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Abstract: The Hamiltonian theory of zero-curvature equations with spectral parameter
on an arbitrary compact Riemann surface is constructed. It is shown that the equations
can be seen as commuting flows of an infinite-dimensional field generalization of the
Hitchin system. The field analog of the elliptic Calogero-Moser system is proposed. An
explicit parameterization of Hitchin system based on the Tyurin parameters for stable
holomorphic vector bundles on algebraic curves is obtained.

1. Introduction

The main goal of this paper is to construct a Hamiltonian theory of zero curvature equa-
tions on an algebraic curve introduced in [1], and identify them as infinite-dimensional
field analogs of the Hitchin system [2].

The zero curvature equation

L — ;M +[L, M] =0, (1.1)

whereL(x, t, 1) andM (x, t, 1) arerational matrix functions of aspectralparametei

L =up(x, 1)+ Zuis(x, HA—=1)"", M =wvo(x, 1)+ Zvjk(xv D —up),
is j.k
(1.2)

of degreen andm, respectively, was proposed in [4] as one of the most general type of
representation for integrable systems. Equation (1.1), which has to be valid identically
in 4, is equivalent to a system ¢f +m + 1) matrix equations for the unknown functions
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ug, vo, Uis, Vjk. The number of the equations is less than the number of unknown func-
tions. That is due to a gauge symmetry of (1.1} (£, r) is an arbitrary matrix function
then the transformation

L gg t+gLg™t, Mr— gg t+gMg™! (1.3)
maps solutions of (1.1) into solutions of the same equations. The gauge transformation
can be used to normaliZzeandM . For example, in the gauge® = vg = 0 the numbers
of equations and unknown functions are equal. Hence, Eq. (1.1) is well-defined.

The Riemann-Roch theorem shows that the naive direct generalization of the zero
curvature equation for matrix functions that are meromorphic on an algebraic curve of
genusg > 0 leads to an over-determined system of equations. Indeed, the dimension of
(r x r) matrix functions with fixed degre divisor of poles in general position equals
r2(d — g +1). If divisors of L andM have degreesandm, then the commutatdi., M|
is of degree: + m. Therefore, the number of equatiorf§n +m — g + 1) is bigger than
the number?(n + m — 2g + 1) of unknown functions modulo gauge equivalence.

There are two ways to overcome the difficulty in defining the zero curvature equations
on algebraic curves. The first one is based on a choice of special ansatafolM .

In this way a few integrable systems were found with Lax matrices that are elliptic
functions of the spectral parameter. The second possibility, based on a thdogh of
rank solutions of the KP equation [3], was discovered in [1]. It was shown that if in
addition to fixed poles the matrix functiolisand M have moving-g poles with special
dependence an andz, then Eq. (1.1) is a well-defined system on the space of singular
parts ofL andM at fixed poles. Recently, an algebraic construction of the zero curvature
equations on an algebraic curve was proposed in [5].

If matrix functions L and M do not depend on, then (1.1) reduces to the Lax
equation

&L =[M,L]. (1.4)

Atheory of the Lax equations on an algebraic curve was briefly outlined in [1]. In the next
section for each effective degrée> g divisor D on a smooth genygalgebraic curvé

we introduce a space” of the Lax matrices, and define a hierarchy of commuting flows
on it. The spaces of the Lax matrices associated to equivalent divisors are isomorphic.
If D = K is the divisor of zeros of a holomorphic differential, then the spate

is identified with an open set of the cotangent buritif¢ 1) of the moduli space of
semistable holomorphic vector bundlesIori.e. with an open set of the phase space of
the Hitchin system. The commuting hierarchy of the Lax equation8‘oare commuting

flows of the Hitchin system.

The conventional approach to a theory of the Hitchin system is based on a repre-
sentation ofT*(M) as the Hamiltonian reduction of free infinite-dimensional system
modulo infinite-dimensional gauge group. In the finite-gap or algebro-geometric theory
of soliton equations involutivity of the integrals of motion does not come for granted,
as in the case of the Hamiltonian reduction. Instead, the commutativity of the hierarchy
of the Lax equations is a starting point. It implies involutivity of the integrals, whenever
the equations are Hamiltonian.

The Lax matrices provide an explicit parameterization of the Hitchin system based on
Tyurin parameter$or framed stable holomorphic bundles on an algebraic curve [6]. Let
V be astable, rank and degreeg holomorphic vector bundle dn. Then the dimension
of the space of its holomorphic sections is- dim H(T", V). Letoq, ... , o, be a basis
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of this space. The vectorg(y) are linear independent at the fiberwfover a generic
pointy € I', and are linearly dependent

D @oi(y) =0 (1.5)
i=1

at zerosy, of the corresponding section of the determinant bundle associatédRor

a genericV these zeros are simple, i.e. the number of distinct pgimts equal to

rg = deg V, and the vectors, = (a!) of linear dependence (1.5) are uniquely defined
up to a multiplication. A change of the bagis = Zj gijoj corresponds to the linear

transformation of the vectors, @, = g’ o;. Hence, an open sl C M of the moduli
space of vector bundles is parameterized by points of the factor-space

M = Mo/SL,, Mo C S8 (r x cpf—l) , (1.6)

whereSL, acts diagonally on the symmetric power©@P’ 1. In [1,7] the parameters
(vs, ag) were called Tyurin parameters. Recently, the Tyurin parameterization of the
Hitchin system for = 2 was found [8].

In Sect. 3 we show that the standard scheme to solve conventional Lax equations
using the concept of the Baker-Akhiezer function is evenly applicable to the case of
Lax equations on algebraic curves. We would like to emphasize that solution of the
Lax equations via the spectral transform of the phase space to algebraic-geometric data
does not use a Hamiltonian description of the system. Moreaigipori it's not clear,
why the Lax equations are Hamiltonian. In Sect. 4 we clarify this problem using the
approach to the Hamiltonian theory of soliton equations proposed in [9—11]. It turns out
that forD = K the universal two-form which is expressed in terms of the Lax matrix and
its eigenvectors coincides with canonical symplectic structure on the cotangent bundle
T*(M). If the divisor Dx, = D — K is effective, then the form is non-degenerate on
symplectic leaves defined by a choice of the orbits of the adjoint actidi.pfon the
singular parts of. € £ at the puncture®,, € Dy.

In Sect. 5 for each degre® > g divisor D onI" a commuting hierarchy of zero
curvature equations is defined. The infinite-dimensional phase sffaoéthe hierarchy
can be seen as a space of connectians L(x, ¢) along loops inMg. We would like
to emphasize thatt” does depend on the divisdr and not simply on its equivalence
class, as in the case of the Lax equationdf is effective, then the equations of the
hierarchy are Hamiltonian after restriction on symplectic leaves.

The Riemann surface of the Bloch solutions of the equation

(0 — L(x,g)¥(x,q) =0, xe S8, gel (1.7)

is an analog of the spectral curvesinthmdependent case. Algebro-geometric solutions
of the hierarchy are constructed in the last section. Note that they can be constructed in
all the cases independently of whether the equations are Hamiltonian or not.

It is instructive to present two examples of the zero curvature equations. The first
one is a field analog of the elliptic Calogero—Moser system. The elliptic CM system is
a system of- particles with coordinateg on an elliptic curve with the Hamiltonian

1
H=3 DrE+) eai—ap . (1.8)
i i#]j



232 I. Krichever

wheregp (q) is the Weierstrass function. In [12] the elliptic CM system was identified
with a particular case of the Hitchin system on an elliptic curve with a puncture. In
Sect. 5 we show that the zero curvature equation on an elliptic curve with a puncture is
equivalent to the Hamiltonian system which can be seen as the field analog of the elliptic
CM system. For = 2 this system is equivalent to the system on a space of periodic
functionsp(x), ¢ (x) with canonical Poisson brackets

{p(x), g} =8(x —y). (1.9)
The Hamiltonian is
2
QX_X 2

H= - —* 4+ 2(1- 2q) | dx. 1.10
/( qx 2(1_q3)+ (1-3g9p( q)) x (1.10)

The second example is the Krichever-Novikov equation [3]

_ 3 2, 1 2
qr = 45]xxx + 8qx (1 C]xx) 2Q(61)61x, (111)

where

Q(q) =0, @+ ©%, & =D(q,y) =¢(q —y)+ (g +y) — (2. (1.12)

Note thatQ (¢) does not depend on Each solutioy = ¢ (x, ) of (1.11) defines a rank
2, genus 1 solution of the KP equation by the formula

Bu(r, y.0) = (92 — 1) 472 = 2000yt + 8a @ + 497 (3,0 — ). (1.13)

Equation (1.12) has zero curvature representation on the elliptic curve with puncture
with » = 2. The difference between the two examples is in the choice of orbits at the
puncture. In the first example the orbit is that of the diagonal matrix(dliagl), while

the second example corresponds to the orbit of the Jordan cell.

2. ThelLax Equations

We define first the space of Lax matrices associated with a generic effective divisor
onT, and a point(y, @) = {y;, a,} of the symmetric produck = §"¢ (I' x CP"1).
Throughout the paper it is assumed that the pgimts I are distinct,y; # yx.

Let F, » be the space of meromorphic vector functighenT, that are holomorphic
except at the pointg,, at which they have a simple pole of the form

f@) = _Oz [ HOWM, heC 2.1)

The Riemann-Roch theorem implies that
dmF,,>r(rg—g+1D —rgr =1 =r. (2.2)

The first term in (2.2) is the dimension of the space of meromorphic vector-functions
with simple poles ay;. The second term is the number of equations equivalent to the
constraint that poles of are proportional to the vectoss.

The spaceF; of meromorphic functions in the neighborhoodgthat have a simple
pole aty, of the form (2.1) is the space of local sections of the vector buile
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corresponding toy, «) under the inverse to the Tyurin map described in terms of Hecke
modification of the trivial bundle. The space of global holomorphic sectiols gfis just
the spacef, . Let M{, be an open set of the parameterse) such that dimF,, , = r.
Let D = )", m; P; be an effective divisor o that does not intersect with. Then
we define aspac&’fa of meromorphic matrix function® = M(q), g € I, such that:

1°. M is holomorphic except at the poings, where it has at most simple poles, and
at the pointsP; of D, where it has poles of degree not greater than
20, The coefficientV,o of the Laurent expansion aff at y;

M= + Mg+ Ma(z — 25) + O((z — 25)2), 25 = 2(¥s). (2.3)

Z— Zs
is a rank 1 matrix of the form
Mo = p,sots DA MYO =ul oz3 , (2.4)

whereu is avector. The constraint (2.4) does not depend on a choice of local coordinate
z in the neighborhood of;.
If (y,a) € Mj, then the constraints (2.4) are linear independent and

dimANP, =r2(N +rg—g+1) —r’g(r —1) =r*(N +1), N =degD. (2.5)
Central to all our further constructions is a map
D: N, — Ty o (Mp) (2.6)

from/\/D to the tangent spacefof; at the poin{y, «). The tangent vectdy,, = D(M)
is defined by derivatives of the coordlnates

Omzs = —tr Mso = _aT,uv’ zs = 2(¥s), (2.7)
BmaST —aTM 1+ K (2.8)

wherex; is a scalar. The tangent spacﬁﬁ”_1 at a point represented by the vecigQr
is a space of-dimensional vectors modulo equivalence’ = v + «;«;. Therefore, the
right hand side of (2.8) is a well-defined tangent vectof @ —1

Simple dimension counting shows that on an open seVgfthe linear maD is
an injection forN < g — 1, and is an isomorphism fa¥ = g — 1. Let us define the
spaceﬁD of the Lax matrices as the kernel DX In other words: a matrix function

L(g) € ./\/D is a Lax matrix if
(i) the smgular term of the expansion

L=

T, Tlatlek-w+ 0@ 209, Lo=pBea, z=z2(r), (2.9
is traceless
al By =tr Lo =0; (2.10)
(i) o] is a left eigenvector of the matrik,;

aSTle = OlSTKS. (2.11)
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For a non-special degreé > g divisor D and a generic set of the parametérsa),
the spacecf/”a is of dimension

dmcl, =r*(N+1) —rg—rgr =) =r*(N —g+1). (2.12)
A key characterization of constraints (2.9)—(2.11) is as follows.

