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Integrable chains on algebraic curves

I.Krichever ∗

August, 2003

Abstract

The discrete Lax operators with the spectral parameter on an algebraic curve are

defined. A hierarchy of commuting flows on the space of such operators is constructed.

It is shown that these flows are linearized by the spectral transform and can be explicitly

solved in terms of the theta-functions of the spectral curves. The Hamiltonian theory

of the corresponding systems is analyzed. The new type of completely integrable

Hamiltonian systems associated with the space of rank r = 2 discrete Lax operators

on a variable base curve is found.

1 Introduction.

The main goal of this work is to construct discrete analogs of the the zero-curvature equations
on an algebraic curve introduced in [1], and identified later in [2] with infinite-dimensional
field analogs of the Hitchin system [3]. The starting point was an attempt to find the general
setting for the difference-differential equations introduced in the recent work [4] by S.Novikov
and the author. These equations were used for the construction of high rank solutions of
the 2D Toda lattice equations simultaneously with the construction of commuting high rank
difference operators.

Almost all (1+1)-soliton equations admit zero-curvature representation ([5])

∂tL− ∂xM + [L,M ] = 0, (1.1)

where L(x, t, z) and M(x, t, z) are rational matrix functions of the spectral parameter z. The
discrete analog of (1.1) is the equation

∂tLn = Mn+1Ln − LnMn, (1.2)

where, as before, Ln = Ln(t, z) and Mn = Mn(t, z) are rational functions of the spectral
parameter. In both the cases poles of L and M are fixed. The singular parts of L and M at
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the poles are dynamical variables. Their number equals the number of equations equivalent
to (1.1) or (1.2), respectively.

The Riemann-Roch theorem implies that naive direct generalization of equations (1.1,
1.2) for matrix functions, which are meromorphic on an algebraic curve Γ of genus g > 0,
leads to an over-determined system of equations (see details in [2]). In [1] it was found for
the continuous case, that if the matrix functions L and M have moving poles with special
dependence on x and t besides fixed poles, then equation (1.1) is a well-defined system on
the space of singular parts of L and M at fixed poles. In [2] it was shown that a part of these
equations can be used to express M in terms of L. After that the zero-curvature equations
can be seen as a hierarchy of commuting flows on the space of admissible matrix-valued
meromorphic functions L(x, z), z ∈ Γ. The admissible meromorphic matrix-functions on a
smooth genus g algebraic curve were identified with x-connections on x-parametric families
V(x) of stable rank r and degree rg holomorphic vector bundles on Γ. In the stationary
case, the factor-space LK/SLr of x-independent connections L(z) with the divisor of poles
equivalent to the canonical divisor K is isomorphic to the phase space of the Hitchin system.
The latter is the cotangent space T ∗(M) of the moduli spaceM of stable rank r and degree
rg holomorphic vector-bundles on Γ.

A discrete analog of x-parametric family of vector bundles is a sequence of vector bundles
Vn ∈ M. The discrete analog of a meromorhic x-connection with the pole divisor D+ is a
chain Ln(z) of meromorphic homomorphisms Ln ∈ H

0(Hom(Vn+1,Vn(D+))). It is assumed
that Ln is almost everywhere invertible and the inverse homomorphism has a fixed divisor
of poles D−, i.e. L−1

n ∈ H
0(Hom(Vn,Vn+1(D−))). In the next section we show the algebraic

integrability of the space L
D+, D−

N of periodic chains, considered modulo gauge transforma-
tions L′

n = gn+1Lngn, gn ∈ GLr. Namely, we show that an open set of the factor-space
L

D+, D−

N /GLN
r is isomorphic to an open set of Jacobian bundle over the space SD+, D− of

the spectral curves Γ̂. The spectral curves are defined by the characteristic equation for the
monodromy operator T = LN LN−1 · · ·L1, which represents them as an r-sheet cover of the
base curve π : Γ̂ 7−→ Γ. The spectral transform identifies an open set of the restricted chains,
corresponding to the sequences of bundles Vn with fixed determinant, with an open set of
the bundle over SD+, D− with fibers JC(Γ̂), which are preimages in J(Γ̂) of some point of
J(Γ).

In Section 3 a hierarchy of gauge invariant commuting Lax equations (1.2) is constructed.
For periodic chains these equations are linearized by the spectral transform and can be
explicitly solved in terms of the Riemann theta-function of the spectral curve.

One of the most general approaches to the Hamiltonian theory of the soliton equations,
admitting the zero-curvature representation with the spectral parameter on the rational or
an elliptic curve, is based on the classical r-matrix description of the Poisson structure of
the corresponding phase space. Essentially there are two types of the Poisson structures
reflecting Lie algebraic or Lie group nature of the auxiliary linear problem. The first type
usually is referred to as linear brackets and the second one as quadratic or Sklyanin brackets
(see the book [6], survey [7] and references therein).

The alternative approach to the Hamiltonian theory of the soliton equations was devel-
oped in [8, 9]. It is based on the existence of some universal two-form defined on a space
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of meromorphic matrix-functions. A direct and simple corollary of the definition of this
form is that its contraction by the vector-field, defined by zero-curvature equation, is an
exact one-form. Therefore, whenever this form is non-degenerate the corresponding system
is the Hamiltonian system. In Section 4 it shown that the group version of our approach
is applicable to the case of the Lax chains on algebraic curves of arbitrary genus (see [10]
for the genus zero case). It is shown that for the cases of the rational and ellitic curves the

corresponding form ω restricted to the symplectic leaves P∗ ⊂ L
D+, D−

N /GLN
r is induced by

the Sklyanin symplectic form on the space of the monodromy matrices. For g > 1 the form
ω is degenerate on P∗. That does not allow us to treat Lax equations (1.2) for g > 1 within
the framework of conventional Hamiltonian theory. At the same time the corresponding
system has new very unusual features. The space P∗ is equipped by g-parametric family of
two-forms ωdz, parameterized by the holomorphic differentials dz on Γ. For all of them the
fibers JC(Γ̂) of the spectral bundle are maximum isotropic subspaces. For each of the flows
defined by the Lax equations on P∗, the contraction i∂t

ωdz is an exact form δHdz. Although
each of the forms ωdz is degenerate on P∗, their family is non-degenerate.

