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Abstract

The Laplacian growth (the Hele-Shaw problem) of multiply-connected domains in the case of zero surface tension is proven
to be equivalent to an integrable system of Whitham equations known in soliton theory. The Whitham equations describe slowly
modulated periodic solutions of integrable hierarchies of nonlinear differential equations. Through this connection the Laplacian
growth is understood as a flow in the moduli space of Riemann surfaces.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Itis notuncommon that nonlinear differential equations which possess an integrable structure emerge inimportant
problems of hydrodynamid4]. The Korteweg de Vries equation describing nonlinear waves in dispersive media
is perhaps the most familiar example.
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oil

Fig. 1. The Hele-Shaw cell (arrows show direction of the flow forced by a pump).

In recent years, integrable structures were found in another class of hydrodynamics problems leading to a patterr
formation in a regime far from equilibriuf2]. Growth problems of this type are unified by the name Laplacian
growth. In this paper, we further develop a link between growth processes and soliton theory. We extend the results
of Ref. [2] to the case of multiply-connected domains and identify the set of growth processes with a universal
Whitham hierarchy of integrable equations. The latter unveils the mathematical structure of the growth and set a
place for growth models in the realm of soliton theory.

Laplacian growth, also known as the Hele-Shaw problem, refers to dynamics of a moving front (an interface)
between two distinct phases driven by a harmonic scalar field. This field is a potential for the growth velocity
field. The Laplacian growth problem appears in different physical and mathematical contexts and has a number of
important practical applications. The most known ones are filtration processes in porous media, viscous fingering
in the Hele-Shaw cell, electrodeposition and solidification in undercooled liquids. A comprehensive list of relevant
papers published prior to 1998 can be found in R&f.

The most interesting and the most studied dynamics occurs in two-dimensional spatial geometry. To be definite,
we shall speak about an interface between two incompressible fluids with very different viscosities on the plane.
In practice the 2D geometry is realized in a Hele-Shaw cell—a narrow gap between two parallelFptat®s (n
this version, the problem is also known as the Saffman—Taylor problem or viscous fingering. For a reviéj, see
Importance of studies of the Laplacian growth with more than one non-viscous droplet speaks for itself. When rates
of flow are considerable, then, because of fingering instability, new droplets are pinched off and change their shapes
so the whole dynamics considerably changes in comparison with a single bubble dynamics. (See, e.g., experimente
works[5].)

To be more precise, consider the case when there are several disconnected domains in the Hele-Shaw ce
occupied by a fluid with low viscosity (water). We call them water droplets. Their exterior, which is in general
a multiply-connected domain, is occupied by a viscous fluid (oil). All components of the oil/water interface are
assumed to be smooth curves. Oil is sucked out with fixed @tethrough sinks placed at some finite points
or at infinity (edges of the Hele-Shaw cell). Water is injected into each water droplet withygatsme of which
may be negative or equal to zero. Hele-Shaw flows in general setting, including the multiply-connected case, were
discussed in Ref$6—11].

Viscous flows are governed by gradient of the pressure field in fluids. In the oil domain, the local velocity
V= (Vi, Vy) of the fluid is proportional to the gradient of presspre= p(x, y) (Darcy’s Iaw):\7 = —«V p, where
k is called the filtration coefficient. In what follows, we choose units in such a waytkal/4. In particular, the
Darcy law holds on the outer side of the interface thus governing its dynamics

Hereod, is the normal derivative.

This simple dynamics results to complicated unstable patterns often growing beyond control. The most recent
experimentally produced pattern can be seen in [3¢f.

In this paper we discuss only the idealized problem, namely that surface tension equals zero. Wihecall it
idealized Laplacian growth (ILG)Zero surface tension means that pressure does not jump across the boundary.
Assuming that viscosity of water is small enough comparing to the viscosity of oil, pressure is constant inside each
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water droplet. However, the values of pressure may be different in different droplets and may also depend on time.
Let py, be pressure in theth droplet, then zero surface tension implies that p, on the outer side of the interface
as well.

Since fluids are incompressibl§(7 = 0) the Darcy law implies that the pressure figlts a harmonic function
in the exterior (oil) domain except at the points where the oil pumps are located. In the case of zero surface tension,
pressure is a solution of the time-dependent boundary problem for the Laplace equatipawgihon the boundary
components. The interface moves according to the Darcy law (1), so that the boundary problem changes with time.
Note that the problem is non-local since the gradient of pressure around boundary depends on the shape of the
domain as a whole.

When the interface bounds a simply-connected domain, an effective tool for dealing with the Laplacian growth
is the time-dependent conformal mapping technique (se¢4¢)gPassing to the complex coordinates x + iy,

z = x — iy on the physical plane, one may describe dynamics in terms of a moving conformal map from a simple
reference domain, say the unit disk in a “mathematical plane”, onto a growing domain in the physical plane.

If the interface has several disconnected components the conformal map approach meets fundamental difficul-
ties. Uniformizing maps of multiply-connected domains are essentially more complicated mainly because there
are no simple reference domains and, moreover, any possible reference domain depends on the growing domain
itself.

Instead, given growing domains, one may construct an algebraic curve over complex numbers, or a Riemann
surface, endowed with some additional structures. Then the Darcy law translates the growth to an evolution of the
algebraic curve, thus providing a remarkable family of flows on the (extended) moduli space of Riemann surfaces.

This is the meeting point of the growth processes and soliton theory. We show that the evolution of the Riemann
surface built upon the moving interface in the Hele-Shaw cell is governed by the universal Whitham hierarchy of
soliton theory. It generalizes the dispersionless 2D Toda hierarchy which was shown [2]Refdescribe the
moving boundary problems in the simply-connected case. The Whitham equations have been originally introduced
to describe slow modulations of periodic solutions to differential equafib2l Their relation to the algebraic
geometry, using example of the KdV equation, was found in R&8. In general setting, the universal Whitham
hierarchy was introduced in Refd.4-16]

The mathematical equivalence between the Laplacian growth with zero surface tension and the Whitham equa-
tions, established in this work, allows one to treat the former as a singular limit of dispersive waves obeying soliton
equations. Such a singular limit may often lead to solutions which develop singularities within finite time.

In the context of the Laplacian growth, the singularities show up as cusps generated by an initially smooth
interface[19], after which the idealized description no longer makes any physical sense. This feature signifies that
the very problem with zero surface tension is ill-posed.

A similar difficulty has been known to exist for the Whitham equations (see[27d), Some of their solutions,
being initially regular, sooner or later become singular and so cannot be extended to all times. The Korteweg de Vries
equation with zero dispersion (the Hopf equation) is the most familiar example. Here any smooth decreasing Cauchy
data evolve into a “shock wave” with an overturned front which is physically meaningless (a “gradient catastrophe”).
This simply means that the dispersionless approximation does not work in a vicinity of the catastrophe. Similarly,
the zero surface tension assumption is not valid in a vicinity of the cusp formation.

These singularities are in fact artificial and can be successfully resolved by methods developed in the theory of
slow modulations of exact periodic solutions to soliton equat{énE3]. In subsequent works we hope to apply
these methods to the Laplacian growth using the proven below equivalence between the two disciplines.

2. Linearization of the ILG dynamics

Remarkably, the ILG dynamics, initially formulated as a non-local and highly nonlinear problem, admits an exact
linearizationin the space of harmonic moments of the viscous domain. By linearization we mean here a change of
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variables which converts the non-trivial LG dynamics into a simple linear one. A familiar (but rather loose) analogy
is passing to action-angle variables in classical mechanics or the inverse scattering transform in the soliton theory.

