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ISOMONODROMY EQUATIONS ON ALGEBRAIC CURVES,
CANONICAL TRANSFORMATIONS AND WHITHAM

EQUATIONS

I. KRICHEVER
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Abstract. We construct the Hamiltonian theory of isomonodromy
equations for meromorphic connections with irregular singularities on
algebraic curves. We obtain an explicit formula for the symplectic struc-
ture on the space of monodromy and Stokes matrices. From these we
derive Whitham equations for the isomonodromy equations. It is shown
that they provide a flat connection on the space of spectral curves of
Hitchin systems.
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1. Introduction

The goal of this paper is multi-fold. Our first objective is to construct isomon-
odromy equations for meromorphic connections with irregular and regular singu-
larities on algebraic curves. The isomonodromy equations for linear systems with
irregular singularities on rational curves generalizing Schlesinger’s equations [30]
were introduced by Jimbo, Miwa and Ueno [13]. A particular case of these equa-
tions was considered earlier by Flaschka and Newell [5] in connection with the
theory of self-similar solutions of the mKdV equation. Fuchsian systems on higher
genus Riemann surfaces were considered in [12]. The case of linear systems with
one irregular singularity on an elliptic curve was treated in [28]. The recent burst of
interest to isomonodromy equations for linear systems with regular singularities on
higher genus Riemann surfaces is due to their connections with the classical limit of
Knizhnik–Zamolodchikov–Bernard equations for correlation functions of the Wess–
Zumino–Witten–Novikov theory. In the case of rational and elliptic curves these
connections were revealed in [29], [9], [14]. The general case was considered in [27],
where a more complete list of references can be found.
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718 I. KRICHEVER

The conventional modern approach to the theory of isomonodromy equations is
based on their representation in the form of compatible non-autonomous Hamil-
tonian systems, that can be identified with the Hamiltonian reduction of some
free Hamiltonian theory. This approach presents an almost exhaustive geometric
description of the system, but it requires solving the corresponding moment map
equations in order to get an explicit form of the equations or their Lax representa-
tion. The moment map equations are differential equations on an algebraic curve.
They have been solved explicitly only in very few cases [27].

As in [30], [13], the starting point of our approach is the Lax representation of
isomonodromy equations. In the next section the space of meromorphic connections
on stable, rank r, and degree rg holomorphic vector bundles on an algebraic curve
Γ with the poles divisor D =

∑
m(hm + 1)Pm is identified with orbits AD/SLr of

the adjoint action of SLr on a certain subspace AD of meromorphic matrix-valued
differentials on Γ. A characteristic property of L̃ ∈ AD is that all its additional
singularities at points γs /∈ D are of the form dΦΦ−1, where Φ is holomorphic. We
show that an open set of AD corresponding to the case when all additional poles
of L̃ are simple, is parameterized by the data

L̃m, (γs, κs), Ls0 = βsα
T
s ,

rg∑
s=0

Ls0 +
∑
m

resPm
L̃m = 0,

(1.1)

where L̃m is the singular part of L̃ at Pm, (γs, κs) is a point of the bundle of scalar
affine connections on Γ, and Ls0 is a rank 1 matrix such that TrLs0 = 1. We
identify matrices Ls0 with pairs of r-dimensional vectors αs = (αi

s), βs = (βi
s),

considered modulo the transformation αs 7→ λsαs, βs 7→ λ−1
s βs, and such that

(αT
s βs) = 1.
From the definition of L̃ ∈ AD it follows that the equation

dΨ = L̃Ψ (1.2)

has a multi-valued holomorphic solution on Γ \D. Let us fix a point Q ∈ Γ. Then,
the analytical continuation of Ψ, normalized by the condition Ψ(Q) = 1, defines a
representation of the fundamental group π1(Γ\D; Q)→ GLr. The Stokes matrices
and the so-called exponents at irregular singularities Pm, hm > 0, can be defined
purely locally, as in the case of genus g = 0, if a local coordinate in the neighborhood
of Pm is fixed.

The Stokes data and the exponents at Pm depend only on the hm-jet of the local
coordinate, and therefore, we identify the space of isomonodromy deformations of
the linear system (1.2) with the moduli spaceMg,1(h) of smooth genus g algebraic
curves with a puncture Q and with fixed hm-jets of local coordinate at punctures
Pm. Here and below the isomonodromy deformations are those preserving the mon-
odromy representation, the Stokes matrices, and the exponents. For brevity, we call
all these data monodromy data.

It is necessary to emphasize that for g = 0 our definition of the deformation
space is equivalent to the traditional one. According to [13], [5], the isomonodromy
deformations of L̃ are parameterized by the positions of poles and by the exponents
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at irregular singularities. In this setting, the local coordinates at the poles are
always fixed, and are defined by the global coordinate on the complex plane. It
is easy to show that the deformations of the exponents, corresponding to gauge
invariant equations for L̃, can be identified with deformations corresponding to
changes of the local coordinate.

A change of the normalization point Q and a gauge transformation L̃′ = gL̃g−1,
g ∈ GLr correspond to conjugation of the monodromy data by a constant ma-
trix. Hence, the space of isomonodromy deformations of meromorphic connections
AD/SLr is the moduli space Mg(h) of curves with hm-jets of local coordinates
at Pm. For the connections with regular singularities hm ≡ 0 at N points the
deformation space is just Mg,N . We consider the space A(h) of all admissible
meromorphic differentials with fixed multiplicities (hm + 1) at the punctures and
the corresponding quotient space of meromorphic connections as bundles

A(h) −→Mg,1(h), A(h)/SLr −→Mg(h). (1.3)

In Section 4 we derive the Lax representation for a full hierarchy of isomonodromy
equations. We show that the Lax equations are equivalent to a system of well-
defined compatible evolution equations on the space of dynamical variables which
are the parameters (1.1). Näıvely, the Lax representation

∂Ta
L̃ = [Ma, L̃]− dMa (1.4)

of the isomonodromy equations is just a coordinate-dependent way of saying that
Ma are the coefficients of a flat connection on the space of linear systems (1.2)
defined by the monodromy data. In order to give sense to (1.4), it is necessary
first to express Ma as a function of L̃, and then to show, that the Lax equation is
equivalent to a well-defined system of differential equations for L̃. A priori the last
statement is not obvious, because (1.4) has to be fulfilled identically on Γ, and the
space of L̃ is finite-dimensional. For example, for g > 0 it is impossible to define
the isomonodromy deformations for matrix-valued differentials with poles only at
D. The presence of extra poles γs, which become dynamical variables, is a key
element, which allows us to overcome that difficulty in defining the isomonodromy
equations on higher genus algebraic curves. Exactly the same idea was used in our
earlier work [21], where an explicit parameterization of Hitchin systems [11] was
obtained, and where infinite-dimensional field generalizations of Hitchin systems
were proposed.

In Section 5 we show that the approach to the Hamiltonian theory of soliton
equations proposed in [23], [24], [19] is also applicable to the case of isomonodromy
deformations. The key element of this approach is a definition of the universal
two-form which is expressed in terms of the Lax operator and its eigenvectors. The
proof of the fact that the contraction of this form by the vector-field defined by a
Lax equation is an exact one-form is very general and does not rely on any specific
form of the Lax operator. It provides a direct way to show that the Lax equations
are Hamiltonian on suitable subspaces, and at the same time allows to identify the
corresponding Hamiltonians.

It turns out that the universal two-form on a space of meromorphic connections
is defined identically to the case of isospectral equations if we replace eigenvectors
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by a solution of equation (1.2). More precisely, let P0 be a subspace of A(h) with
fixed exponents at the punctures, and let ψm be the formal local solutions of (1.2)
at Pm (see (3.6) below). Then the formula

ω = −1
2

rg∑
s=1

resγs
Tr(ψ−1δL̃ ∧ δψ)− 1

2

∑
Pm

resPm
Tr(ψ−1

m δL̃ ∧ δψm) (1.5)

defines a closed, nondegenerate differential two-form on the quotient space P =
P0/SLr. The Lax equations restricted to P0 descend to a system of commuting
flows which are Hamiltonian with respect to the symplectic structure defined by ω.

We show that ω can be written in terms of the parameters (1.1) as

ω =
rg∑

s=1

(
δκs ∧ δzs +

r∑
i=1

δβi
s ∧ δαi

s

)
+
∑
m

ωm, (1.6)

where ωm is the canonical symplectic structure on an orbit Õm of the adjoint
action of the group of invertible formal holomorphic matrix functions on the space
of singular parts of meromorphic matrix differentials in a formal disc with the pole
of order hm. (A set of orbits Õm corresponds to the set of fixed exponents.)