In a certain sense the state-of-art described above is dual to that in the theory of bi-
Hamiltonian systems. Usually the bi-Hamiltonian structure is defined on the Poisson man-
ifold equipped by a family of compatible brackets. The vector-fields that are Hamiltonian
with respect to one bracket are Hamiltonian with respect to the other ones, but correspond
to different Hamiltonians. The drastic difference between the bi-Hamiltonian systems and
the systems P∗ of restricted chains is in the nature of the symplectic leaves. For the bi-
Hamiltonian systems usually they are globally defined as levels of single-valued action-type
variables. For P∗ the form ωdz becomes non-degenerate on levels of multi-valued angle-type
functions.

It is worth to understand if there exists the general Hamiltonian-type setting, in which
these characteristic features of P∗ for g > 1 provide the basis for something that might be
the notion of super-integrable systems. It is also possible, that there is no need for the new
setting. The results of the last section provide some evidence that the Lax chains on the fixed
base curve Γ might be ”extended” to the conventional completely integrable Hamiltonian
system. Namely, we show that for the rank r = 2 the space of the periodic Lax chains with
variable base curve Γ is the Poisson manifold with leaves P̂∆, corresponding to the chains
(modulo gauge equivalence) with fixed determinant ∆ of the monodromy matrix T , and with
the fixed regular eigenvalue w of T at the punctures P±

k . The universal form defines the
structure of a completely integrable system on P̂∆. The Hamiltonians of the Lax equations
on P̂∆ are in involution. They are given by the formula

Hf =
∑

q=P̂
±

k

resq (f lnw)d ln∆,

where f is a meromorphic function on Γ with poles at the punctures P±
k . The common level

of all the integrals Hf is identified with the Prim variety of the corresponding spectral curve.
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2 Algebraic integrability of chains

Let Γ be a smooth genus g algebraic curve. According to [11], a generic stable, rank r
and degree rg holomorphic vector bundle V on Γ is parameterized by a set of rg distinct
points γs on Γ, and a set of r-dimensional vectors αs = (αi

s), considered modulo scalar factor
αs → λsαs and a common gauge transformation αi

s → gi
jα

j
s, g ∈ GLr, i.e. by a point of the

factor-space
M0 = Srg

(
Γ× CP r−1

)
/GLr

In [1, 12] the data (γ, α) = (γs, αs), s = 1, . . . , rg, i = 1, . . . , r, were called the Tyurin
parameters.

Let D± be two effective divisors on Γ of the same degree D. Throughout the paper, if it
is not stated otherwise, it is assumed that all the points of the divisors D± =

∑D
k=1 P

±
k have

multiplicity 1, P±
k 6= P±

m , k 6= m. For any sequence of the Tyurin parameters (γ(n), α(n))

we introduce the space L
D+, D−

γ(n), α(n) of meromorphic matrix functions Ln(q), q ∈ Γ, such that:

10. Ln is holomorphic except at the points γs, and at the points P+
i of D+, where it has

at most simple poles;

20. the singular coefficient Ls(n) of the Laurent expansion of Ln at γs

Ln(z) =
Ls(n)

z − zs
+O(1), zs = z(γs), (2.1)

is a rank 1 matrix of the form

Ls(n) = βs(n)αT
s (n) ←→ Lij

s (n) = βi
s(n)αj

s(n), (2.2)

where βs(n) is a vector, and z is a local coordinate in the neighborhood of γs;

30. the vector αT
s (n + 1) is a left null-vector of the evaluation of Ln at γs(n + 1), i.e.

αs(n+ 1)Ln(γs(n + 1)) = 0; (2.3)

40. the determinant of Ln(q) has simple poles at the points P+
k , γs(n), and simple zeros

at the points P−
k , γs(n+ 1).

The last condition implies the following constraint for the equivalence classes of the
divisors

[D+]− [D−] =
∑

s

[γs(n+ 1)− γs(n)] ∈ J(Γ), (2.4)

where J(Γ) is the Jacobian of Γ. If 2N > g(r + 1), then the Riemann-Roch theorem
and simple counting of the number of the constraints (2.1)-(2.3) imply that the functional

dimension of L
D+, D−

γ(n), α(n) (its dimension as the space of functions of the discrete variable n)

equals 2D(r − 1)− gr2 + g + r2.

The geometric interpretation of L
D+, D−

γ(n), α(n) is as follows. In the neighborhood of γs the
space of local sections of the vector bundle Vγ,α, corresponding to (γ, α), is the space Fs of
meromorphic functions having a simple pole at γs of the form

f(z) =
λsα

T
s

z − z(γs)
+O(1), λs ∈ C . (2.5)
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Therefore, if Vn is a sequence of the vector bundles on Γ, corresponding to the sequence of
the Tyurin parameters (γ(n), α(n)), then Ln can be seen as a homomorphism of the vector
bundle Vn+1n to the vector bundle Vn(D+), obtained from Vn with the help of simple Hecke
modification at the punctures P+

k , i.e.

Ln ∈ Hom(Vn+1,Vn(D+)). (2.6)

These homomorphisms are invertible almost everywhere. The inverse matrix-functions are
the homomorphisms of the vector bundles

L−1
n ∈ Hom(Vn,Vn+1(D−)). (2.7)

The total space LD+, D− of the chains corresponding to all the sequences of the Tyurin
parameters is a bundle over the space of sequences of holomorphic vector bundles

LD+, D− 7−→
∏

n

M0 ≡ {γ(n), α(n)} . (2.8)

The fibers of this bundle are just the spaces L
D+, D−

γ(n), α(n). Our next goal is to show algebraic

integrability of the total space L
D+, D−

N of the N-periodic chains, Ln = Ln+N . Equation (2.4)
implies that the periodicity of chains requires the following constraint on the equivalence
classes of the divisors D±:

N ([D+]− [D−]) = 0 ∈ J(Γ), (2.9)

which will be always assumed below. The dimension of L
D+, D−

N equals

dim L
D+, D−

N = 2ND(r − 1) +Nr2 + g. (2.10)

The last term in the sum corresponds to the dimension of the equivalence class of the set
γ(0), which defines the equivalence classes of all the divisors γ(n) with the help of (2.4).

