly because there
are no simple reference domains and, moreover, any possible reference domain depends on the growing domain
itself.

Instead, given growing domains, one may construct an algebraic curve over complex numbers, or a Riemann
surface, endowed with some additional structures. Then the Darcy law translates the growth to an evolution of the
algebraic curve, thus providing a remarkable family of flows on the (extended) moduli space of Riemann surfaces.

This is the meeting point of the growth processes and soliton theory. We show that the evolution of the Riemann
surface built upon the moving interface in the Hele-Shaw cell is governed by the universal Whitham hierarchy of
soliton theory. It generalizes the dispersionless 2D Toda hierarchy which was shown in Ref.[2] to describe the
moving boundary problems in the simply-connected case. The Whitham equations have been originally introduced
to describe slow modulations of periodic solutions to differential equations[12]. Their relation to the algebraic
geometry, using example of the KdV equation, was found in Refs.[13]. In general setting, the universal Whitham
hierarchy was introduced in Refs.[14–16].

The mathematical equivalence between the Laplacian growth with zero surface tension and the Whitham equa-
tions, established in this work, allows one to treat the former as a singular limit of dispersive waves obeying soliton
equations. Such a singular limit may often lead to solutions which develop singularities within finite time.

In the context of the Laplacian growth, the singularities show up as cusps generated by an initially smooth
interface[19], after which the idealized description no longer makes any physical sense. This feature signifies that
the very problem with zero surface tension is ill-posed.

A similar difficulty has been known to exist for the Whitham equations (see, e.g.,[17]). Some of their solutions,
being initially regular, sooner or later become singular and so cannot be extended to all times. The Korteweg de Vries
equation with zero dispersion (the Hopf equation) is the most familiar example. Here any smooth decreasing Cauchy
data evolve into a “shock wave” with an overturned front which is physically meaningless (a “gradient catastrophe”).
This simply means that the dispersionless approximation does not work in a vicinity of the catastrophe. Similarly,
the zero surface tension assumption is not valid in a vicinity of the cusp formation.

These singularities are in fact artificial and can be successfully resolved by methods developed in the theory of
slow modulations of exact periodic solutions to soliton equations[1,18]. In subsequent works we hope to apply
these methods to the Laplacian growth using the proven below equivalence between the two disciplines.

2. Linearization of the ILG dynamics

Remarkably, the ILG dynamics, initially formulated as a non-local and highly nonlinear problem, admits an exact
linearizationin the space of harmonic moments of the viscous domain. By linearization we mean here a change of
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variables which converts the non-trivial LG dynamics into a simple linear one. A familiar (but rather loose) analogy
is passing to action-angle variables in classical mechanics or the inverse scattering transform in the soliton theory.

Our starting point is the fact that the ILG is a simple linear shift in the space of harmonic moments of the growing
domain. This statement goes back to the seminal Richardson’s paper[6]. In that paper, it was shown that if there is
the only sink at infinity, all moments are conserved except the moment of constant function (the area of the droplet)
which changes linearly with time. In fact, it is absolutely clear that for incompressible fluids and fixed pumping
rates areas of the droplets, if change at all, always do this linearly with time. For arbitrary location of the sink, and
also for several sinks at different points, a simple extension of this result states that in general all moments change
linearly with time (with different coefficients which may be zero).

In the case of several water droplets, the set of harmonic moments should be supplemented by a finite number of
extra parameters, one for each extra droplet, which are basically moments of harmonic functions with multivalued
analytic parts. This set of variables is enough to characterize the geometry of the growing multiconnected domain.
Alternatively, the new parameters may be areas of the water droplets. Depending on which type of external physical
conditions in the water droplets is realized (fixed pressure differences or fixed pumping rates), the ILG dynamics
becomes linear either in the former or in the latter variables.

Most of the material ofSections 2.1 and 2.2is spread through the literature (see, e.g.,[6–9] and Chapter 5 of the
book[11]). To make our exposition self-contained, we review them from a unifying point of view.

2.1. The time-dependent boundary problem

Consider an ILG process with the point-like oil pumps with powersQj at some pointsaj located far enough
from the moving interface. Mathematically this means

−
∮

cj
Vn ds = πQj, (2)

wherecj is a small contour encircling the pointaj, ds stands for the differential of the arc length,Vn is the component
of the fluid velocity normal to the contour, with the normal vector pointing outside the circlecj. BothQj andaj are
assumed to be time independent. Oil may be also sucked at infinity. Physically this means, for example, that oil is
removed from the edge of a large Hele-Shaw cell. Mathematically one puts one ofaj equal to infinity and defines
the pumping rate at infinity,Q∞, as

−
∮

c∞
Vn ds = πQ∞.

Herec∞ is a big contour encircling the whole system of water droplets and all the point-like pumps, if any. The oil
pumping rates are assumed to be positive when oil is sucked and negative if it is injected into the Hele-Shaw cell.

One can also consider extended sources or sinks of oil, for instance, continuously distributed along lines, like in
Ref. [9]. To avoid irrelevant technical complications, we consider point-like oil pumps only, giving brief remarks
on the more general case when necessary.

Let Doil be the region of the plane occupied by oil (an infinite domain containing infinity), andD be the region
occupied by water. We assume that there areg + 1 water droplets in the Hele-Shaw cell, which are compact domains
bounded by smooth non-intersecting curves. LetDα be theαth water droplet,α = 0,1, . . . , g, so thatD is their
union (Fig. 2). It is convenient to think of the 0th droplet as of the “main” one, having in mind that it is this droplet
that remains in the system in the simply-connected case. Let us assume, just for a notational convenience, that the
origin lies in the zero droplet, 0∈ D0.

The incompressibility implies that the oil pumps are able to work only if there are some sources of water which
supply water to at least one of the droplets. We call them water pumps and introduce the pumping rateqα of water



I. Krichever et al. / Physica D 198 (2004) 1–28 5

Fig. 2. Water dropletsDα (g = 3).

in theαth droplet:∮
∂Dα

Vn ds = πqα. (3)

Here the normal vector pointsoutsideDα. The pumping rateqα is assumed to be positive when water is injected
into theα-droplet. Obviously, the oil and water pumping rates are constrained by the relation

Q∞ +
∑
j

Qj =
∑
α

qα.

The pressure field in oil obeys the equation

�p(z) = 4π
∑
j

Qjδ
(2)(z − aj), (4)

whereδ(2)(z) is the two-dimensional delta-function and� = ∂2
x + ∂2

y = 4∂z∂z̄ is the Laplace operator on the plane.
In other words,p = p(z) is a harmonic function inDoil with the asymptote

p(z) = Qj log |z − aj|2 + · · · in the vicinity ofaj.

Taking into account the Darcy law, this agrees with the definition of theQj (2). On theαth component of the
interface the pressure field takes a constant valuepα (which may depend on time). Without loss of generality, we
setp0 = 0.

To determine velocity of the interface, one should solve a time-dependent Dirichlet-like boundary problem. It
has a unique solution, and so pressure inDoil is uniquely determined as soon as one specifies pressurespα in water
droplets. This means that with givenpα’s there is no freedom in water pumping. Indeed, the pumping rates in all
water droplets are to be determined from (3), which states thatqα = −(1/4π)

∮
∂Dα

∂npds. If pα’s are maintained
constant with time,qα’s are in general certain complicated functions of time. Alternatively, one may control the
pumping ratesqα keeping them constant, then pressures in water droplets are uniquely determined by the dynamical
equations and in general exhibit a non-trivial time dependence.

So the physical problem is not yet defined by the local growth law alone. One should add some physical conditions
in water droplets. We distinguish two cases:
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(I) Fixed pressure differencespα: ṗα = 0, thenqα = qα(t) are to be determined;
(II) Fixed pumping ratesqα: q̇α = 0, thenpα = pα(t) are to be determined.