A remarkable property of the symplectic structure for isospectral equations de-
fined in terms of the Lax operator is that it provides, under quite general as-
sumptions, a straightforward way of construction of action-angle type variables
(see examples in [19], [20], [23]–[26]). In Section 6 we show that in the case of
isomonodromy equations almost the same arguments lead to an expression of the
symplectic form ω in terms of the monodromy data.

For example, the monodromy data corresponding to a meromorphic connection
on an elliptic curve are just a pair of matrices A and B, considered modulo mutual
conjugation. The monodromy matrix around the puncture is equal to

J = B−1A−1BA. (1.7)

Symplectic leaves P are defined by a choice of the orbit for J . Therefore, they can
be seen as level sets of the invariants TrJk. We show that the symplectic form on
P defined by ω is equal to the restriction to P of the two-form

χ(A, B) = Tr
[
B−1δB∧δAA−1−A−1δA∧δBB−1+δJJ−1∧B−1A−1δ(AB)

]
. (1.8)

The expression for ω on symplectic leaves in the space of conjugacy classes of
representation of the fundamental group of a genus g Riemann surface with one
puncture is given by the formula (6.9). In a different form this result was obtained
in [8]. An r-matrix representation of the Poisson structure on the space of flat
connections on Riemann surfaces with boundaries was found in [6].

To the best of the author’s knowledge, the general closed expression for the sym-
plectic structure on orbits of the adjoint action of SLr on the space of monodromy
matrices Ai, Bi and Stokes matrices, given by Theorem 6.1, is new. Even in the
genus 0 case, the Poisson structure on the space of Stokes matrices correspond-
ing to meromorphic connections with one irregular singularity of order 2 and one
regular singularity was found only recently [1]. The Poisson structure was iden-
tified with that of the Poisson–Lie group G∗ dual to G = GLr. In [2] this result
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was generalized to G-valued Stokes matrices for an arbitrary simple Lie group, and
very interesting connections with the theory of Weyl quantum groups were found
there. The Poisson structure on the space of Stokes matrices corresponding to a
skew-symmetric meromorphic connection with one regular and one irregular order 2
singularity was found earlier in [34]. The Poisson structure for (2× 2) Stokes ma-
trices corresponding to meromorphic connections with one irregular singularity of
order 4 was obtained in [5].

To some extent, our main result of Section 6 is preliminary. The general ex-
pression for ω in terms of the monodromy data came out of the blue, as a result
of straightforward computations. It seems important to find its interpretation in
terms of the Poisson–Lie group theory.

The last goal of this paper is to establish connections between solutions of
isomonodromy equations on algebraic curves and solutions of Hitchin systems. It is
well-known that solutions of the Schlesinger equations can be treated, after proper
rescaling, as “modulation” of solutions of the Garnier system [7]. An attempt to
revisit this connection in light of the Whitham theory [4], [16], [18], [17] was made in
[32], but the heuristic arguments used in [32] do not allow to derive the modulation
equations in a closed form.

The problem which we address in Section 7 is as follows. The space of mero-
morphic ε-connection with fixed multiplicities h = {hm} of poles is the space of
orbits of the adjoint action of SLr on the space Aε(h) of meromorphic differentials
L̃ε such that ε−1Lε ∈ A(h). They are parameterized by the data (1.1) such that
TrLs0 = ε. The family of meromorphic ε-connections defined for ε 6= 0 extends to
a smooth family over the whole disc. The central fiber over ε = 0 parameterizes
the space L of Lax matrices on algebraic curves introduced in [21]. The orbits of
the adjoint action of SLr on a subspace of L, corresponding to a fixed algebraic
curve Γ, and fixed singular parts of the eigenvalues of L̃m can be identified with
the phase space of the generalized Hitchin system.

In order to get a smooth at ε = 0 family of isomonodromy equations for ε-con-
nections, it is necessary to rescale the coordinates Ta on Mg,1(h). More precisely,
if we define the coordinates ta = ε−1Ta, then the deformations of L̃ε that preserve
the monodromy data associated with a solution of the equation

ε dψ = L̃εψ (1.9)

are described by the equations

∂taL̃ε − ε dMa + [L̃ε, Ma] = 0. (1.10)

The equations (1.10) are Hamiltonian and the corresponding Hamiltonians do con-
verge to certain quadratic Hamiltonians of the Hitchin system, as ε→ 0. Therefore,
locally solutions of (1.10) converge to solutions of the Hitchin system. At the same
time a global behaviour of solutions of the isomonodromy and isospectral flows is
quite different. The monodromy data preserved by (1.10) vanish in the limit ε→ 0.
The space of integrals of the Hitchin system can be regarded as the space S of so-
called spectral curves. It is of dimension which is only half of the dimension of
the space of monodromy data. For L̃0 ∈ L = A0(h) the time-independent spectral
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curve is defined by the characteristic equation

det(k̃ − L̃) = 0. (1.11)

The spectral curve Γ̂ is r-fold branch cover of the initial algebraic curve Γ. The
equations of motion for the Hitchin system are linearized on the Jacobian of Γ̂.

In Section 7 we apply ideas of the multi-scale perturbation theory to construct
asymptotic solutions of the isomonodromy equations using solutions of the Hitchin
system. In this approach the leading term of the approximation describes the
motion which is, up to the first order, the original fast motion on the Jacobian,
combined with a slow drift on the moduli space of spectral curves. We obtain an
explicit form of the Whitham equations describing that slow drift. They imply that
the real parts of the periods of the differential k̃ on Γ̂ are preserved along a slow
drift. We would like to emphasize that the correspondence

(Γ̂ ∈ S) 7−→ Re
∮

c

k̃, c ∈ H1(Γ̃), (1.12)

defines a flat real connection on the moduli space of spectral curves, considered as a
bundle overMg(h). To some extent, our result provides evidence for the assumption
that this connection is a residual of the flat connection on Aε(h) defined by the
monodromy data in the limit ε → 0. It would be quite interesting to find a more
geometric interpretation of that residual correspondence.

2. Meromorphic connections

Let V be a stable, rank r, and degree rg holomorphic vector bundle on a smooth
genus g algebraic curve Γ. Then the dimension of the space of its holomorphic
sections is r = dimH0(Γ, V ). Let σ1, . . . , σr be a basis of this space. The vectors
σi(γ) are linear independent at the fiber of V over a generic point γ ∈ Γ, and are
linearly dependent

r∑
i=1

αi
sσi(γs) = 0 (2.1)

at zeros γs of the corresponding section of the determinant bundle associated to
V . For a generic V these zeros are simple, i. e., the number of distinct points γs is
equal to rg = deg V , and the vectors αs = (αi

s) of the linear dependence (2.1) are
uniquely defined up to a multiplication. A change of the basis σi corresponds to a
linear transformation α′s = gTαs. Hence, an open setM⊂ M̂ of the moduli space
of vector bundles is parameterized by points of the quotient space

M =M0/SLr, M0 ⊂ Srg(Γ× CP r−1), (2.2)

where SLr acts diagonally on the symmetric power of CP r−1. In [22], [15] the
parameters (γs, αs) were called Tyurin parameters.

Let (γ, α) = {γs, αs} be a point of the symmetric product X = Srg(Γ×CP r−1).
Throughout the paper it is assumed that the points γs ∈ Γ are distinct, γs 6= γk.
The vector bundle Vγ,α corresponding to (γ, α) under the inverse to the Tyurin map
is described in terms of Hecke modification of the trivial bundle. In this description,
the space of local sections of the vector bundle Vγ,α is identified with the space Fs
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of meromorphic (row)vector-functions in the neighborhood of γs that have simple
pole at γs of the form

fT (z) =
λsα

T
s

z − z(γs)
+O(1), λs ∈ C. (2.3)

Our next goal is to describe in similar terms the space of meromorphic connections
on Vγ,α. LetD =

∑
m(hm+1)Pm be an effective divisor on Γ that does not intersect

γ. Then we define the space AD
γ,α of meromorphic matrix valued differentials L̃ =

L(z)dz on Γ such that:
10. L̃ is holomorphic everywhere except for the points γs, where it has at most

simple poles, and for the points Pm of D, where it has poles of degree not greater
than (hm + 1);

20. the singular term of the expansion

L̃ =
(

Ls0

z − zs
+ Ls1 + Ls2(z − zs) +O((z − zs)2)

)
dz, zs = z(γs), (2.4)

is a rank 1 matrix of the form

Ls0 = βsα
T
s ←→ Lij

s0 = βi
sα

j
s, (2.5)

where βs is a vector. The trace of the residue of L̃ at γs equals 1:

resgs
Tr L̃ = 1 7−→ αT

s βs = trLs0 = 1; (2.6)

30. αT
s is a left eigenvector of the matrix Ls1, i. e.,

αT
s Ls1 = κsα

T
s . (2.7)

Note that the condition (30) is well-defined, although expansion (2.4) itself does
depend on the choice of a local coordinate z in the neighborhood of γs. Under a
change of local coordinate w = w(z) the eigenvalue κs in (2.7) gets transformed to
κ′s, where

κs = κ′sw
′(zs)−

w′′(zs)
2w′(zs)

. (2.8)

Therefore, the pair (γs, κs) is a well-defined point of a total space of the bundle
Caff(Γ) of scalar affine connections on Γ.