Let Ln ∈ L
D+, D−

N be a periodic chain. Then the Floque-Bloch solutions of the equation

ψn+1 = Lnψn (2.11)

are solutions that are eigenfunctions for the monodromy operator

Tnψn = ψn+N = wψn, Tn = Ln+N−1 · · ·Ln+1Ln. (2.12)

The monodromy matrix Tn(q) belongs to the space of the Lax matrices introduced in [2],
Tn ∈ L

ND+, T−1
n ∈ LND−. The Floque-Bloch solutions are parameterized by the points

Q = (w, q), q ∈ Γ, of the so-called spectral curve Γ̂ defined by the characteristic equation

R(w, q) = det (w · 1− Tn0
(q)) = wr +

r−1∑

i=0

ri(q)w
i = 0. (2.13)

From (2.1)-(2.3) it follows that the monodromy matrix Tn0
has poles at the punctures P+

k

and the points γs(n0). Therefore, a priopi the coefficients ri(q) of (2.13) might have poles
only at the same set of points. The characteristic equation is n0-independent, because
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Tn0+1 = Ln0+NTn0
L−1

n0
= Ln0

Tn0
L−1

n0
. Hence, ri(q) are meromorphic functions on Γ with

the poles only at the punctures P+
k . Equation (2.13) defines an affine part of the spectral

curve. Let us consider its compactification over the punctures P+
k . By definition Ln and its

determinant have simple poles at P+
k . Hence, its residue at this point has rank 1, i.e. the

Laurent expansion of Ln at P+
k has the form

Ln =
hk(n)pT

k (n)

z − z(P+
k )

+O(1), (2.14)

where z is a local coordinate in the neighborhood of P+
k , and hk(n), pk(n) are r-dimensional

vectors. These vectors are defined up to the gauge transformation

hk(n) 7−→ ck,nqk(n), hk(n) 7−→ c−1
k,nqk(n), (2.15)

where ck,n is a constant. The leading term of the Laurent expansion of the monodromy
matrix equals

Tn0
=

n0+N−1∏

n=n0

(
pT

k (n+ 1)hk(n)
) hk(n0 +N − 1)pT

k (n0)

(z − z(P+
k ))N

+O
((
z − z(P+

k )
)−N+1

)
. (2.16)

Equation (2.16) implies that in the neighborhood of P+
k one of the roots of the characteristic

equation has the form

w = (z − z(P+
k ))−N

(
c+k +O(z − z(P+

k ))
)
, c+k =

N−1∏

n=0

(
pT

k (n+ 1)hk(n)
)
. (2.17)

The corresponding compactification point of Γ̂ is smooth, and will be denoted by P̂+
k . The

determinant of Tn0
has the pole of order N at P+

k . Therefore, in the general position all the
other branches of w(z) are regular at P+

k . The coefficients ri(z) are the elementary symmetric
polynomials of the branches of w(z). Hence, all of them have poles at P+

k of order N . Note,
that the coefficient r0(z) = detTn0

has zero of order N at P−
k .

The same arguments applied to L−1
n show that over the puncture P−

k there is one point
of Γ̂ denoted by P̂−

k in the neighborhood of which w has zero of order N , i.e.

w = (z − z
(
P−

k

)
)N
(
c−k +O(z − z(P−

k ))
)
. (2.18)

Let us fix a normalization of the Floque-Bloch solution by the condition that the sum of
coordinates ψi

0 of the vector ψ0 equals 1,

r∑

i=1

ψi
0 = 1. (2.19)

Then, the corresponding Floque-Bloch solution ψn(Q) is well-defined for each point Q of Γ̂.

Theorem 2.1 The vector-function ψn(Q) is a meromorphic vector-function on Γ̂, such that:
(i) outside the punctures P̂±

k (which are the points of Γ̂ situated on marked sheets over P±
k )

the divisor γ̂ of its poles γ̂σ is n-independent; (ii) at the punctures P̂+
k and P̂−

k the vector-
function ψn(Q) has poles and zeros of the order n, respectively; (iii) in the general position,
when Γ̂ is smooth, the number of these poles equals ĝ + r − 1, where ĝ is the genus of Γ̂.
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Proof. The coordinates of the vector-function ψ0(Q) are rational expressions in w and the
entries of T0. Hence, it is a meromorphic function on Γ̂. Let γ̂σ be a set of the poles of ψ0.
In order to show that γ̂σ are the only poles of ψn = Ln−1 · · ·L0ψ0 outside the preimages on
Γ̂ of the punctures P+

k , it is enough to prove by induction that ψn at all the preimages γi
s(n)

of the points γs(n) satisfies the equation αs(n)ψn(γi
s(n)) = 0. The step of the induction is

a direct corollary of (2.3). The initial statement of the induction follows from the equation
T0ψ0 = wψ0. Indeed, w is regular at γi

s(0). Therefore, the left hand side of the equation has
to be regular at these points as well. The monodromy matrix T0 has a simple pole at γs(0)
of the form msα

T
s (0), where ms is some r-dimensional vector. Hence, αs(0)ψ0(γ

i
s(0)) = 0.

The proof of (ii) is based on the following statement.

Lemma 2.1 Let L̃n be a formal series of the form

L̃n = h(n)p(n)Tλ−1 +
∞∑

i=0

χi(n)λi (2.20)

where q(n), p(n) are vectors and χi(n) are matrices. Then the equations

φn+1 = L̃nφn, φ∗
n+1L̃n = φ∗

n, (2.21)

where φn and φ∗
n are r-dimensional vectors and co-vectors over the field of the Laurent series

in the variable λ, have (r − 1)-dimensional spaces of solutions of the form

Φn =
∑

i=0

ξ̃i(n)λi, Φ∗
n =

∑

i=0

ξ̃∗i (n)λi. (2.22)

The equations (2.20) have unique formal solutions of the form

φn = λ−n

(
∞∑

i=0

ξi(n)λi

)

, φ∗
n = λn

(
∞∑

i=0

ξ∗i (n)λi

)

, (2.23)

such that
(Φ∗

nφn) = (φ∗
nΦn) = 0, (φ∗

nφn) = 1, (2.24)

and normalized by the conditions

χ0(0) = q(−1),
i∑

j=1

χj
i (0) = 0, i > 0. (2.25)

For the proof of the lemma it is enough to substitute the formal series (2.22) or (2.23) in
(2.21) and use recurrent relations for the coefficients of the Laurent series.