Our starting point is the fact that the ILG is a simple linear shift in the space of harmonic moments of the growing
domain. This statement goes back to the seminal Richardson'’s [Bdplerthat paper, it was shown that if there is
the only sink at infinity, all moments are conserved except the moment of constant function (the area of the droplet)
which changes linearly with time. In fact, it is absolutely clear that for incompressible fluids and fixed pumping
rates areas of the droplets, if change at all, always do this linearly with time. For arbitrary location of the sink, and
also for several sinks at different points, a simple extension of this result states that in general all moments change
linearly with time (with different coefficients which may be zero).

In the case of several water droplets, the set of harmonic moments should be supplemented by a finite number o
extra parameters, one for each extra droplet, which are basically moments of harmonic functions with multivalued
analytic parts. This set of variables is enough to characterize the geometry of the growing multiconnected domain.
Alternatively, the new parameters may be areas of the water droplets. Depending on which type of external physical
conditions in the water droplets is realized (fixed pressure differences or fixed pumping rates), the ILG dynamics
becomes linear either in the former or in the latter variables.

Most of the material oSections 2.1 and 2i2 spread through the literature (see, §&9] and Chapter 5 of the
book[11]). To make our exposition self-contained, we review them from a unifying point of view.

2.1. The time-dependent boundary problem

Consider an ILG process with the point-like oil pumps with pow@rsat some points; located far enough
from the moving interface. Mathematically this means

—7{ Vnds =70}, @

Cj

wherec; is a small contour encircling the poinf, ds stands for the differential of the arc lengif, is the component

of the fluid velocity normal to the contour, with the normal vector pointing outside the cifcBoth Q ; anda; are
assumed to be time independent. Oil may be also sucked at infinity. Physically this means, for example, that oil is
removed from the edge of a large Hele-Shaw cell. Mathematically one puts aneqtial to infinity and defines

the pumping rate at infinityQ ., as

—f VndSZJTQOO.
Coo

Herec, is a big contour encircling the whole system of water droplets and all the point-like pumps, if any. The oll
pumping rates are assumed to be positive when oil is sucked and negative if it is injected into the Hele-Shaw cell.

One can also consider extended sources or sinks of oil, for instance, continuously distributed along lines, like in
Ref.[9]. To avoid irrelevant technical complications, we consider point-like oil pumps only, giving brief remarks
on the more general case when necessary.

Let Doj be the region of the plane occupied by oil (an infinite domain containing infinity) Daibel the region
occupied by water. We assume that theregarel water droplets in the Hele-Shaw cell, which are compact domains
bounded by smooth non-intersecting curves. Dgtbe theath water droplete =0, 1, ..., g, so thatD is their
union (Fig. 2. Itis convenient to think of the Oth droplet as of the “main” one, having in mind that it is this droplet
that remains in the system in the simply-connected case. Let us assume, just for a notational convenience, that th
origin lies in the zero droplet, @ Dy.

The incompressibility implies that the oil pumps are able to work only if there are some sources of water which
supply water to at least one of the droplets. We call them water pumps and introduce the pumpip@fatater
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oil

Fig. 2. Water droplet®, (g = 3).

in theath droplet:

% Vads = mqq. 3)
dDgy

Here the normal vector pointaitsideD,,. The pumping rate, is assumed to be positive when water is injected
into thea-droplet. Obviously, the oil and water pumping rates are constrained by the relation

Qoo"‘ZQj = an-
J o

The pressure field in oil obeys the equation

Ap(z) = 4n Z QJ-(S(Z)(Z —aj), 4)
J

wheres((z) is the two-dimensional delta-function and= 92 + 82 = 49,0z is the Laplace operator on the plane.
In other wordsp = p(z) is a harmonic function i with the asymptote

p(z) = 0 loglz —aj|> +--- inthevicinity ofa;.

Taking into account the Darcy law, this agrees with the definition of@)g2). On theath component of the
interface the pressure field takes a constant vajuévhich may depend on time). Without loss of generality, we
setpg = 0.

To determine velocity of the interface, one should solve a time-dependent Dirichlet-like boundary problem. It
has a uniqgue solution, and so pressurBdfn is uniquely determined as soon as one specifies presgyiasvater
droplets. This means that with given’s there is no freedom in water pumping. Indeed, the pumping rates in all
water droplets are to be determined from (3), which statesgthat —(1/4r) fao‘, onp ds. If p,'s are maintained
constant with timeg,'s are in general certain complicated functions of time. Alternatively, one may control the
pumping rateg, keeping them constant, then pressures in water droplets are uniquely determined by the dynamical
equations and in general exhibit a non-trivial time dependence.

Sothe physical problem is not yet defined by the local growth law alone. One should add some physical conditions
in water droplets. We distinguish two cases:
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(I) Fixed pressure differencegs,: p, = 0, theng, = ¢,(¢) are to be determined;
(I Fixed pumping rateg,: go = 0, thenp, = p,(t) are to be determined.

Here the dot means the time derivative. Various “mixed” conditions (say, when we fix sopaésand some of
qq's or linear combinations thereof) are not meaningless from the mathematical point of view but look somewhat
artificial in the physical context.

For an abuse of quantum-mechanical terminology, one may refer to the cases (I) and (ll) as the ILG problem in
p-representation angtrepresentation, respectively.

2.2. Integral transforms of the oil domain

2.2.1. The Cauchy transform
Here we closely follow Richardson’s pad@t. Let us consider the Cauchy transform of the oil domain:

2
h(z):lf i (5)

T JDgi 2= ¢

(A cut-off at some radiug is implied, at larger the integral does not depend on the cut-off which may be safely
moved to infinity.) This function is continuous across all boundaries and analytidgrf@ach holed, while in D;
the functioni(z) — z is analytic. So we can write

_ ) hi(@) forzinDy,
h()_:z_Jrh(z) for zin Doi, ©)

whereh (z) is an analytic function irD, ands~(z) is analytic forz in Dyji. One may analytically continue the
functionsh, h~ outside the regions where they are defined by the Cauchy transform. In gengral,laflinctions
h}(z) obtained in this way are expected to be different.

The contour integral representation of these functions reads

()

1 td; | hfz) forzinDy,
2ni Jjoc—z | h(z) forzinDoj.

Note thati (z) — 1~ (z) = z on theath boundary curve.
The time derivativé:(z) = 9,/(z; t), is found straightforwardly using the integral representation (5) and the Darcy
law:

: 1 1 1 1
e f Vods = — 8 p(£) ds
7T JoDou() 2 — ¢ 4 Jopgi() 2 — ¢
1 1 1 138 1
=— onp(g) — p(£)d )ds+— pyg 0 ds,
Ar aooi|(z)<Z—Cn() ()nz—§ 477;&3%@”2—{

where we subtracted and added the integraddf[1/(z — ¢)] over the whole boundary, and used the fact thest
constant along any component of the boundary. It is easy to see that irrespectively of whether théspnsgitle

or outsideD,, all contour integrals in the second term vanish. The first term can be transformed using the Green
theorem:

1 1 1 1
f ( Inp — pdn ) ds = — / ( Ap(¢) — p(E)A—> d’z.
9Dai(1) \Z ~ ¢ =7 Doin(f) \Z — ¢ z2—=¢
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The Laplacian ofp(¢) is given by (4). Ifz is inside a water droplet, the functiori(t — ¢) (regarded as a function
of ¢) is harmonic for allz in Dgj and the second term vanishes;z I in Dy,

1
/ p(§)A¢ <—> d%¢ = 470, p(2).
Doil (1) z—¢

Finally, we get

ht(z) = Z an_j ; for zin Dy, (8)
J
iz_(z) = Z P Q_] ; + 9, p(z) forzinDy;. 9)
J

J
In the integrated form,

Q;

aj—=z

hi(zit) =hi(z0)+1) (10)
J

We see that the increment of thg is a rational function, and, moreover, itttee samdor alla =0, 1, ..., g. We
also see that this function is entirely determined by the output powers and locations of oil pumps, no matter what
conditions we impose on the pressures and pumping rates in water droplets. _

For a linearly distributed oil sourcey(z) is a potential of a simple layer. Then one finds that the functigns
though no longer rational, are still analytic continuations of a single analytic function unless the support of the
simple layer forms a non-contractable cycle encircling at least one of the water droplets.

