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1. Introduction

The 1994 work of Seiberg and Witten [14, 15] revealed the existence of a deep corre-
spondence between supersymmetric gauge theories and integrable models [5,7,12,13].
However, the specific list of correspondences is still far from complete at the present time
(cf. [1–4] and references therein). In particular, it is still not known how to construct
the integrable model which corresponds to the N = 2, SU(N) gauge theory with mat-
ter in the symmetric representation, although the spectral curve has been identified by
Landsteiner and Lopez using M Theory [6,11].

The purpose of this paper is to solve this problem. In [10], we had solved a similar, but
simpler problem, which is to construct the integrable model corresponding to the SU(N)
gauge theory with matter in the antisymmetric representation. The main new difficulty
is the asymmetry between the orders of the zero and the pole of the eigenvalues of the
monodromy operator at the two compactification points of the spectral curve. The desired
integrable model turns out to be still a spin chain pn, qn, but whose main feature is a new
periodicity condition linking pn+N+2, qn+N+2 to pn, qn through a twisted monodromy
operator. Such periodicity conditions have not appeared before in the literature, and we
take the opportunity to discuss them in some detail. An earlier proposal of how they can
be used to construct other integrable models is in [8], but not pursued further there.

The mathematical problem can be formulated very simply. It is to find an integrable
Hamiltonian system with spectral parameter x, spectral curve

R(x, y) ≡ y3 + fN (x)y2 + fN (−x)x2y + x6 = 0 (1.1)
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and symplectic form

ω =
2N−2∑
i=1

δx(zi) ∧ δy

y
(zi).

Here fN (x) =
∑N

i=0 uix
i is a generic polynomial of degree N , and the parameters ui

can be viewed as the moduli of the spectral curve. A system with the desired properties
can be obtained as follows. Let qn, pn be complex three-dimensional (column) vectors
satisfying qT

n pn = 0 and the reflexivity condition pn = hp−n−1, qn = hq−n−1, where h

is the 3 × 3 matrix whose only non-zero entries are h31 = h22 = h13 = 1. Let a, b, c be
3 × 3 matrices satisfying

a2 = 1, ab = ba, b2 = ac + ca, bc = cb, c2 = 0. (1.2)

Consider the dynamical system

ṗn =
pn+1

pT
n+1qn

+
pn−1

pT
n−1qn

+ µnpn, q̇n = − qn+1

pT
nqn+1

− qn−1

pT
nqn−1

− µnpn,

ȧ =
{

qm−1p
T
m

pT
mqm−1

−
qmpT

m−1

pT
m−1qm

, b

}
, ḃ =

{
qm−1p

T
m

pT
mqm−1

−
qmpT

m−1

pT
m−1qm

, c

}
, ċ = 0,


 (1.3)

where µn(t) is an arbitrary scalar function, and we have set m = − 1
2N + 1 for N even

and m = − 1
2N + 1

2 for N odd. The system (1.3) appears uncoupled, but it will not be
after imposing twisted monodromy conditions. More precisely, we have the following.

Main Theorem. Let x be an external parameter, and set Ln(x) = 1+xqnpT
n . Then the

following holds.

(a) There are unique 3×3 matrices gn(x) = anx2+bnx+cn which satisfy the periodicity
condition

gn+1Ln+N−2 = Lngn (1.4)

for any fixed data ar, br, cr, (pn, qn)n=r+N−3
n=r with the constraint qT

n pn = 0.

(b) Consider the dynamical system (1.3) with am = ah, bm = bh, cm = ch. Then the
system is integrable in the sense that it is equivalent to the following Lax equation

L̇n = Mn+1Ln − LnMn, (1.5)

where Mn(x) is the 3 × 3 matrix defined by

Mn(x) = x

(
qn−1p

T
n

pT
nqn−1

−
qnpT

n−1

pT
n−1qn

)
. (1.6)

(c) The spectral curve Γ = {(x, y); det(yI − gn(x)Ln+N−3(x) · · ·Ln(x)) = 0} for the
Lax equation (1.5) is independent of n. It coincides with the Landsteiner–Lopez
curve (1.1), and the system (1.3) is Hamiltonian with respect to the symplectic form
ω on the reduced phase space uN = 1, uN−1 = 0. The Hamiltonian is H = uN−2.
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2. The Landsteiner–Lopez curve for the symmetric representation

It is convenient to list here the main geometric properties of the curve (1.1), which will
henceforth be referred to as the LL (Landsteiner–Lopez) curve. It admits the following
involution

σ : (x, y) →
(

−x,
x4

y

)
. (2.1)

Points above x = ∞ and x = 0

Above x = ∞, there are three distinct solutions of the LL equation, given by y ∼ xN ,
y ∼ x−N+4 and y ∼ x2. The involution σ interchanges the first two, leaving the third
one fixed.