Here the dot means the time derivative. Various “mixed” conditions (say, when we fix some ofpα’s and some of
qα’s or linear combinations thereof) are not meaningless from the mathematical point of view but look somewhat
artificial in the physical context.

For an abuse of quantum-mechanical terminology, one may refer to the cases (I) and (II) as the ILG problem in
p-representation andq-representation, respectively.

2.2. Integral transforms of the oil domain

2.2.1. The Cauchy transform
Here we closely follow Richardson’s paper[8]. Let us consider the Cauchy transform of the oil domain:

h(z) = 1

π

∫
Doil

d2ζ

z − ζ
. (5)

(A cut-off at some radiusR is implied, at largeR the integral does not depend on the cut-off which may be safely
moved to infinity.) This function is continuous across all boundaries and analytic forz in each holeDα while in Doil
the functionh(z) − z̄ is analytic. So we can write

h(z) =
{
h+
α (z) for z in Dα,

z̄ + h−(z) for z in Doil,
(6)

whereh+
α (z) is an analytic function inDα andh−(z) is analytic forz in Doil . One may analytically continue the

functionsh+
α ,h− outside the regions where they are defined by the Cauchy transform. In general, allg + 1 functions

h+
α (z) obtained in this way are expected to be different.

The contour integral representation of these functions reads

1

2πi

∮
∂D

ζ̄dζ

ζ − z
=
{
h+
α (z) for z in Dα,

h−(z) for z in Doil .
(7)

Note thath+
α (z) − h−(z) = z̄ on theαth boundary curve.

The time derivativėh(z) = ∂th(z; t), is found straightforwardly using the integral representation (5) and the Darcy
law:

ḣ(z) = − 1

π

∮
∂Doil (t)

1

z − ζ
Vn ds = 1

4π

∮
∂Doil (t)

1

z − ζ
∂np(ζ) ds

= 1

4π

∮
∂Doil (t)

(
1

z − ζ
∂np(ζ) − p(ζ)∂n

1

z − ζ

)
ds + 1

4π

g∑
α=1

pα

∮
∂Dα(t)

∂n
1

z − ζ
ds,

where we subtracted and added the integral ofp∂n [1/(z − ζ)] over the whole boundary, and used the fact thatp is
constant along any component of the boundary. It is easy to see that irrespectively of whether the pointz is inside
or outsideDα, all contour integrals in the second term vanish. The first term can be transformed using the Green
theorem:

∮
∂Doil (t)

(
1

z − ζ
∂np − p∂n

1

z − ζ

)
ds = −

∫
Doil (t)

(
1

z − ζ
�p(ζ) − p(ζ)�

1

z − ζ

)
d2ζ.
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The Laplacian ofp(ζ) is given by (4). Ifz is inside a water droplet, the function 1/(z − ζ) (regarded as a function
of ζ) is harmonic for allζ in Doil and the second term vanishes. Ifz is in Doil ,

∫
Doil (t)

p(ζ)�ζ

(
1

z − ζ

)
d2ζ = 4π∂zp(z).

Finally, we get

ḣ+
α (z) =

∑
j

Qj

aj − z
for z in Dα, (8)

ḣ−(z) =
∑
j

Qj

aj − z
+ ∂zp(z) for z inDoil . (9)

In the integrated form,

h+
α (z; t) = h+

α (z; 0) + t
∑
j

Qj

aj − z
. (10)

We see that the increment of theh+
α is a rational function, and, moreover, it isthe samefor all α = 0,1, . . . , g. We

also see that this function is entirely determined by the output powers and locations of oil pumps, no matter what
conditions we impose on the pressures and pumping rates in water droplets.

For a linearly distributed oil source,p(z) is a potential of a simple layer. Then one finds that the functionsḣ+
α ,

though no longer rational, are still analytic continuations of a single analytic function unless the support of the
simple layer forms a non-contractable cycle encircling at least one of the water droplets.

A remarkable property of the Cauchy transform is its linear dependence on timet (provided the parameters of
the oil pumps are time independent). This is the key point that allows one to linearize the ILG dynamics.

2.2.2. The Coulomb potential
Along with the Cauchy transform of the domainDoil it is useful to consider the potential generated by fictitious

2D Coulomb charges uniformly distributed inDoil

φ(z) = 1

π

∫
Doil

log

∣∣∣∣1 − z

ζ

∣∣∣∣
2

d2ζ (11)

(The same cut-off as in the Cauchy transform is implied.) Clearly, this function is harmonic in each water droplet
and itsz-derivative coincides with theh(z): ∂zφ(z) = h(z). Repeating the above calculation forφ(z) we get (forz
in water droplets):

φ̇(z) = − 1

4π

∫
Doil

log

∣∣∣∣1 − z

ζ

∣∣∣∣
2

�p(ζ) d2ζ + 1

4π

g∑
α=1

pα

∮
∂Dα

∂n log

∣∣∣∣1 − z

ζ

∣∣∣∣
2

ds.

This yields:

φ̇(z) = pα −
∑
j

Qj log

∣∣∣∣1 − z

aj

∣∣∣∣
2

for z in Dα. (12)
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2.2.3. The Laplacian growth equation
For completeness, let us demonstrate that the Laplacian growth equation, usually derived, in the simply-connected

case, using the time-dependent conformal map technique, follows from the time derivative of the Cauchy transform.
To this end, we calculate the difference of the boundary valuesḣ± in two ways. On the one hand, it is obtained

by subtracting (8) and (9):

ḣ+(z) − ḣ−(z) = −∂zp(z) for zon any boundary contour. (13)

On the other hand,

∂th
±(z) = 1

2πi
∂t

(∮
∂D

ζ̄ dζ

ζ − z

)

can be found directly using a parametrization of the family of contoursz = z(σ, t), whereσ is a parameter along
the contour. For each component of the boundary we have

∂t

(∮
z̄dz

z − a

)
=
∫ (

ztzσ + z̄zσt

z − a
− z̄zσzt

(z − a)2

)
dσ = (integrating by parts)=

∮ (
ztzσ − zσzt

z − a

)
dz

zσ
.

The jump of the boundary values of the analytic function defined by the latter Cauchy integral is equal tozt −
zσzt(zσ)−1. Combining this with (13), we obtain the relation for differentials along the boundary curves,

∂tz(σ, t) dz − ∂tz(σ, t) dz̄ = −∂zp(z) dz (14)

valid for any parametrization of the contours. In a simply-connected case with an oil sink at infinityp(z) =
−2Q∞ log |w(z)|, wherew(z) is a conformal map of the oil domain to the exterior of the unit disk. Choosing
σ = −i logw(z) Eq.(14) becomes the celebrated Laplacian growth equation

ztzσ − ztzσ = iQ∞.

It was first derived in Ref.[20].

2.3. Dual systems of local coordinates in the space of multiply-connected domains

Our next goal is to introduce special local coordinates in the space of multiply-connected domains, which evolve
linearly in time. The time evolution of the Cauchy transform suggests that such coordinates are basically harmonic
moments of the oil domain.

2.3.1. The proper basis of harmonic functions
Let us consider a time independent domainD̃oil ⊂ Doil with the same connectivity asDoil , as shown inFig. 3,

and define a proper basis of harmonic functions inD̃oil . A basis is said to be proper if any harmonic function inDoil
is representable as a linear combination (possibly infinite) of the basis functions such that it converges everywhere
in D̃oil . In the case of a single water droplet, the basis consisting of functionsz−n and their conjugates is clearly a
proper one. However, this basis is no longer proper on the plane with more than one hole. Indeed, in this case one
has to incorporate functions with singularities in any hole, not only inD0, otherwise the series converges only in
some simply-connected neighborhood of infinity.

To construct a proper basis, we need some auxiliary data. Inside each water droplet, let us fix a point,zα ∈ Dα,
which does not move with time (Fig. 3). These points may be thought of as locations of point-like water pumps.
Without any loss of generality, we setz0 = 0.
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Fig. 3. The domaiñDoil is the exterior of the regions bounded by the dashed lines.