The sum of all residues of a meromorphic differential equals zero. Therefore,∑
Pm∈D

resPm
Tr L̃ = −rg. (2.9)

Hence, in what follows we always assume that degD = N > 0. The Riemann-Roch
theorem implies that for a generic degree N divisor D and a generic set of Tyurin
parameters (γ, α) the space AD

γ,α is of dimension

dimAD
γ,α = r2(N +rg+g−1)−r2g(r−1)−rg−rg(r−1) = r2(N +g−1). (2.10)

The first term is the dimension of the space of meromorphic differentials on Γ with
the pole divisor D + γ. The consecutive terms count the numbers of constraints
(2.4)–(2.7). A key characterization of these constraints is the following.
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Lemma 2.1. A meromorphic matrix-function L in the neighborhood U of γs with
a pole at γs satisfies constraints (2.4)–(2.7) if and only if it is of the form

L̃ = dΦs(z)Φ−1
s (z) + Φs(z)L̃s(z)Φ−1

s (z), (2.11)

where L̃s and Φs are holomorphic in U , and det Φs has at most simple zero at γs.

The proof is almost identical to that of Lemma 2.1 in [21].
The constraints (2.4)–(2.7) imply that the space Fs is invariant under the adjoint

action of the operator (∂z − L), i. e.,

(fT ∈ Fs) =⇒
(
fT (∂z − L) = −

(
∂zf

T + fTL
)
∈ Fs

)
. (2.12)

Therefore, for a generic set of Tyurin parameters (γ, α) the quotient spaceAD
γ,α/SLr

corresponding to the gauge transformations

L̃ 7−→ gL̃g−1, g ∈ SLr, (2.13)

can be identified with the space of meromorphic connections on Vγ,α that have
poles at Pm of degree not greater than hm + 1.

The explicit parameterization of an open set of the phase space of the Hitchin
systems proposed in [21] can be easily extended to the case under consideration.
Consider first an open set of Tyurin parameters such that the dimension of the
space Fγ,α of meromorphic (row)vector-functions on Γ with simple poles at γs of
the form (2.3) equals r. Then, as shown in [21], the matrix αi

s is of rank r. We
call (γ, α) a nonspecial set of Tyurin parameters if they additionally satisfy the
following constraint: there is a subset of (r + 1) indices s1, . . . , sr+1 such that all
minors of (r+ 1)× r matrix αi

sj
are nondegenerate. The action of the gauge group

on the space of nonspecial sets of Tyurin parameters M0 is free. We also assume
that the corresponding points γs do not coincide with the points Pm.

By definition, the singular part L̃m of a meromorphic differential L̃ is an equiv-
alence class of meromorphic differentials in the neighborhood of Pm considered
modulo holomorphic differentials.

Lemma 2.2. Let AD be the affine bundle overM0 with fibers AD
γ,α. Then the map

L̃ ∈ AD 7−→ {αs, βs, γs, κs, L̃m} , (2.14)
is a bijective correspondence between points of the bundle AD over M0 and sets of
data (2.14) subject to the constraints (αT

s βs) = 1, and
rg∑

s=1

βsα
T
s +

∑
Pm∈D′

resPm
L̃m = 0, (2.15)

modulo gauge transformations

αs 7→ λsαs, βs 7→ λ−1
s βs. (2.16)

Recall that we consider the pairs (γs, κs) as points of the bundle Caff(Γ).

Example. Let Γ be a hyperelliptic curve defined by the equation

y2 = R(x) = x2g+1 +
2g∑

i=0

uix
i. (2.17)
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The parameterization of connections on Γ with simple pole at the infinity is almost
identical to the parameterization of the Hitchin systems on Γ proposed in [21]. A
set of points γs on Γ is a set of pairs (ys, xs) such that

y2
s = R(xs). (2.18)

A meromorphic differential on Γ with residues (βsα
T
s ) at γs and a simple pole at

the infinity is of the form

L
dx

2y
=
( g−1∑

i=0

Lix
i +

rg∑
s=1

(βsα
T
s )

y + ys

x− xs

)
dx

2y
, (2.19)

where Li is a set of arbitrary matrices. Constraints (2.7) are a system of linear
equations defining Li:

g∑
i=0

αT
nLix

i
k +

∑
s 6=n

(αT
nβs)αT

s

yn + ys

xn − xs
= κnα

T
n , n = 1, . . . , rg, (2.20)

in terms of data {γs, κs, αs, βs}, where (αs, βs) are arbitrary vectors such that
αT

s βs = 1.

For g > 1, correspondence (2.14) descends to a system of local coordinates on
AD/SLr. Consider the open set ofM0 consisting of such elements that the vectors
αj , j = 1, . . . , r, are linearly independent and all coefficients of the expansion of
αr+1 in this basis do not vanish,

αr+1 =
r∑

s=1

cjαj , cj 6= 0. (2.21)

Then for each point of this open set there exists a unique matrixW ∈ GLr such that
αT

j W is proportional to the basis vector ej with coordinates ei
j = δi

j , and αT
r+1W

is proportional to the vector e0 =
∑

j ej . Using the global gauge transformation
defined by W ,

bs = W−1βs, as = WTαs, (2.22)

and the part of local transformations

as 7→ λsas; as 7→ λ−1
s bs, (2.23)

for s = 1, . . . , r + 1, we see that on the open set of M0 each equivalence class has
a representation of the form (as, bs) such that

ai = ei, i = 1, . . . , r; ar+1 = e0. (2.24)

This representation is unique up to local transformations (2.23) for s = r+2, . . . , rg.
In the gauge (2.24) equation (2.15) can be easily solved for b1, . . . , br+1. Using

(2.24), we get

bij + bir+1 = −
rg∑

s=r+2

bisa
j
s −

∑
m

res L̃ij
m. (2.25)
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The condition aT
j bj = 1 for aj = ej implies bjj = 1. Hence,

bir+1 = −1−
rg∑

s=r+2

bisa
i
s −

∑
m

res L̃ij
m. (2.26)

Note, that constraint (2.9) implies aT
r+1br+1 = 1.

Sets of vectors as, bs, aT
s bs = 1, r + 1 < s ≤ rg, modulo transformations (2.23),

points {γs, κs} ∈ Srg(Caff(Γ)), and sets L̃m, satisfying (2.9), provide a parameter-
ization of an open set of the bundle AD/SLr over M =M0/SLr. The dimension
of this bundle equals

dimAD/SLr = r2(N + 2g − 2) + 1. (2.27)

In the same way, taking various subsets of (r + 1) indices we obtain charts of local
coordinates which cover AD/SLr.

3. Monodromy data

Our next goal is to introduce monodromy data corresponding to L̃ ∈ AD
γ,α along

the lines of their definition in the zero genus case. From Lemma 2.1 it follows that
the equation

dΨ = L̃Ψ (3.1)
has multi-valued holomorphic solutions on Γ \ {Pm}, Pm ∈ D. Let Q be a point on
Γ. Then the normalization

Ψ(Q) = 1 (3.2)
defines Ψ uniquely in the neighborhood of Q. Analytic continuation of Ψ along
cycles in Γ \ {Pm} defines the monodromy representation

µ : π1(Γ \ {Pm}; Q) −→ GLr. (3.3)

It is well-known that for connections with simple poles the correspondence L̃→ µ
is an injection, and that the inverse map is defined on an open set of the space
of representations. For connections with poles of higher order additional so-called
Stokes data are needed. Their construction is local, and here we mainly follow [31].