A remarkable property of the Cauchy transform is its linear dependence on (pravided the parameters of
the oil pumps are time independent). This is the key point that allows one to linearize the ILG dynamics.

2.2.2. The Coulomb potential
Along with the Cauchy transform of the domdig;; it is useful to consider the potential generated by fictitious
2D Coulomb charges uniformly distributed

2
o) = [ toglt-Z| dx (a1)

1-%
¢

(The same cut-off as in the Cauchy transform is implied.) Clearly, this function is harmonic in each water droplet
and itsz-derivative coincides with the(z): 9.¢(z) = h(z). Repeating the above calculation ifz) we get (forz
in water droplets):

22
1——‘ ds.
¢

by =—5 [ tog

7T JDyil

o

2 8
_z 2, 1
1 g\ Ap(c)dc+4n§lpa7§ i log

This yields:

2
for zin D,. (12)

$(2) = pa — »_ Q; log
j

z
1-=
aj
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2.2.3. The Laplacian growth equation
For completeness, let us demonstrate that the Laplacian growth equation, usually derived, in the simply-connectec
case, using the time-dependent conformal map technique, follows from the time derivative of the Cauchy transform.
To this end, we calculate the difference of the boundary valieis two ways. On the one hand, it is obtained
by subtracting (8) and (9):

ht(z) —h™(z) = —d.p(z) forzonanyboundary contour (13)

On the other hand,

1 cd
0= (4, £%)

can be found directly using a parametrization of the family of conteutsz(o, f), whereo is a parameter along
the contour. For each component of the boundary we have

5, (% zdz ) _ / <ZzZo + 2% ZZoZt2> do = (integrating by parts}- ?g (ZzZo — ZO'ZZ) %
z—a z—a (z—a) z—a 2o

The jump of the boundary values of the analytic function defined by the latter Cauchy integral is egual to
Zo2:(z0) L. Combining this with (13), we obtain the relation for differentials along the boundary curves,

9:z(0, 1) dz — 9;z(o, 1) dz = — 9, p(z) dz (14)

valid for any parametrization of the contours. In a simply-connected case with an oil sink at inf{gjty
—20 log|w(z)|, wherew(z) is a conformal map of the oil domain to the exterior of the unit disk. Choosing
o = —i log w(z) Eg.(14) becomes the celebrated Laplacian growth equation

%120 — %0 = 10c0-
It was first derived in Ref20].
2.3. Dual systems of local coordinates in the space of multiply-connected domains

Our next goal is to introduce special local coordinates in the space of multiply-connected domains, which evolve
linearly in time. The time evolution of the Cauchy transform suggests that such coordinates are basically harmonic
moments of the oil domain.

2.3.1. The proper basis of harmonic functions

Let us consider a time independent dom@yy C Doj With the same connectivity d3y, as shown irFig. 3
and define a proper basis of harmonic function®4p. A basis is said to be proper if any harmonic functioig
is representable as a linear combination (possibly infinite) of the basis functions such that it converges everywhere
in Dyjl. In the case of a single water droplet, the basis consisting of functidhand their conjugates is clearly a
proper one. However, this basis is no longer proper on the plane with more than one hole. Indeed, in this case one
has to incorporate functions with singularities in any hole, not ongdnotherwise the series converges only in
some simply-connected neighborhood of infinity.

To construct a proper basis, we need some auxiliary data. Inside each water droplet, let us fixzg pdby,
which does not move with timd={g. 3). These points may be thought of as locations of point-like water pumps.
Without any loss of generality, we sgf = 0.
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Fig. 3. The domaiDyj is the exterior of the regions bounded by the dashed lines.

Consider the following single-valued analytic functionig);:

k=1

i@ =[]

y=0

k>0, (15)
— Zy

where the running indey is understood modulg + 1, i.e., it is implied that,.(g+1)n = z;. At k = 0 we set
Yo = 1. In a more explicit form, we write

a—1
Ygrtmra =7 ") [ [ =257 (16)
$=0
wherem > 0,0 =0, 1, ..., g (Whena = O the product is set to be 1) and
8
r(2) = [ - 2p). 17)
=0

These functions constitute a proper basis of single-valued analytic functions. (As is seen from (16), thegpmain
can be choosento gz)| > C for some positiveC.) This basis is a simplified version of the special Laurent—Fourier
type basis on Riemann surfaces constructg@1h In the case of the single holay with zg = 0 it coincides with
the standard onel; = z 7.

Any harmonic function is the real part of an analytic function. However, in the multiply-connected case these
analytic functions are not necessarily single-valued (only their real parts have to be single-valued). The full basis
of harmonic functions is, thereforéy(z), v«(z), k¥ > 1, ¥ = 1, andg functions of the form

2
, a=1...,¢g (18)

Lo(z) =log|1l— Lo
Z

which have multivalued analytic part.
An important feature of the basi, is the existence of the “dual” basis of differentialg,¢), such that

1
T f wk an = 5kn~ (19)
7l Jap
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Explicitly, they are given by

dz e
dxi(z) = m =dz E(Z - Zy), (20)

wherez; is again understood ag wherek = (g + 1)m + « with non-negative integen and 0< « < g. Itis clear
that x, (z) = dxx/dz, for k > 1, are polynomials of degrée— 1.
One can easily check that the following expansion of the Cauchy kernel holds true

1

T D (@) (21)
k=1

and the series convergedi{z)| < |7(¢)|. In particular, the series certainly convergesii§ in Do; while z is close
enough to any one of the poingg. A similar expansion holds for the logarithmic kernel

o z
log(t — 2) = 109(¢ — za) — ¥ _ ¥ () / dxx for ¢in Dgjiandzin Dy, (22)
k=1 Za

with the same condition of convergence.
2.3.2. The harmonic moments

Using the expansion of the Cauchy kernel (21), let us expand the furicti@ in a series, which converges at
least forz close enough to any one of the poings We obtain

W @) = ) kT (),

k>1
where
1
Tio=—— [ w(¢)d% (23)
7k Jpg

are normalizecharmonic momentsf the domainDy;. (In the case of the single water dropleg they have the
familiar form T, = —(1/7k) fDO" % d?¢.) Their time derivatives are read from (8):

T = % Y 0jvna)). (24)
J

In case of the only sink at infinity the r.h.s. vanisiigls The momenfy is the area oDy . Itis infinite, but as long
as we need only its change, we may equivalently consider the area of the complimentary domain

18
To= = ZArea@a).
T a=0

Evidently, To is equal to the total power of oil pumps = Qoo + 3, Q.

To characterize the geometry of a multiply-connected domain withl boundary components one needs
extra parameters. There are different possibilities to choose them. One of possible choices is as follows. Using the
expansion of the logarithmic kernel (22), or integrating the expansion di(t)ewe can represent the Coulomb
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potential function in the form
Z
#(z) = &y + 2Re Zka/ dxis | forzinDg, (25)

z

k>1 e

where @, = ¢(z,) are integration constants. Sing€0) = 0, we set®g = 0. The other integration constants,
@y, ..., Py, may serve as the additional independent parameters. Clearly,

1
dﬁa:—/ log|1l
7T JDgil

are harmonic moments of thg,; with respect to the function,(z) (18). These moments are always real. The
time derivative®, = ¢(z,) is given by (12):

2
Za

d?¢

Zng =m—ZQ%%) (26)
J
There is an alternative choice of theextra parameters which is “dual” to the choice above. Let
Area
5, = 2real) (27)
T

be areas of the water droplets (divided-)y then
Su = (28)

by the definition ofg,. Clearly,) ", _, So = To, S0S1, ..., S, can be taken as independent parameters.