Consider the following single-valued analytic functions inDoil :

ψk(z) =
k−1∏
γ=0

1

z − zγ
k ≥ 0, (15)

where the running indexγ is understood modulog + 1, i.e., it is implied thatzγ+(g+1)m ≡ zγ . At k = 0 we set
ψ0 = 1. In a more explicit form, we write

ψ(g+1)m+α = r−m(z)
α−1∏
β=0

(z − zβ)−1, (16)

wherem ≥ 0,α = 0,1, . . . , g (whenα = 0 the product is set to be 1) and

r(z) =
g∏

β=0

(z − zβ). (17)

These functions constitute a proper basis of single-valued analytic functions. (As is seen from (16), the domainD̃oil
can be choosen to be|r(z)| > C for some positiveC.) This basis is a simplified version of the special Laurent–Fourier
type basis on Riemann surfaces constructed in[21]. In the case of the single holeD0 with z0 = 0 it coincides with
the standard one:ψk = z−k.

Any harmonic function is the real part of an analytic function. However, in the multiply-connected case these
analytic functions are not necessarily single-valued (only their real parts have to be single-valued). The full basis
of harmonic functions is, therefore:ψk(z), ψk(z), k ≥ 1,ψ0 = 1, andg functions of the form

&α(z) = log

∣∣∣∣1 − zα

z

∣∣∣∣
2

, α = 1, . . . , g (18)

which have multivalued analytic part.
An important feature of the basisψk is the existence of the “dual” basis of differentials, dχk(z), such that

1

2πi

∮
∂D

ψk dχn = δkn. (19)
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Explicitly, they are given by

dχk(z) = dz

(z − zk−1)ψk(z)
= dz

k−2∏
γ=0

(z − zγ ), (20)

wherezk is again understood aszα wherek = (g + 1)m + α with non-negative integerm and 0≤ α ≤ g. It is clear
thatχ′

k(z) = dχk/dz, for k ≥ 1, are polynomials of degreek − 1.
One can easily check that the following expansion of the Cauchy kernel holds true

1

ζ − z
=

∞∑
k=1

ψk(ζ)χ
′
k(z) (21)

and the series converges if|r(z)| < |r(ζ)|. In particular, the series certainly converges ifζ is in Doil while z is close
enough to any one of the pointszα. A similar expansion holds for the logarithmic kernel

log(ζ − z) = log(ζ − zα) −
∞∑
k=1

ψk(ζ)
∫ z

zα

dχk for ζ in Doil andz in Dα (22)

with the same condition of convergence.

2.3.2. The harmonic moments
Using the expansion of the Cauchy kernel (21), let us expand the functionh+(z) in a series, which converges at

least forz close enough to any one of the pointszα. We obtain

h+(z) =
∑
k≥1

kTkχ
′
k(z),

where

Tk = − 1

πk

∫
Doil

ψk(ζ) d2ζ (23)

are normalizedharmonic momentsof the domainDoil . (In the case of the single water dropletD0 they have the
familiar formTk = −(1/πk)

∫
Doil

ζ−k d2ζ.) Their time derivatives are read from (8):

Ṫk = 1

k

∑
j

Qjψk(aj). (24)

In case of the only sink at infinity the r.h.s. vanishes[6]. The momentT0 is the area ofDoil . It is infinite, but as long
as we need only its change, we may equivalently consider the area of the complimentary domain

T0 = 1

π

g∑
α=0

Area(Dα).

Evidently,Ṫ0 is equal to the total power of oil pumps:Ṫ0 = Q∞ +∑
j Qj.

To characterize the geometry of a multiply-connected domain withg + 1 boundary components one needsg

extra parameters. There are different possibilities to choose them. One of possible choices is as follows. Using the
expansion of the logarithmic kernel (22), or integrating the expansion of theh(z), we can represent the Coulomb
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potential function in the form

φ(z) = Φα + 2Re


∑

k≥1

kTk

∫ z

zα

dχk


 for z in Dα, (25)

whereΦα = φ(zα) are integration constants. Sinceφ(0) = 0, we setΦ0 = 0. The other integration constants,
Φ1, . . . , Φg, may serve as the additional independent parameters. Clearly,

Φα = 1

π

∫
Doil

log

∣∣∣∣1 − zα

ζ

∣∣∣∣
2

d2ζ

are harmonic moments of theDoil with respect to the functions&α(z) (18). These moments are always real. The
time derivativeΦ̇α = φ̇(zα) is given by (12):

Φ̇α = pα −
∑
j

Qj log

∣∣∣∣1 − zα

aj

∣∣∣∣
2

= pα −
∑
j

Qj&α(aj). (26)

There is an alternative choice of theg extra parameters which is “dual” to the choice above. Let

Sα = Area(Dα)

π
(27)

be areas of the water droplets (divided byπ), then

Ṡα = qα (28)

by the definition ofqα. Clearly,
∑g

α=0 Sα = T0, soS1, . . . , Sg can be taken as independent parameters.

2.3.3. Local coordinates in the space of multiply-connected domains
The basic fact from the theory of deformations of planar domains (which we adopt without proof in this paper) is

that the parametersTk,Φα orTk, Sα can serve as local coordinates in the space of planar multiply-connected domains.
This means that any deformation which preserves these parameters is trivial and any vector field in the space of these
parameters generates a well-defined deformation of the initial domain (see[22] for details). Recovery of the domain
having these parameters constitutes the classical inverse potential problem[23] for the multiply-connected case.
The fact that the coordinates introduced above are good ones amounts to local existence and uniqueness of such a
domain. An effective reconstruction, however, is not generally feasible and even specific examples are challenging
and merit separate attention.

The formulas for time derivatives ofTk, Φα and Sα tell us that any ILG flow can be represented, in these
coordinates, as a vector field with constant coefficients.

To summarize, we have introduced two systems of local coordinates in the space of multiply-connected domains

• TΦ-coordinates: the harmonic momentsT0, T1, T2, . . . (and their complex conjugates) andΦ1, Φ2, . . . , Φg;
• TS-coordinates: the harmonic momentsT0, T1, T2, . . . (and their complex conjugates) andS1, S2, . . . , Sg.

Now, from (24), (26) and (28) it is clear that Richardson’s result can be reformulated by saying that the ILG dynamics
with fixed pressure differences (thep-representation) is linearized in theTΦ-coordinates while the ILG dynamics
with fixed pumping rates (theq-representation) becomes linear inTS-coordinates.
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2.4. Elementary growth processes

A linear time dependence of the local coordinates suggests to treat any general ILG process as a superposition
of certain “elementary” processes. It is natural to associate with each elementary flow its own time variable.

In thep-representation, the elementary processes are:

(p1) Oil is sucked from a pointa with the unit rate (Q = 1), with maintaining equal pressures in all droplets
(pα = 0):

Ṫ0 = 1, Ṫk = 1

k
ψk(a), Φ̇α = −&α(a).

With this process we associate the time variableT (a) such that

∂

∂T (a)
= ∂

∂T0
+
∑
k≥1

1

k

(
ψk(a)

∂

∂Tk
+ ψk(a)

∂

∂T̄k

)
−
∑
α

&α(a)
∂

∂Φα

(29)

(the values of the coefficients follow from (24) and (26)). Note thatT (a) is the amount of oil sucked out from
the pointa during the process.

(p2) Water is redistributed between the droplets by applying the unit pressure difference between theαth and the
0th droplets:pβ = δαβ, with no pumps in oil

Ṫ0 = Ṫk = 0, Φ̇β = δαβ.

With this process we associate the time variableT (α) such that

∂

∂T (α)
= ∂

∂Φα

. (30)

It is the amount of water injected into the 0th water droplet during the process.

In theq-representation, the elementary processes are:

(q1) Oil is sucked from a pointa with the unit rate (Q = 1), with water being added to the 0th droplet only (q0 = 1)

Ṫ0 = 1, Ṫk = 1

k
ψk(a), Ṡβ = 0.