Lemma 3.1. Let L̃ be a formal Laurent series

L̃ =
∞∑

i=−h

Lsw
s−1dw (3.4)

such that the leading coefficient has the form

L−h = ΦKΦ−1, K = diag(k1, . . . , kr),

{
ki − kj 6= 0, h > 0,

ki − kj /∈ Z, h = 0,
i 6= j. (3.5)

Then equation (3.1) has a unique formal solution

ψ = Φ
(

1 +
∞∑

s=1

ξsw
s

)
exp
( ∞∑

i=−h

Ki

∫
wi−1dw

)
, (3.6)

where Ki are diagonal matrices, K−h = K, and the matrices ξs have zero diagonals,
ξii
s = 0.
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Substitution of (3.6) into (3.1) gives a system of equations, which for h > 0 are
of the form

Ks + [K, ξs+h] = Rs(ξ1, . . . , ξs+h−1, K−h+1, . . . , Ks), s > −h, (3.7)

where Rs are some explicit expressions. They recursively determine the off-diagonal
part of ξs and the diagonal matrix Ks. For h = 0 ψ is constructed in the similar
way.

The central result of [31] can be formulated as follows. Let (3.4) be the Laurent
expansion of a meromorphic differential in a punctured disk U holomorphic in
Û = U \ 0. Let V be a sector of Û which for any pair (i, j) contains only one ray
such that

Re(ki − kj)w−h = 0. (3.8)

Then there exists a holomorphic in V solution ΨV of (3.1) such that the formal
solution (3.6) is an asymptotic series for ΨV . The asymptotic is uniform in any
closed subsector of V .

The punctured disk can be covered by a set of sectors V1, . . . , V2h+1 which satisfy
the constraint described above, and such that the sectors Vν and Vν+1 do intersect
each other. On their intersection the solutions Ψν = ΨVν and Ψν+1 = ΨVν+1 satisfy
the relation

Ψν+1 = ΨνSν , ν = 1, . . . , 2h. (3.9)

Stokes matrices Sν are constant matrices. For each Sν there exists a unique per-
mutation of indices under which Sν gets transformed to an upper triangular matrix
with the diagonal elements equal to 1.

The last property of the Stokes matrices follows from a more precise statement
which we will use in Section 6. Namely, if w tends to 0 in the intersection of Vν

and Vν+1, then the following limit exists and equals

lim
w→0

exp(Kw−h)Sν exp(−Kw−h) = 1. (3.10)

For any pair (i 6= j) the left-hand side of (3.8) has a definite sign in Vν ∩ Vν+1.
Therefore, if this sign is positive, then (3.10) implies Sij

ν = 0.
Let us fix a local coordinate wm in a neighborhood of Pm, wm(Pm) = 0, and paths

cm connecting Q with Pm. In the neighborhood of Pm we also fix a set of sectors
V

(m)
ν described above, and always assume that the path cm in the neighborhood of
Pm belongs to the first sector V (m)

1 . Then the Laurent expansion of L̃ ∈ AD at Pm

in this coordinate, defines the diagonal matrices K(m)
i , the Stokes’ matrices S(m)

ν ,
and the transition matrix Gm, which connects Ψ and Ψ(m)

1

Ψ = Ψ(m)
1 Gm. (3.11)

In each of the sectors V (m)
ν we have

Ψ = Ψ(m)
ν g(m)

ν , (3.12)

where

g
(m)
1 = Gm, g

(m)
ν+1 = (S(m)

1 S
(m)
2 · · ·S(m)

ν )−1Gm, ν = 1, . . . , 2hm. (3.13)
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The monodromy µm around Pm is equal to

µm = (g(m)
1 )−1e2πiK

(m)
0 g

(m)
2hm+1 = G−1

m e2πiK
(m)
0 (S(m)

1 S
(m)
2 · · ·S(m)

2hm
)−1Gm. (3.14)

If we choose a basis aj , bj of cycles on Γ with the canonical matrix of intersections,
then we denote the monodromy matrices along the cycles by Aj , Bj , j = 1, . . . , g.

Lemma 3.2. The correspondence

L̃ ∈ AD 7−→ {K(m)
i , S(m)

ν , Gm, Aj , Bj},
−hm ≤ i ≤ 0, ν = 1, . . . , 2hm,

(3.15)

where the transition and the Stokes matrices are considered modulo transformations

Gm 7−→WmGm, S(m)
ν 7−→WmS

(m)
ν W−1

m , Wm = diag(Wm,i), (3.16)
is an injection.

An important remark. The definition of the full set of the Stokes data requires a
choice of the local coordinate in a neighborhood of the puncture. However, the
data (3.15) depend only on the hm-jets of the local coordinates, because it contains
only diagonal matrices Ki with indices i ≤ 0. We define an h-jet [w]h to be an
equivalence class of w, with w′ and w equivalent if

w′ = w +O(wh+1). (3.17)

Proof. Suppose that L̃ and L̃1 have the same data (3.15) modulo (3.16). Then
solutions Ψ and Ψ1 of the corresponding systems (3.1) have the same monodromy
along each cycle on Γ\{Pm}. Therefore, φ = Ψ1Ψ−1 is a single-valued meromorphic
matrix function on Γ \ {Pm}. From (3.6) and (3.14) it follows that φ is bounded
in the neighborhood of Pm. Hence, φ is a meromorphic function on Γ and is
holomorphic at the points Pm. The function Ψ is invertible everywhere except
for the poles γs of L̃. Equation (3.1) implies that vector rows of the residue of
Ψ1Ψ−1 at γs has the form (2.3). The assumption that (γ, α) are nonspecial Tyurin
parameters implies that φ is a constant matrix. Then, from the normalization (3.2)
it follows that Ψ1 = Ψ and L̃ = L̃1.

Simple counting shows that AD and the space of data (3.15) modulo transfor-
mations (3.16) have the same dimension. Therefore, the map (3.15) is a bijective
correspondence between AD and an open set of the data. �

4. Isomonodromy deformations

Our next goal is to construct differential equations describing deformations of
L ∈ AD(Γ) which preserve the full set of data (3.15). For brevity we call them
isomonodromy deformations. As it was mentioned above, in order to define the
data (3.15) it is necessary to fix a normalization point Q ∈ Γ, a basis of ai, bi
cycles, paths cm connecting Q with Pm, and a set of hm-jets of local coordinates in
neighborhoods of the punctures Pm.

Let h = {hm,
∑

m(hm + 1) = N} be a set of nonnegative integers. Then we
denote the moduli space of smooth genus g algebraic curves with a puncture Q ∈ Γ,
and fixed hm-jets of local coordinates wm in neighborhoods of punctures Pm by
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Mg,1(h). The space A(h) of admissible meromorphic differentials on algebraic
curves with fixed multiplicities (hm + 1) of the poles can be seen as the total space
of the bundle

A(h) −→Mg,1(h) = {Γ, Pm, [wm], Q} (4.1)

with fibers AD(Γ), D =
∑

m(hm + 1)Pm. Here and below [wm] stands for the
hm-jet of wm. The space Mg,1(h) is of dimension

dimMg,1(h) = 3g − 2 +N. (4.2)

An explicit form of the isomonodromy equations depends on a choice of coordinates
onMg,1(h). Their Lax representation requires in addition some sort of connection
on the universal curve Ng(h) which is the total space of the bundle

Ng(h) −→Mg,1(h). (4.3)

The fiber of the bundle over a point (Γ, Pm, [wm], Q) is the curve Γ.
The following construction solves two problems simultaneously. It goes back to

the theory of Whitham equations [16], [18]. Details can be found in [23], [24]. First
of all, locally we can replace the moduli space of algebraic curves by the Teichmuller
space of marked algebraic curves, i. e., by smooth algebraic curves with fixed basis
{ai, bi} of cycles, and paths cm between Q and punctures, which do not intersect
the cycles. Let us fix a set of integers rm,

∑
m rm = 0. Then, for any set of local

coordinates wm at Pm, there is a unique meromorphic differential dE which in the
neighborhood of Pm is of the form

dE = d(w−hm
m + rm logwm +O(wm)), (4.4)

and is normalized by the condition ∮
ai

dE = 0. (4.5)

The differential dE depends only on the hm-jets of local coordinates wm. The zero
divisor of dE has degree 2g − 2 +N . LetM0

g,1(h) be an open set ofMg,1(h) such
that the corresponding differential dE has simple zeros qs 6= Q,

dE(qk) = 0, k = 1, . . . , 2g − 2 +N. (4.6)

The Abelian integral

E(q) =
∫ q

Q

dE (4.7)

is single-valued on the cover Γ̂∗ of Γ \ {Pm} generated by shifts along the cycles
bi and shifts along the cycles c′m around the punctures Pm. We regard the curve
Γ with cuts along the cycles ai and the paths cm as a marked sheet of Γ∗. The
critical values

Tk = E(qk) (4.8)

of E on this sheet, and the b-periods of dE,

Tbi
=
∮

bi

dE, (4.9)
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provide a system of local coordinates onM0
g,1(h) (see details in [23]). The Abelian

integral E defines a local coordinate on Γ̂∗ everywhere except for the preimages q̂∗s
of the critical points qs. Therefore, (E, Tk, Tbi

) can be seen as a system of local
coordinates on an open set of the total space of the bundle N̂ ∗g (h) over Mg,1(h)
with fibers Γ̂∗.

