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1. Introduction

The 1994 work of Seiberg and Witten [14, 15] revealed the existence of a deep corre-
spondence between supersymmetric gauge theories and integrable models [5,7,12,13].
However, the specific list of correspondences is still far from complete at the present time
(cf. [1-4] and references therein). In particular, it is still not known how to construct
the integrable model which corresponds to the N' = 2, SU(N) gauge theory with mat-
ter in the symmetric representation, although the spectral curve has been identified by
Landsteiner and Lopez using M Theory [6,11].

The purpose of this paper is to solve this problem. In [10], we had solved a similar, but
simpler problem, which is to construct the integrable model corresponding to the SU(N)
gauge theory with matter in the antisymmetric representation. The main new difficulty
is the asymmetry between the orders of the zero and the pole of the eigenvalues of the
monodromy operator at the two compactification points of the spectral curve. The desired
integrable model turns out to be still a spin chain p,,, ¢,, but whose main feature is a new
periodicity condition linking p,+n+2, GntN+2 tO Pn, ¢, through a twisted monodromy
operator. Such periodicity conditions have not appeared before in the literature, and we
take the opportunity to discuss them in some detail. An earlier proposal of how they can
be used to construct other integrable models is in [8], but not pursued further there.

The mathematical problem can be formulated very simply. It is to find an integrable
Hamiltonian system with spectral parameter x, spectral curve

R(z,y) =y° + fn(@)y” + fn(—2)2’y +2° =0 (1.1)
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and symplectic form
2N—2

w= Z dz(z;) A %(zz)

Here fy(x) = Zf\io u;x’ is a generic polynomial of degree N, and the parameters u;
can be viewed as the moduli of the spectral curve. A system with the desired properties
can be obtained as follows. Let ¢y, p, be complex three-dimensional (column) vectors
satisfying ¢l p, = 0 and the reflexivity condition p,, = hp_,,_1, ¢n = hq_,,_1, where h
is the 3 x 3 matrix whose only non-zero entries are hg; = haoo = h13 = 1. Let a, b, ¢ be
3 x 3 matrices satisfying

a’?=1, ab = ba, b? = ac + ca, bc = cb, 2 =0. (1.2)

Consider the dynamical system

Pn+1 Pn—-1 . dn+1 dn—1

Pn = + tnPny  Gn = - ~ HnPn,
! Ppi1dn  Pp_1dn e " PhGntl  PrGn-1 e L3
R Y S - [ Gm-1DY  GmP . (13)
a = T G 7b ’ b= T T €0 ¢=0,
Pmdm—1 Prm—19m Pmdm—1 Pm—19m
where p,(t) is an arbitrary scalar function, and we have set m = —%N + 1 for N even

and m = f%N + % for N odd. The system (1.3) appears uncoupled, but it will not be
after imposing twisted monodromy conditions. More precisely, we have the following.

Main Theorem. Let z be an external parameter, and set L, (x) = 1+zq,p\. Then the
following holds.

(a) There are unique 3x 3 matrices g, (z) = a,x*+b,x+c, which satisfy the periodicity
condition

n+1LlniN—2 = Lngn (1.4)

n=r+N-3

for any fixed data a,, by, ¢y, (Pn,qn)"=" with the constraint ¢ p, = 0.

(b) Consider the dynamical system (1.3) with a,, = ah, b,, = bh, ¢;,, = ch. Then the
system is integrable in the sense that it is equivalent to the following Lax equation

Ly =ML, — L,M,, (1.5)

where M, (x) is the 3 x 3 matrix defined by

T T
Prndn—-1 Pp_14n

(¢) The spectral curve I' = {(x,y);det(yI — gn(z)Lntn—_3(x) - Ly(x)) = 0} for the
Lax equation (1.5) is independent of n. It coincides with the Landsteiner—Lopez
curve (1.1), and the system (1.3) is Hamiltonian with respect to the symplectic form
w on the reduced phase space uy = 1, uny_1 = 0. The Hamiltonian is H = uny_s».
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2. The Landsteiner—Lopez curve for the symmetric representation

It is convenient to list here the main geometric properties of the curve (1.1), which will
henceforth be referred to as the LL (Landsteiner—Lopez) curve. It admits the following
involution

o (z,y) — (—x, x;) (2.1)

Points above x = oo and £ = 0
Above x = oo, there are three distinct solutions of the LL equation, given by y ~ ¥,

N+4 and y ~ 2. The involution ¢ interchanges the first two, leaving the third

yo~T
one fixed.