Lemma 2.1. A meromorphic matrix-functioh in the neighborhood’ of y, with a pole
at y, satisfies the constraints (2.10) and (2.11) if and only if it has the form

L = 0,()L;@)®; (), (2.13)
Where’L\S and @, are holomorphic in/, anddet®; has at most simple zero gf.
Proof. Let g; be a constant non-degenerate matrix such that
algi=el el =(1,00,...,0. (2.14)

If L satisfies (2.9, 2.10), then, the coefficidrj, of the Laurent expansion g of the
gauge equivalent Lax matrix

/

;=1 _ LSO / _
Ly=gLles=———+La+t 0@ -z, z=2(n), (2.15)
A

equalsfel, wheref = g 1Bs. Therefore, it has non-zero entries at the first column,
only,

(Llg)/ =0, j=2,...,r (2.16)

Further, the vectoa?lT is a left eigenvector foL!,; corresponding to the eigenvalug
Hence, the first row oL, equals

LM =, LY =0, j=2,...,r (2.17)

From (2.16), (2.17) it follows that the matrix, = f7ILL f;, where f; is the diagonal
matrix

fs(z) =diag{(z — z,). 1,1, ..., 1}, (2.18)
is regular at;. Hence, the Lax matrix. has the form (2.13), where

by = g5 f5(2). (2.19)

Conversely supposehas the form (2.13), and let be the unique (up to multiplication)
vector suchthat! ®;(z,) = 0. Thenthe Laurent expansionbfty, has the form (2.9).
The trace of. is holomorphic, which implies (2.10). Using the equatity®; (z;) = 0
we obtain that:! L is holomorphic at;, and its evaluation at this point is proportional
toa! . This implies (2.11) and the lemma is proved.
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Let [D] be the equivalence class of a degfée> g divisor D. Then for any set
(y, a) there is a divisoD’ equivalent toD that does not intersect with. Constraints
(2.10) and (2.11) are invariant under the transformation L, whereh is a function
holomorphic in the neighborhood of. Therefore, the spaced”, and £, of Lax
matrices corresponding to equivalent divisé¥sand D’ are isomorphic. They can be
regarded as charts of a total spatt@’, the Lax matrices corresponding[td].

Let us consider in greater detail the cd3e= K, whereK is the zero divisor of a
holomorphic differentializ. ThenLdz, whereL e E’C is a matrix valued one-form
that is holomorphic everywhere except at the pomtsThe constraints (2.10, 2.11)
imply that the space; of local sections o¥, ,, is invariant under the adjoint action of
L,

feFor— LT f(@) €F. (2.20)

Therefore, the gauge equivalence class of the matrix valued differéatiatan be seen
as a global section of the bundid (V) ) ® QLO(). Itis basic in the Hitchin system
theory, that the space of such sections, called Higgs fields, is identified with the cotangent
bundleT*(M).

It is instructive to establish directly the equivalence

£r/sL, = (M), (2.21)
using the map (2.6). The formula

(L, M) Z res, Tr (LM) dz (2.22)

defines a natural pairing betwe andND For a generic degrelg — 1) divisor

D the map (2.6) is an |somorph|sm Therefore each tangent vecter (z,, ay) to
My at the point(z; = z(y;), as) can be represented in the forf(M). From (2.7,
2.8) it follows that (2.22) actually defines a pairing betwe‘%l and the tangent space
Ty,a(MO),

(L,w) = Z(mﬁa Bs). (2.23)

This formula shows that the vect@; and the eigenvalue; in (2.10, 2.11) can be
regarded as coordinates of a cotangent vectdvffp Note thatc, under the change of
dzto another holomorphic differentidk, get transformed to] = «;dz/dz1. Therefore,
the pair(yy, ;) can be seen as a point of the cotangent bufidi@") to the curvel".

The pairing (2.23) descends to pairing®f /S L, with tangent vectors tdA. Indeed,
tangent vectors td1 at a point represented by gauge equivalence classaue identified
with vectorsi, modulo transformauoa — a +a W, whereW is a matrix. Under
this transformation the right hand S|de of (2. 23) does not change due to the equation

rg
> Bl = res, Ldz =0, (2.24)
s=1 N

which is valid, becausgdz is holomorphic except at.
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The induced pairing of2X/SL, with T(M) is non-degenerate. Indeed,uf =
D(M), then (2.22) implies that

(L,w) = (L, M) =" res,Tr(LM)dz. (2.25)
i
Therefore, if (2.23) is degenerate then there is a nontrivialhich has zero of order
m; at all the pointsP; of D. That is impossible becaugeis a generic degreg — 1)
divisor.
Our next goal is to introduce an explicit parameterizationcf. Recall that we
always assumey, o) € M,

Lemma 2.2. The map
Le LM {a By v ), (2.26)

where pairs of orthogonal vectorg! 8,) = 0 are considered modulo gauge transfor-
mations

a5 = Asats, By — Ay LBy, (2.27)
and satisfy Eq. (2.24), is one-to-one correspondence.

Proof. Suppose that images @f and L’ under (2.26) coincide, the(l. — L)dz is a
holomorphic matrix valued differential such that

ol p(ys) =0. (2.28)

Let ]?}fa be the space of meromorphic vector functions with poles af the form (2.1)
and with simple pole at a poirit e . By the definition ofMy, the constraints (2.1) are
linearly independent Therefor&, , has dimensionz and the vectors of singular part

of f € F , at P span the whole spad:er From (2.28) it follows that iff € F. y «» then
the differenuaIngo has no poles at;. As the sum of all the residues of a meromorphic
differential equals zero, then the ¢ is regular atP. That impliesp(P) = 0. The point

P is arbitrary, therefore (2.26) is an injection.

The map (2.26) is linear on fibers ouer, ). Therefore, in order to complete a proof
of the lemma, it is enough to show that dlmen3|0r£§f is greater than or equal to
the dimension/ of the corresponding dat@®;, «,). The vectorg, are orthogonal ta;.
Therefored equals-?g minus the rank of the system of equations (2.24).

Let us show that ify, &) € My, then the vectorg; spanC”. Suppose that they span
an/-dimensional subspace, then by a gauge transformation we can reduce the problem
to the case when the vectars have the(r — [) vanishing coordinate&;' =0, i >
The Riemann—Roch theorem then implies that the dimension of the corresponding space
Fyaisnotlessthab(rg —g+1) —rg =D+ —-D=@F—-Dg+r.

If the rank ofe! is r, then Egs. (2.24) are linearly independent by themselves, but
one of them is already satisfied due to the orthogonality conditiofi;fowhich implies
Tr (Bsal') = 0. Therefore the dimension of the fiber of data (2.26) ayew) Mg
equals?(g — 1) + 1.

On the other hand, fat € LZ’C among constraints (2.10) there are at n{pgt— 1)
linearly independent, because a meromorphic differential can not have a single simple
pole. Hence, dimension counting as in (2.5) implies (zﬂf}h >r?(g — 1) +1andthe
lemma is proved.
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Example.LetI" be a hyperelliptic curve defined by the equation

2g
y2 = R(x) = x%6+1 4 Z uix'. (2.29)
i=0

A set of pointsy; onT is a set of pairgys, x;), such that
¥2 = R(x;). (2.30)

A meromorphic differential of™ with residues(ﬁsasT) aty, has the form

g—1 rg n dx
oLt + ) (el T2 X (2.31)
i=0 =1 x—xs | 2y

whereL; is a set of arbitrary matrices. The constraints (2.11) are a system of linear
equations definingd.;:

n +
ZaTL xk—l—Z(oz Bs)og T YT —/cnoz,{, n=1...,rg (2.32)
i=0 S#n

in terms of data (2.26). In a similar way the Lax matrices can be explicitly written for
any algebraic curve using the Riemann theta-functions.

Forg > 1, the correspondence (2.26) descends to a system of local coordinates on
£K /S L, over an open settg of M}, which we define as follows.

As shown above, foty, «) € M; the matrimé is of rankr. We call(y, @) a non-
special set of the Tyurin parameters if additionally they satisfy the constraint: there is a
subset ofr 4 1) indicessi, ... , s,+1 such that all minors ofr + 1) x r matrixa§j are
non-degenerate. The action of the gauge group on the space of non-special sets of the
Tyurin parameterd\ is free.

Let us define charts of coordinates on a smooth bundle of equivalence classes of Lax
matrices oveyMo. Consider the open set @f(g such that the vectors;, j = 1,. 7,
are linearly independent and all the coefficients of an expansian,gfin this baS|s do
not vanish

A1 = chaj, cj #0. (2.33)
s=1

Then for each point of this open set there exists a unique métrix GL,, such that
TW is proportional to the basis vectey with the coordinates; = 47, ande” Wis

proportlonal to the vectarg = Z ej. Using the global gauge transformation defined
by W,

By =W, Ay=Wla,, (2.34)
and the part of local transformations

As — AsAg; By — A 1By, (2.35)
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fors =1,...,r + 1, we obtain that on the open setbfg each equivalence class has
representation of the forifd, B) such that

Ai=ei,i=1...,r; Ary1=eo. (2.36)
This representation is unique up to local transformations (2.35) for + 2, ... , rg.

In the gauge (2.36) Eq. (2.24) can be easily solvedfgr. . . , B,+1. Using (2.36),
we get

Bi+ Bl =— Y BiAl. (2.37)
s=r+2

The orthogonality condition aB; to A; = e; implies thatB} = 0. Hence,

Bl =-— Z BiA (2.38)

s=r+2

The sets of (¢ — 1) + 1) pairs of orthogonal vectors,, B; modulo the transformations
(2.35), and pointsyy, xs} € S8 (T*(I")) provide a parameterization of an open set of
T*(M). Here and belowM = Mg/SL,.

Inthe same way, taking various subset&of 1) indices we obtain charts of local co-
ordinates which cover*(M). In Sect. 4 we provide a similar explicit parameterization
of £P for divisors D such thatDi = D — K is an effective divisor.

Our next goal is to construct a hierarchy of commuting flows on a total sp2a# a
vector bundle over an open setbto. Let us identify the tangent spa@g (£”) to £P
at the pointL with the space of meromorphic matrix functions spanned by derivatives
d; L|,—o of all one-parametric deformatiosq, r) € £P of L.

Lemma 2.3. The commutatofM, L] of matrix functions. € ,C]L,’,a andM e N)f; isa

tangent vector taC” at L if and only if its divisor of poles outside the pointsis not
greater thanD.