Let L̃(τ) ∈ A(h) be a one-parameter family of admissible differentials. Its pro-
jection under (4.1) defines a path Ta(τ) inMg,1(h). Here and below {a} stands for
both types of indices, i. e., Ta = {Tk, Tbi}. We regard the family L̃(τ) as a family
of one-forms

L̃(τ) = L(E; Ta(τ)) dE, (4.10)

where L is a function of the variable E on Γ̂∗(τ) which is meromorphic everywhere
except for q̂∗s (τ), and such that

L(E + Tbj
; Ta) = L(E; Ta), L(E + 2πirm; Ta) = L(E; Ta). (4.11)

In the same way the corresponding solution Ψ of equation (3.1) can be seen as a
multi-valued function Ψ(E; Ta) of the variable E which is holomorphic everywhere
except for q̂∗s , and such that

Ψ(E + Tbj
; Ta) = Ψ(E; Ta)Bj , Ψ(E + 2πirm; Ta) = Ψ(E; Ta)µm. (4.12)

Let Γ∗ be the cover of Γ generated by shifts along bi-cycles, and q̂s, P̂m, γ̂s be
preimages on Γ∗ of the corresponding points on Γ.

Lemma 4.1. A one-parameter family of meromorphic connections

L̃(τ) ∈ AD(τ)
γ(τ),α(τ)(Γ(τ))

is an isomonodromy family if and only if the logarithmic derivative of the corre-
sponding solution Ψ of (3.1)

M(E, τ) = ∂τΨ(E, τ)Ψ−1(E, τ) (4.13)

is single-valued on Γ∗(τ) as a function of E, and
(i) it equals zero at Q, and is holomorphic everywhere except for the points γ̂s, q̂k,

where it has at most simple poles,
(ii) the vector rows of M in a neighborhood of γ̂s have the form (2.3),
(iii) the singular part of M at q̂k(τ) equals

M(E, τ) = −∂τE(q̂k)L(E, τ) +O(1), E → E(q̂k), (4.14)

(iv) M satisfy the following monodromy properties

M(E + Tbj
; Ta) = M(E; Ta)− (∂τTbj

)L(E; Ta), (4.15)

Proof. The same arguments as in the proof of Lemma 3.2 show that if the Stokes
data do not depend on τ , then M is holomorphic at the punctures P̂m. The matrix
M is single-valued on Γ∗ because monodromies Aj also do not depend on τ . Unlike
the previous case, M is single-valued only on Γ∗, and acquires additional poles at
q̂k, because E is multivalued on Γ, and is not a local coordinate at the critical
points q̂k.
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At the points q̂k = q̂k(τ) (E−E(q̂k))1/2 is a local coordinate. Recall that E(q̂k)
equals Tk plus an integer linear combination of Tbj

which depends on the branch of
E corresponding to q̂k. The matrix function Ψ is holomorphic in a neighborhood
of q̂k. Therefore, its expansion at q̂k is of the form

Ψ = φ0(τ) + φ1(τ)(E − E(q̂k))1/2 +O(E − E(q̂k)), q̂k = q̂k(τ). (4.16)

Then

M = −∂τE(q̂k)
φ1φ

−1
0

2
√
E − E(q̂k)

+O(1). (4.17)

The logarithmic differential of Ψ is of the form

dΨΨ−1 = LdE =
φ1φ

−1
0 dE

2
√
E − E(q̂k)

+O(1) dE. (4.18)

Equations (4.17) and (4.18) imply (4.14). Equation (4.15) follows directly from
(3.1) and (4.12), and the lemma is proved. �

Let us now introduce basic functions Ma corresponding to the isomonodromy
deformations along coordinates Ta. Simple dimension counting proves the following
statement.

Lemma 4.2. If (γ, α) is a nonspecial set of Tyurin parameters, then for each
L̃ ∈ AD

γ,α(Γ) there is a unique meromorphic function Mk on Γ such that :
(i) Mk is holomorphic everywhere except for the points γs, and for the point qk,
(ii) the vector rows of Mk at γs are of the form (2.3),
(iii) at the point qk the singular part of Mk is of the form Mk = −L+O(1),
(iv) M(Q) = 0.

Let us denote Γ with a cut along the cycle ai by Γ∗i .

Lemma 4.3. If (γ, α) is a non-special set of Tyurin parameters, then for each
L̃ ∈ AD

γ,α(Γ) there is a unique function Mbi on Γ∗i such that :
(i) Mbi

is holomorphic everywhere except for the points γs, where the vector rows
of Mk are of the form (2.3),

(ii) Mbi
can be extended as a continuous function to the closure of Γ∗i , and its

boundary values M±bi
on the two sides of the cut satisfy the relation M+

bi
−M−bi

= −L,
(iii) Mbi(Q) = 0.

A meromorphic matrix function on Γ∗i which satisfies the boundary condition
(ii) can be represented by a Cauchy type integral over the cycle. The difference
of any two such functions is a meromorphic function on Γ. Therefore, once again
the proof of existence and uniqueness of the function with prescribed analytical
properties is reduced to the Riemann–Roch theorem.

If we keep the same notation for the pullback of Ma on Γ∗, then the logariphimic
derivative M = ∂τΨΨ−1 in Lemma 4.1 can be written as

M =
∑

a

(∂τTa)Ma. (4.19)
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Now we are in a position to define a hierarchy of differential equations which de-
scribe the isomonodromy deformations. In the neighborhood of γs the Laurent
expansions of L = L̃/dE and Ma are of the form

L =
βsα

T
s

E − es
+ Ls1 + Ls2(E − es) +O((E − es)2), es = E(γs), (4.20)

Ma =
ma

sα
T
s

E − es
+Ma

s1 +Ma
s2(E − es) +O((E − es)2), (4.21)

where ma
s are vectors.

Theorem 4.1. The Lax equations

∂aL̃− dMa + [L̃, Ma] = 0 (4.22)

define a hierarchy of commuting flows on A(h) which preserve the extended set of
monodromy data (3.15). They are equivalent to the equations

∂aes = −αT
s m

a
s , es = E(γs), (4.23)

∂aα
T
s = −αT

s M
a
s1 − λsα

T
s , (4.24)

∂aβs = Ma
s1βs − (Ls1 − κs)ma

s + λsβs, (4.25)

∂aκs = αT
s (Ma

s2 − Ls2)βs, (4.26)

∂aL̃m = [Ma, L̃m]+, (4.27)

where λs are scalar functions, and [Ma, L̃m]+ denotes the singular part of [Ma, L̃m]
at Pm.

Note that if hm = 0, then the right-hand side of (4.27) is just [Ma(qk), L̃m].

Proof. First, let us show that the left-hand side of (4.22), which we denote by φ, is
a single-valued meromorphic function on Γ which is holomorphic everywhere except
for the points γs and Pm. Indeed, for Ma = Mk it is single-valued by the definition
of Mk, but may have a pole at qk. Taking the derivative of the Laurent expansion
of L at qk, we see that ∂aL acquires pole at qk of the form ∂aL = −dL/dE +O(1).
Hence, the singular part of ∂aL̃ is just −dL, which cancels with the singular part
of dMk. From (4.27) it follows that [Mk, L̃] is regular at qk. Almost identical
arguments show that for Ma = Mbi

the matrix differentials dMa and ∂aL̃ have the
same monodromy properties along the cycle bi, and therefore, φ is single-valued
on Γ.

Equations (4.23)–(4.25) and (4.27) are equivalent to the condition that φ is a
holomorphic matrix differential on Γ. Then equation (4.26) is equivalent to the
condition αT

s φ(γs) = 0. This gives us a system of r2g linear equations for φ. As
it is shown in [21], for nonspecial sets of Tyurin parameters these equations are
linearly independent, and therefore, imply φ = 0.