The subspaces of the solutions of equation (2.21) of the form (2.22) are invariant under the
monodromy operator. Therefore, euqation (2.17) and the uniqueness of the formal solutions
(2.23) imply that the Laurent expansion of the Floque-Bloch solution ψn in the neighborhood
of P̂+

k has the form (2.23), where λ = (z− z(P+
k )). Hence, ψn has the pole of order n at P̂+

k .
The same arguments used for the equation ψn = L−1

n ψn+1 imply that ψn has zero of order n
at the punctures P̂−

k .
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Let SD+,D− be a space of the meromorphic functions ri(z) on Γ with poles of order N
at the punctures P+

k , and such that r0 has zeros of order N at the punctures P−
k . The

Riemann-Roch theorem implies that SD+,D− is of dimension

dim SD+,D− = ND(r − 1)− (g − 1)(r − 1) + 1. (2.26)

The characteristic equation (2.13) defines a map L
D+, D−

N → SD+,D−. Usual arguments show
that this map on an open set is surjective. These arguments are based on solution of the
inverse spectral problem, which reconstruct Ln, modulo gauge equivalence

L′
n = gn+1Lng

−1
n , gn ∈ GLr, (2.27)

from a generic set of spectral data: a smooth curve Γ̂ defined by {ri} ∈ S
D+,D−, and a point

of the Jacobian J(Γ̂), i.e. the equivalence class [γ̂] of degree ĝ + r − 1 divisor γ̂ on Γ̂. Here
ĝ is the genus of Γ̂.

For a generic point of SD+,D− the corresponding spectral curve Γ̂ is smooth. Its genus
ĝ can be found with the help of the Riemann-Hurwitz formula 2ĝ − 2 = 2r(g − 1) + deg ν,
where ν is the divisor on Γ, which is projection of the branch points of Γ̂ over Γ. The branch
points are zeros on Γ̂ of the function ∂wR(w, z). This function has the poles of order N(r−1)
on the marked sheet over P+

k , and poles of order N on all the other sheets. The numbers of
poles and zeros of a meromorphic function are equal. Therefore, deg ν = 2ND(r − 1) and
we obtain

ĝ = ND(r − 1) + r(g − 1) + 1. (2.28)

Moreover, the product of ∂kR on all the sheets of Γ̂ is a meromorphic function on Γ. Its
divisor of zeros coincides with ν and the divisor of poles is N(r − 1)D+. Therefore, these
divisors are equivalent, i.e. in the Jacobian J(Γ) of Γ we have the equality

[ν] = 2N(r − 1)[D+] ∈ J(Γ). (2.29)

The degree of the divisor γ̂ of the poles of ψ0 can be found in the usual way. Let Ψn(q), q ∈ Γ,
be a matrix with columns ψn(Qi), where Qi = (wi(q), q) are preimages of q on Γ̂

Ψn(q) = {ψn(Q1), . . . , ψn(Qr)}. (2.30)

This matrix depends on ordering of the roots wi(q) of (2.13), but the function F (q) =
det2 Ψ0(q) is independent of this. Therefore, F is a meromorphic function on Γ. Its divisor
of poles equals 2π∗(γ̂), where π : Γ̂→ Γ is the projection. In the general position, when the
branch points of Γ̂ over Γ are simple, the function F has simple zeros at the images of the
branch points, and double zeros at the points γs(0), because evaluations of ψ0 at preimages
of γs span the subspace orthogonal to αs(0). Therefore, the zero divisor of F is ν + 2γ(0),
where γ(0) = γ1(0) + · · ·+ γrg(0), and we obtain the equality for equivalence classes of the
divisors

2[π∗(γ̂)] = [ν] + 2[γ(0)] = 2[γ(0)] + 2N(r − 1)[D+], (2.31)

which implies
deg γ̂ = deg ν/2 + rg = ĝ + r − 1. (2.32)
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The theorem is proven.

Let us fix a point P0 on Γ, and let Ψn be the matrix defined by (2.30) for q = P0.
Normalization (2.19) implies that Ψ0 leaves the co-vector e0 = (1, . . . , 1) invariant, i.e.

e0Ψ0 = e0. (2.33)

The spectral curve Γ̂ and the pole divisor γ̂ are invariant under the gauge transformation
Ln → Ψ−1

n+1LnΨn, ψn → Ψ−1
n ψ, but the matrix Ψn gets transformed to the identity Ψn = I.

Let F = diag(f1, . . . , fr) be a diagonal matrix, then the gauge transformation

Ln → FLnF
−1, ψn(Q)→ f−1(Q)Fψn, where f(Q) =

r∑

i=1

fiψi(Q), (2.34)

which preserves the normalization (2.19) and the equality Ψn = I, changes γ̂ to an equivalent
divisor γ̂′ of zeros of the meromorphic function f(Q). The gauge transformation of Ln by a
permutation matrix corresponds to the permutation of preimages P i

0 ∈ Γ̂ of P0 ∈ Γ, which
was used to define Ψ0.

A matrix g with different eigenvalues has representation of the form g = Ψ0F , where Ψ0

satisfy (2.33) and F is a diagonal matrix. That representation is unique up to conjugation
by a permutation matrix. Therefore, the correspondence described above Ln → {Γ̂, γ̂,Ψn}
descends to a map

L
D+, D−

N /GLN
r 7−→ {Γ̂, [γ̂]}, (2.35)

which is well-defined on an open set of L
D+, D−

N /GLN
r .

According to the Riemann-Roch theorem for each smooth genus ĝ algebraic curve Γ̂
with fixed points q1, . . . , qr, P̂±

k , and for each nonspecial degree ĝ + r − 1 effective divisor
γ̂, there is a unique meromorphic function ψi

n(Q), Q ∈ Γ̂, such that: ψi
n has poles of order

n at P+
k , and zeros of order n at P−

k ; outside these points it has divisor of poles in γ̂; ψi
n

is normalized by the conditions ψi
n(qj) = δj

i . Let ψn(Q) be a meromorphic vector-function
with the coordinates ψi

n(Q). Note, that it satisfies (2.19).

Let Γ̂ be a smooth algebraic curve that is an r-fold branch cover of Γ π : Γ̂ → Γ. Then
for each point q ∈ Γ we define the matrix Ψn(q) with the help of (2.30). It depends on a
choice of order of the sheets of the cover π, but the matrix function

L̃n(q) = Ψn+1(q)Ψ
−1
n (q), (2.36)

is independent of the choice, and therefore, is a meromorphic matrix function on Γ. It has
simple poles at P+

k ∈ D and is holomorphic at the points of the branch divisor ν. By
reversing the arguments used for the proof of (2.32), we get that the degree of the zero
divisor γ of det Ψn equals rg. In general position the zeros γs(n) are simple. The expansion
of L̃n at γs(n) satisfies constraints (2.2,2.3), where αs(n) is a unique (up to multiplication)
vector orthogonal to the vector-columns of Ψn(γs(n)). The determinant of Ψn has zeros of
order n at the points P−

k . Hence, the determinant of Ln has simple zeros at P−
k . Therefore,

L̃n ∈ L
D+, D−.