In this case the vector field∂/∂T (a) is represented as

∂

∂T (a)
= ∂

∂T0
+
∑
k≥1

1

k

(
ψk(a)

∂

∂Tk
+ ψk(a)

∂

∂T̄k

)
. (31)

(q2) Water is sucked from theαth droplet and injected into the 0th one with the unit rate:qβ = −δαβ, with no
pumps in oil

Ṫ0 = Ṫk = 0, Ṡβ = −δαβ,

∂

∂T (α)
= − ∂

∂Sα
. (32)
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In (29) and (31)∂/∂T (a) is to be understood not as a partial derivative but as a vector field in the space ofg + 1
contours. By construction, it is an invariant vector field, i.e., it does not depend on the particular basis of harmonic
functions and corresponding local coordinates. The same is true for∂/∂T (α). For a general process we have

∂

∂t
= Q∞

∂

∂T0
+
∑
j

Qj

∂

∂T (aj)
+
∑
α

pα

∂

∂Φα

(p-representation),

∂

∂t
= Q∞

∂

∂T0
+
∑
j

Qj

∂

∂T (aj)
+
∑
α

qα
∂

∂Sα
(q-representation).

The vector fields and relations between them are to be understood as acting on any physical quantity depending on
the shape of the growing domain. It is important to stress that the linear superposition works only for processes of
the same type (i.e., either of thep-type orq-type).

At fixed positions of oil sinks ILG spans a finite-dimensional subspace of an infinite-dimensional variety of
g + 1-domains. In this subspace∂/∂T (a) and∂/∂T (α) act as partial derivatives. For example, fixN pointsaj and
consider the variety of contours which can be obtained from some initial configuration of droplets as a result of
an ILG process with oil pumps at the pointsaj. The resulting shape of the droplets is uniquely determined (if no
singularity occurs) by total amounts of oil sucked out from each point. This configuration space isN-dimensional,
andT (aj) are local coordinates in it. Similarly, one may consider a more general configuration space, where additional
parameters are amounts of water injected into each droplet.

3. Analytic and algebro-geometric objects associated to the ILG

In this section we describe analytic and algebro-geometric objects[24] which emerge in a description of an
evolution of multiply-connected domains.

3.1. Green function, harmonic measures and period matrix

Pressure in the oil domain is expressed in terms of the following objects:

• G(z, z′): The Green function of the Dirichlet boundary problem inDoil . The functionG(z, z′) is symmetric and
harmonic everywhere inDoil in both arguments exceptz = z′ whereG(z, z′) = log |z − z′| + · · · as z → z′;
besides,G(z, z′) = 0 if any of the variablesz, z′ belongs to the boundary. The Green function obeys the equation
�G(z, z′) = 2πδ(2)(z − z′).

• ωα(z): The harmonic measure of theαth boundary component.The functionωα(z) is the harmonic function in
Doil such that it is equal to 1 on∂Dα and vanishes on the other boundary curves. Thus the harmonic measure is
the solution to the particular Dirichlet problem. The solution is given by

ωα(z) = − 1

2π

∮
∂Dα

∂nG(z, ζ) ds, α = 0,1, . . . , g, (33)

so the harmonic measure is the period of the differential∂zGdz. Obviously, the sum of the harmonic measures
of all boundary components,∂Dα, which we callcycles, is equal to 1. In what follows we consider the linear
independent functionsωα(z) with α = 1, . . . , g.
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• /αβ: The period matrix.Taking integrals ofωα(z) over non-trivial cycles, we define

/αβ = − 1

2π

∮
∂Dβ

∂nωα(ζ) ds, α, β = 1, . . . , g. (34)

The matrix/αβ is known to be symmetric, non-degenerate and positively definite. It is called the period matrix
because of its direct relation to periods of holomorphic differentials on the Schottky double of the domainDoil
(see below).

We also need the following “modified” objects, which are dual, with respect to the choice of the basis of canonical
cycles (seeSection 3.2) to the ones introduced above.

• G̃(z, z′): The modified Green function[25] defined by

G̃(z, z′) = G(z, z′) −
g∑

α,β=1

ωα(z)(/−1)αβωβ(z′). (35)

This function obeys the same equation�G̃(z, z′) = 2πδ(2)(z − z′) and integrals of∂nG̃ over all the cycles
∂D1, . . . , ∂Dg are zero. However, instead of being zero on the boundaries,G̃ takes there different constant
values.

• ω̃α(z): The modified harmonic measure is defined by

ω̃α(z) = −2
g∑

β=1

(/−1)αβωβ(z). (36)

This is simply a linear combination ofωα’s with domain-dependent coefficients such that

1

2π

∮
∂Dα

∂nω̃βds = 2δαβ.

3.1.1. The pressure field
Let us demonstrate how the solution for pressure inDoil is written in terms of the objects just introduced. For

simplicity we do this assuming only one sink of oil with the powerQ located at a pointa (a = ∞ is also possible).
The general solution for the pressure fieldp = p(z) with p = pα on the boundaries reads

p(z) = 2QG(z, a) +
g∑

α=1

pαωα(z) = 2QG̃(z, a) −
g∑

α=1

qαω̃α(z). (37)

It is important to note that the ratesqα completely determine pressurespα in the water droplets and vice versa.
Indeed, plugging (37) into (3), we have the relation

2Q
∮
∂Dα

∂nG(a, z) ds +
g∑

β=1

pβ

∮
∂Dα

∂nωβ(z) ds = −4πqα.

Using (33) and (34), we can write it either as a system of linear equations forpα (in theq-representation),

1

2

g∑
β=1

/αβ pβ = qα − Qωα(a) (38)
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or a system of linear equations forqα (in thep-representation),

2
g∑

β=1

(/)−1
αβ qβ = pα − Qω̃α(a). (39)

Since theg × g matrix/αβ is non-degenerate, the system has a unique solution which is read from the equivalent
“dual” system. Whichever the physical conditions in the water droplets are, pressure is given by

p(z) = 2QG(a, z) − 2Q
g∑

α,β=1

ωα(a)(/−1)αβωβ(z) + 2
g∑

α,β=1

qα(/−1)αβωβ(z). (40)

Specifying this formula for the elementary processes, we have

p(z) =
{

2G(a, z) for (p1),

ωα(z) for (p2),
p(z) =

{
2G̃(a, z) for (q1),

ω̃α(z) for (q2).
(41)

3.1.2. Variational formulas
Variations of the Green function and harmonic measures under infinitesimal deformations of the domain are

described by remarkable formulas going back to Hadamard[26,24]. Let δn(ξ) be the normal displacement (with
sign) of the boundary under the deformation counted along the normal vector at the boundary pointξ, with the
normal vector looking insideDoil , seeFig. 4. The variational formulas are

δG(z, z′) = 1

2π

∮
∂Doil

∂nG(z, ξ)∂nG(z′, ξ)δn(ξ) ds, (42)

δωα(z) = 1

2π

∮
∂Doil

∂nG(z, ξ)∂nωα(ξ)δn(ξ) ds, (43)

δ/αβ = 1

2π

∮
∂Doil

∂nωα(ξ) ∂nωβ(ξ)δn(ξ) ds. (44)

Small variations of the modified objects (with tilde) are described by exactly the same formulas (42) and (43),
where one should put tilde everywhere.

These variational formulas are easy to understand. Let us explain them on the example of the Green function.
Since the Green functionG(z, ξ) vanishes ifξ belongs to the old boundary, the variationδG(z, ξ) is equal to the
value of the new Green function on the old boundary, i.e.,δG(z, ξ) = −δn(ξ)∂nG(z, ξ), in the leading order. Now
notice thatδG(z, ξ) is aharmonic function(the logarithmic singularity cancels since it is the same for both old and

Fig. 4. The normal displacement of the boundary.
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Fig. 5. The two halfs of the Schottky double (g = 2).

new functions) with the boundary value−δn(ξ)∂nG(z, ξ). This function can be restored from its boundary value by
solving the Dirichlet boundary problem. The r.h.s. ofeq. (42) gives the result.