Above x = 0, there are also three solutions, given by y ∼ x2, y ∼ x4 and y ∼ 1. The
involution interchanges the last two points, while the first one is left fixed. The points
y ∼ x2 and y ∼ x4 cross each other, but they are not branching points.

Genus of the LL curve

The Riemann–Hurwitz formula says that the genus g of the LL curve is given by
2g − 2 = −6 + ν, where ν is the number of branching points (for generic moduli, the
branching index is 2, which we assume). The branching points correspond to zeros of
∂yR(x, y)

3y2 + 2yfN (x) + fN (−x)x2 = 0.

To determine their number, we determine the number of poles of ∂yR(x, y). These occur
at x = ∞. At x = ∞, the three solutions y ∼ xN , y ∼ x2 and y ∼ x−N+4 contribute,
respectively, 2N , N + 2 and N + 2 poles, for a total of 4N + 4 poles. Thus there are
also 4N + 4 zeros. At x = 0, there are two zeros y ∼ x2 and y ∼ x4, at each of which
∂yR(x, y) vanishes of second order. Thus the number ν of branching points is given by
ν = 4N + 4 − 2 − 2 = 4N , and consequently

genus(Γ ) = 2N − 2.

Genus of the quotient curve

Let g0 be the genus of Γ0 = Γ/σ. Since Γ has two branch points over Γ0, namely
y ∼ x2 at x = ∞ and y = x2 at x = 0, the Riemann–Hurwitz formula applies and gives
2g − 2 = 2(2g0 − 2) + 2, from which it follows that

g0 = N − 1. (2.2)

General case

The LL curve can be seen as a special case of a general family of curves defined by the
equation

R(x, y) ≡ y3 + fN (x)y2 + gN+2(x)y + r6(x) = 0, (2.3)
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where gN+2 and r6(x) are polynomials of degree N + 2 and 6, respectively. This family
has 2N + 11 moduli. The genus of a curve Γ defined by this equation can be found as
before. It equals

genus(Γ ) = 2N. (2.4)

3. Construction of the spin chain

We now give the proof of the Main Theorem. Since finding the desirable integrable
model is an essential component of our result, we construct the model gradually instead
of proceeding from its final description. It is natural to look for a spin chain of three-
dimensional vectors with a period of N + 2 spins, in order to arrive at a spectral curve
of the form (2.3). The difficult steps are to create an involution of the form (2.1) and to
obtain the correct number of degrees of freedom.

The spin chain system

We look for a spin chain system of the form

ψn+1 = Ln(x)ψn (3.1)

with the operators Ln(x) given by Ln(x) = 1 + xqnpT
n , where x is an external variable,

and qn, pn are three-dimensional complex vectors satisfying the condition qT
n pn = 0. The

vectors qn and pn should be viewed as column vectors, so that qT
n pn is a scalar, while

qnpT
n is a 3 × 3 matrix.

Twisted monodromy conditions

The key feature of the construction is the imposition of suitable twisted boundary
conditions. Now the usual periodicity condition Ln+N−2(x) = Ln(x) can be expressed
as TL = LT , if we define the monodromy operator to be (Tψ)n = ψn+N−2. For the
Landsteiner–Lopez curve, we require a twisted periodicity condition of the form

gn+1(x)Ln+N−2(x) = Ln(x)gn(x), (3.2)

with the gn(x)’s suitable 3 × 3 matrices to be chosen later. This requires in turn the
following more subtle choice of monodromy operator Tn(x)