2.3.3. Local coordinates in the space of multiply-connected domains

The basic fact from the theory of deformations of planar domains (which we adopt without proof in this paper) is
thatthe paramete®, @, or T, S, can serve aslocal coordinates in the space of planar multiply-connected domains.
This means that any deformation which preserves these parameters is trivial and any vector field in the space of these
parameters generates a well-defined deformation of the initial domaif2@der details). Recovery of the domain
having these parameters constitutes the classical inverse potential pf@Blefor the multiply-connected case.
The fact that the coordinates introduced above are good ones amounts to local existence and uniqueness of such
domain. An effective reconstruction, however, is not generally feasible and even specific examples are challenging
and merit separate attention.

The formulas for time derivatives dfy, @, and S, tell us that any ILG flow can be represented, in these
coordinates, as a vector field with constant coefficients.

To summarize, we have introduced two systems of local coordinates in the space of multiply-connected domains

e To-coordinates: the harmonic momerdts 71, 7>, . . . (and their complex conjugates) add, @3, ..., @,
e TS-coordinates: the harmonic momedts 71, T>, . . . (and their complex conjugates) asd Sz, ..., S,.

Now, from (24), (26) and (28) itis clear that Richardson'’s result can be reformulated by saying that the ILG dynamics
with fixed pressure differences (therepresentation) is linearized in thi@-coordinates while the ILG dynamics
with fixed pumping rates (thg-representation) becomes linearfis-coordinates.
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2.4. Elementary growth processes

A linear time dependence of the local coordinates suggests to treat any general ILG process as a superpositio
of certain “elementary” processes. It is natural to associate with each elementary flow its own time variable.

In the p-representation, the elementary processes are:

(pl) Oil is sucked from a poirg with the unit rate Q0 = 1), with maintaining equal pressures in all droplets
(pa = 0):

. . 1 .
To=1, T, = zl//k(a), @y = —Ly(a).
With this process we associate the time variaffé such that

= i (@ @) - S, (29)

(the values of the coefficients follow from (24) and (26)). Note thét is the amount of oil sucked out from
the pointa during the process.

(p2) Water is redistributed between the droplets by applying the unit pressure difference betweratid: the
Oth droplets;pg = 84, With no pumps in oil

To = Tk =0, d)ﬂ = Sup-

With this process we associate the time variatffé such that
ad ad
@ " 9@,
It is the amount of water injected into the Oth water droplet during the process.

(30)

In the g-representation, the elementary processes are:

(q1) Oilis sucked from a pointwith the unit rate 0 = 1), with water being added to the Oth droplet onjy & 1)
. . 1 .
To=1, T = %I/fk(a), Sg=0.

In this case the vector fielgf97(@ is represented as

%= aa +> 7 (wk(a) +wk(a)—). 6
k>1

(92) Water is sucked from theth droplet and injected into the Oth one with the unit rate= —3,, with no
pumps in oil

To=Ti =0,  Sg=—5u.

d a

v __ % 32
aT () S (32)
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In (29) and (31%/97@ is to be understood not as a partial derivative but as a vector field in the space bf
contours. By construction, it is an invariant vector field, i.e., it does not depend on the particular basis of harmonic
functions and corresponding local coordinates. The same is tragddf*). For a general process we have

3 ,

a = Qg+ Z Qj— T(“ Z Pae (p-representation)
8 .
Fvi Qoo Z Qj 8T(’1 qu S (¢-representation)

The vector fields and relations between them are to be understood as acting on any physical quantity depending on
the shape of the growing domain. It is important to stress that the linear superposition works only for processes of
the same type (i.e., either of thetype org-type).

At fixed positions of oil sinks ILG spans a finite-dimensional subspace of an infinite-dimensional variety of
g + 1-domains. In this subspadgdT@ andd/dT act as partial derivatives. For example, xpointsa; and
consider the variety of contours which can be obtained from some initial configuration of droplets as a result of
an ILG process with oil pumps at the poinis The resulting shape of the droplets is uniquely determined (if no
singularity occurs) by total amounts of oil sucked out from each point. This configuration spéadirisensional,
and7@) are local coordinates in it. Similarly, one may consider a more general configuration space, where additional
parameters are amounts of water injected into each droplet.

3. Analytic and algebro-geometric objects associated to the ILG

In this section we describe analytic and algebro-geometric obj24tswhich emerge in a description of an
evolution of multiply-connected domains.

3.1. Green function, harmonic measures and period matrix

Pressure in the oil domain is expressed in terms of the following objects:

® G(z,7): The Green function of the Dirichlet boundary problenDg,. The functionG(z, 7’) is symmetric and
harmonic everywhere iDo; in both arguments except= 7’ whereG(z,7) =loglz —7/| +--- asz — Z/;
besidesG(z, z’) = 0 if any of the variables, 7’ belongs to the boundary. The Green function obeys the equation
AG(z,7) = 2718(2)(z - 7).

® w,(z): The harmonic measure of thth boundary componenthe functionw,(z) is the harmonic function in
Dol such that it is equal to 1 0#D,, and vanishes on the other boundary curves. Thus the harmonic measure is
the solution to the particular Dirichlet problem. The solution is given by

1
wy(2) = —> 7%0 G 0)ds, a«=0,1,...,g (33)

so the harmonic measure is the period of the differe@ti@ldz. Obviously, the sum of the harmonic measures
of all boundary component8D,,, which we callcycles is equal to 1. In what follows we consider the linear
independent functionsy(z) withae =1, ..., g
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® Q.4 The period matrixTaking integrals ofv,(z) over non-trivial cycles, we define

1
Qp=—=P ho()ds, ap=1..,¢ (34)
27 aDg

The matrix2.4 is known to be symmetric, non-degenerate and positively definite. It is called the period matrix
because of its direct relation to periods of holomorphic differentials on the Schottky double of the dypain
(see below).

We also need the following “modified” objects, which are dual, with respect to the choice of the basis of canonical
cycles (seéection 3.2to the ones introduced above.

e G(z, Z'): The modified Green functiof25] defined by

8
Gz.2)=G(2) = Y @u@)(Q Dupop(@)- (39)
o, =1

This function obeys the same equatioiG(z, ') = 276@(z — ') and integrals oG over all the cycles
oDy, ..., 3D, are zero. However, instead of being zero on the boundafiemkes there different constant
values.