When the domain evolves with time, the Green function and harmonic measures become time-dependent. The
variational formulas allow one to find time derivatives of these functions given a local law of motion of the boundary.
This is the way how we derive partial differential equations for the ILG below.

3.2. The Schottky double

The growing domainDoil is a Riemann surface with a border. From mathematical point of view, it is more
convenient to work with compact Riemann surfaces without border than with bordered domains. Given a planar
domain with holes, likeDoil , endowed with the holomorphic coordinatez, it may be thought of as a “half” of a
closed Riemann surface. Another half, an antiholomorphic “copy” ofDoil with coordinate ¯z, is glued to the first
copy along the boundaries∂Dα. Besides, each copy ofDoil should be compactified by adding a point at infinity.
The resulting compact Riemann surface without boundary is calledthe Schottky double, or simply the double of the
planar bordered domain (see, e.g.[24]) (Fig. 5)).

More precisely, the Schottly double of a bordered surface, is a compact Riemann surface without boundary
endowed with an antiholomorpic involution such that the boundary of the initial domain is the set of fixed points of
the involution. The Schottky double of theDoil can be thought of as two copies of it (“upper” and “lower” sheets
of the double) glued along the boundaries∪g

α=0∂Dα, with points at infinity added (∞ and∞̄). The holomorphic
coordinate on the upper sheet isz, the same as inDoil , while the holomorphic coordinate on the lower sheet is ¯z.
The genus of the double is equal to the number of water droplets minus 1. The notion of the double was implicitly
used by Richardson in his studies of viscous flows in multiply-connected fluid regions[7,8].

A meromorphic function on the double is a pair of meromorphic functionsf, f̃ in Doil such thatf (z) = f̃ (z̄)
on the boundary. Similarly, a meromorphic differential on the double is a pair of meromorphic differentialsf (z) dz
andf̃ (z̄) dz̄ such thatf (z) dz = f̃ (z̄) dz̄ along the boundary curves. The Schwarz reflection principle says that any
meromorphic differential dν(z) on the upper sheet such that it is purely imaginary along the boundary, can be
meromorphically extended to the lower sheet as−dν(z), so for each pole of such a globally defined differential
there is a “mirror” pole on the opposite sheet.
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To proceed, one has to choose a basis ofa- andb-cycles on the double having the canonical intersection form
aα ◦ aβ = bα ◦ bβ = 0, aα ◦ bβ = δαβ. In general, for an abstract Riemann surface, there is no preferred choice of
the basis. However, when the surface is the double of a planar domain, like in our case, we may fix the following
two distinguished (“dual”) bases.

• Theb-cycles are just boundaries of the holesbα = −∂Dα forα = 1, . . . , g. (Note, however, the negativeclockwise
orientation.) Theaα-cycle connects the boundary of theαth water droplet with the 0th one. To be more precise,
fix points ξα on the boundaries, then theaα-cycle starts fromξ0, goes toξα on the “upper” sheet and returns
following the same way on the “lower” sheet:

• In the “dual” basis, we interchangea- andb-cycles:ãα = −bα, b̃α = aα. The minus sign is necessary to preserve
the anti-symmetric intersection form.

These two choices of the basic cycles correspond to the LG dynamics in thep andq-representations.

3.3. Differentials on the Schottky double

3.3.1. Holomorphic differentials
Having fixed the basis of cycles, we can introduce normalized holomorphic differentials (abelian differentials of

the first kind) as differentials of holomorphic parts of the harmonic measures. Let us representωα as the real part
of a holomorphic function:ωα = Wα(z) + Wα(z), whereWα(z) are holomorphic (in general multivalued) functions
in Doil . The differentials dWα = ∂zωα dz are then holomorphic inDoil and purely imaginary along all boundary
contours. So they can be extended holomorphically to the lower sheet as−dWα(z). They form the canonically
normalized basis of holomorphic differentials on the double w.r.t. thea-cycles

∮
aα

dWβ =
∫ ξα

ξ0

dWβ(z) +
∫ ξ0

ξα

(−dWβ(z)
) = 2Re

∫ ξα

ξ0

dWβ(z) =
∫ ξα

ξ0

dωβ = δαβ.

The matrix ofb-periods of these differentials reads (cf. (34))

Tαβ =
∮

bα
dWβ = − i

2

∮
bα

∂nωβ ds = iπ/αβ. (45)

Similarly, the differentials d̃Wα = ∂zω̃α dz, constructed in the same way from the modified harmonic measures,
are normalized w.r.t. thẽa-cycles:1 (Fig. 6)

∮
ãα

dW̃β = 2πi δαβ.

Theb̃-periods of the differentials d̃Wα are

∮
b̃α

dW̃β = −2(/−1)αβ.

1 Normalization of the holomorphic differentials differs by 2πi. One might work using the unified normalization in bothp- andq-representations
but in that case, as a price for the unified notation, some artificial imaginary units enter formulas for physical quantities.
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Fig. 6. Canonical cycles on the Schottky double inp- andq-representations.

3.3.2. Meromorphic differentials[24]
The simplest meromorphic differential on a Riemann surface is the differential having only two simple poles

with residues±1 (the abelian differential of the third kind). We will especially need the differentials whose only
simple poles are at the mirror points of the double. They are naturally associated with the oil pumps.

Specifically, consider the differential dW (a,ā)(z) = 2∂zG(a, z) dz on the upper sheet. From the properties of the
Green function it follows that this differential has the only simple pole with residue +1 at the pointa. Since along
all the boundaries

0 = dzG(a, z) = ∂zG(a, z) dz + ∂z̄G(a, z) dz̄ = 2�(dW (a,ā)(z)) = 0,

this differential can be meromorphically extended to the lower sheet as−2∂z̄G(a, z) dz̄, and so it has a simple pole
with residue−1 at the mirror point ¯a on the lower sheet. In particular, the differential dW (∞,∞̄)(z) = 2∂zG(∞, z) dz
has simple poles at the two infinite points of the Schottky double. The differentials dW̃ (a,ā) are constructed in the
same way out of the modified Green function. Note that the so defined differential dW (a,ā) are canonically normalized

∮
aα

dW (a,ā) = 0 that means Re
∫ ξα

ξ0

∂zG(a, z) dz = 0 (p-representation),

∮
ãα

dW̃ (a,ā) = 0 that means
∮
∂Dα

∂zG(a, z) dz = 0 (q-representation).

The abelian differentials of the second kind, dW
(b)
k , have only one pole of orderk + 1 at the pointb. These

differentials can be explicitly defined by expansion of the Green function or the differential dW (a,ā) in a Taylor
series ina − b in the vicinity of the pointb. This differential is normalized, i.e.,

∮
aα

dW (a)
k = 0 but to define it

uniquely one has to fix the principal part at the pole.
Let us introduce the differentials dW (∞)

k with the pole at infinity. Expanding the Green function around∞ on
the upper sheet, and using the basis of analytic functionsψk (15), we write

2∂zG(a, z) dz = 2∂zG(∞, z) dz −
∑
k≥1

1

k

(
ψk(a) dW (∞)

k (z) + ψk(a) dW (∞̄)
k (z)

)
. (46)
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Here dW (∞)
k is the normalized differential holomorphic everywhere except infinity (on the upper sheet) with the

principal part

dW (∞)
k (z) = k dχk(z) + O(z−2) asz → ∞.

On the lower sheet, this differential is regular. Similarly, dW
(∞̄)
k has a pole at infinity on the lower sheet of the

double and is regular on the upper sheet. The differentials are defined by the following contour integrals:

dW (∞)
k =




k dz

πi
∂z

∮
∞
χk(ζ)∂ζG(z, ζ) dζ (on the upper sheet),

−k dz̄

πi
∂z̄

∮
∞
χk(ζ)∂ζG(z, ζ) dζ (on the lower sheet).