9



If Γ̂ is defined by equation (2.13), where (rj) corresponds to a generic point of the space

SD+,D−, and the points P̂±
k used in the definition of ψn are the punctures, at which w(Q)

has poles and zeros of order N , then the uniqueness of ψn implies

Wψn+N = wψn, W ij = w(qi)δij. (2.37)

From (2.37) it follows that L̃n = WL̃n+NW
−1, and the gauge equivalent chain Ln =

W (n+1)/N L̃nW
−n/N is N -periodic, Ln = Ln+N . If the points P i

0 used for normalization
of ψj are preimages of P0 ∈ Γ, then L, given by (2.36), is diagonal at q = P0, and the
correspondence {Γ̂, γ̂} → L descends to a map

{Γ̂, [γ̂]} → L
D+, D−

N /GLN
r , (2.38)

which is well-defined on an open set of the Jacobain bundle over SD+,D−, where it is inverse
to (2.35).

Restricted chains. Let us introduce subspaces L
D+, D−

N, C, ∆ ⊂ L
D+, D−

N of the Lax chains with
fixed equivalence classes of the divisors of Tyurin parameters

[γ(n)] = C + n ([D+]− [D−]) ∈ J(Γ), (2.39)

and with fixed determinant detT = ∆ = r0(q). The subspace of the corresponding spectral
curves will be denoted by S∆ ∈ S

D+, D− . The points of S∆ are sets of functions ri(q), i =
1, . . . , r − 1, with the poles of order N at P+

k . From equation (2.31) it follows that for the
restricted chains the equivalence class [γ̂] ∈ J(Γ̂) of the poles of the Floque-Bloch solutions
belongs to the abelian subvariety

JC(Γ̂) = π−1
∗ (C +N(r − 1)[D+]/2) , π∗ : J(Γ̂) 7−→ J(Γ). (2.40)

Corollary 2.1 The correspondence

L
D+, D−

N, C, ∆ /GL
N
r ↔ {Γ̂ ∈ S∆, [γ̂] ∈ JC(Γ̂)} (2.41)

is one-to one on the open sets.

3 Lax equations

Our next goal is to construct a hierarchy of commuting flows on an open set of LD+, D−.
Let us identify the tangent space TL(LD+, D−) at the point L = {Ln} with the space of
meromorphic matrix functions spanned by derivatives ∂τLn|τ=0 of all the one-parametric
deformations Ln(q, τ) ∈ LD+, D− of Ln. Let us show that the latter space can be identified
with the space of matrix functions ln(q) on Γ such that:

10. ln has simple poles at the punctures P+
k of the form

ln =
ḣk(n)pT

k (n) + hk(n)ṗT
k (n)

z − z(P+
k )

+O(1), (3.1)

10



where ḣk(n), ṗk(n) are vectors, defined up to the gauge transformation

ḣk(n) 7−→ ḣk(n) + c̃n,khk(n), ṗk(n) 7−→ ṗk(n)− c̃n,kpk(n). (3.2)

The vectors hk(n), pk(n) are defined by the expansion (2.14) of Ln.

20. ln has double poles at the points γs, where it has the expansion of the form

ln = żs(n)
βs(n)αT

s (n)

(z − zs(n))2
+
β̇s(n)αT

s (n) + βs(n)α̇T
s (n)

z − zs(n)
+O(1). (3.3)

Here żs(n) is a constant, and α̇s(n), β̇s(n) are certain vectors. The vectors αs(n), βs(n) are
defined by Ln.

30. In addition it is required that the following equation holds:

αs(n+ 1)ln(γs(n + 1)) + α̇s(n + 1)Ln(γ(n+ 1)) + żsαs(n+ 1)L′
n(γs(n + 1)) = 0, (3.4)

where L′ = ∂zL(z).

40. The function
Tr

(
lnL

−1
n

)
= O(1), z → P−

k (3.5)

is regular at the punctures P−
k .

The constraints (10−40) can be easily checked for a tangent vector ∂τL|τ=0, if we identify
(żs, α̇s, β̇s, ṗk, q̇k) with the derivatives

żs = ∂τz(γs(τ)), α̇s = ∂ταs(τ)), β̇s = ∂τβs(τ)), ḣk = ∂τhk(τ)), ṗk = ∂τpk(τ)). (3.6)

Direct counting of the number of the constraints shows that the space of matrix functions,
which satisfy (3.1-3.5), equals the dimension of LD+, D−. Therefore, on an open set these
relations are necessary and sufficient conditions for ln to be a tangent vector.

Lemma 3.1 Let Mn be a meromorphic matrix function on Γ with poles at P+
k and with

simple poles at γs(n) of the form:

Mn =
µs(n)αT

s (n)

z − zs(n)
+ms(n) +O(z − zs), zs(n) = z(γs(n)), (3.7)

where µs(n) is a vector. Then the matrix-function Mn+1Ln − LnMn is a tangent vector to
LD+, D− at Ln, if and only if it has the form (3.1) in the neighborhood of P+

k .

Proof. It is straightforward to check that, if we define żs(n), α̇s(n) by the formulae (2.7),
(2.8) in [2], i.e.

żs(n) = −αT
s (n)µs(n), zs = z(γs), (3.8)

α̇T
s (n) = −αT

s (n)ms(n), (3.9)

11



then Mn+1Ln − LnMn satisfies the constraints (3.3) and (3.4). The constraint (3.5) is also
satisfied, because Tr ((Mn+1Ln − LnMn)L−1

n ) = Tr (Mn+1 −Mn)), and Mn is regular at
P−

k .

The Lemma directly implies, that the Lax equation ∂tLn = Mn+1Ln − LnMn is a well-
defined system on an open set of LD+, D−, whenever we can define Mn = Mn(L), as a function
of L, that satisfies the conditions of Lemma 3.1. Our next goal is to define a set of such
functions M (±k,l)

n (L), parameterized by the puncture P±
k and a non-negative integer l ∈ Z+.