Proof. First of all, let us show that the tangent spdg€£”) can be identified with a
space of matrix functiong on I with poles of order not greater tham; at P;, and
double poles at the poinjg, where they have an expansion of the form

ﬂsasT + BsasT + ,BSdsT

(z — z5)? Z—Zs

T =z + T+ 0@z — 24). (2.39)

Herez, is a constant, andl, BS are vectors that satisfy the constraint
oaf By +al By =0. (2.40)

The vectorsyg, 8, are defined by.. In addition it is required that the following equation
holds:

OCST Ts1 = otsks + otgks — dsTle - zS‘OCZLSZa (2-41)

whereL;1, Ly andk, are defined by (2.9,2.11), arglis a constant.
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Equations (2.40) and (2.41) can be easily checked for a tangent ¥eéthro, if
we identify (z,, &y, B5) with

Zs = 0:2(¥s(T))]e=0, 05 = 0ra5(7))|r=0, ,Bs = 0¢B5(1))]=0 (2.42)
andTyq with
Ts1 = (aerl - 2sLs2) |r=0~ (2-43)

Direct counting of a number of the constraints shows that the space of matrix functions
that have poles of order; at P;, and satisfy (2.39-2.41) equal&(N + 1), which is the
dimension of£”. Therefore, these relations are necessary and sufficient conditions for
T to be a tangent vector.

From (2.10, 2.11) it follows that, if we defing anda; with the help of formulae
(2.7, 2.8), then the expansion [d¥f, L] at y; satisfies the constraints (2.39-2.41). The
lemma is thus proved.

The lemma directly implies that the Lax equatibp = [M, L] is a well-defined
system on an open set 6, whenever we can defind = M(L) as a function of_
that outside of the pointg commutes with. up to a meromorphic function with poles
at the pointsP; of order not greater tham, .

Let us fix a pointPp € I" and local coordinates in the neighborhoods of the
puncturesPy, P; € D. Our next goal is to define gauge invariant functidfig(L) that
satisfy the conditions of Lemma 2.3. They are parameterized by sets

a = (P;,n,m), wheren > 0,m > —m; are integers (2.44)

As follows from (2.5), for generid. € £3a there is a unique matrix functiod, (q)
such that:

(i) it has the form (2.3,2.4) at the poings;
(i) outside of the divisow it has pole at the poin®;, only, where the singular part at
M, coincides with the singular part of ~ L", i.e.

M, = M,(g) —w ™L"(q) = O(1) isregular at B (2.45)

(i) M, is normalized by the conditiom, (Pp) = 0.
Theorem 2.1. The equations
3aL = [Maa L], 811 = a/8ta (2-46)

define a hierarchy of commuting flows on an open sef®f which descends to the
commuting hierarchy on an open set@?f /SL,.

By definition, M, only depends oiL, i.e. M, = M,(L). Equation (2.45) implies that
[M,, L] satisfies the conditions of Lemma 2.3. Therefore, the right-hand side of (2.46) is
atangent vector ta? at the pointL. Hence, (2.46) is a well-defined dynamical system
on an open set of?.

The Laurent expansion of (2.46)atshows that the projection, (3,) € T (Mpy) of
the vectord, € T(£P) equals

74(0a) = D(My) . (2.47)
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Now let us prove the second statement of the theorem. Commutativity of flows (2.46) is
equivalent to the equation

0a My — M, — [M,, Mp] = 0. (2.48)

The left-hand side of (2.48) equals zeraPat and, as follows from (2.47) its expansion
aty, satisfies (2.39-2.41). Therefore, it equals zero identically, if it is regulax. &his
easily follows from standard arguments used in KP theory. If indicasdb correspond
to the same poin®;, i.e.a = (P;, n,m), b = (P;, n1, m1), then in the neighborhood of
P; we have

0aMp = w9, L™ + M,
= w_ml[Ma, Lnl] + aaM; = w_ml[Ma_’ Lnl] + aaM;’ (249)

and

(Mg, Mp] = [w™ " L" + M, ,w " L" + M,"]
=w "[L", M, ] —w "[L", M;1+0(1) (2.50)

From (2.49, 2.50) it follows that the left-hand side of (2.48) is regulaf;aFrom the
definition of M,, it is regular at all the other points d@ as well. In a similar way we
prove (2.48) for indiceg = (P;,n,m), b = (Pj,n’,m’) for P; # P;.

Let us now define an extended hierarchy of commuting flows on generic fibers of the
evaluation marﬁDa — L(Pp) = Lo. Note that these fibers are invariant with respect
to (2.46). Additional flows are parameterized by indices

a=(Py,m;l), m>0, [=1,...,r (2.51)

Let Lo be a matrix with distinct eigenvalues, and let us fix a representatidry drf
the form\IJoKolllo_l, whereKj is a diagonal matrix. Then for eadhe ﬁ?a, such that
L(q) = Lo, there exists a unique holomorphic matrix funct®nw (¢) = Wo, which
diagonalizes. in the neighborhood of, i.e. L = WK W1, For each index: of the

form (2.51) we defind/, as the unique matri¥, € N;’f;" that in the neighborhood of
Py has the form

M, = w "W EY Y (w) + 0(w), (2.52)
whereE; is the diagonal matriE;’ = 5184,
Theorem 2.2. The equations
0L =[My, L], a= (Po,m;l) (2-53)

defines commuting flows on the fiber of the evaluation 6fap> Lo, The flows (2.53)
commute with flows (2.46).

The proof is almost identical to that of the previous theorem.
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3. The Baker-Akhiezer Functions

In this section we show that standard procedure in the algebro-geometric theory of soliton

equations to solve conventional Lax equations using the concept of the Baker—Akhiezer

functions ([13, 14]) is evenly applicable to the case of Lax equations on algebraic curves.
Let L € £P be a Lax matrix. The characteristic equation

R(k,q) =detk — L(q)) = k" + Y _rj(@)k" 7 =0 (3.1)
j=1

defines dime-independerglgebraic curvé, which is anr-fold branch cover of . The
following statement is a direct corollary of Lemma 2.1.

Lemma 3.1. The coefficients; (¢) of the characteristic equation (3.1) are holomorphic
functions on" except at the point®; of the divisorD, where they have poles of order
jm;, respectively.

For a non-special divisob the dimension of the spac®” of sets of meromorphic
functions{r;(Q), j =1,...,r} with the divisor of poleg D equals

%H) —r(g—1). (3.2)

Note that dimension counting in the case of the special divisgives

dim s? =

dim SX = r2(g — 1) + L. (3.3)

Equation (3.1) defines a map” — SP. The coefficients of an expansion of in
some basis of” can be seen as functions 6. The Lax equation implies that these
functions are integrals of motion. Usual arguments show that they are independent. These
arguments are based on the solutionhaf inverse spectral problenwhich reconstruct
L, modulo gauge equivalence, from a generic set of spectral data: a smootHcurve
defmed by{r;} € sP and a pomt of the JacobiahT), i.e. an equivalence clagg] of
degreeg + r — 1 divisory onT'. Hereg is the genus of .

For a generic point af the corresponding spectral cuVés smooth. Its genuscan
be found with the help of the Riemann—Hurwitz formuia2 2 = 2r(g — 1) + degy,
wherev is the divisor onl", which is the projection of the branch pomtslbfoverl"
The branch points are zeros brof the functiond, R (k, Q). This function has poles on
all the sheets of over P; of order(r — 1)m;. Because the numbers of poles and zeros
of a meromorphic function are equal then deg Nr(r — 1) and we obtain that

Nre =D e— 11 (3.4)

Moreover, a product af; R on all the sheets df is awell-defined meromorphic function
onT. Its divisor of zeros coincides withand the divisor of poles isr — 1) D. Therefore,
these divisors are equivalent, i.e. in the Jacoljidn) of I" we have the equality

[v] =r@r — D[D] € J(I). (3.5)
For a generic poinQ = (g, k) of T there is a unique eigenvectgr= v (Q) of L,
L@y (Q) =ky(Q), (3.6)
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normalized by the condition that a sum of its componentequals 1,

dyi=1 (3.7)

The coordinates ofr are rational expressions knand the entries of. Therefore, they
definey (Q) as a meromorphic vector-function dh The degree of the divisar of its
poles can be found in the usual way. Netg), ¢ € I, be a matrix with columng (Q"),
whereQ! = (¢, k;(q)) are preimages af onT,

W(g) = {v(0Y, ..., ¥ Q") (3.8)

This matrix depends on an ordering of the ratg) of (3.1), but the functiorf'(¢) =

de? W(q) is independent of this. Thereforég, is a meromorphic function ofi. Its
divisor of poles equals2 (y), whererr : I' — T'is the projection. In general position,
when the branch points a@f overI" are simple, the functio#r has simple zeros at the
images of the branch points, and double zeros at the paint®cause evaluations ¢f

at preimages of,; span the subspace orthogonadto Therefore, the zero divisor df
isv+2y,wherey = y1+ - - -+ yr,, and we obtain the equality for equivalence classes
of the divisors

2Am. (M1 =1+ 2yl =2yl +r@r —1)D, (3.9)
which implies
degy =degv/2+rg=g+r—1 (3.10)
Let g be the matrix defined by (3.8) fgr = Py. Normalization (3.7) implies tha¥g
leaves the co-vectep = (1, ..., 1) invariant, i.e.
eoVo = ep. (3.11)

The spectral curve and the pole divisof are invariant under the gauge transformation

L — WgtLWo, ¢ — Wyly, butthe matrixyo gets transformed to the identitgy = /.
Let F = diag(f1, ... , fr) be a diagonal matrix, then the gauge transformation

L— FLF™', ¥(Q)— fTHQ)Fy, where f(Q) =) fivi(Q),  (3.12)

i=1

which preserves the normalization (3.7) and the equédity= 7, change¥ to an equiv-
alent divisory” of zeros of the meromorphic functiof( Q). The gauge transformation
of L by a permutation matrix corresponds to a permutation of prelmﬁges T of
Py e T', which was used to defingg.
A matrix g with different eigenvalues has representation of the fgrm= WoF,
whereVYg satisfy (3.11) andF is a diagonal matrix. That representation is unique up
to conjugation by a permutation matrix. Therefore, the correspondence described above
L — {T', 7, ¥p} descends to a map

L£P/SL, —> (T, 71}, (3.13)

which is well-defined on an open set6f /SL,.
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According to the Rlemann Roch theorem for each smooth ggmlgebraic curve
T with fixed pointsqt, ... , 4", and for each nonspecial degrget r — 1 effective
divisor ¥ there is a unique meromorphic functign(Q), Q0 € T with divisor of poles

in 7, which is normalized by the conditiong (¢/) = 5’ Lety (Q) be a meromorphic
vector-function with the coordinatefs (Q). Note that it satisfies (3.7).

Let T be a curve defined by Eq. (3.1), whergis a generic set of meromorphic
functions onI" with divisor of poles injD. Then for each poing € I' we define a
matrix W (g) with the help of (3.8). It depends on a choice of order of the rbatg) of
Eg. (3.1) but the matrix function

L(g) = Y@K (¥ q), K(g) =diagki(q), .. .k (9)), (3.14)

is independent of the choice, and therefore, is a meromorphic matrix function lon
has poles of degree; at P; € D and is holomorphic at the points of the branch divisor
v. By reversing the arguments used for the proof of (3.10), we get that the degree of
the zero divisoty of detW equals-g. In general position the zergg are simple. From
Lemma 2.1 it follows that an expansionbhty; satisfies constraints (2.10,2.11), where
ay is a unique up to multiplication vector orthogonal to the vector-columng @f).
Hence,L is a Lax matrix-function.