(47)

The contour here encircles∞ but not the pointz. The differential dW (∞̄)
k is defined as the complex conjugated

differential (−dW (∞)
k ) on the opposite sheet of the double.

The differentials introduced above are summarized as follows:

Type Notation Explicit form on the
upper/lower sheet

∮
aβ

∮
bβ

First kind dWα ∂zωα(z) dz δαβ πi/αβ

−∂z̄ωα(z) dz̄

Second kind dW (∞)
k See (47) 0 k

∮
∞

dzχk(z)∂zωα(z)

See (47)

Third kind dW (a,ā) 2∂zG(a, z) dz 0 2πiωβ(a)

−2∂z̄G(a, z) dz̄

3.3.3. Correspondence between times and differentials
Each elementary flow is naturally “coupled” with a meromorphic or holomorphic differential on the Schottky

double. This differential can be defined in terms of pressure as∂zp(z) dz. Equivalently it is a unique analytic
continuation of the differential∂tz(σ, t) dz̄ − ∂tz(σ, t) dz to Doil from the boundary (hereσ is any parameter on the
contours). The equivalence of the two definitions follows from the Laplacian growth equation (14) (Section 2.2).
Explicitly, the coupling is

T (a) �−→ dW (a,ā), T (α) �−→ dWα, Tk �−→ dW (∞)
k .

In particular,T (∞) = T0 + const, corresponding to an oil sink at infinity, is coupled with the differential dW (∞,∞̄).
The abelian integral

W(z) = W (∞,∞̄)(z) =
∫ z

ζ0

dW (∞,∞̄), (48)

whereζ0 is an arbitrary fixed point inDoil , has a constant real part along each component of the boundary and
W(z) = log z + O(1) asz → ∞. For the process (q1) with the sink at infinity the functionw(z) = eW(z) conformally
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maps the domainDoil onto the exterior of a disk of radiusr0 = |w(ξ0)| (ξ0 is any point onb0) with g concentric
arcs removed. Radii and endpoints of the arcs depend on time. The radius,rα, is related to pressure in theα-water
droplet bypα = 2 log(rα/r0).

4. Equivalence of the ILG and Whitham dynamics

We describe an evolution of the Riemann surface through a time dependence of the canonical abelian differentials
and abelian integrals on the Schottky double. One may realize them as holomorphic or meromorphic functions of
the coordinatez on the physical plane. These functions encode the shape of the interface at any instant of time.
In this respect they serve as substitutes for the time-dependent conformal map to the unit disk in case of a single
droplet.

We represent the dynamical equations of the ILG as relations between variations of the abelian integrals under
simultaneous action of different oil and water pumps. TreatingT (a) andT (α) as an independent “time” variables the
evolution takes the form of a hierarchy of partial differential equations in many variables. We recognize them as a
universal Whitham hierarchy[14,15]in the (extended) moduli space of genusgRiemann surfaces (seeSection 4.3).

4.1. Exchange relations

Let us calculate the time derivative of the Green functionG(a, b) in the elementary process with the oil pump at
some third pointc. Using the Hadamard formula (42), and the fact that for this processδn(ξ) = −1

2∂nG(c, ξ)δT (c),
we have

∂G(a, b)

∂T (c)
= − 1

4π

∮
∂Doil

∂nG(a, ξ)∂nG(b, ξ)∂nG(c, ξ) ds.

Remarkably, the result issymmetricunder all permutations of the pointsa, b, c. For a single connected domain this
equation has been obtained in Ref.[27]. In a similar way, we find, using (43) and (44):

∂ωα(b)

∂T (c)
= − 1

4π

∮
∂Doil

∂nωα(ξ)∂nG(b, ξ)∂nG(c, ξ) ds

and

∂/αβ(b)

∂T (c)
= − 1

4π

∮
∂Doil

∂nωα(ξ)∂nωβ(ξ)∂nG(c, ξ) ds

as well as analogous formulas for derivatives w.r.t.T (α). Observing the symmetry of the right-hand sides of these
equations, one may write them as local relations connecting the time derivatives of the Green function and harmonic
measures.

In this way we obtain the following fundamentalexchange relations:

∂G(a, b)

∂T (c)
= ∂G(b, c)

∂T (a)
= ∂G(c, a)

∂T (b)
, (49)

∂ωα(a)

∂T (b)
= ∂ωα(b)

∂T (a)
, (50)

∂ωα(a)

∂T (β)
= ∂ωβ(a)

∂T (α)
(51)
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which encode dynamics of the Laplacian growth with zero surface tension. There is also the relation which connects
derivatives of the Green function and harmonic measure

2
∂G(a, b)

∂T (α)
= ∂ωα(a)

∂T (b)
. (52)

In the same way, one may extend this list to include derivatives of the period matrix

2
∂ωβ(a)

∂T (α)
= ∂/αβ

∂T (a)
,

∂/αβ

∂T (γ)
= ∂/βγ

∂T (α)
= ∂/γα

∂T (β)
. (53)

For the dual objects, the relations (49)–(52) remain the same.

4.2. The Whitham equations

Whitham equations are holomorphic parts of the exchange relations. Taking, for instance,∂z of both sides of the
exchange relation∂T (b)G(a, z) = ∂T (a)G(b, z), we get∂T (b) dW (a,ā)(z) = ∂T (a) dW (b,b̄)(z) which is an equation of the
Whitham hierarchy. The full list of Whitham equations obtained in this way reads

∂

∂T (a)
dW (b,b̄)(z) = ∂

∂T (b)
dW (a,ā)(z), (54)

∂

∂T (α)
dW (a,ā)(z) = ∂

∂T (a)
dWα(z), (55)

∂

∂T (α)
dWβ(z) = ∂

∂T (β)
dWα(z). (56)

The derivatives are taken at constantz. The list can be further enlarged by adding the equations containingTk-
derivatives

∂

∂Tn
dW (∞)

k (z) = ∂

∂Tk
dW (∞)

n (z)

and so on. They can be obtained from the generating equations (54)–(56) by expending them in a series around
infinity.

We note that there are a few other equivalent ways to write the Whitham equations[15]. Let us present a
more invariant formulation, which does not rely on the choice of the distinguished local coordinatez in Doil . The
Whitham equations in the invariant form are naturally written in an extended “moduli space” of contours. Points of
this extended space are sets of data of the form

(g + 1 non-intersectingboundarycontours; apointinDoil ).

Local coordinates in this space are parametersTΦ or TS and a local coordinateλ in the domainDoil .
The local coordinateλ may depend on the shape of the domain. In particular, one may chooseλ to be one of the

abelian integrals, sayW(z) = W (∞,∞̄)(z) with
∮

bα
dW = 0 (48). Then the functionw(z) = eW(z) is single-valued in

Doil . It is a good local coordinate inDoil everywhere except for the points where dW (∞,∞̄) = 0. It can be shown that
all these points belong to the boundariesb1, . . . ,bg and there are exactly two such points on each boundary. Under
the conformal mapw(z) these points are taken to the endpoints of the concentric arcs (see the end ofSection 3.3).
Treating all other abelian integrals as functions ofW rather thanz = z(W,T ),

W (a,ā)(W,T ) =
∫ z(W,T )

ζ0

dW (a,ā),
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we represent the Whitham equations(54)–(56)in the form

∂W (A)

∂T (B)
− ∂W (B)

∂T (A)
+ {

W (A),W (B)} = 0, (57)

whereA stands fora or α and

W (A),W (B) := ∂W (A)

∂W

∂W (B)

∂T0
− ∂W (B)

∂W

∂W (A)

∂T0

has the form of “Poisson brackets”. These equations are consistency conditions for the system of evolution equations

∂z

∂T (A)
= {

W (A), z
}
. (58)

Eqs. (57)and(58)constitute the Whitham universal hierarchy of the soliton theory.