Tn(x) = gn(x)
N−3∏
k=0

Lk+n(x), (3.3)

where, by convention, the indices in the product of the Lk+ns are in decreasing order as
we move from left to right. The twisted periodicity condition (3.2) is then equivalent to

Tn+1Ln = LnTn, (3.4)

which implies that the eigenvalues of Tn are independent of n. We may thus define the
spectral curve of the system Ln by

Γ = {(x, y); det(yI − Tn(x)) = 0}. (3.5)
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Construction of gn(x)

We look for gn(x) under the form gn(x) = anx2 + bnx + cn, where an, bn, cn are 3 × 3
matrices. The periodicity condition gn+1Ln+N−2 = Lngn is equivalent to the following
system of equations

cn+1 = cn,

an+1qn+N−2p
T
n+N−2 = qnpT

nan,

an+1 + bn+1qn+N−2p
T
n+N−2 = an + qnpT

nbn,

bn+1 + cn+1qn+N−2p
T
n+N−2 = bn + qnpT

ncn.




(3.6)

We claim that this system can be solved completely in terms of the following parameters

ar, br, cr,

(pr, qr), . . . , (pr+N−3, qr+N−3), qT
n pn = 0, r � n � r + N − 3,

}
(3.7)

for any choice of initial index r. To see this, define pn+N−2, qn+N−2 by

pT
n+N−2 = pT

nan, qn+N−2 = λ−1
n a−1

n qn, (3.8)

with λn a scalar yet to be determined. Then pT
n+N−2qn+N−2 = λ−1

n qT
n pn = 0 and orthog-

onality is preserved. With cn = c0 for all n and pN−2+n, qN−2+n defined already as
indicated, the last two equations in (3.6) can be viewed as recursion relations defining
an+1 and bn+1. Our task is to show now that λn can be chosen so as to satisfy the second
equation in (3.6), which we rewrite as

λ−1
n an+1a

−1
n qnpT

nan = qnpT
nan.

Now the recursive equation for an+1 implies that

an+1a
−1
n qn + bn+1λ

−1
n a−1

n qnpT
nana−1

n qn = qn + qnpT
nbna−1

n qn.

The second term on the left-hand side vanishes since pT
nqn = 0. Furthermore, the term

pT
nbna−1

n qn on the right-hand side is a scalar, so that the preceding equation implies
that qn is an eigenvector for the operator an+1a

−1
n . Thus the second equation in (3.6) is

satisfied by choosing λn to be the corresponding eigenvalue

an+1a
−1
n qn = λnqn, λn = 1 + pT

nbna−1
n qn, (3.9)

completing the recursive construction.
Note that the spectral curve corresponding to generic chain constructed above has the

form (2.3). The dimension of the phase space equals D = 27 + 6(N − 2) − (N − 2) −
(N − 2) − 8 = 4N + 11, which is equal to the dimension of the Jacobian bundle over the
family of curves defined by (2.3).
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Involution on the spectral curve

We turn to the task of choosing the twisted monodromy so that the spectral curve
admits the desired involution (2.1). Recall that the matrix h is given by hij = 0, except
for h13 = h22 = h31 = 1. In particular, h2 = 1. Let us impose the following constraints
on the spin chain and the twisted monodromy conditions

pn = hp−n−1, qn = hq−n−1, gn(−x)hg−n−N+2(x)h = x4. (3.10)

The first two constraints imply

Tn(−x) = gn(−x)h
(N−3∏

k=0

L−1
−k−n−1(x)

)
h = gn(−x)hT−1

−n−N+2(x)g−n−N+2(x)h.

Therefore, the last constraint implies that the spectral curve Γ admits the involution
(x, y) → (−x, (x4/y)). Here we made use of the fact that Ln(−x) = Ln(x)−1, which
follows at once from the orthogonality condition qT

n pn = 0. For generic choice of initial
index m in (3.10) the second constraint is non-local in term of the corresponding param-
eters (3.7). It becomes local for a special choice of m. Let us assume for simplicity that N

is even. Then we choose m = − 1
2N + 1. The constraint (3.10) for n = m is the following

equation for gm

gm(−x)hgm(x)h = x4.