Above x = 0, there are also three solutions, given by y ~ z2, y ~ 2 and y ~ 1. The
involution interchanges the last two points, while the first one is left fixed. The points
y ~ 22 and y ~ z* cross each other, but they are not branching points.

Genus of the LL curve

The Riemann-Hurwitz formula says that the genus g of the LL curve is given by
29 — 2 = —6 + v, where v is the number of branching points (for generic moduli, the
branching index is 2, which we assume). The branching points correspond to zeros of
Oy R(x,y)

3y” + 2yfn(x) + fn(—x)a? =0,
To determine their number, we determine the number of poles of 9, R(x,y). These occur
at * = 0o. At = oo, the three solutions y ~ z, y ~ 22 and y ~ V% contribute,
respectively, 2N, N 4+ 2 and N + 2 poles, for a total of 4N + 4 poles. Thus there are
also 4N + 4 zeros. At x = 0, there are two zeros y ~ =2 and y ~ z%, at each of which

Oy R(x,y) vanishes of second order. Thus the number v of branching points is given by
v=4N +4 —2—2=4N, and consequently

genus(I') = 2N — 2.

Genus of the quotient curve

Let go be the genus of Iy = I'/o. Since I' has two branch points over Iy, namely
y~x?at x =00 and y = 22 at x = 0, the Riemann-Hurwitz formula applies and gives
2g — 2 =2(2g0 — 2) + 2, from which it follows that

go=N—1. (2.2)

General case

The LL curve can be seen as a special case of a general family of curves defined by the
equation

R(z,y) = y° + fn(@)y” + gnse(2)y + r6(z) = 0, (2.3)
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where gn42 and rg(z) are polynomials of degree N + 2 and 6, respectively. This family
has 2N + 11 moduli. The genus of a curve I' defined by this equation can be found as
before. It equals

genus(I") = 2N. (2.4)

3. Construction of the spin chain

We now give the proof of the Main Theorem. Since finding the desirable integrable
model is an essential component of our result, we construct the model gradually instead
of proceeding from its final description. It is natural to look for a spin chain of three-
dimensional vectors with a period of N + 2 spins, in order to arrive at a spectral curve
of the form (2.3). The difficult steps are to create an involution of the form (2.1) and to
obtain the correct number of degrees of freedom.

The spin chain system

We look for a spin chain system of the form

VYnt1 = Ln(z)y, (3.1)

with the operators L, (x) given by L, (z) = 1 + 2¢,pl, where = is an external variable,
and ¢y, p, are three-dimensional complex vectors satisfying the condition ¢! p,, = 0. The
vectors ¢, and p,, should be viewed as column vectors, so that ¢lp, is a scalar, while
¢npl is a 3 x 3 matrix.

Twisted monodromy conditions

The key feature of the construction is the imposition of suitable twisted boundary
conditions. Now the usual periodicity condition L,in_2(z) = L,(z) can be expressed
as TL = LT, if we define the monodromy operator to be (T%), = ¥,4+n—2. For the
Landsteiner—Lopez curve, we require a twisted periodicity condition of the form

gn+l(x)Ln+N—2(x) = Ln(x)gn(x), (32)

with the g,(x)’s suitable 3 x 3 matrices to be chosen later. This requires in turn the
following more subtle choice of monodromy operator T;,(x)

N-3
Tn(.%‘) = gn(x) H Lk+n(x); (33)

k=0
where, by convention, the indices in the product of the Ly ,s are in decreasing order as
we move from left to right. The twisted periodicity condition (3.2) is then equivalent to
Thi1Lln = LTy, (3.4)

which implies that the eigenvalues of T,, are independent of n. We may thus define the
spectral curve of the system L,, by

I = {(2,y): det(yl — Tu()) = 0}. (3.5)
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Construction of g, (x)

We look for g,,(x) under the form g, (z) = a,2? + b,x + ¢, where a,, by, ¢, are 3 x 3
matrices. The periodicity condition ¢n+1Ln+nN—2 = Lypgy is equivalent to the following
system of equations