4.3. Whitham equations in soliton theory

4.3.1. Whitham equations as modulation equations
Integrable partial differential and difference equations of soliton theory are known to possess a rich family of

periodic exact solutions depending on continuous parameters. To be more definite, we start our discussion with a
(1 + 1)-dimensional integrable evolution equation of the formut = P(u, ux, . . .) (e.g., the KdV equation). Exact
periodic solutions have the form

u(x, t) = u0(Ux + Vt + Z|I),

whereU, V, Z areg-dimensional constant vectors with components{Uα} = (U1, . . . , Ug), etc., andu0(Z) is a
periodic function of any componentZα. This function, and all the vectors, depend on the set of parametersI =
(I1, . . . , IM). Each periodic solution can be constructed starting from a Riemann surface.I stands for the moduli
of a Riemann surface and the vectorsU, V areb-periods of certain normalized meromorphic differentials, dW (x)

and dW (t), on the Riemann surface, with prescribed singularities at infinity[1].
In a number of physical problems one is interested in slowly modulated periodic solution, rather than just periodic.

A nonlinear WKB method or the Whitham averaging method allows one to construct more general solutions of the
same integrable equation using the functionu0 as a leading term of the asymptotic expansion

u(x, t) = u0(ε−1S(X, T ) + Z(X, T )|I(X, T )) + εu1(x, t) + ε2u2(x, t) + · · · ,

whereε is a small parameter and the parametersI now depend on theslow variablesX = εx, T = εt. The original
variablesx, t are calledfast variables. If the vector-valued functionSobeys the equations

∂XS= U(I(X, T )), ∂TS= V(I(X, T ))

then the leading term agrees with the original solution up to first order inε. All the higher corrections can be found
by solving non-homogeneous linear equations whose homogeneous part is the original equation linearized on the
background of the exact solutionu0 [12].

We see that the so constructed solutionu(x, t) describes the original fast periodic oscillations, modulated, on a
larger scale, by a slow drift in the space of exact periodic solutions. The equation, which describes the driftI(X, T )
are called Whitham equations. For the particular example discussed above the equation to determineI(X, T ), written
in a proper local parameter reads∂X dW (t) = ∂T dW (x). This form of the Whitham equations was first observed in
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[13] for the KdV hierarchy. Implicitly, through the dependence of the canonically normalized differentials on the
slow variables, they describe the drift in the moduli space of Riemann surfaces and thus the dependenceI(X, T ). The
Hamiltonian approach to Whitham equations for (1+ 1)-dimensional systems was developed in Ref.[28]. A univer-
sal Whitham hierarchy in a general setting of multi-dimensional integrable equations was suggested in Ref.[14]. An
invariant formulation of the Whitham hierarchy, independent on the choice of local coordinates, was given in[16].

The idea of[14] was to obtain equations describing the slow drift in the space of exact solutions from the condition
that next-to-leading terms of the asymptotic seriesu(x, t) be uniformly bounded on large scales. In general, the
asymptotic series becomes unreliable on scales of orderε−1, i.e., the corrections become large. The main result of
[14] is that the Whitham equations follow if one requires that just the next term of the series,u1(x, t), be uniformly
bounded for allx, t.

4.3.2. The universal Whitham hierarchy
In a more general multi-dimensional hierarchy of soliton equations (like the KP hierarchy or the 2D Toda lattice

hierarchy, or their difference counterparts), one has a family of “times”tA and a family of “potentials”u(N), evolving
with timestA. (HereA andN belong to a case-dependent, generally infinite set of indices.)

Exact periodic solutions of the hierarchy are constructed from a given time independent Riemann surfaceA with
some additional data on it. With each timetA one associates a meromorphic differential, dWA, onA normalized
with respect to, say,a-cycles:

∮
aα

dWA = 0. LetU(A) be the vector ofb-periods of this differential:

U(A)
α =

∮
bα

dWA.

Then the exact solution has the form (u is one ofu(N)’s):

u({tA}) = u0

(∑
A

U(A)(I)tA + Z(I)|I
)

+ c0(I),

whereu0 is a certain oscillating periodic function (the second logarithmic derivative of the Riemannθ-function) and
c0 is a constant. Like in the previous example, one may try to construct a more general oscillating, but not periodic
solutions with slowly varying parameters

u = u0(ε−1S({TA}) + Z({TA})|I({TA})) + c0(I({TA})) + εu1({tA}) + · · · . (59)

HereTA = εtA are slow times andS is a vector function such that∂TAS= U(A)(I({TA})). The uniform boundness
of the first correctionu1 for all times implies the hierarchy of Whitham equations[15]:

∂WA

∂λ

(
∂WB

∂TC
− ∂WC

∂TB

)
+ ∂WB

∂λ

(
∂WC

∂TA
− ∂WA

∂TC

)
+ ∂WC

∂λ

(
∂WA

∂TB
− ∂WB

∂TA

)
= 0 (60)

valid for all possible values of the indicesA,B,C. Hereλ is any local parameter, all the abelian integrals being
regarded as functions ofλ. Choosing one of the indices, sayC, to be (∞, ∞̄) andλ = W = W (∞,∞̄), one gets the
Whitham equations in the form (57).

While averaging the solution (59) over fast oscillations,〈u0〉 vanishes

〈u〉({TA}) = c0({TA}).

In the context of Laplacian growth,TA is T (a) or T (α), andc0 is the Green functionG(a, b). Here the points (a, b)
label the potential. Thus the Laplacian growth can be thought of as a physical realization of the slow drift in the
moduli space of Riemann surfaces.
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5. Special classes of solutions of the Whitham hierarchy and Laplacian growth of algebraic domains

In this section we briefly discuss particularly important families of growing domains. They correspond to special
solutions to the Whitham hierarchy called “algebraic orbits”[15].

5.1. Algebraic and abelian domains

Let us recall that the time derivative of the Cauchy transform of the oil domain (10) is a globally defined rational
function. Consider the class of domains whose Cauchy transform is a single globally defined meromorphic (i.e.,
rational) function in the plane. In other words, each functionh+

α defined originally in the domainDα is extendable
to a single rational function defined everywhere in the plane, same for differentα. In this case one may forget about
the indexα and deal with the single functionh(z). Eq. (10)tells us that if the initial fluid region is from this class,
then it remains to be in this class in the process of the LG evolution. The evolution may only add new poles or
change residues of the existing ones. As is pointed out in Ref.[8], in order to prepare such an initial condition, one
may inject oil through points into a cell initially filled by water.

The domains whose Cauchy transform is a globally defined rational function are calledalgebraic[11] orquadra-
ture domains[26]. Some illustrative examples in the multiply-connected case can be found in Refs.[8,30]. This
class appears to be quite representative and important since any domain with smooth boundary components can be
approximated by quadrature domains (see[31] for the proof). In the simply-connected case, the quadrature domains
are images of the unit disk under conformal maps given by rational functions. Their time evolution is described
by rational solutions of the Laplacian growth equation. These solutions are sometimes known to develop cusp-like
singularities within finite time[19].

A more general class of domains can be defined by imposing the above condition not on theh+
α itself but on its

z-derivative. Namely, suppose that each differential dh+
α (z) is extendable to a meromorphic differential in the plane,

and they coincide for differentα’s. In this caseh+ itself may be a multivalued analytic function with logarithmic
branch points. In[11], such domains were calledabelian domains. They can be produced from the quadrature
domains by the oil sucking from linearly extended sinks. In the simply-connected case, their evolution is described
by logarithmic solutions of the Laplacian growth equation[32,33].