The matrix functions Ma are uniquely defined by L̃. Hence equations (4.23)–
(4.27) are a closed system of differential equations on the space of parameters
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(es, κs, αs, βs, L̃m). Compatibility of the equations for different indices a is equiv-
alent to the equation

∂aMb − ∂bMa + [Mb, Ma] = 0. (4.28)

In order to prove (4.28) we first check that the left-hand side of the equation is a
single-valued meromorphic matrix function which is holomorphic everywhere except
for γs. Then, from equations (4.23)–(4.25) it follows that at γs this function has at
most a simple pole of the form (2.3). For nonspecial sets of Tyurin parameters the
last condition implies that the left-hand side of (4.28) is a constant matrix function
on Γ. It equals zero due to the normalization Ma(0) = 0. Recall that at the marked
point E(Q) = 0.

From the Lax representation of equations (4.23)–(4.27) it follows that if L̃ is
a solution of these equations and Ψ is the normalized solution of (3.1), then
∂aΨΨ−1 = Ma. Lemma 4.1 implies the isomonodromy property of the flow, and
the theorem is proved. �

Example 1. The Schlesinger equations [30]

∂iAj =
[Ai, Aj ]
ti − tj

, i 6= j, (4.29)

∂iAi =
∑
j 6=i

[Aj , Ai]
ti − tj

(4.30)

describe the isomonodromy deformations of a meromorphic connection with regular
singularities

Ldz =
∑

i

Ai

z − ti
dz (4.31)

on the rational curve. In the conventional approach, the coordinates ti of punctures
on the complex plane are considered as coordinates on the space of rational curves
with punctures. In our approach, which also works for higher genus case, we use the
function E =

∑
i ln(z − ti) to parameterize points of the complex plane. Critical

values Tk(t) of E,
Tk =

∑
i

ln(qk − ti), (4.32)

locally define ti uniquely up to a common shift ti → ti + c. The critical points qk
are roots of the equation

E′(qk) =
∑

i

1
qk − ti

= 0, E′(z) = ∂zE(z). (4.33)

Note that (4.33) implies

E′(z) =
∑

i

1
z − ti

=
∏

k(z − qk)∏
i(z − ti)

. (4.34)

From (4.33) it follows that

∂iTk = − 1
qk − ti

. (4.35)
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According to Lemma 4.2, the matrix Mk(z) corresponding to the variable Tk has
the only pole at qk which coincides with the singular part of −L/Ez. Hence

Mk = − resqk
(L/E′)

z − qk
= − 1

z − qk

(∑
i

Ai

qk − ti

) ∏
j(qk − tj)∏

s 6=k(qk − qs)
. (4.36)

From equation (4.27) we obtain that isomonodromy deformations of L with respect
to new coordinates are of the form

∂Tk
Aj = − 1

tj − qk

(∑
i

[Ai, Aj ]
qk − ti

) ∏
j(qk − tj)∏

s 6=k(qk − qs)
. (4.37)

It is instructive to check directly that equations (4.37) are equivalent to (4.29). For
i 6= j we have

∂iAj =
∑

k

(∂iTk)∂Tk
Aj = −

∑
k

resz=qk

[L(z), Aj ]
∏

s 6=i,j(z − ts)∏
k(z − qk)

(4.38)

The expression in the right-hand side of (4.38) has poles at ti and qk. Hence, ∂iAj

equals the residue of this expression at z = ti,

∂iAj = [Ai, Aj ]

∏
s 6=i,j(ti − ts)∏

k(ti − qk)
. (4.39)

Equation (4.34) implies

1 = resti E
′(z) =

∏
k(ti − qk)∏

s 6=i(ti − ts)
. (4.40)

Therefore, the last factor in (4.39) equals 1/(ti−tj), and we obtain equation (4.29).
Equation (4.30) can be replaced by the equation

∑
i ∂iAj = 0. Therefore, it suffices

to check that
∑

i ∂iTk = 0. The last equation follows from (4.33) and (4.35).

Example 2. The Painleve-II equation

uxx − xu− 2u3 = ν (4.41)

describes an isomonodromy deformation of the rational connection

L = Az2 +Bz + C +Dz−1, (4.42)

where

A = −4iσ3, B = −4uσ2, C = −(2iu2 + x)σ3 − 2uxσ1, D = νσ2, (4.43)

and σi are the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (4.44)

We would like to stress once again that the conventional definition of the isomon-
odromy deformations of rational connections with irregular singularities are those
preserving monodromy, transition, and Stokes matrices. Exponents Ki are consid-
ered as parameters of the deformation (see [5], [13]).

In this example we show that the same equations can be seen as equations
describing deformations over the space of jets in local coordinate which preserve
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the full set of data (3.15), including exponents. Let us consider the isomonodromy
deformation of L corresponding to the deformation of z defined by the function

E(z) =
4
3
z3 + xz + ln z. (4.45)

The critical points qk are roots of the equation

4q2k + x+ q−1
k = 0 =⇒ E′(z) = 4z−1

3∏
k=1

(z − qk). (4.46)

As above, the Lax matrix Mk corresponding to the coordinate Tk = E(qk) equals

Mk = − resqk
(L/E′)

z − qk
. (4.47)

As is (4.35), we obtain that ∂xTk = qk. Therefore, if Ψ is a solution of (3.1), then

∂xΨ(E) = MΨ(E), M = −
∑

k

qk resqk
(L/E′)

z − qk
. (4.48)

In our notation we skip indication to an explicit dependence of functions on x, but
keep track of the variable, which is considered fixed with respect to x.

The matrix M in (4.48) equals

M = −
∑

k

resqk
F (q) = resz F (q) + res∞ F (q), F =

qL(q)
E′(q)(z − q)

. (4.49)

The residue at q = z equals

resz F (q) = −zL(z)/E′(z). (4.50)

Expansion of F (q) at q =∞ is of the form

F = −1
4
(Aq2 +Bq + C +Dq−1)

( ∞∑
s=0

zq−1

)
q−2(1 +O(q−2)). (4.51)

Therefore,

res∞ F (q) =
1
4
(Az +B). (4.52)

The derivatives with fixed values of E and z are related to each other by the chain
rule

∂xΨ(x, z) = ∂xΨ(x, E(z)) +
dΨ
dE

∂xE(x, z) = ∂xΨ(x, E(z)) +
L(x, z)
E′(x, z)

z. (4.53)

Equations (4.48)–(4.53) imply

∂xΨ(x, z) = (Az +B)Ψ(x, z). (4.54)

The compatibility condition of (3.1) and (4.54) gives the well-known Lax represen-
tation for (4.41).
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5. Hamiltonian approach

In this section we show that the general algebraic approach to the Hamiltonian
theory of Lax equations proposed in [23], [24], [19] is also applicable to isomon-
odromy equations. Since the arguments here are very close to those of the author’s
earlier work [21], except for slight modifications, we shall be brief.

The entries of L̃ ∈ A(h) can be regarded as functions on A(h) with values in
the space of meromorphic differentials on Γ. Therefore, L̃ can be seen itself as a
matrix-valued function and its external derivative δL̃ is a matrix-valued one-form
on A(h). The formal solutions ψm of the form (3.6) corresponding to the expansion
of L to the punctures Pm can be also regarded as matrix functions on A(h) defined
modulo permutation of columns and the transformation

ψ′m = ψmfm, (5.1)

where fm is a diagonal matrix. Hence, its differential δψm is a one-form on AD

with values in the space of formal series of the form (3.6). In the same way we
consider the differentials δK(m)

i of exponents in (3.6).
Let P0 be a subspace of A(h) such that the restriction to P0 of the differentials

δK
(m)
i of the exponents in (3.6) vanishes for i ≤ 0, i. e.,

δK
(m)
i

∣∣
P0

= 0, i ≤ 0. (5.2)

In other words, P0 is a subspace of A(h) such that for L̃ ∈ P0 the singular parts
L̃m of L̃ at the punctures are points of a fixed set of orbits Õm of the adjoint
action of GL+

r (w) on the space of equivalence classes of meromorphic differentials
at Pm, modulo holomorphic differentials. Here GL+

r (w) is the group of invertible,
holomorphic in a neighborhood of Pm matrix functions.

We define a scalar-valued two-form on P0 by the formula

ω = −1
2

(
rg∑

s=1

resγs
Ω̃ +

∑
Pm

resPm
Ω̃

)
, (5.3)

where
Ω̃ = Tr(ψ−1δL̃ ∧ δψ), (5.4)

and ψ in a neighborhood of γs is a solution of (3.1), and in a neighborhood of the
puncture ψ = ψm it is the formal solution (3.6).