Then the last matrix equation in (3.10) is equivalent to the system of equations (1.2) for
the matrices a ≡ amh, b ≡ bmh and c ≡ cmh. The last equation in (1.2) implies that c is
a traceless rank one matrix. Hence, it can be written in the form

c = αβT, βTα = 0,

where α, β are orthogonal three-dimensional vectors. The third equation can be solved
for b in the form

b = µ(aαβT + αβTa), µ2(βTaα) = 1.

All the equations are satisfied for any α, β, and any choice of a such that a2 = 1. We
obtain in this way the crucial fact that the dimension of the admissible set of initial data
gm ↔ (am, bm, cm) is equal to 8 = 4 + 4. The first term is the dimension of matrices a

and the second term is the dimension of orthogonal vectors α, β modulo transformation
α → κα, β → κ−1β.

Degrees of freedom of the system

The system of vectors qn, pn with the orthogonality constraint has 5(N −2) degrees of
freedom. The symmetry condition (3.10) reduces it to 5

2 (N − 2) (for say, N even). Now
the system has the following gauge invariances.
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• (qn, pn) → (µnqn, µ−1
n pn). This removes 1

2 (N − 2) degrees of freedom.

• A global invariance (qn, pn) → (W−1qn, pn) under 3 × 3 matrices W satisfying
Wh = hW . Such matrices W are of the form

W =


w11 w12 w13

w21 w22 w21

w13 w12 w11


 .

Their space is five dimensional. However, one degree of freedom has already been
accounted for since diagonal matrices are of the form of the preceding gauge invari-
ance.

Thus the total number of gauge invariances is 1
2 (N −2)+4, and the number of degrees

of freedom for the variables qn, pn is 2N − 8. A similar counting also produces the same
number 2N − 8 of degrees of freedom for the system when N is odd. Now, as we saw in
the previous section, the system am, bm, cm has eight degrees of freedom. Altogether,
the number of degrees of freedom of our dynamical system is then

# degrees{a0, b0, c0; (q0, p0), . . . , (qN−3, pN−3)} = 2N, (3.11)

which is the same as the dimension of the geometric phase space constructed out of the
curve Γ/σ and its Jacobian.

The dynamical equations of motion for qn, pn

The equations of motion are determined by the matrix Mn completing Ln into a Lax
pair with equations of motion L̇n = Mn+1Ln − LnMn. In this case, they are given by the
matrices Mn(x) in (1.6). We claim that the matrices Mn satisfy the following periodicity
condition

Mn+N−2(x) = a−1
n Mn(x)an. (3.12)

In fact, the periodicity conditions for qn and pn imply that

Mn+N−2(x) = x

(
a−1

n−1qn−1p
T
nan

pT
nana−1

n−1qn−1
−

a−1
n qnpT

n−1an−1

pT
n−1an−1a

−1
n qn

)
.

Using the fact that qn−1 is an eigenvector of ana−1
n−1, the first term on the right-hand

side can be easily recognized as

a−1
n

qn−1p
T
n

pT
nqn−1

an.

Similarly, the second term can also be rewritten as

a−1
n

qnpT
n−1

pT
n−1qn

an,

using the fact that pT
n is an eigenvector (on the left) of the matrix ana−1

n+1

pT
nana−1

n+1 = λnpT
n . (3.13)
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To prove this identity, we use first the recursive relation defining an+1 and obtain

pT
nan+1 +

1
λn

pT
nbn+1a

−1
n qnpT

nan = pT
nan.

This implies already that pT
n is an eigenvector

pT
nana−1

n+1 =
(

1 − pT
nbn+1a

−1
n qn

λn

)−1

pT
n .

It remains only to simplify the expression for the eigenvalue. This is done using the
recurrence relation defining bn+1:

λn − pT
nbn+1a

−1
n qn = 1 + pT

n (bn − bn+1)a−1
n qn

= 1 + pT
n

(
1
λn

cn+1a
−1
n qnpT

nan − qnpT
ncn

)
a−1

n qn = 1.

The proof of the relation (3.13) and hence of the periodicity relations for Mn is complete.

Equations of motion for am, bm, cm

Let Ψn be the solution of the equations Ψn = LnΨn, ∂tΨn = MnΨn, which is the
eigenvector for the monodromy matrix

yΨn = gnΨn+N−2.