If the pomtsPO used for normalization of; are pre|mages afy € T, thenL, given
by (3.14), is diagonal & = Py, and the correspondent{:ﬁ 7} — L descends to a
map

(T, 71} — £P/SL,, (3.15)

which is well-defined on an open set of the Jacobian bundle $iwehere it is inverse
to (3.13).

Now, letL = L(q, t) be asolution of the Lax equations (2.46,2.53). Then the spectral
curverl of L(g, t) is time-independent and can be regarded as a generating form of the
integrals of the Lax equations. The divisonf poles of the eigenvectaf, defined by
(3.6, 3.7) does depend on

Itis now standard procedure to show tfat evolves linearly o (T'). From the Lax
equationd, L = [M,, L] it follows that, if 4 is an eigenvector of., then(d, — M,)y
is also an eigenvector. Therefore,

(80 = MY (Q. 1) = fu(Q, DY (Q, 1), (3.16)

where f,(Q, t) is a scalar meromorphic function &h The vector-function

V(. 1) = (0, D¥(0,0), ¢(Q,1) = eXp(-/oa Jm(Q, f)df> (3.17)

satisfies the equations

Lg, D% (Q,0) = k¥ (Q, 1), (3a — Ma(q, 1) ¥ (g,1) =0. (3.18)

It turns out that the pole divisgr(t) of ¢ under the gauge transform (3.17) gets trans-
formed to aime-independerdivisory = 7'(0) of poles ofyr. All the time dependence
of ¥/(Q, t) is encoded in the form of its essential singularities, which it acquires at the
constant poles of,.

Let L(q, t) be a solution of the hierarchy of Egs. (2.46), (2.53). Here and below we
assume that only a finite number of "timeg"are not equal to zero. For brevity we
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denote the variableg corresponding to indices (2.44) and (2. 51)@4 m) andt(o m:1)s
respectively. Commutativity of the hierarchy implies that there is a unique common
gauge transforrW(Q 1) = o(Q,HY¥(Q,t) such thew solves all the auxiliary linear
equations (3.18).

Lemma3.2. Let ¢ (Q, 1), ¥(Q,0) = ¥(Q, 0) be the common solution of equations
(3. 18) Then

19 ¢ is a meromorphlc function oft except at the pomts?’ and PO, which are
preimages o of the pointsP; € D and Pg onT, respectively. Its divisor of poles on
T outside ofPl Po is not greater thary;

20, In the ne|ghborhood oP! the functiony has the form

¥ =& (w,1)exp (Z t(i,n,m)w—mkn> , (3.19)

whereg; ;(w, r) is a holomorphic vector-function, arid= k;(g) is the corresponding
root of Eq. (3.1);
3. In the neighborhood aP} the functiony has the form

17&\ = x;(w, t) exp <Z L0,m; l)w_m> , (3.20)

wherey; is a holomorphic vector-function such that evaluation of its coordinate? at
equalsy/ (P} = s

The function@(Q t) is a particular case of the conventional Baker—Akhiezer functions.
As shown in [14], for any generic divisgr of degreeg +-r — 1 there is a unique vector
function (Q, t) which satisfy all the propertlesol— 3%, It can be written explicitly in
terms of the Riemann theta-function of the cufue

Theorem 3.1. Letfp\(AQ, 1) be the Baker—Akhiezer vector function associated with a non-
special divisory onT. Then there exist unique matrix functiohéy, t), M,(q, t) such
that Egs. (3.18) hold.

As a corollary we get that the Lax operatb(g, t) € LP constructed with the help of
¥ solves the whole hierarchy of the Lax equations (2.46,2.53).

4. Hamiltonian Approach

As we have seen, the spectral transform which identifies the space of gauge equivalent
Lax matrices with a total space of a Jacobian bundle over the moduli space of the spectral
curves does not involve a Hamiltonian description of the Lax equations. Moreover,
a'priori it is not clear, why all the systems constructed above are Hamiltonian. In this
section we show that the general algebraic approach to the Hamiltonian theory of the
Lax equations proposed in [9,10] and developed in [11] is evenly applicable to the Lax
equations on the Riemann surfaces.

The entries ofL(g) € £ can be regarded as functions 6. Therefore,L by
itself can be seen as a matrix-valued function and its external derivdtias a matrix-
valued one-form orC?. The matrix¥ (3.8) with columns formed by the canonically
normalized eigenvectong (Q') of L can also be regarded as a matrix functionfdh
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defined modulo permutation of the columns. Hence, its differesdias a matrix-valued
one-form onZ?. In the same way we consider the differenéial of the diagonal matrix
K (3.14). Let us define a two-for®2 (¢) on £P with values in a space of meromorphic
functions onl" by the formula

Q(g) =Tr (WL A 5w — Wl A 6K ). (4.1)

This form does not depend on an order of the eigenvaluds ahd therefore, is well
defined onCP. Fix a holomorphic differentiafz onI". Then the formula

1
0=-3 Y res,Qdz+ Y res,Qdz |, (4.2)
s=1 P;ieD

defines a scalar-valued two-form @r?.
The equation

SL=WSKVU 1+ sWKU 1+ wKkswt (4.3)
implies
Q=25 (Tr (K\rlaxp)) =25 (Tr (\rle)) . (4.4)

We would like to emphasize that though the last formula looks simpler than (4.1) and
directly shows thab is aclosedtwo-form, the original definition is more universal. As
shown in [9,10], it provides symplectic structure for general soliton equations.

Lemma4.1. The two-formw defined by (4.2) is invariant under gauge transformations
defined by matriceg that preserve the co-vecteg = (1, ... ,1), epg = eo.

Proof. If g preservesg, then the gauge transformation
L'=g¢gtLg, v =¢1v (4.5)

preserves normalization (3.7) of the eigenvectors. ¥ (8g)g~ 1, then from (4.4) it
follows that under (4.5%2 gets transformed t@’ = Q + F, where

F=—28(Tr(Lh)) = —2Tr(SLAh+LhAh). (4.6)

The additional tern¥ is a meromorphic function ofi with poles at the pointg; and
P;. Therefore, the sum of residues at these points of the differgngiabquals zero and
the lemma is proved.

Itis necessary to emphasize that in the generic case thesf@smot gauge invariant
with respect to the whole groufi,, because it does depend on a choice of the normal-
ization of the eigenvectors. A change of normalization corresponds to the transformation
V' =wV, L' = L,whereV = V(Q) is a diagonal matrix, which might depend ¢n
The corresponding transformation@fhas the form:

Q' =Q+25(Tr(Kv)) =Q+2Tr(6K Av), v=8VV L (4.7

Here we use the equatiém = v A v = 0 which is valid because is diagonal.
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Let PP c L£P be a subspace of the Lax matrices such that restrictiéhaf to P

is aholomorphicdifferential. This subspace is a leaf of foliation 6% defined by the
common level sets of the functions defined®h by the formulae

Ty g0 = resy (2= 2(P) kdz), j=0.....(m; —dy), (4.8)

whered; is the order of zera@iz at P; (compare with the definition of the universal
configuration space in [9]). Note that although the functions (4.8) are multivalued, their
common level sets are leaves of a well-defined foliatiorC&n

Lemma 4.2. The two-formw defined by (4.2) restricted ﬂé(’,) c £Pis gauge invariant,
i.e. it descends to a form dh? = PP /SL,.

Let L € £X be a Lax matrix corresponding to the zero divigorf a holomorphic
differentialdz, thenLdz has poles at the poinig, only. Thereforep} = £X.

Lemma 4.3. The two-formw on £X defined by the formula (4.2) descends to a form on
£K /S L,, which under the isomorphism (2.21) coincides with the canonical symplectic
structure on the cotangent bundl& (M).
Proof. The first statement is a direct corollary of the previous lemma. The second one
follows from the equality
res, Qdz = —2 (&cs Abzs+ Y 8B A 5a;) , (4.9)
i=1

which can be proved as follows. LEf be the matrix defined by the gauge transformation
(2.15), and let2, be the function defined by (4.1) fér = L’. Then as shown above,

res, Q.dz = res, Qdz + 2res, Tr (ags g IASL — L ogs g7t A bgy gs_l) . (4.10)
From (2.9), (2.10) it follows that the second term in (4.10) equals
I =-2Tr ((ﬁSSaST + SﬁsaST) A 8gs g;l + ﬂsaSTSgs g;1 A 8gs gs_l) . (4.112)
Using the equalita! g, + a! 8g, = 0, which follows from (2.14), we get
11 =2Tr (5@ nbal)=-2 (5043 A 3;3‘?) . (4.12)

The matrixL; under the gauge transformatidn= f7ILL fy, wherefy = £;(2) is the

\y

diagonal matrix (2.18), gets transformed to a holomorphic matrix. Therefore,
0 =res, Q.dz + 2res, Tr ((st FTEASLL — L sf £ A 5fo;1) . (413)

The lasttermin (4.13) equals zero becayisis diagonal. From (2.14)—(2.18) it follows
that

res, Qi dz = —2res, Tr (st A 5L;> = 2825 A 8ks. (4.14)
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Equations (4.10)—(4.14) imply (4.9). In the coordinatgsand B, (2.34)—(2.38) on an
open set off *(M) the forme due to (2.36) equals

rg rg
wo=) SgAdzs+ Y SBI ASAs g>1 (4.15)
s=1 s=r+1

and the Lemma is proved.

Let us now consider the contribution éofrom poles ofLdz at the pointsP,, of the
divisor Dx. = D — K. The residue of the last term in (4.1) restricted?8 vanishes.
Therefore,

1
wy = —Erespm Qdz =resp, Tr (L(S\If\lfl A 8\11\11*1) dz. (4.16)

If Ldz has a simple pole ak,,, then its residud.,, is a point of the orbitD,, of the
adjoint action ofG L,, corresponding to the fixed singular partaf;, which defines the
leaf Pc’)). Let& be a matrix, which we regard as a point of the Lie algeébras/,.. The
formula

0Ly = [Lm, &, (4.17)

defines a tangent vectéy < 7;, (Oy,) to the orbit atL,,. The correspondende— 9
is a isomorphism betweetd, /sl (L), andTy,, (O,,). Heresl,(L,,) is a subalgebra of
the matrices, that commute wifl),. Evaluation of the forn{S\lf\I/‘l) atd is equal to

&. Hence, (4.16) restricted ﬂ@é) coincides with the canonical symplectic structure on
the orbit©,,. Its evaluation on a pair of vectogs n is equal to

om (&, m) =Tr (L [§, 1)) (4.18)

If Ldz has a multiple pole aP,,, then we define’,, as the equivalence class of the
singular part ofLdz. By definition two matrix differentiald. and Z’ meromorphic in
the neighborhood of,, are equivalent i. — L’ is a holomorphic differential. Lef_
be a group of the invertible holomorphic matrix functions in the neighborhoad®,of
The transformatio. — gLg™!, ¢ € G_ defines a representation @f on the finite-
dimensional space of singular parts of meromorphic differentialsO,gbe an orbit of
this representation.