Let us check that ω is well-defined. Indeed, if ψ′ = ψg is another solution of
(3.1) in a neighborhood of γs, then

Ω̃′ = Ω̃ + Tr[(ψ−1δL̃ψ) ∧ δgg−1]. (5.5)

Taking the external derivative of (3.1) we obtain the equalities

δ dψ = δL̃ψ + L̃δψ, −δ dψ−1 = ψ−1δL̃+ δψ−1L̃. (5.6)

They imply
ψ−1δL̃ψ = d(ψ−1δψ). (5.7)

Therefore,
Ω̃′ = Ω̃ + Tr[d(ψ−1δψ) ∧ δgg−1]. (5.8)
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The matrix g is a constant matrix in the neighborhood of γs. Therefore, the second
term in (5.5) is a full differential of a meromorphic function and does not contribute
to the residue.

Consider now the residues of Ω̃ at the puncture Pm. Essential singularities of
ψm and ψ−1

m mutually cancel. Therefore, Ω̃ is a formal meromorphic differential in
the neighborhood of Pm, and its residue at Pm is well-defined. It does not depend
on permutation of columns of ψm. Under transformation (5.1) it gets an additional
term

Tr
[
(ψ−1

m δL̃ψm) ∧ δfmf
−1
m

]
= Tr

[
d(ψ−1

m δψm) ∧ δfmf
−1
m

]
. (5.9)

The matrix fm is diagonal, and therefore commutes with K(m). Constraints (5.2)
imply that (5.9) is a holomorphic differential, and therefore has zero residue.

Theorem 5.1. The two-form ω defined by (5.3) is gauge invariant and descends
to a closed, nondegenerate form on P = P0/SLr. Under correspondence (2.14) it
takes the form

ω =
rg∑

s=1

(
δκs ∧ δzs +

r∑
i=1

δβi
s ∧ δαi

s

)
+
∑
m

ωm, (5.10)

where ωm is the canonical symplectic structure on an orbit Õm.
The isomonodromy equations (4.22) are Hamiltonian with respect to the sym-

plectic structure defined by ω. The Hamiltonians Ha are equal to

Hk = −1
2

resqs
Tr(L̃2/dE), Hbi

= −1
2

∮
ai

Tr(L̃2/dE) (5.11)

Note that κs as an affine connection and zs = z(γs) depend on a choice of
the local coordinate z in some neighborhood of γs, the first term in (5.10) being
independent of this choice.

Recall that the tangent space to Õm at L̃m is isomorphic to sl+r /sl
+
r (L̃m), where

sl+r (L̃m) is the subalgebra of traceless matrix functions ξ which are holomorphic in
a neighborhood of Pm, and such that [L̃m, ξ] is holomorphic at Pm. The symplectic
structure on Õm is defined by the formula (see details in [21])

ωm = resPm
Tr(L̃m [ξ, η]). (5.12)

Proof. It is easy to check directly that under the gauge transformation

L′ = g−1Lg, ψ′ = g−1ψ (5.13)

Ω̃ gets transformed to Ω̃′ = Ω̃ + F , where

F = Tr
(
ψ−1[L̃, δh] ∧ δψ − [L̃, δh] ∧ δh− δL̃ ∧ δh

)
, δh = δgg−1. (5.14)

Using (5.6), we obtain

Tr
(
ψ−1[L̃, δh] ∧ δψ

)
= Tr

(
δh ∧ δL̃− d(ψ−1δh ∧ δψ)

)
. (5.15)

The last term in (5.15) is holomorphic in neighborhoods of γs and Pm. The rest
of F is a global meromorphic differential on Γ with the only poles at γs and Pm.
Therefore, the sum of all residues of F vanishes. Hence, ω is gauge invariant.
Arguments needed to complete the proof of (5.10) are identical to those of the
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proof of Theorem 4.1 in [21]. From (5.10) it follows that ω is closed. It descends to
a non-degenerate form on Pm, because ωm is nondegenerate on Õm, and the first
term in (5.10) equals

ω0 =
rg∑

s=1

δκs ∧ δzs +
rg∑

s=r+1

δbTs ∧ δas, g > 1, zs = z(γs), (5.16)

where as, bs are local coordinates onM defined by (2.22).
Our next goal is to show that the isomonodromy equations are Hamiltonian with

respect to the symplectic form ω. By definition a vector field ∂a on a symplectic
manifold is Hamiltonian if the contraction i∂aω(X) = ω(X, ∂a) of the symplectic
form is an exact one-form dHa(X). The function Ha is the Hamiltonian corre-
sponding to the vector field ∂a.

For each L̃ ∈ AD
γ,α let us define meromorphic differentials dΩa = dΩa(L). The

differential dΩk is a unique meromorphic differential on Γ whose pole is of the form

dΩk = −dL+ 0(1), L̃ = LdE, (5.17)

at qk, and which is holomorphic everywhere else and satisfies the equations

αT
s dΩa(γs) = 0. (5.18)

The differential dΩbi
is a unique holomorphic differential on Γ∗i satisfying (5.18)

and continuous on the closure of Γ∗i . Its boundary values on the two sides of the
cut along the ai-cycle satisfy the relation

dΩ+
bi
− dΩ−bi

= −dL. (5.19)

Lemma 5.1. The evaluations of one-forms δL and δψ on the vector field ∂a defined
by the Lax equation (4.22) equal

δL̃(∂a) = ∂aL− dΩa = [Ma, L̃] + dMa − dΩa, (5.20)

δψ(∂a) = Maψ + φa, (5.21)

where φa is a solution of the equation

dφa = L̃φa − dΩaψ. (5.22)

Proof. The right-hand sides of (5.20), (5.21) are not equal to the derivatives of L̃
and ψ, since by definition δ is the external differential on a fiber AD(Γ), but not
on the total space of the bundle A(h). In other words, if Ik are coordinates on the
space AD(Γ) on a fixed curve with punctures, then

δL̃ = (∂L̃/∂Ik)δIk =⇒ δL̃(∂a) = (∂L̃/∂Ik)∂aIk. (5.23)

The data (2.14) are coordinates on AD(Γ). From equations (4.23)–(4.27) it follows
that the difference Φ of both sides of (5.20) is a holomorphic differential on Γ such
that αT

s Φ(γs) = 0. For nonspecial sets of Tyurin parameters the last equation
implies Φ ≡ 0. Evaluation of (5.6) at ∂a, and equation (5.20) imply (5.21) directly.

�
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From (5.20)–(5.22) it follows that the evaluation Ω̃(∂a) of the matrix valued
two-form Ω̃ given by (5.4) equals

Ω̃(∂a) = Tr
(
ψ−1δL(Maψ + φa)− ψ−1([Ma, L̃] + dMa − dΩa)δψ

)
. (5.24)

From (5.6) and (5.7) it follows that

Ω̃(∂a) = Tr
(
MaδL̃+ δL̃Ma − ψ−1 dΩaδψ − d(ψ−1Maδψ)− d(δψ−1φa)

)
. (5.25)

The last two terms in (5.25) are differentials of meromorphic functions in the neigh-
borhoods of γs and Pm. Therefore, their residues at these points equal zero. From
(5.18) it follows that the third term is holomorphic at γs. It is holomorphic also at
Pm. For Mk the first two terms are meromorphic on Γ with poles at γs, Pm and
with a pole at the critical point qk. Hence,

i∂k
ω =

1
2

resqk
Tr(δL̃Mk +MkδL̃). (5.26)

By definition, the matrix Mk in a neighborhood of qk has the form Mk = −L̃/dE+
O(1). That implies (5.11) for Ta = Tk. In the similar way we prove that ω(∂Tbi

)
equals to the external differential of Hbi , and therefore, the theorem is proved. �

The basic flows constructed above easily allow one to describe isomonodromy
equations corresponding to various subspaces of Mg,1(h), and to various changes
of coordinates. Let Ta = Ta(τ) depend on a variable τ , and let z = z(E, Ta) be
a local coordinate along Γ(Ta(τ)). Then the matrix function M which defines an
isomonodromic deformation of L̃ in the τ -direction equals

M =
∑

a

(∂τTa)Ma(z) +
L̃

dE
∂τE(z) (5.27)

Let us consider the following instructive example.

Isomonodromy equations on a fixed algebraic curve. A variation of the
coordinates Ta introduced above changes simultaneously a curve, punctures and
jets of local coordinates. In these coordinates it is hard to identify variations that
preserve Γ. For such deformations it is more convenient to use a more traditional
setting.