® @,(z): The modified harmonic measure is defined by

8
0al2) = =2 (@ Dapp (). (36)
B=1

This is simply a linear combination ef,’s with domain-dependent coefficients such that

1

— In@pds = 2848.
2T 9Dy nwpas op

3.1.1. The pressure field
Let us demonstrate how the solution for pressurBdnp is written in terms of the objects just introduced. For
simplicity we do this assuming only one sink of oil with the powglocated at a point (¢ = oo is also possible).
The general solution for the pressure figle= p(z) with p = p, on the boundaries reads

8 8
p(2) =20G(z, a) + ) pawa(z) = 20G(z,a) = ) qu@a(z). (37)

a=1 a=1

It is important to note that the rateg completely determine pressurgg in the water droplets and vice versa.
Indeed, plugging (37) into (3), we have the relation

(3

8
Zng 0nGla,z)ds+ pﬂf Inwp(z) ds = —4qq.
aD,
o ﬂ:l

Using (33) and (34), we can write it either as a system of linear equations, fn the g-representation),

1 g
5 Z Qaﬂ Pg=dqua — Quwy(a) (38)
p=1
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or a system of linear equations fgy (in the p-representation),

8
23 (Q),598 = Pa — Qde(a). (39)
=1

Since theg x g matrix Qs is non-degenerate, the system has a unique solution which is read from the equivalent
“dual” system. Whichever the physical conditions in the water droplets are, pressure is given by

8 8
P(2) =20G(a,2) =20 Y 0a(@)(Q Napwp(@) +2 Y, qa(Q Dapwp(2). (40)

o, f=1 a,p=1

Specifying this formula for the elementary processes, we have

| 2G(a. z) for (p1). | 2G(a. 2) for (q2),
p(Z)—{wa(Z) for (p2). (z)—{a)a(z) for (¢2). (41)

3.1.2. Variational formulas
Variations of the Green function and harmonic measures under infinitesimal deformations of the domain are
described by remarkable formulas going back to Hadarf284] Let én(&) be the normal displacement (with
sign) of the boundary under the deformation counted along the normal vector at the boundaty paitimtthe
normal vector looking insid®jj, seeFig. 4. The variational formulas are

ac(z,z/)zzi f 300G (z. £)0nG (2. £)n(£) ds, (42)

T J 8Dgjj

0a(2) = o f 9nG (2, E)Inwa(E)on(E) ds, 43)
T J 3Dl

520 = zi Inwal&) nop(E)on(8) d. (a4)
T J 3Dgjj

Small variations of the modified objects (with tilde) are described by exactly the same formulas (42) and (43),
where one should put tilde everywhere.

These variational formulas are easy to understand. Let us explain them on the example of the Green function.
Since the Green functiof(z, £) vanishes if¢ belongs to the old boundary, the variati®@(z, £) is equal to the
value of the new Green function on the old boundary, §6(z, §) = —én(£)9,G(z, &), in the leading order. Now
notice thatsG(z, &) is aharmonic functior(the logarithmic singularity cancels since it is the same for both old and

Fig. 4. The normal displacement of the boundary.
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oo

Fig. 5. The two halfs of the Schottky doublg £ 2).

new functions) with the boundary valueSn(£)9,G(z, £). This function can be restored from its boundary value by
solving the Dirichlet boundary problem. The r.h.seof. (49 gives the result.

When the domain evolves with time, the Green function and harmonic measures become time-dependent. The
variational formulas allow one to find time derivatives of these functions given a local law of motion of the boundary.
This is the way how we derive partial differential equations for the ILG below.

3.2. The Schottky double

The growing domairDy; is a Riemann surface with a border. From mathematical point of view, it is more
convenient to work with compact Riemann surfaces without border than with bordered domains. Given a planar
domain with holes, likeDgj, endowed with the holomorphic coordinateit may be thought of as a “half” of a
closed Riemann surface. Another half, an antiholomorphic “copyD&f with coordinatez, is glued to the first
copy along the boundarie®,,. Besides, each copy @y; should be compactified by adding a point at infinity.

The resulting compact Riemann surface without boundary is cilke8chottky doubl@r simply the double of the
planar bordered domain (see, §21]) (Fig. 5)).

More precisely, the Schottly double of a bordered surface, is a compact Riemann surface without boundary
endowed with an antiholomorpic involution such that the boundary of the initial domain is the set of fixed points of
the involution. The Schottky double of tii&,; can be thought of as two copies of it (“upper” and “lower” sheets
of the double) glued along the boundarig$ ,dD,, with points at infinity addedcp andoc). The holomorphic
coordinate on the upper sheetighe same as D, while the holomorphic coordinate on the lower sheet is
The genus of the double is equal to the number of water droplets minus 1. The notion of the double was implicitly
used by Richardson in his studies of viscous flows in multiply-connected fluid refgid@js

A meromorphic function on the double is a pair of meromorphic functiérisin Deji such thatf(z) = f(2)
on the boundary. Similarly, a meromorphic differential on the double is a pair of meromorphic differgitipds
and f(z) dz such thatf(z) dz = f(z) dz along the boundary curves. The Schwarz reflection principle says that any
meromorphic differential o(z) on the upper sheet such that it is purely imaginary along the boundary, can be
meromorphically extended to the lower sheet-ab(z), so for each pole of such a globally defined differential
there is a “mirror” pole on the opposite sheet.
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To proceed, one has to choose a basia-andb-cycles on the double having the canonical intersection form
ay oag = by obg = 0,8, o bg = §48. In general, for an abstract Riemann surface, there is no preferred choice of
the basis. However, when the surface is the double of a planar domain, like in our case, we may fix the following
two distinguished (“dual”) bases.

e Theb-cyclesare justboundaries of the hdgs= —dD, fora = 1, ..., g. (Note, however, the negatietockwise
orientation.) The,-cycle connects the boundary of thth water droplet with the Oth one. To be more precise,
fix points &, on the boundaries, then tlag-cycle starts frontp, goes tog, on the “upper” sheet and returns
following the same way on the “lower” sheet: .

¢ Inthe “dual” basis, we interchange andb-cycles:a, = —b,, b, = a,. The minus sign is necessary to preserve
the anti-symmetric intersection form.

These two choices of the basic cycles correspond to the LG dynamics pretheg-representations.

3.3. Differentials on the Schottky double

3.3.1. Holomorphic differentials

Having fixed the basis of cycles, we can introduce normalized holomorphic differentials (abelian differentials of
the first kind) as differentials of holomorphic parts of the harmonic measures. Let us repsgsenthe real part
of a holomorphic functionw, = W,(z) + Wu(z), whereW,(z) are holomorphic (in general multivalued) functions
in Doji. The differentials &, = 9,0, dz are then holomorphic i and purely imaginary along all boundary
contours. So they can be extended holomorphically to the lower sheetl&s(z). They form the canonically
normalized basis of holomorphic differentials on the double w.r.tatlogcles

& éo & &
‘(ﬁ dwg = / dWpg(z) —i—/ (—dng(z)) = ZRE/ dWg(z) = / dwg = 8up.
Ay §o §a §o §o
The matrix ofb-periods of these differentials reads (cf. (34))
Top = 55 AW = —ljﬁ dnwp ds = imup. (45)
b 2 Jo,

Similarly, the differentials &, = 9.@, dz, constructed in the same way from the modified harmonic measures,
are normalized w.r.t. thé-cycles? (Fig. 6)

jﬁ dWp = 27i 845.
EY
TheB—periods of the differentialsd,, are

7{ dWg = —2(Q Hup.
e

1 Normalization of the holomorphic differentials differs hyi2One might work using the unified normalization in bgtrandg-representations
but in that case, as a price for the unified notation, some artificial imaginary units enter formulas for physical quantities.
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p—representation

g-representation

Fig. 6. Canonical cycles on the Schottky doublgirandg-representations.

3.3.2. Meromorphic differentialR4]

The simplest meromorphic differential on a Riemann surface is the differential having only two simple poles
with residuest1 (the abelian differential of the third kind). We will especially need the differentials whose only
simple poles are at the mirror points of the double. They are naturally associated with the oil pumps.