If H_ is the Lie algebra ofj_, then the equivalence class of the right-hand side
of (4.17) foré € H_ depends only on the equivalence cIasngf Therefore, (4.17)
defines an_isomorphism between the tangent spacg,t@t L,, andH_/H_(L;,),
whereH_(L,,) is the subalgebra of holomorphic matrix functignsuch thafL,,, &]
is holomorphic atP,,. The formula

wy = resp, Tr (Zm (£, n]) (4.19)
defines a symplectic structure ah,.
Lemmad4.4. If D = D — K > 0Ois an effective divisor, then the map

L v—> {zs, ks, a5, Bs, Zm7}» (4.20)
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is a bijective correspondence between points of the bufillever Mg and sets of the
data (4.20) subject to the constrainisg! ;) = 0, and

rg
Y Bl + ) resp, Ly =0, (4.21)
s=1 PneD’

modulo gauge transformations (2.27).

If we fix a gauge on a open set 6 by (2.36), then the reconstruction formulae for
Bi, ..., B,y1 become

rg
faa=-— ) BiAl—>resp, LI, (4.22)
s=r+2 m
and
Bi=-Bl 4 — Y BiAl-) res, L. (4.23)
s=r+2 m

If ¢ > 1, then forDx > 0 the datdz;, s, Ay, Bs, L € O} provide explicit coordi-
nates on an open set .

Theorem 4.1. Let D be a divisor such thaDx > 0, where/C is the zero divisor of a
holomorphic differentiadlz. Then the forne defined by (4.2), restricted ﬂéOD descends

to a non-degenerate closed two-formBR:

w=wo+ Z Om s (4.24)
PneDi

wherewg andw,, are given by (4.15), and (4.19), respectively.

The representation of the foranin terms of the Lax operator and its eigenvectors provide
a straightforward and universal way to show that the Lax equations are Hamiltonian,
and to construct the action-angle variables.

By definition a vector field; on a symplectic manifold is Hamiltonian, if the con-
tractionis, w(X) = w(d;, X) of the symplectic form is an exact one-foth#l (X). The
function H is the Hamiltonian corresponding to the vector figld

Theorem 4.2. Letd, be the vector fields corresponding to the Lax equations (2.46, 2.53).
Then the contraction ab defined by (4.2) restricted t8” equals

iy, = 8Hy, (4.25)
where
H, = — ! resp, Tr (w"”L"“) dz, a = (Pi,n,m) (4.26)
a n + 1 i ) | ERAS] ) .
H, = —resp, (w_mkz) dz, a= (Py,m;l). (4.27)

Herek; = k;(¢) is thel™ eigenvalue of. in the neighborhood of the punctuf.
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Proof. The Lax equatiod, L = [M,, L], 3,k = 0, and Eq. (3.16)
3,V =M,V + VF,, (4.28)
whereW is the matrix of eigenvectors (3.8), afig = diag(f,(Q1), ..., f.(Q"), imply
1(&
i, = =3 Yg;res,,anlz + ) respAdz |, (4.29)

P;eD

whereA = A(g) equals
A=Tr <\D_1[Ma, LISW — W ISL(M,W + WF,) — LM,V + \VFa)aK) .

(4.30)
Using, as before, the equalip¥ — SV K = WSK — LW, we get that
Tr (\I/_l[Ma, L]S\IJ) —Tr (\IJ_lMa\IJSK - Ma8L) . (4.31)
Using the fact thak and F are diagonal, we also obtain the equation
Tr (xp—laup Fa) —Tr(K F,). (4.32)
From (4.31), (4.32) it follows that
iy =Y respTr (8K Fu)dz + R, (4.33)
P;eD
where
rg
Ry = res, Tr(SLM,)dz+ Y respTr (SLM,) dz. (4.34)
s=1 P;eD

Note that in the first term of (4.33) a sum of residueg,dtas been dropped because
and F, are holomorphic at these points.

Consider first the case of the Lax equations (2.46). The ma#gitor a = (P;, n, m)
is holomorphic everywhere except at the poiptand P;. Therefore,R; ., = 0. The
corresponding diagonal matr# ,, , is holomorphic atthe point8; € D, j # i. From
(2.45) it follows thatF; , ,, in the neighborhood of; has the form

Finm=—-w"K"+ 0(1). (4.35)
The formé K dz restricted taP? is holomorphic in the neighborhood &f. Therefore,

—r1esp, Tt (3K Finm) dz = resp, Tr (w™"K"8K) dz =

resp, Tr (uf’"L”*l) dz.
(4.36)

The matrixF, corresponding te = (Pg, m; [) is holomorphic at the points d. There-
fore, the right-hand side of (4.33) reduces jus®ip BecauseMy ,,.; is holomorphic
except at the pointg, and P, we have in this case the equation

RO,m;l = —reSDOTr ((SLMO,m; l) dZ, (437)

which, with the help of (2.52), implies (4.27). The theorem is therefore proved. It shows
that the Lax equations restricted®® are Hamiltonian whenever the restrictionofs
non-degenerate.

1
n+1
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Corollary 4.1. If Dy is an effective divisor, then the Lax equations (2.46), (2.53) re-
stricted to?? are Hamiltonian. The corresponding Hamiltonians (4.26), (4.27) are in
involution

{Ha, Hp} = 0. (4.38)

The basic relation which implies all Egs. (4.38) is involutivity of all the eigenvalues of
the Lax matrices at different points bf i.e.

{ki(q), ki, (q1)} = 0. (4.39)

Example.Let us consider the Lax matrices on an elliptic cufve= C/{2nw1, 2mws}
with one puncture, which without loss of generality we puj at 0. In this example we
denote the parameteps andk; by ¢, and p;, respectively.

In the gaugey, = ¢;, ¢! = 8! the j" column of the Lax matrix.’/ has poles only
at the pointg;; andz = 0. From (2.10) it follows that.// is regular everywhere, i.e. itis
a constant. Equation (2.11) implies tHal'(¢;) = 0, i # j andL// = p;. An elliptic
function with two poles and one zero fixed is uniquely defined up to a constant. It can
be written in terms of the Weierstrassfunction as follows:

ijo@+4qi —qj)oz—qi)o(g;))

Li(z) = ft Ji#j; L= pi. 4.40
@ = e —apo@—apoa 7’ P (4.40)

Let £/ be arank 1 matrix’/ = a'b/. As it was mentioned above, the equatiops= ¢;

fix the gauge up to transformation by diagonal matrices. We can use these transformation
to makea’ = b'. The corresponding momentum is given then by the colleatiéy?

and we fix it to the valueg:’)? = 1. The matrixZ given by (4.40) withf”/ = 1is gauge
equivalent to the Lax matrik with a spectral parameter for the elliptic Calogero—Moser
system found in [15]:

L' =p;, LV =g —qj,2), i # ], (4.41)
where
(g, = ZEZ D peton, (4.42)
o(2)0(q)

Note thatl has essential singularity at= 0, which is due to the gauge transformation
by the diagonal matrix> = diag(®(¢;, z), which removes poles df at the pointsgy;.

The Hamiltonian of the elliptic CM system (1.8) is equal to
1
How = 5 re Tr (z*le) dz. (4.43)

For the sequel, we would like to expreHg) in terms of the first two coefficients of
the Laurent expansion of the marked branch of the eigenvaldeatf;, = 0. Indeed,
expansions of the eigenvaluesioftz = 0 have the form

ki(z) = (r — Dzt 4 k11 + kazz + 0(2%),

ki(z) = =zt kg + kipz + 0(2%), 1 > 1. (4.44)
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The equation

r r
H=Yp=TL=)Y k). (4.45)
i=1 =1
implies
r r
Hi=) ki1, Y kz2=0. (4.46)
=1 =1

From (4.44) and (4.46) it follows that
,
2Hem = 2rkia+ Y _ k. (4.47)
1=1
Trace ofL™ has the only pole ai = 0. Hence, we have the equations

resTr (L?) = 2 ((r — k11 — Zk11> =0, (4.48)

=2

resTr(L%) = 3 ((r — D%+ = Dikdy+ Y (kiz - k,zl)) =0. (4.49)
=2

Equations (4.48) and (4.49) imply
Hy =rk11, 2Hcy = r2k12 + I’k]z_l. (4.50)
Our next goal is to construct the action-angle variablesstor

Theorem 4.3. Let L € £P be a Lax matrix, and lef; be the poles of the normalized
(3.7) eigenvectoty. Then the two-formw defined by (4.2) is equal to

g+r—1
=Y k) Az (4.51)
s=1

The meaning of the right-hand side of this formula is as follows. The spectral curve is
equipped by definition with the meromorphic functibfQ). The pull back td" of the
abelian integrat(Q) = fQ dz onT is a multi-valued holomorphic function dn The
evaluation(7y), z(¥y) at the pointg; define functions on the spac#’, and the wedge
product of their external differentials is a two-form @i?. (Note that the differential
8z(¥;) of the multi-valued function(g;) is single-valued, because the periodd pfire
constants).

Proof. The proof of formula (4.51) is very general and does not rely on any specific
form of L. Let us present it briefly following the proof of Lemma 5.1 in [11] (more
details can be found in [16]).
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Let ysj, Plsi be preimages of of the pointsy; € ' andP; € D. Then the formw is
equal to

r rg

1 ~ ~
w=-3 Z ( . res ; Qdz + Z resP[j de) , (4.52)
J s i

I\
whereS2 is a meromorphic function ofi defined by the formula

QQ) = Y (Q)SL(g) A SY(Q) — ¥ (Q)8Y(Q) A8k, Q= (k,q)eT. (4.53)

The expressiony,(Q) is the dual eigenvector, which is the row-vector solution of the
equation

Vv (Q)L(q) = k¥ (Q), (4.54)

normalized by the condition

V(OO =1 (4.55)

Note thaty*(Q) can be identified with the only row of the matnk—1(¢) which is
not orthogonal to the columiy(Q) of W(g). That implies that/*(Q) as a function

on the spectral curve has poles at the poists and at the branching points of the
spectral curve. Equation (4.55) implies that it has zeroes at the pobds),, (Q). These
analytical properties will be crucial in the sequel. R

The differentiak2dz is a meromorphic differential on the spectral curvd herefore,
the sum of its residues at the punctufg’s i is equal to the negative of the sum of the
other residues oft. There are poles of two types. First of dll,has poles at the poles
ys of 7. Note thatsyr has a pole of the second ordefjat Taking into account that*
has zero af, we obtain

res;, @ = (W SLY) (7)) A 82(Py) + 8k(Dy) A 82(7y) = 28k(Py) A 8z(P5).  (4.56)

The last equality follows from the standard formula for variation of the eigenvalue of an
operatory*s Ly = Sk. -

The second set of poles 6f is the set of branch pointg of the cover. The pole
of ¥* atg; cancels with the zero of the differentidt, dz(¢;) = 0, considered as a
differential onI". The vector-function/ is holomorphic ag;. If we take an expansion
of v in the local coordinatéz — z(g;))*/? (in general position when the branch point is
simple) and consider its variation we get that

d
sy = —d—f&(qi) +0@). (4.57)
Thereforegyr has simple pole af;. In the similar way we have
dk
Sk = ——382(qi). (4.58)
dz

Equalities (4.57) and (4.58) imply that

5de] . (4.59)

resy, (V*8L A 8y)dz =resy, [(w*ade) AN
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Due to skew-symmetry of the wedge product we may reptédce (4.59) by(SL — 6k).
Then, using the identitieg™(§L — k) = §y¥*(k — L) and(k — L)dy = (dL — dk)yr,
we obtain

res, (V*8L A8y ) dz = —res, (SY ™ ¥) A Skdz = res, (Y*8¢) A Skdz.  (4.60)

Note that the term witld L does not contribute to the residue, becalitég;) = 0. The
right-hand side of (4.60) cancels with a residue of the second term in the sum (4.53) and
the theorem is proved.