Let us fix a point P0 ∈ Γ and local coordinates z in the neighborhoods of the punctures
P+

k . Let φ(k)
n , φ(∗,k)

n be the formal solutions in the neighborhood of P+
k of equation (2.11) and

the dual equation ψ∗
n+1Ln = ψ∗

n, which have the form (2.23), where λ = z − z(P+
k ). From

Lemma 2.1, applied to the inverse chain L−1
n , it follows that equation (2.11) and its dual in

the neighborhood of P−
k have formal solutions φ(−k)

n , φ(∗,−k)
n of the form

φ−
n = λn

(
∞∑

i=0

ξ−i (n)λi

)

, φ∗,−
n = λ−n

(
∞∑

i=0

ξ∗,−i (n)λi

)

. (3.10)

From the Riemann-Roch theorem (see details in [2]) it follows that there is a unique matrix
function M (±k,l)

n such that:

(i) it has the form (3.7) at the points γs;

(ii) outside of the divisor γ it has pole at the point P±
k , only, where

M (±k,l)
n =

(
z − z(P±

k )
)−l

φ(±k)
n φ(∗,±k)

n +O(1); (3.11)

(iii) M (±k,l)
n is normalized by the condition M (±k,l)

n (P0) = 0.

Note, that although φ(±k)
n and φ(∗,±k)

n are formal series, the constraint (3.11) involves only a
finite number of their coefficients, and therefore, is well-defined.

Theorem 3.1 The equations

∂aLn = Ma
n+1Ln − LnM

a
n , ∂a = ∂/∂ta, a = (±k, l), (3.12)

define a hierarchy of commuting flows on an open set of LD+, D−, which descents to the
commuting hierarchy on an open set of L

D+, D−

N /GLN
r .

Equation (3.11) implies that Ma
n satisfies the conditions of Lemma 3.1. Therefore, the

right hand side of (3.12) is a tangent vector to LD+, D− at the point L. Hence, (3.12) is a
well-defined dynamical system on an open set of LD+, D−. Commutativity of flows (3.12) is
equivalent to the equation

∂bM
a
n − ∂aM

b
n + [Ma

n ,M
b
n] = 0. (3.13)

As shown in the proof of Theorem 2.1 of [2], this equation holds if its left hand side is regular
at the points P±

k . From the uniqueness of the formal solutions φ(±k)
n , φ(∗,±k)

n it follows that

∂a φ
(±k)
n = Ma

nφ
(±k)
n − f (±k, a)φ(±k)

n , (3.14)

−∂a φ
(∗,±k)
n = Ma

nφ
(∗,±k)
n − f (±k, a)φ(∗,±k)

n , (3.15)
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where f (±k,a) are scalar functions. The left hand side of (3.14) is regular at all the punctures
P±

m . Vanishing of the singular terms of the right hand side of these equations implies that
for a = (±m, l)

f (±k, a) = δm,k(z − z(P
±
k )−l +O(1). (3.16)

Equations (3.14,3.15) and standard arguments used in KP theory (see details in [2])) imply,
that the left hand side of (3.13) is regular at P±

k . By definition, the matrix functions Ma
n

are periodic, if Ln are periodic. The matrices Ma
n under the transformations (2.27) get

transformed to M̃a
n = gnM

a
ng

−1
n . Therefore, the flows (3.12) are well-defined on L

D+, D−

N . The
theorem thus is proven.

In general the flows (3.12) do not preserve the leaves of the foliation L
D+, D−

N, C, ∆ ⊂ L
D+, D−

N .
Let us find their linear combinations for which the subspaces of the restricted chains are
invariant. Let f be a meromorphic function on Γ with poles only at the punctures P±

k . Then
we define

Mf
n =

∑

a

cfaM
a
n , (3.17)

where cfa are the coefficients of the singular part of the Laurent expansion

f =
∑

l>0

cf(±k,l)

(
z − z(P±

k )
)−l

+O(1). (3.18)

Theorem 3.2 The equations

∂fLn = Mf
n+1Ln − LnM

f
n , ∂f = ∂/∂tf , (3.19)

define a hierarchy of commuting flows on an open set of L
D+, D−

N, C, ∆ , which descents to the

commuting hierarchy on an open set of L
D+, D−

N, C, ∆ /GL
N
r .

Proof. The flows (3.19) are linear combinations with constant coefficients of the basic flows
(3.12). Therefore, they are well-defined and commute with each other. Let us consider the
common Floque-Bloch solution ψ̂n(t, Q) of (2.11) and the equation

∂f ψ̂n = Mf
n ψ̂n, (3.20)

normalized by the condition (2.19) at t = 0. Then equations (3.14-3.18) imply that in the
neighborhood of P±

k the function ψ̂0(t, Q) has the form

ψ̂0 = etf f(z)O(1). (3.21)

Standard arguments, used in the construction the Baker-Akhiezer functions, imply that
outside the punctures P̂±

k the functions ψ̂n has time-independent poles at the pole divisor

γ̂(0) of ψ̂0. The pole divisor γ̂(tf ) of ψn(tf , Q) is the divisor of zeros of the function F (t, Q) =∑
i ψ

i
0(t, Q), where ψi

0 are the coordinates of ψ0. The function F̃ (t, q) =
∏

j F (t, Qi(q)) , where

Qi are the preimages of q on Γ̂, is meromorphic on Γ outside P±
k . Equation (3.21) implies

that F̃ (tf , q)e
−tf f(q) is a meromorphic function on Γ. It has poles at the divisor π∗(γ̂(0)) and

zeros at the divisor π∗(γ̂(tf )). Therefore, these divisors are equivalent and the Theorem is
thus proven.
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4 Hamiltonian approach

In this section we apply the general algebraic approach to the Hamiltonian theory of the Lax
equations proposed in [8, 9], and developed in [13], to the Lax equations for periodic chains
on the algebraic curves. As it was mentioned in the introduction, this approach is based on
the existence of two universal two-forms on a space of meromorphic matrix-function. They
can be traced back to the fact that there are two basic algebraic structures on a space of
operators (see details in [10]) . The first one is the Lie algebra structure defined by the
commutator of operators. The second one is the Lie group structure. The discrete Lax
equations or chains correspond to the Lie group structure.