Taking the derivative of the last equation we obtain

ġn = Mngn − gnMn+N−2, (3.14)

which is equivalent to the equations

ȧn =
(

qn−1p
T
n

pT
nqn−1

−
qnpT

n−1

pT
n−1qn

)
bn − bna−1

n

(
qn−1p

T
n

pT
nqn−1

−
qnpT

n−1

pT
n−1qn

)
an,

ḃn =
(

qn−1p
T
n

pT
nqn−1

−
qnpT

n−1

pT
n−1qn

)
cn − cna−1

n

(
qn−1p

T
n

pT
nqn−1

−
qnpT

n−1

pT
n−1qn

)
an,

ċn = 0.




(3.15)

The key consistency condition which has to be verified is that for m = − 1
2N + 1, this

dynamical system restricts to the variety of matrices a = amh, b = bmh, c = cmh defined
by the equation (1.2). Among these, the difficult equation to check is b2 = ac + ca, and
we turn to this next. Here we have assumed to be specific that N is even. The case of N

odd is similar.
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Relations at m = −1
2N + 1

We claim that the periodicity of the system together with their involution relations
imply the following relations at m = − 1

2N + 1:

a−1
m qm−1 = hqm, pT

mam = pT
m−1h,

a−1
m qm = λmhqm−1, λm−1p

T
m−1am = pT

mh.

}
(3.16)

To see this, we note that the periodicity conditions with n = m and n = m − 1 give,
respectively,

q−m =
1

λm
a−1

m qm, pT
−m = pT

mam,

q−m−1 =
1

λm−1
a−1

m−1qm−1, pT
−m−1 = pT

m−1am−1.

On the other hand, the involution relation with n = −m and n = −m − 1 gives

q−m = hqm−1, p−m = hpm−1,

q−m−1 = hqm, p−m−1 = hpm.

Eliminating q−m, p−m, q−m−1, p−m−1 between these relations, and applying the relation
a−1

n qn = λna−1
n+1qn, pT

nan = λnpT
nan+1, we obtain the desired relations.

In terms of a, b, c, the above relations imply in particular

pT
m−1a =

1
λm−1

pT
m, a−1qm−1 = qm. (3.17)

We now claim that
λm = λm−1 = 1. (3.18)

In fact, the first and third relations in (3.16) imply at once qm−1 = λm−1(amh)2qm−1,
and hence λm−1 = 1. Next we show that λm = 1. Recalling the expression (3.9) for λm−1,
we may also write

λm−1 = 1 + pT
m−1bm−1a

−1
m−1qm−1 = 1 + pT

ma(bm−1h)qm,

using the facts that pT
m−1 = (1/λm−1)pT

ma and a−1
m−1qm−1 = λm−1hqm−1. We use now

the inductive relation on the bns:

b + ca−1qm−1p
T
m−1a = (bm−1h) + qm−1p

T
m−1c.

Substituting in the previous formula for λm−1 gives

λm−1 = 1 + pT
ma(b + ca−1qm−1p

T
m−1a − qm−1p

T
m−1c)qm = 1 + pT

mabqm

since pT
ma and aqm are proportional to pT

m−1 and qm−1, respectively, and pn and qn are
orthogonal. Since we also know that λm−1 = 1, we deduce that pT

mabqm = 0. Now the
relation (3.9) applies to λm itself, giving

λm = 1 + pT
mbma−1

m qm = 1 + pT
mba−1qm = 1 + pT

mbaqm = 1 + pT
mabqm,
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where we have used the equations (1.2) for a, b, c. Since pT
mabqm is known to vanish, it

follows that λm = 1.
We can now return to the equations of motion for am, bm, cm. The equations (3.16)

imply

pT
m−1qm =

1
λm−1

pT
maqm =

1
λm−1

pT
mqm−1. (3.19)

Using (3.16) and (3.19), it is now easy to recast the equations of motion (3.15) for am,
bm, cm in terms of the equations of motion (1.2) for a, b, c

ȧ = Qb + bQ, ḃ = Qc + cQ, Q =
qn−1p

T
n

pT
nqn−1

−
qnpT

n−1

pT
n−1qn

.