Specifically, consider the differentialid®9(z) = 29.G (a, z) dz on the upper sheet. From the properties of the
Green function it follows that this differential has the only simple pole with residue +1 at theqo@imice along
all the boundaries

0=d.G(a,z) = 3,G(a, z) dz + 3:G(a, z) dz = 2R(AW@9(z)) = 0,

this differential can be meromorphically extended to the lower sheeRasG (a, z) dz, and so it has a simple pole
with residue—1 at the mirror point on the lower sheet. In particular, the differentia &) (z) = 29.G (00, z) dz

has simple poles at the two infinite points of the Schottky double. The differentiafsé® are constructed in the
same way out of the modified Green function. Note that the so defined differeWtfaftiare canonically normalized

&
?{ dw@ = 0 thatmeans Rf 9;G(a,z)dz =0 (p-representation)
au

o

7€ dW@ = 0 that meansygD 9.G(a, z)dz =0 (g-representation)
Ao 0Dq

The abelian differentials of the second kindxyﬁ), have only one pole of orddr+ 1 at the pointb. These
differentials can be explicitly defined by expansion of the Green function or the differemti&l® in a Taylor
series ina — b in the vicinity of the pointb. This differential is hormalized, i.egﬁaa de“) = 0 but to define it
uniquely one has to fix the principal part at the pole.

Let us introduce the differentialswd,f"o) with the pole at infinity. Expanding the Green function arouadn
the upper sheet, and using the basis of analytic functignd 5), we write

20.G(a,2) dz = 20.G(00, ) dz — Y % (wk(a) dw () + I/Ik_(a)dW]EOB)(Z)) . (46)
k>1
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Here oW,EOO) is the normalized differential holomorphic everywhere except infinity (on the upper sheet) with the
principal part

dW,EOO)(z) = kdyi(z) + O ™2 asz — oo.

On the lower sheet, this differential is regular. Similarlw,ﬁz) has a pole at infinity on the lower sheet of the
double and is regular on the upper sheet. The differentials are defined by the following contour integrals:

kd
Tizazf xx(2)3:G(z, ¢)d¢  (onthe upper sheet)

kdz

(47)
—?az—f xk(0)3:G(z, ¢)d¢  (onthe lower sheet)

(00) _
dw,> =

The contour here encircles but not the point. The differential cW,foz’) is defined as the complex conjugated

differential (—dW,EOO)) on the opposite sheet of the double.
The differentials introduced above are summarized as follows:

Type Notation Explicit form on the ?g f
upper/lower sheet ap bs
First kind aw,, 9,w4(z2) dz Sup TiQqp
—07we(z) dz
Second kind (W,EOO) See (47) 0 k f dz Xk (2)0;wa(2)
o0
See (47)
Third kind dw (@) 20.G(a, z) dz 0 2riwg(a)

—20:G(a, z)dz

3.3.3. Correspondence between times and differentials

Each elementary flow is naturally “coupled” with a meromorphic or holomorphic differential on the Schottky
double. This differential can be defined in terms of pressuré,p&) dz. Equivalently it is a unique analytic
continuation of the differential, z(o, r) dz — 9,z(c, 1) dz to Dgj from the boundary (here is any parameter on the
contours). The equivalence of the two definitions follows from the Laplacian growth equatiorS@etjon 2.2
Explicitly, the coupling is

7@ qwaa), 7 dw,, Ty — dW,EOO).

In particular,T(®) = Ty + const, corresponding to an oil sink at infinity, is coupled with the differentials- ).
The abelian integral

_ Z _
W(z) = W)(g) = / dw (%), (48)
o

where¢g is an arbitrary fixed point iDy;, has a constant real part along each component of the boundary and
W(z) = log z + O(1) axx — oo. For the process (q1) with the sink atinfinity the functiofz) = €"©) conformally
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maps the domai,; onto the exterior of a disk of radiug = |w(&o)| (£o is any point onbg) with g concentric
arcs removed. Radii and endpoints of the arcs depend on time. The nadigselated to pressure in thewater

droplet byp, = 2109(«/70)-

4. Equivalence of the ILG and Whitham dynamics

We describe an evolution of the Riemann surface through a time dependence of the canonical abelian differentials
and abelian integrals on the Schottky double. One may realize them as holomorphic or meromorphic functions of
the coordinate on the physical plane. These functions encode the shape of the interface at any instant of time.
In this respect they serve as substitutes for the time-dependent conformal map to the unit disk in case of a single
droplet.

We represent the dynamical equations of the ILG as relations between variations of the abelian integrals under
simultaneous action of different oil and water pumps. Treafiffyand7(® as an independent “time” variables the
evolution takes the form of a hierarchy of partial differential equations in many variables. We recognize them as a
universal Whitham hierarcht4,15]in the (extended) moduli space of geguRiemann surfaces (s&ection 4.3.

4.1. Exchange relations

Let us calculate the time derivative of the Green functif{a, b) in the elementary process with the oil pump at
some third point. Using the Hadamard formula (42), and the fact that for this probg$3$ = —%BnG(c, £)sT(),
we have

0G(a,b) 1

W = —E ngo" nG(a, §)onG(b, §)onG(c, &) ds.

Remarkably, the result symmetriaunder all permutations of the poinisb, c. For a single connected domain this
equation has been obtained in R&f7]. In a similar way, we find, using (43) and (44):

dwy (D) 1
8T(C) = —E \ngO” 8n0)a(§)anG(b, é)anG(C, é) dS
and
0824 (b) 1
aT(C) = _E 3D0i| 8nwa(§)anwﬂ(§)anG(C, E) dS

as well as analogous formulas for derivatives wt). Observing the symmetry of the right-hand sides of these
equations, one may write them as local relations connecting the time derivatives of the Green function and harmonic
measures.

In this way we obtain the following fundamen&tchange relations

dG(a,b)  9G(b,c)  3G(c,a)

aT@  —  ar@ T jr®) (49)
dw(a)  dwy(D)

aT®) — 9r@ ° (50)
dwg(a)  dwp(a) (51)

oT®) — 9T
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which encode dynamics of the Laplacian growth with zero surface tension. There is also the relation which connects
derivatives of the Green function and harmonic measure

dG(a, b)  dwy(a)

2 aT@ — JT®) (52)

In the same way, one may extend this list to include derivatives of the period matrix
dopla)  9Qup Qs 0, I 53
aT@ — grla)’ oTw) = a1 — 9T(B) " (53)

For the dual objects, the relations (49)—(52) remain the same.
4.2. The Whitham equations
Whitham equations are holomorphic parts of the exchange relations. Taking, for instamideoth sides of the

exchange relatiob,) G(a, z) = 97 G(b, z), we getd e dW@d(z) = 3« dW®2) () which is an equation of the
Whitham hierarchy. The full list of Whitham equations obtained in this way reads

(b.b) (a.a)
@6 = aT(b) dwl(z), (54)
8T(a)dW(“ D7) = iy AWa(2), (55)
aT(O‘) dWs(z) = aT< 5 IWa(2)- (56)

The derivatives are taken at constaniThe list can be further enlarged by adding the equations contaifing
derivatives

9 0
—dw ™ (z) = —dw(™)
ot Wi (@) T (2)

and so on. They can be obtained from the generating equations (54)—(56) by expending them in a series around
infinity.

We note that there are a few other equivalent ways to write the Whitham equfitiind et us present a
more invariant formulation, which does not rely on the choice of the distinguished local coordindig;. The
Whitham equations in the invariant form are naturally written in an extended “moduli space” of contours. Points of
this extended space are sets of data of the form

(¢ + 1 non-intersectingboundarycontours; apoiti).

Local coordinates in this space are paramet@r®r 7S and a local coordinate in the domairD;.