The entries of Ln(q) ∈ L
D+, D−

N can be regarded as functions on L
D+, D−

N . Therefore, Ln

by itself can be seen as matrix-valued function and its external derivative δLn as a matrix-
valued one-form on L

D+, D−

N . The matrix Ψn (2.30) with columns formed by the canonically
normalized Floque-Bloch solutions ψn(Qi) of (2.11) can also be regarded as a matrix function

on L
D+, D−

N (modulo permutation of the columns). Hence, its differential δΨn is a matrix-

valued one-form on L
D+, D−

N . Let us define a two-form Ω(z) on L
D+, D−

N with values in the
space of meromorphic functions on Γ by the formula

Ω(z) =
N−1∑

n=0

Tr
(
Ψ−1

n+1δLn ∧ δΨn

)
. (4.1)

It can be also represented in the form

Ω(z) = Tr
(
Ψ−1

N δT ∧ δΨ0

)
= Tr

(
Ψ−1

0 T−1δT ∧ δΨ0

)
= Tr

(
W−1Ψ−1

0 δT ∧ δΨ0

)
, (4.2)

where W = diag(wi(z)) is a diagonal matrix, whose diagonal entries are the eigenvalues of
the monodromy matrix T = T0

Fix a meromorphic differential dz on Γ with poles at a set of points qm. Then the formula

ω = −
1

2

∑

q∈I

resqΩ dz, I = {γs, P
±
k , qm} (4.3)

defines a scalar-valued two-form on L
D+, D−

N . This form depends on a choice of the normal-
ization of Ψn. A change of the normalization corresponds to the transformation Ψ′

n = ΨnV ,
where V = V (z) is a diagonal matrix, which might depend on a point z of Γ. The corre-
sponding transformation of Ω has the form:

Ω′ = Ω + δ (Tr (lnWv)) , v = δV V −1. (4.4)

Here we use the standard formula for a variation of the eigenvalues

Ψ−1
0 δTΨ0 = δW + Ψ−1

0 δΨ0W −WΨ−1
0 δΨ0, (4.5)

and the equation δv = v ∧ v = 0, which is valid because v is diagonal.

Let XD+, D− be a subspace of the chains L
D+, D−

N such, that the restriction of δ(lnw) dz
to XD+,D− is a differential holomorphic at all the preimages on Γ̂ of the punctures P±

k .
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Lemma 4.1 The two-form ω, defined by (4.3) and restricted to XD+, D− ⊂ L
D+, D−

N , is inde-
pendent of the choice of normalization of the Floque-Bloch solutions, and is gauge invariant,
i.e. it descends to a form on P = XD+, D−/GLN

r .

The proof of the lemma is almost identical to the proof of Lemma 2.4 in [2].

By definition, a vector field ∂t on a symplectic manifold is Hamiltonian, if the contraction
i∂t
ω(X) = ω(∂t, X) of the symplectic form is an exact one-form dH(X). The function H is

the Hamiltonian, corresponding to the vector field ∂t. The proof of the following theorem is
almost identical to the proof of Theorem 4.2 in [2].

Theorem 4.1 Let ∂a be the vector fields corresponding to the Lax equations (3.12). Then
the contraction of ω, defined by (4.3) and restricted to P, equals

i∂a
ω = δHa, (4.6)

where
H(±k, l) = resP±

k

(
z − z

(
P±

k

))−l
(lnw) dz. (4.7)

The theorem implies that Lax equations (3.12) are Hamiltonian whenever the form ω is
non-degenerate. In order to analyze this problem we first find the Darboux variables for ω.

Theorem 4.2 Let Ln ∈ L
D+, D−

N be a periodic chain, and let γ̂s be the poles of the normalized
(2.19) Floque-Bloch solution ψn. Then the two-form ω defined by (4.3) is equal to

ω =
ĝ+r−1∑

s=1

δ lnw(γ̂s) ∧ δz(γ̂s). (4.8)

The proof of the Theorem is analogous to the proof of the Theorem 4.3 in [2] and equation
(5.7) in [15]. The meaning of the right hand side of the formula (4.8) is as follows. By
definition, the spectral curve is equipped with the meromorphic function w(Q). The pull-
back of the Abelian integral z(q) =

∫ q dz on Γ is a multi-valued holomorphic function on

Γ̂. The evaluations w(γ̂s), z(γ̂s) at the points γ̂s define functions on the space L
D+, D−

N ,

and the wedge product of their external differentials is a two-form on L
D+, D−

N . (Note, that
differential δz(γ̂s) of the multi-valued function z(ĝs) is single-valued, because the periods of
dz are constants).

From (4.8) it follows that ω can be represented in the form:

ω =
ĝ∑

k=1

δAk ∧ δϕk, (4.9)

where ϕk are the coordinates on J(Γ̂), corresponding to a choice of a- and b-cycles on Γ̂ with
the canonical matrix of intersections, and

Ak =
∮

ak

(lnw) dz. (4.10)
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Note, that the external differential δAk of the multi-valued function Ak is single-valued,
because all the periods of dz are fixed.

The spectral map (2.35) identifies an open set of L
D+, D−

N, C, ∆ /GL
N
r with an open set of the

Jacobian bundle over S∆ ⊂ S
D+, D−, i.e.

L
D+, D−

N, C, ∆ /GL
N
r 7−→ S∆. (4.11)

From (4.9) it follows, that the form ω can be non-degenerate only if the base and the fibers
of the bundle (4.11), restricted to P, have the same dimension.

First, let us consider the case of the chains on the rational curve (see details in [10]). The
basic example is the chain corresponding to the Toda lattice, in which Ln has the form

Ln =

(
0 1
cn z + vn

)

. (4.12)

For g = 0 equations (2.26) and (2.28) imply that the space of the spectral curves and their
Jacobians are of dimensions ND(r − 1) + r − 1 and ND(r − 1) − r + 1, respectively. The

differential dz has double pole at the infinity. Therefore, the subspace XD+, D− ⊂ L
D+, D−

N is
defined by the constraint that the eigenvalues of the monodromy matrix are fixed up to the
order O(z−2). The number of corresponding equations on S∆ is 2r−1. Let P∗ be a subspace
of P correspodning to the restricted chains. For g = 0 that means that the determinant of
the monodromy matrix is fixed. Then dimP∗ = 2 dimJ(Γ̂) and arguments identical to that
used at the end of Section 4 in [2] prove, that the form ω is non-degenerate on P∗.

Consider now the case g > 0. Let dz be a holomorphic differential on Γ. Then, for
each branch of w = wi(z) the differential δ(lnw) dz is always holomorphic at P±

k . Hence,

P = L
D+, D−

N /GLN
r . Recall, that

dimS∆ = (r − 1)(ND − g + 1), dim J(Γ̂) = (r − 1)(ND + g − 1) + g. (4.13)

Therefore, for g > 0 the form ω is degenerate on P. For g = 1 the space P is a Poisson
manifold with the symplectic leaves, which are factor-spaces

P∗ = L
D+, D−

N, C, ∆ /GL
N
r (4.14)

of the restricted chains. In that case dimS∆ = dim JC(Γ̂) = ND(r − 1). As in the genus
zero case, the arguments identical to that used at the end of Section 4 in [2] prove that the
form ω is non-degenerate on P∗.