Now the compatibility condition for b is b2 = ac + ca, which implies ḃb + bḃ = ȧc + cȧ.
Substituting in the previous formulae show that this is verified.

4. The symplectic form

We turn now to the third statement in the Main Theorem, which concerns the Hamil-
tonian structure of our dynamical system. Since the arguments here are very close to
the ones in our earlier work [10], except for corrections due to the twisted monodromy
conditions, we shall be very brief.

As in [10], our approach is based on the universal symplectic forms obtained in [8,9]
in terms of Lax pairs. Although our main interest is the symplectic form ω defined in § 1,
there are other symplectic forms and flows which can be treated at the same stroke. Thus
we define the following symplectic forms ω(�)

ω(�) = 1
2

3∑
α=1

ResPα Ω(�), (4.1)

where

Ω(�) = (〈ψ∗
n+1(Q)δLn(x) ∧ δψn(Q)〉k + ψ∗

k(δgkg−1
k ) ∧ δψk)

dx

x�
. (4.2)

The various expressions in this equation are defined as follows. The notation 〈fn〉k stands
for the sum:

〈fn〉k =
k+N−3∑

n=k

fn. (4.3)

The expression ψ∗
n(Q) is the dual Baker–Akhiezer function, which is the row-vector solu-

tion of the equation

ψ∗
n+1(Q)Ln(z) = ψ∗

n(Q), ψ∗
k+N−2g

−1
k (Q) = y−1ψ∗

k(Q), (4.4)

normalized by the condition
ψ∗

k(Q)ψk(Q) = 1. (4.5)
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Note that the last term in the definition of the symplectic form reflects the twisted
boundary conditions. As we shall see, that makes the form independent of the choice of
the initial index n = k.

We show now that the symplectic form ω(0) coincides with ω. In fact, more generally,

ω(�) = −
2N−2∑
i=1

δ ln y(zi) ∧ δx

x�
(zi). (4.6)

The expression Ω(�) is a meromorphic differential on the spectral curve Γ . Therefore,
the sum of its residues at the punctures Pα is equal to the opposite of the sum of the
other residues on Γ . For � � 2, the differential Ω(�) is regular at the points situated over
x = 0, thanks to the normalization (4.5), which insures that δψn(Q) = O(x). Otherwise,
it has poles at the poles zi of ψn(Q) and at the branch points si, where we have seen
that ψ∗

n+1(Q) has poles. We analyse in turn the residues at each of these two types of
poles.

First, we consider the poles zi of ψn(Q). By genericity, these poles are all distinct and
of first order, and we may write

Reszi
Ω(�) = (〈ψ∗

n+1δLnψn〉k + ψ∗
k(δgkg−1

k )ψk) ∧ δx

x�
(zi). (4.7)

The key observation now is that the right-hand side can be rewritten in terms of the
monodromy matrix Tn(x). In fact, the recursive relations ψn+1 = Lnψn and ψ∗

n+1Ln =
ψ∗

n imply that

〈ψ∗
n+1δLnψn〉k + ψk(δgkg−1

k )ψk

=
k+N−2∑

n=k

ψ∗
k+N−2

(k+N−2∏
p=n+1

Lp

)
δLn

(n−1∏
p=k

Lp

)
ψk + ψk+N−2(g−1

k δgk)ψk+N−2

= ψ∗
k+N−2g

−1
k δTkψk = δ ln y.

In the last equality, we have used the standard formula for the variation of the eigenvalue
of an operator, ψ∗

kδTkψk = ψ∗
k(δy)ψk. Altogether, we have found that

Reszi Ω(�) = δ ln y(zi) ∧ δx

x�
(zi).

The second set of poles of Ω(�) is the set of branching points si of the cover. Arguing
as in [10, p. 563], we find

Ressi
Ω(�) = Ressi

[〈ψ∗
n+1δLndψn〉k + ψ∗

k(δgkg−1
k ) dψk] ∧ δy dx

x� dy
.