Cn+1 = Cnp,

T _ T
Un+19n+N—2Pn+ N—2 = 4nPp On, (3 6)
T T !
Apy1 + bn+1Qn+N—2pn+N—2 = Gpn + GnP, brm

bn+1 + Cn+1Qn+N72pE+N72 = by + angcn'

We claim that this system can be solved completely in terms of the following parameters

a 9 b ) & )
T T T - (3'7)
(pTaqT’)7'",(pT+N*37qT+N73)> qnpnzoa T<H<T+N—3,
for any choice of initial index r. To see this, define pp+N—2, Gn+n—2 Dy
pE+N—2 :p;l;ana gn+N—-2 = /\;Lla;blchu (38)

with A, a scalar yet to be determined. Then p;, x_o@nin—2 = A, 'qp P = 0 and orthog-
onality is preserved. With ¢, = ¢o for all n and py_24n, ¢nv—24n defined already as
indicated, the last two equations in (3.6) can be viewed as recursion relations defining
ant1 and by, 1. Our task is to show now that A, can be chosen so as to satisfy the second
equation in (3.6), which we rewrite as

—1 —1 T T
An  Cng 1y, Dy Gn = QnPp On -

Now the recursive equation for a,; implies that
an+1a;1Qn + bn+1/\r_zlar_LIanzana;1qn =(gn + qnp;l;bnagl%l'

The second term on the left-hand side vanishes since p!q, = 0. Furthermore, the term
prbya,tq, on the right-hand side is a scalar, so that the preceding equation implies
that g, is an eigenvector for the operator a,1a;'. Thus the second equation in (3.6) is
satisfied by choosing \,, to be the corresponding eigenvalue

an+1a;1qn = AGn, A =1 +p};bna;1qn, (3.9)

completing the recursive construction.

Note that the spectral curve corresponding to generic chain constructed above has the
form (2.3). The dimension of the phase space equals D = 27 + 6(N — 2) — (N — 2) —
(N —2) —8 =4N + 11, which is equal to the dimension of the Jacobian bundle over the
family of curves defined by (2.3).
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Involution on the spectral curve

We turn to the task of choosing the twisted monodromy so that the spectral curve
admits the desired involution (2.1). Recall that the matrix h is given by h;; = 0, except
for hi3 = hgy = hs; = 1. In particular, h2 = 1. Let us impose the following constraints
on the spin chain and the twisted monodromy conditions

Pn = hp_pn_1, Gn = hq_n_1, gn(_x)hgfn7N+2($)h =" (310)

The first two constraints imply

N-3
To(—z) = gn(—a:)h< H L_Ilcn1(x)>h = gn(—x)hT:ﬁ_N_m(x)g_n_N_,_g(x)h.
k=0

Therefore, the last constraint implies that the spectral curve I' admits the involution
(r,y) — (—x,(2*/y)). Here we made use of the fact that L,(—z) = L,(z)~!, which
follows at once from the orthogonality condition ¢l p, = 0. For generic choice of initial
index m in (3.10) the second constraint is non-local in term of the corresponding param-
eters (3.7). It becomes local for a special choice of m. Let us assume for simplicity that N
is even. Then we choose m = —3 N + 1. The constraint (3.10) for n = m is the following
equation for g,,
Gm (=) hgm (2)h = 2.

Then the last matrix equation in (3.10) is equivalent to the system of equations (1.2) for
the matrices a = a,nh, b = by h and ¢ = ¢, h. The last equation in (1.2) implies that ¢ is
a traceless rank one matrix. Hence, it can be written in the form

c=ap",  Bla=0,

where «, 8 are orthogonal three-dimensional vectors. The third equation can be solved
for b in the form

b= p(aaf” +aB%a), p? (BT aa) = 1.

All the equations are satisfied for any «, 3, and any choice of a such that a? = 1. We
obtain in this way the crucial fact that the dimension of the admissible set of initial data
Im <> (@m,bm,cm) 18 equal to 8 = 4 + 4. The first term is the dimension of matrices a
and the second term is the dimension of orthogonal vectors «, # modulo transformation
a— ko, B— k1.