Corollary 4.1 For g = 0 and g = 1 the form ω defined by (4.3) descents to the symplectic
form on P∗, which coincides with the pull-back of the Sklyanin symplectic structure restricted
to the space of the monodromy operators. The Lax equations (3.19) are Hamiltonian with
the Hamiltonians

Hf =
∑

q=P̂±

k

resq(lnw)f dz. (4.15)

The Hamiltonians Hf are in involution {Hf , Hh} = 0.
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The first statement is a direct corollary of equation (4.8) and the Proposition 3.33 in [14].
The second statement is a corollary of equation (4.7) and the definition of Hf . Finally,
involutivity of the Hamiltonians follows from the commutativity of the corresponding Lax
flows.

Now we are in the position to discuss the case g > 1 mentioned in the Introduction.
The space P∗ is equipped by g-parametric family of two-forms ωdz, parameterized by the
holomorphic differentials dz on Γ. For all of them the fibers JC(Γ̂) of the spectral bundle
are maximum isotropic subspaces. For each vector-field ∂f defined by (3.19) the equation
i∂f
ωdz = δHdz

f holds.

Equation (4.9) implies, that each of the forms ωdz is degenerate on P∗. Let us describe
the kernel of ωdz. According to Theorem 3.2, the tangent vectors to JC(Γ̂) are parameterized
by the space A(Γ, P±) of meromorphic functions f on Γ with the poles at P±

k modulo the
following equivalence relation. The function f is equivalent to f1, if there is a meromorphic
function F ∈ A(Γ̂, P̂±

k ) on Γ̂ with the poles at P̂±
k , such that in the neighborhoods of these

punctures the function π∗(f − f1) − F is regular. Let Kdz ⊂ A(Γ, P±) be the subspace of
functions such that there is a meromorphic function F̃ on Γ̂ with poles at P̂±

k and at the
preimages π∗(qs), dz(qs) = 0 of the zero-divisor of dz, and such that f − F̃ is regular at P̂±

k .
Then, from equations (4.6) and (4.15) it follows that: f ∈ Kdz 7−→ i∂f

ωdz = 0. Let Kdz be
the factor-space of Kdz modulo the equivalence relation. Then the Riemann gap theorem
implies that in the general position Kdz is of dimension 2(g − 1)(r − 1), which equals the
dimension of the kernel of ωdz. Therefore, the kernel of ωdz is isomorphic to Kdz. Using this
isomorphism, it is easy to show that the intersection of all the kernels of the forms ωdz is
empty, and thus the family of these forms is non-degenerate.

5 Variable base curves

Until now it has been always assumed that the base curve is fixed. Let M∆ be the space
of smooth genus g algebraic curves Γ with the fixed meromorphic function ∆, having poles
and zeros of order N at punctures P±

k , k = 1, . . . ,D. For simplicity, we will assume that
the punctures P±

k are distinct. The space M∆ is of dimension dimM∆ = 2(D + g − 1).
The total space L̂N, ∆ of all the restricted chains corresponding to these data and the trivial
equivalence class C = 0 ∈ J(Γ) can be regarded as the bundle over M∆ with the fibers

L
D+, D−

N, 0, ∆ = L
D+, D−

N, 0, ∆ (Γ). By definition, the curve Γ corresponding to a point (Γ,∆) ∈ M∆

is equipped by the meromorphic differential dz = d ln ∆. The function ∆ defines local
coordinate everywhere on Γ except at zeros of its differential. Let ω∆ be the form defined
by (4.3), where dz = d ln∆ and the variations of Ln and Ψn are taken with fixed ∆, i.e.

ω∆ = −
1

2

∑

q∈I

resq

N−1∑

n=0

Tr
(
Ψ−1

n+1(∆)δLn(∆) ∧ δΨn(∆)
)
d ln∆, I = {γs, P

±
k }. (5.1)

Then ω∆ is well-defined on leaves X̂∆ of the foliation on L̂N, ∆ defined by the condition:

the differential δ lnw(∆)d ln∆ restricted to X̂∆ is holomorphic at the punctures P±
k . This

condition is equivalent to the following constraints. In the neighborhood of P±
k there are
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(r − 1) regular branches w±
i of the multi-valued function w, defined by the characteristic

equation (2.13):
w±

i = c±i +O(∆∓1), i = 1, . . . , r − 1. (5.2)

The leaves X̂∆ are defined by 2D(r − 1) constraints:

δc±i = 0 7−→ c±i = const±i . (5.3)

Note, that the differential δ lnw(∆)d ln∆ is regular at P±
k for the singular branches of w,

because the coefficients c± of the expansions (2.17) and (2.18) are also fixed due to the
equation c±

∏r−1
i=1 c

±
i = 1.

The factor-space P̂∆ = X̂∆/GL
N
r is of dimension dim P̂∆ = 2ND(r − 1) − 2D(r − 1) +

2(D + g − 1). The space Ŝ 0
∆ ⊂ Ŝ∆ of the corresponding spectral curves is of dimension

dim Ŝ0
∆ = (r− 1)(ND− g+ 1)− 2D(r− 1) + 2(D+ g − 1). The second and the third terms

in the last formulae are equal to the number of the constraints (5.3) and the dimension of
M∆, respectively.

For the case r = 2 the last formulae imply the match of the dimensions dim P̂∆ =
2 dim Ŝ0

∆. For r = 2 the spectral curves are two-sheet cover of the base curves, and the fiber
of the spectral bundle is the Prim variety J0(Γ̂) = JPrim(Γ̂).

Theorem 5.1 For r = 2 the form ω∆ defined by (5.1), and restricted to P̂∆ is non-
degenerate. If γ̂s are the poles of the normalized Floque-Bloch solution ψn, then

ω∆ =
ĝ+r−1∑

s=1

δ lnw(γ̂s) ∧ δ ln∆(γ̂s) =
ĝ+r−1∑

s=1

δ lnw(γ̂s) ∧ δ lnw(γ̂σ
s ), (5.4)

where σ : Γ̂→ Γ̂ is the involution, which permutes the sheets of Γ̂ over Γ.

For every function f ∈ A(Γ, P±
k ) the Lax equations (3.19) are Hamiltonian with the

Hamiltonains
Hf =

∑

q=P̂
±

k

resq (f lnw)d ln∆.

The Hamiltonians Hf are in involution. Their common level sets are fibers JPrim(Γ̂) of the
spectral map.
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