Due to the identities dL(si) = dgk(si) = 0, this can be rewritten as

Ressi Ω(�) = Ressi

[
(ψ∗

k+N−2g
−1
k δTk dψk) ∧ δy dx

x� dy

]
. (4.8)
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Next, exploiting the antisymmetry of the wedge product, we may replace δTk in (4.8) by
(δTk − δy). Then using the identities

ψ∗
k+N−2g

−1
k (δTk − δy) = δ(ψ∗

k+N−2g
−1
k )(y − Tk),

(y − Tk) dψk = (dTk − dy)ψk,

which result from ψ∗
k+N−2g

−1
k (Tk − y) = (Tk − y)ψk = 0, we obtain

Ressi Ω(�) = Ressi(δ(ψ
∗
k+N−2g

−1
k )(dL − dy)ψk) ∧ δy dx

x� dy
.

Arguing as before we arrive at

Ressi
Ω(�) = Ressi(ψ

∗
k+N−2g

−1
k δψk) ∧ δy

dx

x�
.

The differential form

(ψ∗
k+N−2δψk) ∧ δy

dx

x�

is holomorphic at x = 0 for 0 � � � 2. Therefore,

∑
si

Ressi
(ψ∗

k+N−2g
−1
k δψk) ∧ δy

dx

x�
= −

2N−2∑
i=1

Reszi
(ψ∗

k+N−2g
−1
k δψk) ∧ δy

dx

x�
.

Using again the fact that ψ∗
N+k−2g

−1
k = y−1ψ∗

k, the right-hand side of the last equation
can be recognized as

2N−2∑
i=1

δ ln y(zi) ∧ δx(zi)
x�(zi)

.

Finally, we obtain

2ω(�) = −
2N∑
i=1

Reszi Ω(�) −
∑
si

Ressi Ω(�) = −2
2N−2∑
i=1

δ ln y(zi) ∧ δx(zi)
x�(zi)

.

The identity (4.6) is proved.

The Hamiltonian of the flow

Let M(�) be the reduced phase space defined by the following constraints

M(0) = {(qn, pn; an, bn, cn); uN = α0, uN−1 = α1}/G,

M(2) = {(qn, pn; an, bn, cn); u0 = α0, u1 = α1}/G,

where (qn, pn, an, bn, cn) satisfy the conditions of the previous sections, G is the group of
all allowable gauge transformations, and α0, α1 are fixed constants.
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Lemma 4.1. Let � be either 0 or 2. Then the equations (1.3) restricted on M(�) are
Hamiltonian with respect to the symplectic form ω(�) given by (4.6). The Hamiltonians
H(�) are given by

H(0) = uN−2, H(2) = lnuN .

Proof. By definition, a vector field ∂t on a symplectic manifold is Hamiltonian, if its
contraction i∂tω(X) = ω(X, ∂t) with the symplectic form is an exact one-form δH(X).
The function H is the Hamiltonian corresponding to the vector field ∂t. Thus

i∂tω(�) = 1
2

∑
α

ResPα(〈ψ∗
n+1δLnψ̇n〉k − 〈ψ∗

n+1L̇nδψn〉k

+ ψ∗
k(δgkg−1

k )ψ̇k − ψ∗
k(ġkg−1

k )δψk)
dx

x�
.

The equation of motion for ψ̇n = (Mn + µ)ψn implies

∑
α

ResPα〈ψ∗
n+1δLnψ̇n〉k

dx

x�
=

∑
α

ResPα
〈ψ∗

n+1δLn(Mn + µ)ψn〉k
dx

x�

=
∑
α

ResPα〈ψ∗
n+1δLnψn〉k

µdx

x�
.

We used here the equation

∑
α

ResPα〈ψ∗
n+1δLnMnψn〉k

dx

x�
= 0,

which is valid because the corresponding differential is holomorphic everywhere except
at the punctures. We will drop similar terms in all consequent equations. The equation
of motion (1.5) for Ln implies

〈ψ∗L̇δψn〉k = 〈ψ∗
n+1(Mn+1Ln − LnMn)δψn〉k

= 〈ψ∗
n+1Mn+1δψn+1 − ψnMnδψn〉k − 〈ψ∗

n+1Mn+1δLnψn〉k

= ψ∗
k+N−2Mk+N−2δψk+N−2 − ψkMkδψk − 〈ψ∗

n+1Mn+1δLnψn〉k.