Remark. The right-hand side of (4.51) can be identified with a particular case of universal
algebraic-geometric symplectic form proposed in [9]. It is defined on the generalized
Jacobian bundles over a proper subspace of the moduli spaces of Riemann surfaces with
punctures. In the case of families of hyperelliptic curves that form was pioneered by
Novikov and Veselov [17]. R

Let ¢ be coordinates on the Jacobia) of the spectral form. The isomorphism
of the symmetric power of the spectral curve and the Jacobian is defined by the Abel
map

7
¢ (V) = Z/ do, (4.61)

wheredw; is the basis of normalized holomorphic differentials’[&morresponding to

a choice of a basis af- andb-cycles onI" with the canonical matrix of intersections.
Restricted taP?, the differentiabkdz is holomorphic. Therefore, it can be represented
as a sum of the basis differentials

Skdz =) SLidw; . (4.62)

1

The coefficients of the sum are differentials®R of the functions
I; =f kdz . (4.63)
aj

From (4.51) it follows thatw = d«, where

g+r—1

7 g
a= Y / Skdz = 81 A ¢i. (4.64)
s=1 i=1

Corollary 4.2. The formw restricted toP? equals

z
w=Y 8I; NS¢;. (4.65)
i=1

For the case whePx > 0, this result was obtained first in [18].

It is instructive to show that (4.65) directly implies thatis non-degenerate for
Dy > 0. First of all, (4.65) implies that the fornéd; are linear independent. Indeed, if
they are linear dependentsat S?, then there is a vectartangent taS? ats, such that
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81;(v) = 0. Due to (4.62) we concludg k = 0. It is impossible for generi¢, because
the equation

Z;‘:l 8vrjkr7j
Ry (k, Q)

implies, then, thak(Q) satisfies an algebraic equation of degree less tha®. the
spectral curvé™ can not be am-sheeted branch cover bt

The second argument needed in order to complete the proof is that the dimension of
the spacég c SP of the spectral curves corresponding?8 equalsg. The number
of conditions that singular parts of eigenvalued.adt the pointsP,, € Dy are constant
alongP? equals(r degDy) minus 1, due to the relation

Z resp, (Tr L)dz = 0, (4.67)
P,eDx

ok = =0, (4.66)

which is valid, because the singular partd ot y, are traceless. From (3.2) we get

2dmSB = Nr(r —1) —2r(g — 1) +2= 2% = dim P". (4.68)

5. The Zero-Curvature Equations

The main goal of this section is to present the non-stationary analog of the Lax equations
on an algebraic curve as an infinite-dimensional Hamiltonian system.

Let AP be a space of the' x r) matrix functionL (x, ¢) = L(x + T, ¢) of the real
variablex such that:

19. L(x, ¢) is a meromorphic function of the variabjec I" with poles atD and at
the pointsy, (x), where it has the form (2.3), i.&(x, ¢) € Nﬁx)’a(x),

_ Bs(x) aT (x)

z — z5(x)

20. The vectorD(L(x, ¢)) defined by the map (2.6) tangentto the loop{y (x), a(x)},
ie.

L(x,z) + La(x) + O((z — zs(x)), z5(x) = z(ys(x)). (5.1)

Bz (x) = —a) (x) By (x), drer] (x) = —a] () Ls1(x) + k5] (x) . (5.2)
wherex, (x) is a scalar function.

Remark. It is necessary to emphasize, that although the lI&thps— NP /SL, are
lifted to matrix functionsL’(x, ¢) € N'°, x € R, such that

L'(x+T,q)=gL'(x,9)g* + 3¢ L, vy =g(x)eGL,, (5-3)

without loss of generality we may consider fucntions periodie,ibecausd.’” with the
monodromy property (5.3) is gauge equivalent to a periodic matrix funétion

The spaced? of the matrix functions, corresponding to a loep= {y (x), a(x)} in
My, is the space of sections of finite-dimensional affine bundle over the loop, because
for any two functionsl.q, Lo € Af their difference is the Lax matrix,; — Lo € £P.
Therefore, for a generic divisdd the spaced? is non-trivial only if degD = N > g.
The functional dimension oA? is equal to-2(N — g+1), while the functional dimension
of AP equals2(N + 1).
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Lemma5.1. If D = K is the zero divisor of a holomorphic differenti&t, then the map
L e AN — {o5(x), By(x), ys (1), Ky (1)} (5.4)

is a bijective correspondence @f“ and the space of functions periodicirsuch that

rg

0ez(ys(0) = —a] (B (x), Y Bs(@)ars(x)T =0, (5.5)

s=1
modulo the gauge transformations

o5 (X) > As()as (x), By —> A7HE)Bs(x), K (x) > ks (x) 4 95 IN A5 (x), (5.6)

o5 (x) — W) s (x), Bs(x) — WHx) By (x), (5.7)

where A, (x) is a non-vanishing function periodic in and W(x) € GL, a periodic
non-degenerate matrix function.

Note that from (5.2) it follows that locally in the neighborhoodjgfx) the matrix
function L(x, Q) € AL can be regarded as a connection of the bubtterer St x T
along the loop{y (x), a(x)}. Indeed, if F is a space of local sections of this bundle,
which can be identified with the space of meromorphic vector functjoips z) that
have the form (2.1) in the neighborhood;qf then

(8 +17(0) fixr 0 € 7. (5.8)

Another characterization of the constraints (5.2) is as follows.

Lemma5.2. A meromorphic matrix-functiod. in the neighborhood of,(x) with a
pole aty;(x) satisfies the constraints (5.2) if and only if there exists a holomorphic
matrix functiond, (x, z) with at most a simple zero detd; at y,; such thatl is gauge
equivalent

L=o, Lo, +09,®; &1 (5.9)

to a holomorphic matrix functiof.

The tangent space td? is the space of functions afwith values in the tangent space
to the space of Lax matricgs(£P).

Lemmab.3. LetL ¢ Af,) and M e J\/VD(;) () then the commutatdn, — L, M] =

M, +[M, L]is atangent vector tol” at L if and only if its divisor of poles outside of
ys(x) is not greater tharD.

From Egs. (5.2) it follows that the Laurent expansion of the matrix functiea M, +
[L, M] at the pointy,(x) has the form (2.39), wherg andg, are given by formulae
(2.7, 2.8). That proves thdt is a tangent vector t6°.

Lemma 5.3 shows that the zero-curvature equation

L =M, +[M,L] (5.10)
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is a well-defined system, whenever we can defin@.), such that the conditions of
the lemma are satisfied. Our goal is to construct the zero-curvature equations that are
equivalent tadifferential equationsThat requiresV/ (L) to be expressed in terms ff
and its derivatives in.

It is instructive enough to consider the case when all the multiplicities of the points
P; € D equalm; = 1. Let A be an open set iM? such that the singular part of

Le Ag at P; has different eigenvalues
Lx,q) = w; Ci(x) ()¢ ) + 0D, wi = wi(g), wi(P)=0,
u® = diag(u(l”(x), . ,u}”(x)), u ) # u (), k#£L (5.11)

Lemmab5.4. Let L(x, w) be a formal Laurent series

L= Y ljxw (5.12)

j=—1

such that_1(x) = C(x)u(x)C~1(x), whereu is a diagonal matrix, with distinct diag-
onal elements. Then there is a unique formal solutign= Wo(x, w) of the equation

(0x — L(x, w)) ¥(x,w) =0, (5.13)
which has the form

Wo(x, w) = C(x) (Z Ex(x)ws> el " WA diaghy, . k), (5.14)
s=0

normalized by the conditions
g =8, gix)=o0. (5.15)
The coefficient§, (x) of (5.14) and the coefficienis (x) of the Laurent series

hx, w) = Z hy()w®, h_q1=u, (5.16)
s=—1

are differential polynomials of the matrix elementd of
Substitution of (5.14) into (5.13) gives a system of the equations, which have the form
hS_[u’ES-Fl]:R(EOv"' 7§S;h01"' 7hS—1)7 S=_17 Os 17"' . (5'17)

They recursively determine the off-diagonal partgf;, and the diagonal matrik, as
polynomial functions of matrix elements hfx), i <s.
Corollary 5.1. Let g be the formal solution (5.14) of Eq. (5.13). Then for any diag-

onal matrix E the expressionu*’"\IJoE\I/O‘1 does not depend ary, and is formally
meromorphic, i.e. it has the form

o0
w_m\IJoE\IfO_1 = Z my(x)w™>. (5.18)
s=—m
The coefficients:; (x) are differential polynomials on the matrix elements of the coeffi-
cientsl; (x).



Vector Bundles and Lax Equations on Algebraic Curves 257

Expression (5.18) is meromorphic and does not depengppbecause the essential
singularities of the factors commute withand so cancel each other.
We are now in position to define matricgs,,

a=FP,m;l), m>1, I=1,...,r, (5.19)

which are differential polynomials on entries bf and satisfy the conditions of Lemma
5.3. Let¥p(x, g) = Yo(x, w(g)) be the formal solution of Eqg. (5.13) constructed above
for the expansion (5.11) df € Aé) at P;. Then, we definé/(; ,,.;y(x, ¢) as the unique
meromorphic matrix function, which has the form (2.3), (2.4) at the pogints), and is
holomorphic everywhere else except at the péintwhere

My (X, q) = w ™" (@) o(x, ) E1Vy 1 (x, q) + 0, EJ =35i8/'.  (5.20)

As before, we normalizé{; ,,.;, by the conditionM; ,,.;(x, Po) = O.
Itis necessary to mention, that,, as a function of., is defined only locally, because
it depends on a representation of the singular paft af P; in the form (5.11).

Theorem 5.1. The equations
0aL = 0xMy +[Mgy, L], a= (Pi,m;]) (5.21)

define a hierarchy of commuting flows Q\ré)

Let the coefficients of (5.12) be periodic functionswfThen, Lemma 5.4 implies that

T
Wolx + T, w) = Wo(x, w)e’™, p= / h(x, w)dx. (5.22)
0

Therefore, the columns oFg are Bloch solutions of Eq. (5.13), i.e. the solutions that
are eigenvectors of the monodromy operator. The diagonal elements of the ptatyix
are the formal quasimomentum of the operator (5.13).

Our nextgoalisto showthatfd > Othe zero curvature equations are Hamiltonian
on suitable symplectic leaves, and identify their Hamiltonians with coefficients of the
guasimomentum matricgs corresponding to the expansion (5.11)adt the punctures
P;

o
piw) = Y Hinw', Hgs = diag{Hg ). (5.23)
s=—1
Let us fix a holomorphic differentialz with simple zeros, and a set of diagonal matrix

functionsv® (x). Then for a divisoD, suchDy is effective, we define first a subspace
BP of AL by the constraints

By (u<">(x) - u<">(x)) -0, (5.24)

whereu® are the matrices of eigenvalues (5.11) of the singular parlseatélg. Next
we define a foliation o8”. The Ieave§>(§’ of the foliation are parameterized by sets of

constant diagonal matrice§™ with distinct diagonal elements, and are defined by the
equations

u™(x) — v (x) =", if dz(P,) #0. (5.25)
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We would like to stress the difference between the constraints (5.24) and (5.25). Equa-
tions (5.24) imply that for all the points of the divisbrthe differencegu® (x) —v® (x))
arex — independeninatrices. FoP,, € D we require additionally that the difference
equals the fixed matrix.