Degrees of freedom of the system

The system of vectors g, p, with the orthogonality constraint has 5(N —2) degrees of
freedom. The symmetry condition (3.10) reduces it to 2(N — 2) (for say, N even). Now
the system has the following gauge invariances.
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® (Gn,Pn) = (WnGns py 'Pn). This removes 1 (N — 2) degrees of freedom.

e A global invariance (¢n,pn) — (W™lq,,p,) under 3 x 3 matrices W satisfying
Wh = hW. Such matrices W are of the form

w11 w12 W13
W= 1w wia wu
w13 Wiz W11

Their space is five dimensional. However, one degree of freedom has already been
accounted for since diagonal matrices are of the form of the preceding gauge invari-
ance.

Thus the total number of gauge invariances is %(N —2)+4, and the number of degrees
of freedom for the variables ¢, p, is 2N — 8. A similar counting also produces the same
number 2N — 8 of degrees of freedom for the system when N is odd. Now, as we saw in
the previous section, the system a,,, b, ¢ has eight degrees of freedom. Altogether,
the number of degrees of freedom of our dynamical system is then

# degrees{ao, bo, co; (90, o), - - -, (qn—3,pN—3)} = 2N, (3.11)

which is the same as the dimension of the geometric phase space constructed out of the
curve I'/o and its Jacobian.

The dynamical equations of motion for q,, p,

The equations of motion are determined by the matrix M,, completing L,, into a Lax
pair with equations of motion L,, = My, +1L, — L, M,. In this case, they are given by the
matrices My (z) in (1.6). We claim that the matrices M,, satisfy the following periodicity
condition

M, n—2(x) = a, ' M, (x)ay,. (3.12)

In fact, the periodicity conditions for ¢, and p, imply that

—1 T —1 T
anflqnflpnan a’n q’ﬂpnla’n1>

—1 T —1
p;l;anan_lqn—l Prn—_14n—10n Qn

My N—o(x) = 33(

Using the fact that g,_1 is an eigenvector of ana;il, the first term on the right-hand
side can be easily recognized as
T
—1 qn—lp'n,
a,
pn anl

Similarly, the second term can also be rewritten as

mn-

T
—1 ann—l
n T a
Prn—14n

mny

using the fact that p is an eigenvector (on the left) of the matrix ana;, |,

pzana;j_l = )\npz. (3.13)
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To prove this identity, we use first the recursive relation defining a,,4+1 and obtain

1 _
pzan—&-l + rpzbn+lan1qnp;£an = pzan'
n

This implies already that pl is an eigenvector

Tb a1 -1
Pranan g = (1 — Do 21 fn "J;\l = qn) Py
3

It remains only to simplify the expression for the eigenvalue. This is done using the

recurrence relation defining b, 41:

An — pzbn-&-la;l‘h =1 JFPZ(bn - bn-&-l)a;lqn

1 - _
=1+p! (/\cnﬂanlqnpzan — qnpgcn>an1qn =1.
n

The proof of the relation (3.13) and hence of the periodicity relations for M, is complete.

Equations of motion for a,,, by, ¢

Let ¥, be the solution of the equations ¥, = L,¥,, &\¥, = M,¥,, which
eigenvector for the monodromy matrix

ywn - gnwn+N72~
Taking the derivative of the last equation we obtain
gn = Mngn - gnMn+N727

which is equivalent to the equations

: Gn-1Py  AnPa_y i (@naPr dnPha
ap = T G by — bnan T - T Qp,
Pndn-1 Pn_14n Pndn-1 Pr—_19n

P Y 1 1Py GnPha
n — T - T Cp — Cp n T T An,
ann—l pn_1Qn ann—l pn_1Q’n

cn = 0.

is the

(3.14)

(3.15)

The key consistency condition which has to be verified is that for m = —%N + 1, this
dynamical system restricts to the variety of matrices a = anh, b = by, h, ¢ = ¢;nh defined
by the equation (1.2). Among these, the difficult equation to check is b*> = ac + ca, and
we turn to this next. Here we have assumed to be specific that N is even. The case of IV

odd is similar.
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Relations at m = —1N +1

We claim that the periodicity of the system together with their involution relations
imply the following relations at m = f%N + 1:

At dm—1 = W, Doy, = pr,fllh,} (316)

a;}%rz = )\mhqm—ly /\m—lp;rn_lam = p%h

To see this, we note that the periodicity conditions with n = m and n = m — 1 give,
respectively,

1 _
q—m = Taml%”m me = p%am,
m
1
qd—m-1= amqufn—la pzm—l = pgz—lamfb
A7n—1
On the other hand, the involution relation with n = —m and n = —m — 1 gives
q—m = hgm—1, P—m = hpm-_1,
d—m—-1= th, P—m-1= hpm

Eliminating q_ ., P—m, §—m—1, P—m—1 between these relations, and applying the relation
a;lqn = )\na;ilqn, p}:an = )\np}:anﬂ, we obtain the desired relations.