Again the last term does not contribute to the sum of residues.
Using the equation of motion for gk and the equation

yδψk = gkδψk+N−2 + δgkψk+N−2 − δyψk,

we obtain

ψ∗
k(ġkg−1

k )δψk = ψ∗
kMkδψk − yψ∗

k+N−2Mk+N−2g
−1
k δψk

= ψ∗
kMkδψk − ψ∗

k+N−2Mk+N−2δψk+N−2

− ψ∗
k+N−2Mk+N−2(g−1

k δgk)ψk+N−2

+ ψ∗
k+N−2Mk+N−2ψk+N−2δ ln y.
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The last term does not contribute to a sum of the residues due to the constraints δ ln y =
O(x−2) for � = 0 and δ ln y = O(x) for � = 2.

The expression for i∂t
ω(�) reduces to

i∂tω(�) = 1
2

∑
α

ResPα(〈ψ∗
n+1δLnψn〉k + ψk(δgkg−1

k )ψk)
µ(Q, t) dx

x�

= 1
2

∑
α

ResPα δ(ln y)µ(t, Q)
dx

x�
.

The proof can now be completed as in [10, p. 567]. �

5. θ-function solutions

Since the system (1.3) is completely integrable, we can obtain exact solutions in terms
of θ-functions associated to the spectral curve. We give these formulae here without
details, since their derivation is entirely similar to the one in [10, pp. 557–560], taking
into account the twisted monodromy.

Let ψn be the Baker–Akhiezer function, which solves the simultaneous equations
ψn+1 = Lnψn, ∂tψn = Mnψn. Its components ψnα, 1 � α = 3, are given by

ψn,α(t, Q) = φn,α(t, Q) exp
(∫ Q

Qα

n dΩ0 + t dΩ+
)

,

φn,α(t, Q) = rα(Q)
θ(A(Q) + tU+ + nV + Zα)θ(Z0)
θ(A(Q) + Zα)θ(tU+ + nV + Z0)

.

Here θ(Z) if the Riemann-theta function associated to the period matrix of the spectral
curve; A(Q) is the Abel map; V , U+ are the vectors of B-periods of the meromorphic
differentials dΩ0, dΩ+ defined by the following requirements. The differentials dΩ0 and
dΩ+ have zero A-periods, they are holomorphic outside the two points P1, P3 above
∞ interchanged by the involution σ, with dΩ0 having simple poles and residues ±1,
while dΩ+ is of the form dΩ+ = ±dx(1 + O(x−2)) at these two points. The rα(Qβ)
are meromorphic functions satisfying the normalization condition rα(Qβ) = δαβ and the
condition that their divisor of poles Z0 correspond to the initial data qn(0), pn(0) of the
dynamical system. Let P2 be the point above ∞ fixed by the involution, and let dΩ1 be
the meromorphic form satisfying dΩ1 + dΩσ

1 = dΩ+, where dΩσ
1 is the image of dΩ1

under the involution σ.
The Laurent expansion of the last factor as Q → Pi defines constants viα, wiα, which

depend only on the curve

v2α =
∫ P2

Qα

dΩ0, viα = lim
x→Pi

(∫ x

Qα

dΩ0 ∓ lnx

)
, i = 1, 3,

w2α =
∫ P2

Qα

dΩ1, wiα = lim
x→Pi

(∫ x

Qα

dΩ1 ∓ x

)
, i = 1, 3.
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Let Φ
(i)
n (t) be vectors with coordinates

Φ(i)
n,α(t) = φn,α(t, Pi)enviα+twiα .

Then the vector pn of the spin chain is the unique (up to multiplication; different choices
lead to different gauge choices νn(t) in our dynamical system (1.3)) three-dimensional
vector that is orthogonal to Φ

(i)
n , i = 2, 3, i.e.

pT
nΦ(2)

n = pT
nΦ(3)

n = 0,

and the vector qn is given by the formula

qn =
Φ

(1)
n

pT
nΦ

(1)
n−1

.

The leading coefficients of the expansion of the Baker–Akhiezer function provide also
the expression for the variables an. In the normalization c = (cij) with c13 = 1 and
cij = 0 for all other i, j, we find

an = Φ̂N+n−2Φ̂
−1
n ,

where Φ̂n is the (3 × 3) matrix with columns Φ
(i)
n .
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