As before, we define a two-form de by formula (4.2), where now

Q(qg) = Tr (/m” <\Il_16L A 3\11) dx — (w—lany) (x0) A 81)) (5.26)

0

andW is the matrix of the Bloch solutions of (5.13), i.e.
(0 — L(x,¢)¥(x,q) =0, W(x+T,q)=V¥(x,q)el D, (5.27)

We would like to emphasize that this definition is a slight modification of the formula
for symplectic structure for soliton equations, proposed in [9]. The second termin (5.26)
gives zero contribution in the conventional theory. It is here to remove the dependence
on the choice ofg in the definition as may be seen as follows. The monodromy property
(5.27) implies
Tr (\11_18L A 3\11) (c+T) = Tr (w7 A 5\11) @) =Tr ((w—laup) @) A 5p) .
(5.28)

Using the equationsL ¥ = §¥, — L5V, we obtain

Tr (qumj) =Tr (ax (\p—laxp)) . (5.29)

Hence, the fornf2 does not depend on a choice of the initial pairnt xo.
The same arguments as before show thathen restricted t® does not depend
on the normalization of the Bloch solutions.

Theorem 5.2. The formula (4.2) wit2 given by (5.26) defines a closed two-form on
PD This is gauge invariant with respect to the affine gauge gnﬁdjp
If D > K, then the contraction ab by the vector field, defined by (5.21) equals

iy, = 8H,, (5.30)
where fora = (P;, m; ),
Hiim:y) = —tesp, Tr (w™"E; p)dz, (5.31)
and p is the quasi-momentum matrix.

The proof of this theorem proceeds along identical lines to the proof of the stationary
analogs of these results presented above. First, we show that under the gauge transfor-
mationL’ = g~ 1Lg — g713,, W' = g~ 1w the formQ gets transformed to

xo+T
Q=Q+Tr f (28h ASL — 2LSh A Sh + 8hy A Sh)dx, (5.32)

X0

wheresh = §gg~1. Note that the last term does not contribute to the residues. The first
two terms are meromorphic dhwith poles aty; andP; € D, only. Therefore, a sum of
their contributions to residues §f dz equals zero. Hence, does descend to a form on

PP = PP /GL,. (5.33)
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Using (5.32) for the gauge transformation (5.9), whétedepends on a pointin the
neighborhood of/;, we obtain

xo+T r
res, Qdz = —2 / ° <5lcs(x) Adze() + Y 8BI(x) A 5a§(x)) dx.  (5.34)

*o i=1
From (5.14) we obtain that ifz(P;) = 0, then

resp, Qdz

xo+T . x . . xo+T )
=Tr </ <3u(’>(x) A / 5u<l>)(y)dy) dx — su'” (xp) A / 3u<’>(x)dx) )
xo " " (5.35)

Equations (5.24) imply that the restriction&f® to PP is x-independent. Then, from
(5.35) it follows that the point®’; € K give zero contribution ta. From (5.14) and
(5.25) it follows that the formsww—1 when restricted td%’ is holomorphic in the
neighborhood of?,, € Dy. Therefore, in this neighborhood

(axpx\y—l n ww;l) ‘730 —0(D). (5.36)
0

Using this equality we obtain that d?t? the following equation holds:

xo+T
resp, Qdz = —2resp, Tr (/ (L(S\yqu A S\Iquldx)> dz. (5.37)
X

0

Therefore, restricted @(? the formw is equal to the integral over the period of (4.24).
The proof of Eq. (5.30), wher#,, is given by (5.31) is almost identical to the proof of
(4.26).

Importantremark The formulae (5.34) and (5.37) do not directly imply thaestricted

to P is non-degenerate, because of the constraints (5.24). The conventional theory of
the soliton equations, and results of the next section provide some evidence that it is
non-degenerate fdbx > 0, although at this moment the author does not know a direct
proof of that. Anyway, Eq, (5.30) shows that Egs. (5.21) are Hamiltonian on suitable
subspaces dP”. Then, commutativity of flows implies

{Hg, Hp} = 0. (5.38)

The previous results can be easily extended for the case when the leading coefficient of
the singular part of. at the puncture®; has multiple eigenvalues.

Lemmab5.5. LetL(x, w) beaformal Laurentseries (5.12) such that = C(x)uC1(x),
andu = u;8" is a constant diagonal matrix. Then there is a unique formal solution
Vo = Yo(x, w) of Eq. (5.13), which has the form

Wo(x, w) = C(x) (Z Sx(x)w_s) T, w), T(xo,w) =1, (5.39)

s=0
where

Sé/ = §i/. Sij(x) =0, if uj=u;, s>1, (5.40)
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and the logarithmic derivativk(x, w) of T is a formal series with non vanishing entries
only for indices(i, j), such thaty; = u;, i.e.

o0
h=0,TT t=uwt+ Zhs(x)ws, h =0, if u # uj. (5.41)
s=0
The coefficient§, (x) of (5.39) and the coefficients (x) of (5.41) are differential poly-
nomials of the matrix elements bf

Substitution of (5.39) in (5.13) gives a system of the equations which have the form

(5.17) They recursively determlrgé’ for indices (i, j) such thaty; # u; and the
matrix iz, as polynomial functions of the matrix elementd;@k), i <s.

Corollary 5.2. Let¥q be the formal solution (5.39) of Eq. (5.13). Then for any diagonal
matrix E = E;8" such thatt; = E;, if u; = uj, the expressiomv—’"\IJOE\IIO‘l does
not depend ong, and is formally meromorphic. The coefficientg(x) of its Laurent
expansion (5.18) are differential polynomials of the entries of the coeffidj€njs

The expressiorurm\IIOE\IIO*1 is meromorphic and does not depend xanbecause
[T,E]l=

The corollary implies that if singular parts &f at the puncture®; have multiple
eigenvalues, then the commuting flows are parameterized by sets

a=(P,m; E)), (5.42)

whereE, is a diagonal matrix that satisfies the condition of Corollary 5.2. The Hamil-
tonians of the corresponding equations are equal to

T
H, = —resp,Tr (w_mEA / h(x)dx) dz. (5.43)
0

Example. Field analog of the elliptic CM systenhet us consider the zero curvature
equation on the elliptic curve with one puncture. We use the same notation as in Sect. 4.
In the gaugex; = ey, ¢/ = 8/, the phase space can be identified with the space
of elliptic matrix functions such that’/ has a pole at the point;(x) andz = 0,
only. From (5.2) it follows that the residue af/ atq; equals—q;,. Therefore L// =
Pj+4qjx(¢(2) —¢(z—qj) — ¢ (g;). Equation (5.2) implies also that' (¢;) = 0, i # j.

Let us assume, as in the case of the elliptic CM system, that the singular gart of
at the puncture = 0 is a point of the orbit of the adjoint action corresponding to the
diagonal matrix diag- — 1, —1, ..., —1). Then, taking into account the momentum
map corresponding to the gauge transformation by diagonal matrices, we get that the
non-stationary analog of the Lax matrix for the CM system has the form

L' = pi +qix (C(2) = C(z — 1) — ¢(@i) (5.44)

i o(z+qi —qj)o(z—qi)o(g;) . , .

L = ff; , : 5.45
i s@oe=apoam—apoa 7’ (5.49)

The valuesf? are fixed to

fF=14qic, Y qix=0. (5.46)
i=1
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According to (5.34), the symplectic form equals
T r
@= /0 Z‘Spi(x) N8gi(x) Jdx > {pi(x),q;(V)} = 8;;0(x —y). (5.47)
i=1

The commuting Hamiltonians are coefficients of the Laurent expansioa=al of the
guasimomentum, corresponding to the only simple eigenvalue of the singular part of
atz = 0. To find them we look for the solution of (5.13) in the form

¥ = C(x, g)elo h2d', (5.48)

C = (Z c(”(x)zs> Ch=)" hi(x0)2, (5.49)
s=0

s=—1

whereC @ is the eigenvector of the singular partiof corresponding to the eigenvalue
r—2,i.e.

c? =1, (5.50)

and the coefficient€'® for s > 0 are vectors, normalized by the condition
r
Z f,-Cl.(S) =0, s>0. (5.51)
i=1

Substitution of (5.44,5.45) into (5.13) gives a system of the equations for the coordinates
C; of the vectorC:

0xCi +hCi = qixCi [¢(2) — ¢(z — qi) — £(qi)]
+fi Z fiCil¢(@ — ¢z —qj)+ ¢t —q;) —¢a)]. (5.52)
J#i
where we use the identity

o(z+qi —qj)o(z—¢qi)o(q;)
0(z)o(z—qj)o(qgi —q;)o(gi)

=) — ¢z —qj)+ g —q;) —¢(g). (5.53)

Taking the expansion of (5.52) at= 0, we find recursively the coefficients O‘fs) and
densitieg:; of the Hamiltonians. The first two steps are as follows:
The coeffcients at~* of the right- and left-hand sides of (5.52) give

haa=qin+Y ff=qu+0—fH=r—1 (5.54)
J#i
The next system of equations is

fir+ fiho+ = DCP = pifi + i€+ £ D (FCP + f2Vij). (658)
J#
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where
Vij = ¢(gj) +¢(qij) — £(qi), gij = qi — q;- (5.56)
Using (5.51), we get
rCiY + fiho = pifi = fix + fi ) fFVij. (5.57)
J#

Multiplying (5.57) by f; and taking a sum over we find upon using (5.51) and skew-
symmetry ofV;;,

rho=Y piff =) pil+4qir). (5.58)
i=1 i=1

In the same way we get the system of equations’,‘l,.‘(%)r,

rC? +0,CY + noC® + haf;

=nC +aifip @)+ Y £ (CPViy + fio(ap) . (559
J#
Consequently the expression for the density of the second Hamiltonian is

r2h1

=r Y @it +C0 Ui+ pifi + 3 (F21CP Vi + 12120 (q;))}
i | j#i

=ry | =D+ (f +pifit+), fl»ffvﬁﬂ : (5.60)
i j#i

For the first line we have used the equathon (f,- Ci(i) + f,-xCi(i)) = 0. From (5.57) it
follows that the second term in (5.60) equals

II'=—rh§+y" (p,?f,»2 — SR DDV + Y SRRV vk,-) . (5.61)
i J#i Jik#i

For any triple of distinct integers# j # k # i the following equation holds:
ViiVii + VikVij + Vi Vik = =9 (qi) — 9 (q;) — 9 (qi)- (5.62)

In orderto prove (5.62), itis enough to check that the left-hand side, which is a symmetric
function of all the variablesg;, ¢;, gx, as a function of the variablg, has double pole

atg; = 0, and is regular ag; = ¢;. In the same way one can obtain the well-known
relation

ViiVii=—9 ) — ;) — 9 (qi))- (5.63)
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Equations (5.62, 5.63) imply

DI A ANCEEDD (rf,-z(r — Ao+ fifle (q,-n) . (5.64)
i jk#i i JFEI

From (5.56) it follows

1
ANATEEDY ((ff»f,? - f,?(f,?)x) (¢(qij) — 2¢(q0))

J#i J#i
1
= E Z zr%'xxg(%) - Zcﬁjxx;(qij)
; i
1
+ E Z (%’xx‘]jx - ijx‘Iix) g(Qij)- (5.65)
J#