5.2. The Schwarz function

For domains with analytic boundaries, and for algebraic domains in particular, the Cauchy transform allows one
to introduce the Schwarz function of the boundary contours, which proved to be very useful for analyzing the LG
dynamics in the simply-connected case[2]. Given a closed contour on the plane, theSchwarz function[29,34] is
defined as the analytic continuation of the function ¯z away from the contour. Let us denote it byS(z). According to
the definition,S(z) is a function analytic in some neighborhood of the curve such that

S(z) = z̄ on the curve. (61)

From the continuity of the Cauchy transform we have ¯z = h+
α (z) − h−(z) on theαth boundary, soS(α)(z) = h+

α (z) −
h−(z) is the Schwarz function of theαth boundary curve. In general all these functions are different. However, as
it directly follows from the definition, all the boundary contours of algebraic or abelian domains havea common
Schwarz function, S(z) = S(α)(z) for anyα, and the differential dS(z) is meromorphic inDoil , i.e., it has there only
a finite number of isolated poles.

In the case of algebraic or abelian domains, one may decompose the Schwarz function into the sumS(z) =
S+(z) + S−(z), where the functionS+ = h+

α (z) (for anyα) is analytic inside water droplets whileS− = −h−(z) is
analytic inDoil and vanishes at infinity. Combining the time derivatives ofh+

α andh− (see (8) and (9)), we find the



I. Krichever et al. / Physica D 198 (2004) 1–28 25

time derivativeṠ(z) = ∂tS(z; t) of the Schwarz function at constantz

Ṡ(z) = ḣ+
α (z) − ḣ−(z) = −∂zp(z) (for z inmDoil ), (62)

where byhα(z) we mean the analytic continuation of this function toDoil .
In Dα’s, the analytically continued functionS(z) has more complicated singularities. In case of general position,

they are branch pointsηi of order two (with cuts between them). One may think of the algebraic curve underlying
the solution to the LG problem as the Riemann surface of the functionS(z). The Whitham equations can then be
equivalently represented in the form of equations for the endpoints of the cuts, which describe their time dependence
ηi = ηi(T ). The equations are

∂ηi

∂T (A)
=
(

dW (A)(z)

dW(z)

)
z=ηi

∂ηi

∂T0
, (63)

where the coefficients in front of∂ηi/∂T0 in the r.h.s. are expressible as (in general quite complicated) functions of
theηk ’s. Basically these equations mean that the Schwarz function takes finite values at the branch pointsηi.

5.3. The generating differential

For the class of algebraic domains, one may introduce a distinguished meromorphic differential on the Schottky
double. Recall that the Schwarz functionS(z) is a meromorphic function inDoil , if Doil is an algebraic domain.
Therefore, one may treatS(z) as a function on the Schottky double extending it to the lower sheet as ¯z. In this case
the differential dS = S(z) dz is extendable to a meromorphic differential on the double. Its explicit form on the
lower sheet iszdS(z).

The differential dS plays an important role in the theory. We call itthe generating differentialbecause it generates
the complete set of local coordinates in the space of algebraic multiply-connected domains. Indeed, the harmonic
moments are

Tk = − 1

2πik

∮
∂Doil

ψk(z)S(z) dz. (64)

The areas of water droplets are periods of this differential overb-cycles

Sα = − 1

2πi

∮
bα

dS. (65)

The “dual” variables,Φα, are expressed through periods of the same differential over thea-cycles (or, what is the
same, over̃b-cycles). To show this, we write

Φα =
∫ zα

0
dφ(z) = 2Re

∫ zα

0
h(z) dz = 2Re

(∫ ξ0

0
h+

0 (z) dz +
∫ zα

ξα

h+
α (z) dz +

∫ ξα

ξ0

(z̄ + h−(z)) dz

)
,

where the integral from 0 tozα goes along a path containing the two points andξ0, ξα are intersection points of the
path with the boundary curvesb0, bα (seeFig. 7). Adding and subtracting

∫ ξα
ξ0

h+(z) dz (which is well-defined for
algebraic domains), we rewrite this in the form

Φα = 2Re
∫ zα

0
S+(z) dz − Eα,
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Fig. 7. The integration path fromz0 = 0 to zα.

where

Eα = 2Re
∫ ξα

ξ0

(S(z) − z̄) dz =
∫ ξα

ξ0

(
S(z) dz − z̄dS(z)

) =
∮

aα
dS. (66)

Note thatEα does not depend on the pointsξ0, ξα. Finally, the timesT (a) associated with a sink of oil at the point
a are expressed as

T (a) = − 1

2πi

∮
ca

dS. (67)

(Hereca is a small contour encircling the pointa.)
The table of differentials fromSection 3.3can be continued by including the generating differential:

Type Notation Explicit form on the
upper/lower sheet

∮
aα

∮
bα

Generating differential dS S(z) dz Eα −2πiSα

zdS(z)

Moreover, partial derivatives of the generating differential w.r.t. the timesT (a), T (α) coincide with the canonical
meromorphic differentials:

∂S(z)

∂T (a)
dz = −dW (a,ā)(z),

∂S(z)

∂T (α)
dz = −dWα(z). (68)

This follows from (62) after substituting the pressure filed for the elementary processes in terms of the Green function
and harmonic measures (see (41)). For algebraic domains, the Whitham equations follow from the existence of the
generating differential and (68).

The generating differential can be represented as

dS = dF −
∑
A

T (A) dW (A), (69)

where dF is a differential withT (A) independent singularities. For algebraic orbits, it is a fixed meromorphic differ-
ential (possibly with time independent jumps). In more general cases dF has more complicated analytic properties.
Presumably, it can be defined as a solution to a∂̄-problem. The expansion (69) and equation dS(λs) = 0 for all zeros
λs of the differential dzon the lower sheet of the Schottky double, where it has the form dS(z), are key relations which
imply (68). Indeed, from the latter condition it follows that the differential∂AdS has no singularities at the pointsλs.
Then (69) implies that this differential has the same singularities and periods as−dW (A). Hence, they do coincide.

General algebraic orbits of Whitham equations for higher genus Riemann surfaces in the sense of[15] corre-
spond to the case when thez-derivative of the Schwarz function extends to a meromorphic function on the double
(equivalently, when the differential dS(z) extends to a meromorphic differential on the double).
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6. Conclusion

In short, the main message of this work is that the variables in which the Laplacian growth with zero surface
tension becomes linear, for arbitrary connectivity of the growing domain and arbitrary configuration of pumps, are
the Whitham “times” defined in Ref.[15]. The latter are special local coordinates on the extended moduli space of
Riemann surfaces. Conservation or linear dependence on time of harmonic moments of the growing domain, known
before as a characteristic feature of the idealized Laplacian growth, is a particular case of this result.

The Whitham equations are partial differential equations for canonical holomorphic and meromorphic differ-
entials on Riemann surfaces regarded as functions of the local coordinates in the moduli space. Solutions to the
Whitham equations allow one to find the differentials and abelian integrals as functions of time and reconstruct
dynamics of the interface.

The Whitham equations are often regarded as integrable ones, though not in the Liouville sense. When speaking
about integrability of Whitham equations, one means mainly a possibility to actually integrate them by representing
a solution in the form of an implicit function of independent variables (the hodograph method).

The Whitham equations appear in soliton theory in different contexts. First, when one looks for solutions of
soliton equations other than periodic. At some regimes, these solutions are well approximated, on small space-
time scales, by the periodic exact solutions of the algebro-geometric type. When fast oscillations of the periodic
solutions are averaged or smoothed out, Whitham equations appear as modulation equations written for moduli of
the Riemann surface parametrizing the algebro-geometric periodic solutions. An important special case of Whitham
equations appears if one neglects dispersion in nonlinear soliton equations. The latter case provides the most direct
link to the Laplacian growth of simply-connected domains. This link was explored in Ref.[2]. What is perhaps the
most important conclusion, the Whitham equations describe a proper evolution of the Riemann surface built upon
a growing interface.

The relation between the growth problem and modulated periodic solutions to soliton equations is two-fold. The
Laplacian growth may serve as a simple illustrative physical model of the Whitham dynamics of complex curves.
Vice versa, the methods developed in soliton theory may help to understand growth in a singular (turbulent) regime,
i.e., in a vicinity of cusp formation or coalescence and break-up of droplets, providing an effective account of the
surface tension effects near singular points.
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