In terms of a, b, ¢, the above relations imply in particular

1
)\mfl

pzz—la = pgw a'ilqm—l =d4m- (317)

We now claim that
Am = Am—1 = 1. (3.18)

In fact, the first and third relations in (3.16) imply at once g1 = Apm—1(@mh)*gm_1,
and hence \,,_; = 1. Next we show that A,,, = 1. Recalling the expression (3.9) for A,,,_1,
we may also write

)\mfl =1 +p;—1bm71a:n171Qm71 =1 +P;Fna(bm—1h)Qma

using the facts that p- | = (1/\,_1)pta and a,;{lqm,l = Am_1hqm—_1. We use now
the inductive relation on the b,,s:

b+ Cailqulpﬁfla = (bmflh) + melpzz—lc'
Substituting in the previous formula for \,,_1 gives
A1 =1+ phalb+ ca™ gm-1ph_10 = Gm-1P_1¢)gm = 1 + pp,abgm

since pla and ag,, are proportional to pl,_; and g,,_1, respectively, and p,, and ¢, are
orthogonal. Since we also know that \,,_; = 1, we deduce that p} abg,, = 0. Now the
relation (3.9) applies to A, itself, giving

A =1+ phbnatan =1+ phba g =1+ phbag, = 1+ prabgm,
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where we have used the equations (1.2) for a, b, c. Since pl abg,, is known to vanish, it
follows that A, = 1.
We can now return to the equations of motion for a,,, by, ¢n. The equations (3.16)

imply

1
P 1Gm = ——— D O, = P Q1. (3.19)

)\mfl )\mfl

Using (3.16) and (3.19), it is now easy to recast the equations of motion (3.15) for a,p,,
b, Cm in terms of the equations of motion (1.2) for a, b, ¢

T T
a=Qb+bQ, b=Qc+cQ, Q= qT;lpn _ q’f;pnfl .
Pndn—-1  DPn_19n

Now the compatibility condition for b is b> = ac + ca, which implies bb + bb = ac + ca.
Substituting in the previous formulae show that this is verified.

4. The symplectic form

We turn now to the third statement in the Main Theorem, which concerns the Hamil-
tonian structure of our dynamical system. Since the arguments here are very close to
the ones in our earlier work [10], except for corrections due to the twisted monodromy
conditions, we shall be very brief.

As in [10], our approach is based on the universal symplectic forms obtained in [8, 9]
in terms of Lax pairs. Although our main interest is the symplectic form w defined in § 1,
there are other symplectic forms and flows which can be treated at the same stroke. Thus
we define the following symplectic forms w(y)

3
W) = % Z 1%6813(y Q(g), (41)
a=1
where 4
ey = (111 (Q) L) A 50 (@))i + Vi (g ™) A Stb) 7 (4.2)

The various expressions in this equation are defined as follows. The notation (f, ) stands

for the sum:
k+N-3

<fn>k: Z In- (4.3)
n=k

The expression ¢ (Q) is the dual Baker—Akhiezer function, which is the row-vector solu-
tion of the equation

Un1(@Ln(2) = ¢0(Q),  Yien—agr (Q) =y '¥i(Q), (4.4)

normalized by the condition

Ve(@)vr(Q) = 1. (4.5)
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Note that the last term in the definition of the symplectic form reflects the twisted
boundary conditions. As we shall see, that makes the form independent of the choice of
the initial index n = k.

We show now that the symplectic form wgy coincides with w. In fact, more generally,

2N -2 Sz
wiy ==Y Fmy(z) A (=)- (4.6)
i=1

The expression (2(y) is a meromorphic differential on the spectral curve I'. Therefore,
the sum of its residues at the punctures P, is equal to the opposite of the sum of the
other residues on I'. For £ < 2, the differential 2(y) is regular at the points situated over
x = 0, thanks to the normalization (4.5), which insures that 61,,(Q) = O(z). Otherwise,
it has poles at the poles z; of ¥,(Q) and at the branch points s;, where we have seen
that vy, (Q) has poles. We analyse in turn the residues at each of these two types of
poles.