The local coordinaté may depend on the shape of the domain. In particular, one may chaose one of the
abelian integrals, say/(z) = W{-)(z) with fbu dW = 0 (48). Then the functiom(z) = €"@ is single-valued in
Doil. Itis a good local coordinate Do everywhere except for the points whern&&°->) = 0. It can be shown that
all these points belong to the boundatigs. . ., b, and there are exactly two such points on each boundary. Under
the conformal ma(z) these points are taken to the endpoints of the concentric arcs (see theSzxtioh 3.3.
Treating all other abelian integrals as functiondiofather tharny = z(W, T),

A(W.T)
we(w, T) = / dw@a,
g

0
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we represent the Whitham equatidpg)—(56)in the form

aw@  aw(B
aTB) 9T

whereA stands fou or o and

+{wW, w®) = o, (57)

aw@ aw®B  aw B gw(4)

w_ wB -
’ W 9Tp W 9Tp

has the form of “Poisson brackets”. These equations are consistency conditions for the system of evolution equation:

0z
e — {W(A), z}. (58)

Egs. (57)and(58) constitute the Whitham universal hierarchy of the soliton theory.
4.3. Whitham equations in soliton theory

4.3.1. Whitham equations as modulation equations

Integrable partial differential and difference equations of soliton theory are known to possess a rich family of
periodic exact solutions depending on continuous parameters. To be more definite, we start our discussion with &
(1 + 1)-dimensional integrable evolution equation of the fanm= P(u, u,, ...) (e.g., the KdV equation). Exact
periodic solutions have the form

u(x, t) = ug(Ux + Vt + Z|I),

whereU, V, Z are g-dimensional constant vectors with componefiis} = (Us, ..., U,), etc., andug(Z) is a
periodic function of any componeit,. This function, and all the vectors, depend on the set of paramkters
(I1, ..., Ipr). Each periodic solution can be constructed starting from a Riemann sukfataands for the moduli
of a Riemann surface and the vectttsV areb-periods of certain normalized meromorphic differentialé @
and W, on the Riemann surface, with prescribed singularities at infjfijty

Ina number of physical problems one is interested in slowly modulated periodic solution, rather than just periodic.
A nonlinear WKB method or the Whitham averaging method allows one to construct more general solutions of the
same integrable equation using the functigras a leading term of the asymptotic expansion

u(x, 1) = uo(e " 1S(X, T) + Z(X, T)|I(X, T)) + sur(x, 1) + 2uz(x, 1) + - - -,

wheree is a small parameter and the paramefemsw depend on thslow variablesX = ex, T = et. The original
variablesy, r are calledast variables|f the vector-valued functio obeys the equations

9xS=U(I(X,T)),  8rS=V{(X,T))

then the leading term agrees with the original solution up to first orderAll the higher corrections can be found
by solving non-homogeneous linear equations whose homogeneous part is the original equation linearized on the
background of the exact solutian [12].

We see that the so constructed solutigm, r) describes the original fast periodic oscillations, modulated, on a
larger scale, by a slow drift in the space of exact periodic solutions. The equation, which describes tE,dFift
are called Whitham equations. For the particular example discussed above the equation to defEriinevritten
in a proper local parameter reagisdW) = d; dW®). This form of the Whitham equations was first observed in
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[13] for the KdV hierarchy. Implicitly, through the dependence of the canonically normalized differentials on the
slow variables, they describe the drift in the moduli space of Riemann surfaces and thus the depgxdéncéhe
Hamiltonian approach to Whitham equations for{1)-dimensional systems was developed in [&H]. A univer-
sal Whitham hierarchy in a general setting of multi-dimensional integrable equations was suggesteld #].Ref.
invariant formulation of the Whitham hierarchy, independent on the choice of local coordinates, was gh&jn in
The idea of14] was to obtain equations describing the slow drift in the space of exact solutions from the condition
that next-to-leading terms of the asymptotic seriés ¢) be uniformly bounded on large scales. In general, the
asymptotic series becomes unreliable on scales of erdei.e., the corrections become large. The main result of
[14] is that the Whitham equations follow if one requires that just the next term of the sarfess), be uniformly
bounded for alk, .

4.3.2. The universal Whitham hierarchy

In a more general multi-dimensional hierarchy of soliton equations (like the KP hierarchy or the 2D Toda lattice
hierarchy, or their difference counterparts), one has a family of “timeahd a family of “potentials ("), evolving
with timesz4. (HereA andN belong to a case-dependent, generally infinite set of indices.)

Exact periodic solutions of the hierarchy are constructed from a given time independent Riemanmrswithce
some additional data on it. With each timgone associates a meromorphic differentidd/d on I normalized
with respect to, sa;a—cycles:faa dw, = 0. LetU be the vector ob-periods of this differential:

UM = dwy.
ba

Then the exact solution has the formi¢ one ofu(™)’s):

u((ta)) = uo(( Y- UNW)a +Z()IT) + cold),
A

whereug is a certain oscillating periodic function (the second logarithmic derivative of the Riegrfamttion) and
co is a constant. Like in the previous example, one may try to construct a more general oscillating, but not periodic
solutions with slowly varying parameters

u = uo(e”"S({Ta}) + ZATANIIATAY)) + co(I({Ta})) + eua(ftal) + - - (59)

HereT, = et, are slow times an8 s a vector function such thay, S = U (I({T4})). The uniform boundness
of the first correctior4 for all times implies the hierarchy of Whitham equati¢hS]:

W4 (W  IWe Wg (OWe Wy We (W4  OWp —0
 \9Tc  9Tg i \ Ty  dTc B a

60
dTp 0T 4 (60)
valid for all possible values of the indices B, C. Herea is any local parameter, all the abelian integrals being
regarded as functions af Choosing one of the indices, sdy to be o, 50) andx = W = W) one gets the
Whitham equations in the form (57).

While averaging the solution (59) over fast oscillatiofs) vanishes

()({Ta}) = co({Ta}).

In the context of Laplacian growttl, is 7@ or T(®), andc is the Green functioi (a, b). Here the pointsd( b)
label the potential. Thus the Laplacian growth can be thought of as a physical realization of the slow drift in the
moduli space of Riemann surfaces.
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5. Special classes of solutions of the Whitham hierarchy and Laplacian growth of algebraic domains

In this section we briefly discuss particularly important families of growing domains. They correspond to special
solutions to the Whitham hierarchy called “algebraic orbjfd3].

5.1. Algebraic and abelian domains

Let us recall that the time derivative of the Cauchy transform of the oil domain (10) is a globally defined rational
function. Consider the class of domains whose Cauchy transform is a single globally defined meromorphic (i.e.,
rational) function in the plane. In other words, each functigndefined originally in the domaib,, is extendable
to a single rational function defined everywhere in the plane, same for difterémthis case one may forget about
the indexa and deal with the single functidi(z). Eqg. (10)tells us that if the initial fluid region is from this class,
then it remains to be in this class in the process of the LG evolution. The evolution may only add new poles or
change residues of the existing ones. As is pointed out in[Blefin order to prepare such an initial condition, one
may inject oil through points into a cell initially filled by water.

The domains whose Cauchy transform is a globally defined rational function arealghduaic[11] or quadra-
ture domaing26]. Some illustrative examples in the multiply-connected case can be found in[&&f3]. This
class appears to be quite representative and important since any domain with smooth boundary components can k
approximated by quadrature domains (g4 for the proof). In the simply-connected case, the quadrature domains
are images of the unit disk under conformal maps given by rational functions. Their time evolution is described
by rational solutions of the Laplacian growth equation. These solutions are sometimes known to develop cusp-like
singularities within finite timg19].