The first sum is equal to

%Z (quixxc(q,-) - Zqzjxx((qz'j))

J#i

1
=52 (qu,-xf,?ga @)= :quxmqm) +0.F. (5.66)
i J#Ei

where

1
F=3 > (erizé“(qz') - Zqz'jx{(qzj)) : (5.67)
i J#i

The first terms in (5.60), (5.64), (5.65) cancel each other. The funétj@s a function
of the variabley;, has poles at the points§;, j # i and the sum of its residues at these
points equals

A (5.68)
j#i

Therefore, it has the same monodromy properties with respect to all the variables. The
functionsg; (x) represent loops on the elliptic curve. Therefeggx + T) = ¢; (x) + b;,
whereb; is a period of the elliptic curve. The constraint (5.46) implesb; = 0. Then,

from (5.68) it follows thatF' is aperiodicfunction ofx. The densities of the Hamiltonians

are defined up to a total derivative of periodic functions irHence, a density of the
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second Hamiltonian of the hierachy equals

2
2y _ 1' . . 2 N qizxx
rfh=— = <Xi:(pz(1+q,x)> +2,-: <p,- L+ gix) —4(1+q1_x)> (5.69)

1
) Z (Gixxdjx = 4jxxqix) £(4i)) (5.70)
J#
1
t5 z#: ((1 +qi) A+ g0 + A+ g0+ gi)? — qizjx) ©(gij). (5.71)
J#i

The transformatiorp; — p; + f(x) does not changg, for s > 0. In particular, the
first two terms in (5.69) can be rewritten as

2
1 1
- (Z(m(l + qix>) + Z PP+ gix) = > Z(pi — P+ i) L+ qjo).
i 1 L]
(5.72)

The symplectic form (5.47) restricted to the subspace
D 4i=0, Y pi=0, (5.73)

is non-degenerate. The Hamiltoniafs = fOT hy(x)dx restricted to this space generate
a hierarchy of commuting flows, which we regard as field analog of the elliptic CM
system. For = 2 the Hamiltonian 2/; has the form (1.10), wheige= g1 = —q2, p =

pP1= —p2.

6. The Algebro-Geometric Solutions

So far, our consideration of the Bloch solutions (5.27) has been purely local and for-
mal. For generid. € Aé) the series (5.14, 5.16) for the formal solutiobigx, ¢), and
guasimomentum have zero radius of convergence. The main goal of this section is to
construct algebro-geometric solutions of the zero curvature equations, for which these
series do converge and, moreover, have meromorphic continuations on a compact Rie-
mann surface.

Let T (g) be a restriction of the monodromy operajti:) — f(x + T) to the space
of solutions of the equatio®, — L(x, q) f = 0, wheref is a vector function. Then,
we define the Riemann surfaCeof the Bloch solutions by the characteristic equation

R(u,q) = det(n—T(q)) = u" + ) Ri(@u" 7 =0. (6.1)
j=1

Lemma 6.1. The coefficient® ; (¢) of the characteristic equation (6.1) are holomorphic
functions o™ except at the point®; of the divisorD.
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Proof. In the basis defined by columns of the fundamental matrix of solutions to the
equation(d,—L)F(x, g; xo) = 0, F(xp, q, x0) = 1,the operatoT(q)can be identified
with the matrix

T(q) = F(xo+T. q; x0). (6.2)

A priori this matrix is holomorphic o™ except at the points of the divis@ and at
points of the loopg (x), whereL has singularities. From Lemma 5.2 it follows that in
the neighborhood of the loop we have

F=,x,q)F(x,)®; (x,q), Fxo,q) =1, (6.3)

whereF is a holomorphic matrix function, and; is defined by (2.14), (2.18), (2.19).
The functiond; is periodic, becausg,, «; are periodic. In the neighborhood of the loop
¥s» the functionsR ; (¢) coincide with the coefficients of the characteristic equation for
F. Therefore, they are holomorphic in that neighborhood. The lemma is then proved.

It is standard in the conventional spectral theory of periodic linear operators that for
a generic operator the Riemann surface of the Bloch functions is smooth and has infinite
genus. For algebro-geometric or finite-gap operators the corresponding Riemann surface
is singular, and is birational equivalent taoothalgebraic curve.

It is instructive to consider first, as an example of such operators, the case/when
does not depend an, i.e. L € £P. In this case the equatia@d, — L)y = 0 can be
easily solved. The Bloch solutions have the form

¥ = Yo, (6.4)

wherey is an eigenvector of, andk is the corresponding eigenvalue. These solutions
are parameterized by poingsof the spectral curv€g of L. The image of o under the
map intoC! x I' defined by formula

(k,q) € To — (uw=éT, q) € clxr (6.5)

is the Riemann surfack defined by (6.1), where the coefficients are symmetric poly-
nomials ofeti @7 .
For example, if"p is defined by the equation

k? + u(q) =0, (6.6)

whereu(q) is a meromorphic function with double poles at the pointdothenT is
defined by the equation

p2+2Ripu+1=0, Ri(q) = cosh(/u(q)). (6.7)

The Riemann surface defined by (6.7) is singular. Projections bribthe points of
self-intersection of are roots of the equation

TN 2
u(q) = (ﬁ) , (6.8)

where N is an integer. The coefficieni(q) has poles of the second orderatu =
2w=2 + O(w™1), wherew is a local coordinate aP; € D. Therefore, a$N| — oo,
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the roots of (6.7) tend to the points Bf The coordinates of the singular poigisy that
tend toP; equal

w(gin) = 2Ta;(xN) "L+ O(N7?). (6.9)

As usual in perturbation theory, for genefieach double eigenvaluyg,, splits into two
smooth branch pointg‘tn. By analogy with the conventional theory we expect, that if

is an analytic function ok, then the differenceBuv(q; ) — w(qu)| < O(N~%) will

decay faster that any power f 1.

Localization of the branch points is a key element in the construction [19] of a
theory of theta-functions for infinite genus hyperelliptic curves of the Bloch solutions
for periodic Sturm-Liouville operators. In [20] a general approach for the construction
of Riemann surfaces of the Bloch functions was proposed. The model of the spectral
curves developed in [20] was chosen in [21] as a starting point of the theory of general
(non-hyperelliptic) infinite-genus Riemann surfaces. It was shown that for such surfaces
many classical theorems of algebraic geometry take place.

Algebro-geometric or finite-gap operators can be seen, as operators for which there
are only a finite number of multiple eigenvalues that split into smooth branch points. Let
I be a smooth genugalgebraic curve that is artbranch cover of". Note that unlike
the stationary case, for given a rankhere is no relation betweép and the genug
of I". As g increases the dimension of the space-sheeted cover increases. It equals
2@ —rg+r-1. _

Assume that the preimagd?é, Pé onT of the points of a divisoP, and a pointPy on
I" are not branch points. The definition of the Baker-Akhiezer function corresponding
to this data and to a non-special deggee r — 1 divisory onT is as follows:

19. v is a meromorphic vector function dn except at the points’i’. Its divisor of

poles orl" outside ofPl.l is not greater thai.
2°. In the neighborhood af/ the vector function) has the form

l[’ = ‘i:i,l(qv t) EXD(Z t(i,m;l)w_m) , (610)

whereé; ; (g, t) is a holomorphic vector-function.
3. Evaluation ofi atthe punctureg) are vectors with coordinateég (P))® = 8.

Theorem 6.1. Let (g, ) be the Baker—Akhiezer vector function associated with a
non-special divisofy onI". Then, there exist unique matrix functioh&; ,,.;y(q, 1) €

D .
N (.« SUch that the equations

(0¢i,msty — Mim:ny) ¥ (g, 1) =0 (6.11)
hold.

Now, let v\ (x) be a set of periodic functiongoT vPdx = 0, andu” be a set of
constants. Then the change of the independent variables

.0y = xup + 0 () + 1, 1. (6.12)
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define the Baker—Akhiezer functigf, as a function ofg, t) and the variable. From
(6.11) it follows that

0y —L)y =0, L= Z( @ + 0y, )M(i,l;l)' (6.13)
il
As follows from Lemma 5.2, the vectd?(M,), a = (i, m; 1), corresponding td/,
under (2.6), is tangent @ (z,), a5 (t,)). ThereforeD(L) is tangent tay; (x), o (a)).
In general L constructed above is not a periodic functionxolt is periodic, if we
impose additional constraints on the set of data that are the tuarel the constants

u\"”. We call the sefT", u\"'} admissible if there exists a meromorphic differentialon
T which has second order polesat

dp = —uPdw (urz n 0(1)) : (6.14)
and such that all periods dp are multiples of 2i /T,
2rim,
%dp - ”;m , me€Z, ceHT, 7). (6.15)

Lemma 6.2. The Baker—Akhiezer functiah, associated with an admissible set of data
{T', u"} satisfies the equation

Y(x+T,9) =gy (x,ulg), p=e’?T, (6.16)
whereg is the diagonal matrix = diag (M(Pol), oo (PY)).

From (6.15) it follows that the functiop defined by the multi-valued abelian integral

p is single-valued. Equation (6.16) follows from the uniqueness of the Baker-Akhiezer

function, because the left- and the right-hand sides have the same analytic properties.
The matrix function constructed with the help af satisfies the monodromy prop-

erty

Lix+T,q) =gL(x,q)g L. (6.17)

Let S = S(T, p) be a space of curves with meromorphic differentialp satisfying
(6.15). We would like to mention that the closure&fas7 — oo, coincides with the
space of all genug branching covers of .

Corollary 6.1. A set of datd” € S, [7] € J(T), and a set of periodic functions” (x)
define with the help of the corresponding Baker-Akhiezer function a solution of the
hierarchy (5.21) or3? /GL,.

The finite-gap or algebro-geometric solutions are singled out by the constraint that there
is a Lax matrixL1 € £"P such that

[0 —L,L1]=0. (6.18)
Indeed, letk be a function o™ with divisor of polesnﬁ, whereD is the preimage of

D. If n is big enough this exists. L&t be the Baker—Akhiezer function dn then as it
was shown above there is a unique Lax maifrixsuch that

Li(t, ¥ (t, q) = k(g)¥ (1, q). (6.19)

Equation (6.19) implies that the spectral curvelafis birationally equivalent to the
Riemann surfac€ of Bloch solutions forL..
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Theorem 6.2. The formw defined by (4.2) and (5.26) restricted to the space of algebro-
geometric solutions, corresponding to a set of functjﬁ?(x) equals

g+r—1
o= Y SpP) ASzFy). (6.20)
s=1

The meaning of the right-hand side of this formula is analogous to that of formula
(4.51). It shows that the forma restricted to the space of algebro-geometric solutions is
non-degenerate.

It is well-known that the finite-gap solutions of the KdV hierarchy are dense in the
space of all periodic solutions ([22]). As shown in [20] the finite-gap solutions are dense
for the KP-2 equation as well. It seems quite natural to expect that the similar result is
valid for the zero-curvature equations on an arbitrary algebraic curve, as well. In the
conjectured scenario the infinite dimensional spAfecan be identified with a direct
limit of finite-dimensional space&’”, asn — oo. We are going to address that problem
in the near future.
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