First, we consider the poles z; of 1,,(Q). By genericity, these poles are all distinct and
of first order, and we may write

0
Res., () = (6510 Lutbu) + 0L (0gngc ) A T (20): (4.7)

The key observation now is that the right-hand side can be rewritten in terms of the
monodromy matrix T, (x). In fact, the recursive relations v, 1 = Ly, and 1), | Ly, =
1 imply that

(% 18 Lntbn) i + Vi (g9 " )n

k+N—2 k+N—2 n—1
= > Uiinoo ( 11 Lp)aLn <H Lp> Ur + VreN—2(95 098k sN—2
n=k p=n+1 p=k
= Vi N2y 0Tk = d1ny.
In the last equality, we have used the standard formula for the variation of the eigenvalue
of an operator, V0T, = V5 (dy)y. Altogether, we have found that

ox
Res., 25y = 6Iny(z;) A ﬁ(zl)

The second set of poles of {2, is the set of branching points s; of the cover. Arguing
as in [10, p. 563], we find

oy dx
zldy’

Resy, 2y = Res,, [(¥ 10 Lndtn )i + Vi (6gigy ") dr] A

Due to the identities dL(s;) = dgg(s;) = 0, this can be rewritten as

oy dx

ReSSi Q(l) = Ressi (w;::+N72gk716Tk dwk) A 2t dy :
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Next, exploiting the antisymmetry of the wedge product, we may replace §7T}, in (4.8) by
(6Ty, — 0y). Then using the identities

Vesn_o0n 0Tk — 0y) = 6(Viy v —29x )y — Th),
(y — Ti) dypp, = (dTy — dy) g,

which result from 1/12+N_Qg,;1(Tk —y) = (T — y)¥r, = 0, we obtain

oy dx

Ress, () = Ress, (0(¥f 4 n_o9; ) (AL — dy)ie) A 2y’

Arguing as before we arrive at

" _ dz
Ress, £2(s) = Res, (Vi1 v 295 151/%) A 5y?.

The differential form
. dx
(Vs N—20%k) A 6yﬁ
is holomorphic at z = 0 for 0 < £ < 2. Therefore,

. _ dz = . _ dz
Z Ress, (Vr 1 n—295, Loty) A 5.@? = - Z Res., (Y1 n_29p L5ey) A 5yﬁ.

Si =1

Using again the fact that ¥} +k_2g,;1 =y~ 147, the right-hand side of the last equation
can be recognized as

2N -2 5e(z)

Z dIny(zi) N ——-
i=1 zf(zi)

Finally, we obtain

2N 2N -2

T z;
2(4)([) I ZReszi Q(e) — ZReSSi .Q(g) =2 Z 51Hy(21) A\ {L’e((z)) .
55 i=1 !

i=1

(9]

The identity (4.6) is proved.

The Hamiltonian of the flow
Let M) be the reduced phase space defined by the following constraints

M(O) - {(CImanmmen); UN = Qp, UN—-1 = al}/G’
M(Q) = {(Qnapn§an>bnvcn); Up = g, U = al}/G’

where (¢n, Dns @n, by, € satisfy the conditions of the previous sections, G is the group of
all allowable gauge transformations, and ag, ay are fixed constants.
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Lemma 4.1. Let ¢ be either 0 or 2. Then the equations (1.3) restricted on M are
Hamiltonian with respect to the symplectic form w) given by (4.6). The Hamiltonians
H y are given by

H(o) = UN-2, H(g) zlnuN.