A more general class of domains can be defined by imposing the above condition noignitsedf but on its
z-derivative. Namely, suppose that each differentigf ¢t) is extendable to a meromorphic differential in the plane,
and they coincide for different’s. In this case:™ itself may be a multivalued analytic function with logarithmic
branch points. Ir{11], such domains were callegbelian domainsThey can be produced from the quadrature
domains by the oil sucking from linearly extended sinks. In the simply-connected case, their evolution is described
by logarithmic solutions of the Laplacian growth equatjdg,33]

5.2. The Schwarz function

For domains with analytic boundaries, and for algebraic domains in particular, the Cauchy transform allows one
to introduce the Schwarz function of the boundary contours, which proved to be very useful for analyzing the LG
dynamics in the simply-connected cd8& Given a closed contour on the plane, 8&hwarz functiofi29,34]is
defined as the analytic continuation of the functjicaway from the contour. Let us denote it Bfz). According to
the definition,S(z) is a function analytic in some neighborhood of the curve such that

S(z) =z onthecurve (61)

From the continuity of the Cauchy transform we have i} (z) — 1~ (z) on theath boundary, s6®)(z) = hf (z) —
h~(z) is the Schwarz function of theth boundary curve. In general all these functions are different. However, as
it directly follows from the definition, all the boundary contours of algebraic or abelian domainsahay@mon
Schwarz functions(z) = $©(z) for any«, and the differential 8(z) is meromorphic irDoj, i.e., it has there only
a finite number of isolated poles.

In the case of algebraic or abelian domains, one may decompose the Schwarz function into #{e)stm
S4+(z) + S—(z), where the functiors, = i} (z) (for any«) is analytic inside water droplets whie. = —h~(z) is
analytic inDoji and vanishes at infinity. Combining the time derivativea pfands~ (see (8) and (9)), we find the
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time derivativeS(z) = 9,5(z; r) of the Schwarz function at constant
8(2) = hf (@) —h™(z) = —8:p(z) (forzinmDo), (62)

where byh,(z) we mean the analytic continuation of this functiorlg) .

In D,’s, the analytically continued functio$(z) has more complicated singularities. In case of general position,
they are branch pointg of order two (with cuts between them). One may think of the algebraic curve underlying
the solution to the LG problem as the Riemann surface of the funéiign The Whitham equations can then be
equivalently represented in the form of equations for the endpoints of the cuts, which describe their time dependence
n; = n;(T). The equations are

i (dW() i
oTW —\ dw(z) /., 9To’

(63)

where the coefficients in front @f;;/97p in the r.h.s. are expressible as (in general quite complicated) functions of
then,’'s. Basically these equations mean that the Schwarz function takes finite values at the branch.points

5.3. The generating differential

For the class of algebraic domains, one may introduce a distinguished meromorphic differential on the Schottky
double. Recall that the Schwarz functi§(z) is a meromorphic function D, if Dgj is an algebraic domain.
Therefore, one may tred{z) as a function on the Schottky double extending it to the lower sheetiashis case
the differential & = S(z) dz is extendable to a meromorphic differential on the double. Its explicit form on the
lower sheet ig dS(z).

The differential & plays an important role in the theory. We cathie generating differentiddecause it generates
the complete set of local coordinates in the space of algebraic multiply-connected domains. Indeed, the harmonic
moments are

T, = 4
‘ %mf Yi(2)S() dz. (64)
The areas of water droplets are periods of this differential bveycles

Se = Zmyg ds. (65)

The “dual” variables@,, are expressed through periods of the same differential ovex-tiyeles (or, what is the
same, oveb-cycles). To show this, we write

o Za éo 2 &a
<pa=/o d¢(z)=2Re/0 h(z)dz=2Re</o h&(z)dz+/§a hi(z)dz+/go (z‘+h‘(z))dZ>’

where the integral from 0 tg, goes along a path containing the two points &nd, are intersection points of the

path with the boundary curvés, b, (seeFig. 7). Adding and subtractlngg" h*(z) dz (which is well-defined for
algebraic domains), we rewrite this in the form

Za
Dy = 2Ref Si(z)dz — I,
0
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3 :

Fig. 7. The integration path frogy = 0 to z,.

where
&q u _
My = ZRe/E0 (Sz)—2)dz = /So (S(z)dz — zdS(z)) = 72& ds. (66)

Note that1, does not depend on the poirgts £,. Finally, the times/'@ associated with a sink of oil at the point
a are expressed as
@ 1
TV = —— ds. (67)
21 Je,
(Herec, is a small contour encircling the point)
The table of differentials fronsection 3.3an be continued by including the generating differential:

Type Notation Explicit form on the $a, o,
upper/lower sheet

Generating differential 8 S(z)dz I, —27i S,
2dS(z)

Moreover, partial derivatives of the generating differential w.r.t. the tiff{&s 7 coincide with the canonical
meromorphic differentials:

3S5(z) 95(z)
T (@ oT(@)
This follows from (62) after substituting the pressure filed for the elementary processes in terms of the Green function
and harmonic measures (see (41)). For algebraic domains, the Whitham equations follow from the existence of the

generating differential and (68).
The generating differential can be represented as

dz = —dw@9(z),

dz = —dW,(z). (68)

dS=dA — ) 7Wdw®), (69)
A

where di is a differential with7(*) independent singularities. For algebraic orbits, it is a fixed meromorphic differ-

ential (possibly with time independent jumps). In more general casdsad more complicated analytic properties.

Presumably, it can be defined as a solutiondgpaoblem. The expansion (69) and equatidiid) = O for all zeros

1, of the differential ¢ on the lower sheet of the Schottky double, where it has the faitz) dare key relations which

imply (68). Indeed, from the latter condition it follows that the differendigdlS has no singularities at the points

Then (69) implies that this differential has the same singularities and periedgi$*). Hence, they do coincide.
General algebraic orbits of Whitham equations for higher genus Riemann surfaces in the §ébieate-

spond to the case when thalerivative of the Schwarz function extends to a meromorphic function on the double

(equivalently, when the differentialfz) extends to a meromorphic differential on the double).
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6. Conclusion

In short, the main message of this work is that the variables in which the Laplacian growth with zero surface
tension becomes linear, for arbitrary connectivity of the growing domain and arbitrary configuration of pumps, are
the Whitham “times” defined in Ref15]. The latter are special local coordinates on the extended moduli space of
Riemann surfaces. Conservation or linear dependence on time of harmonic moments of the growing domain, known
before as a characteristic feature of the idealized Laplacian growth, is a particular case of this result.

The Whitham equations are partial differential equations for canonical holomorphic and meromorphic differ-
entials on Riemann surfaces regarded as functions of the local coordinates in the moduli space. Solutions to the
Whitham equations allow one to find the differentials and abelian integrals as functions of time and reconstruct
dynamics of the interface.

The Whitham equations are often regarded as integrable ones, though not in the Liouville sense. When speaking
about integrability of Whitham equations, one means mainly a possibility to actually integrate them by representing
a solution in the form of an implicit function of independent variables (the hodograph method).

The Whitham equations appear in soliton theory in different contexts. First, when one looks for solutions of
soliton equations other than periodic. At some regimes, these solutions are well approximated, on small space-
time scales, by the periodic exact solutions of the algebro-geometric type. When fast oscillations of the periodic
solutions are averaged or smoothed out, Whitham equations appear as modulation equations written for moduli of
the Riemann surface parametrizing the algebro-geometric periodic solutions. An important special case of Whitham
equations appears if one neglects dispersion in nonlinear soliton equations. The latter case provides the most direct
link to the Laplacian growth of simply-connected domains. This link was explored if&BeWhat is perhaps the
most important conclusion, the Whitham equations describe a proper evolution of the Riemann surface built upon
a growing interface.

The relation between the growth problem and modulated periodic solutions to soliton equations is two-fold. The
Laplacian growth may serve as a simple illustrative physical model of the Whitham dynamics of complex curves.
Vice versa, the methods developed in soliton theory may help to understand growth in a singular (turbulent) regime,
i.e., in a vicinity of cusp formation or coalescence and break-up of droplets, providing an effective account of the
surface tension effects near singular points.
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