Proof. By definition, a vector field d; on a symplectic manifold is Hamiltonian, if its
contraction ig,w(X) = w(X, 0;) with the symplectic form is an exact one-form 6 H (X).
The function H is the Hamiltonian corresponding to the vector field d;. Thus

io, w0y = 5 O Resp, (10 Lnthn)k — (051 Endtn)i
ULk o — gy o) S

The equation of motion for 1, = (M,, + p), implies

dx
ZRGSPQ n+15Ln¢nk o ZReSP Yy 10 (Mn-ﬁ-/i)wn)kﬁ

d:v
:ZRGSPa P 10Lnn) ke ner

We used here the equation
N dz
> Resp, (U510 L Muthn)s—7 =0,
@

which is valid because the corresponding differential is holomorphic everywhere except
at the punctures. We will drop similar terms in all consequent equations. The equation
of motion (1.5) for L,, implies

<¢*L51/)n>k = (Vng1 (M1 Ly — L My )60 ),
= <w;+1Mn+157pn+1 - wnMn§wn>k - <¢:+1Mn+1éann>k
= Ypi N2 My N—200k 4 N2 — Vi M0 — (Y1 My 10 Lntn ) -

Again the last term does not contribute to the sum of residues.
Using the equation of motion for g; and the equation

Yo = grdVi+N—2 + 0gk ke N—2 — OYr,

we obtain

Vi (grgy )0k = Ve Moty — yvji n_oMiyN—20; 00k
= Y Myoy — ¢Z+N—2Mk+N—25¢k+N—2
— Vi n—a M N —2(g;, ' 0gk) ki n 2
+ Vp i N_oMiyN—2YpeN—201InY.
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The last term does not contribute to a sum of the residues due to the constraints j Iny =
O(x72) for £ =0 and §Iny = O(x) for £ = 2.
The expression for ig,w(,) reduces to

. 1 N _ Q,t)dx
io, (0 = 5 > Resp, (5 418Lnthn)k + Gr(59x9; I)W)%
1 dzx
= Z Resp, d(Iny)u(t, Q)?
The proof can now be completed as in [10, p. 567]. |

5. O-function solutions

Since the system (1.3) is completely integrable, we can obtain exact solutions in terms
of #-functions associated to the spectral curve. We give these formulae here without
details, since their derivation is entirely similar to the one in [10, pp. 557-560], taking
into account the twisted monodromy.

Let v, be the Baker—Akhiezer function, which solves the simultaneous equations
Unt1 = Lp¥n, Opy, = Mpaby,. Its components 1,4, 1 < a = 3, are given by

Q
ot Q) = bnalt Q) exp ( / nd @+ tdm),

0(A(Q) +tUY +nV + Z,)0(Zy)
0(A(Q) + Zo)O(tUT +nV + Zy)

¢n,a(ta Q) = TO(Q)

Here 6(Z) if the Riemann-theta function associated to the period matrix of the spectral
curve; A(Q) is the Abel map; V, U™ are the vectors of B-periods of the meromorphic
differentials df2y, d2% defined by the following requirements. The differentials df2y and
df2; have zero A-periods, they are holomorphic outside the two points P;, Ps above
oo interchanged by the involution o, with df2y having simple poles and residues =1,
while d27F is of the form d2T = +dz(1 + O(z~?2)) at these two points. The r,(Qgs)
are meromorphic functions satisfying the normalization condition r,(Qg) = dag and the
condition that their divisor of poles Zy correspond to the initial data g,(0), p,(0) of the
dynamical system. Let P, be the point above oo fixed by the involution, and let df2; be
the meromorphic form satisfying df2; + dQ2¢ = dQ27F, where df2¢ is the image of d{2
under the involution o.

The Laurent expansion of the last factor as Q — P; defines constants v;q, W;o, which
depend only on the curve

P> T
V2g :/ df2y, vjn = lim (/ dfy :Flnx), 1=1,3,
rz—P; o

@

P2 xr
Woq = / dQl, Wi = IILI)IJID </ d.Ql + (E>, 1= 1,3

a4
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Let & (t) be vectors with coordinates
PL0(1) = bnalt, D)oot

Then the vector p,, of the spin chain is the unique (up to multiplication; different choices
lead to different gauge choices v,(t) in our dynamical system (1.3)) three-dimensional
vector that is orthogonal to égf), 1=2,3, ie.

R
and the vector ¢, is given by the formula
)

o qu*)(l) )

n n—1

dn

The leading coefficients of the expansion of the Baker—Akhiezer function provide also
the expression for the variables a,. In the normalization ¢ = (¢;;) with ¢13 = 1 and
¢;; = 0 for all other 4, j, we find

= 51
Ap = ¢N+n—2¢n 5

where &, is the (3 x 3) matrix with columns Y.
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