If z = zm is a local coordinate on Γ in an open domain Um, then the variables
tm = z(Pm) are local coordinates on the space of punctures Pm ∈ Um. Let L̃ ∈
AD

γ,α(Γ) be an admissible meromorphic differential on Γ with regular singularities
at Pm, i. e., in Um it is of the form

L̃ =
(

Lm

z − tm
+O(1)

)
dz, (5.28)

and corresponds to a nonspecial set of Tyurin parameters (γ, α).
From (5.27) it follows that M (m) corresponding to the coordinate tm can be

defined as the unique meromorphic matrix function on Γ such that:
(i) M (m) is holomorphic on Γ everywhere except for γs and for the point Pm;
(ii) the rows of M (m) at γs are of the form (2.3);
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(iii) in the neighborhood of Pm the matrix M (m) is of the form

M (m) = − Lm

z − tm
+O(1), (5.29)

and is normalized by the condition M (m)(Q) = 0.

Corollary 5.1. The Lax equations

∂tm
L̃− dM (m) + [L̃, M (m)] = 0 (5.30)

describe isomonodromy deformations of L̃ with respect to the variables tm. They
descend to the Hamiltonian equations on P with the Hamiltonians

H(m) = −1
2

resPm Tr(L̃2/dz). (5.31)

A proof of the last statement is almost identical to that of Theorem 5.1. The
differential dΩa in (5.20)–(5.25) has to be changed by the differential dΩ(m). The
latter has the only pole at Pm, where

Ω(m) = − Lm

z − tm
+ 0(1). (5.32)

It is normalized by the same condition (5.18). As a result of that change the only
term in (5.25) having nontrivial sum of residues at γs and Pm, is the third. It has
nontrivial residue at Pm which can be easily found using (3.1).

Elliptic Schlesinger equations. Let Ldz be a meromorphic connection on an elliptic
curve Γ = C/{2nω1, 2mω2} with simple poles at punctures z = tm. In this example
we denote the parameters γs and κs by qs and ps, respectively.

In the gauge αs = es, ej
s = δj

s the j-th column of the matrix Lij has poles only
at the points qj and punctures tm. Equation (2.7) implies Lji(qj) = 0, i 6= j.
From equations (2.5), (2.7) it follows that Ljj at qj has the expansion Ljj(z) =
(z − qj)−1 + pj + O(z − qj). An elliptic function with these properties is uniquely
determined by its residues Lij

m at the punctures tm, and can be written in terms of
the Weierstrass ζ-function as follows:

Lii(z) = pi +
∑
m

Lii
m

(
ζ(z − tm)− ζ(z − qi)− ζ(qi − tm)

)
,

∑
m

Lii
m = −1, (5.33)

Lij(z) =
∑
m

Lij
m

(
ζ(z − tm)− ζ(z − qj)− ζ(qi − tm) + ζ(qi − qj)

)
, i 6= j. (5.34)

The Poisson brackets are defined by the standard formulae

{pi, qj} = δij , {Lij
m, L

ls
k } = δmk

(
−δjlL

is
m + δisL

lj
m

)
. (5.35)

The elliptic Schelesinger equations are generated by the Hamiltonians

H(m) = −
∑

i

piL
ii
m +

∑
i

∑
k 6=m

Lii
mL

ii
k (ζ(tm − tk)− ζ(tm − qi)− ζ(qi − tk))

−
∑
i 6=j

Lij
mL

ji
m(ζ(qj − qi)− ζ(tm − qi)− ζ(qj − tm))

−
∑
k 6=m

∑
i 6=j

Lij
mL

ji
k (ζ(tm − tk)− ζ(tm − qi)− ζ(qj − tk)− ζ(qi − qj)). (5.36)
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Example 3. As an example of isomonodromy equations corresponding to defor-
mations of algebraic curves, we consider a meromorphic connection on an elliptic
curve Γ = C/{n, mτ} with one puncture, which, without loss of generality, we put
at z = 0. In the framework of the Hamiltonian reduction approach this example
was considered in [27].

We use the same gauge as in the previous example. Let us assume that the
residue of L̃ at z = 0 is of the form −(1+h)+f , where 1+h is a scalar matrix, and
f is a matrix of rank one: f ij = aibj . As it was mentioned above, the equations
αi = ei fix the gauge up to transformations by diagonal matrices. We can use these
transformations to make ai = bi. The corresponding momentum is given then by
the collection (ai)2 and we fix it to have values (ai)2 = h. Then, using the same
arguments as before, we see that the matrix L can be written as

Lij = h
σ(z + qi − qj)σ(z − qi)σ(qj)
σ(z)σ(z − qj)σ(qi − qj)σ(qi)

, i 6= j;

Lii = pi + ζ(z − qi)− ζ(z) + ζ(qi),
(5.37)

where σ(z) = σ(z | 1, τ) is the Weierstrass σ-function.
According to Theorem 5.1, the isomonodromy deformation of L with respect to

the module τ of the elliptic curve is generated by the Hamiltonian

H = −1
2

∫ 1

0

TrL2 dz. (5.38)

The addition formula for the σ-function implies∫ 1

0

LijLji dz = h2

∫ 1

0

(℘(z)−℘(qi− qj)) dz = h2(2η1−℘(qi− qj)), i 6= j. (5.39)

Here and below η1 = ζ(1/2), η2 = ζ(τ/2). The formula

(ζ(z − qi)− ζ(z) + ζ(qi))2 = ℘(z − qi) + ℘(z) + ℘(qi), (5.40)

and the monodromy property σ(z+ 1) = −σ(z)e2η1(z−1/2) of the σ-function imply∫ 1

0

(Lii) dz = p2
i + ℘(qi) + 2η1 + 2pi(ζ(qi)− 2η1qi). (5.41)

The (p, q)-independent term in H which is proportional to η1(τ) does not effect
the equations of motion. Therefore, the Hamiltonian generating the isomonodromy
equations for pi = pi(τ), qi = qi(τ) equals

−4πiH =
∑

i

(
p2

n + 2pn(ζ(qn)− 2η1qn) + ℘(qn)
)
− h2

∑
n 6=m

℘(qn − qm). (5.42)

The equations of motion are

qn,τ = − 1
2πi

(pn + ζ(qn)− 2η1qn), (5.43)

pn,τ =
1

4πi

(
−2pn(℘(qn) + 2η1) + ℘′(qn)− h2

∑
n 6=m

℘′(qn − qm)
)
. (5.44)
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Equation (5.43) implies

qn,ττ = − 1
2πi

(pn,τ − qn,τ (℘(qn) + 2η1) + χ(qn)), (5.45)

where
χ(z) = χ(z; τ) = ∂τ (ζ(z | 1, τ)− 2η1(τ)z)). (5.46)

The function ξ = ζ(z | 1, τ) − 2η1(τ)z has the following monodromy properties:
ξ(z + 1) = ξ(z), ξ(z + τ) = ξ(z) − 2πi. Therefore, χ(z) is an entire function of z
such that χ(z + 1) = χ(z), χ(z + τ) = χ(z)− ∂zξ(z) = χ(z) + (℘(z) + 2η1). These
analytic properties imply the following expression for χ in terms of the Weierstrass
functions:

χ(z) = − 1
4πi

(2(ζ(z)− 2η1z)(℘(z) + 2η1) + ℘′(z)). (5.47)

From (5.43)–(5.47) we get

qn,ττ = − h

8π2

∑
n 6=m

℘′(qn − qm | 1, τ). (5.48)

For r = 2 equation (5.48) for the variable u = q1 − q2 is a particular case of the
Painlevé VI equation (see details in [27] and [10]). It is to be said that although
equations (5.48) do coincide with those obtained in [27], the Hamiltonian (5.42)
has a new intriguing form.

6. Canonical transformations

In the previous section the symplectic form ω, initially defined by formula (5.3),
was then expressed in terms of dynamical variables (2.14). As a result it was
identified with the canonical symplectic structure on the space of meromorphic
connections. The main goal of this section is to express ω in terms of monodromy
data (3.15).

Note first that the sum in (5.3) is taken over all poles of L̃. It is not equal to
zero, because the solutions of (3.1) used in (5.3), (5.4) are formal local solutions
in the neighborhoods of punctures. Consider now the differential Ω0 given by the
same formula as Ω̃ in (5.4), i. e.,

Ω0 = Tr(Ψ−1δL̃ ∧ δΨ), (6.1)

but where Ψ is a (global) multi-valued holomorphic solution of (3.1) on Γ \ {Pm}.
The differential Ω0 is single-valued on Γ with cuts along cycles (ak, bk) and paths
cm between the marked point Q and the punctures Pm. Therefore,

rg∑
s=1

resγs
Ω0 =

1
2πi

∮
L

Ω0 −
1

2πi

∮
C

Ω0, (6.2)

where L =
∏g

k=1(akbka
−1
k b−1

k ), and C =
∏

m Cm are loops in Γ \ {Pm} (see Fig. 1).
If Ψ(Q) = 1 at the initial point, then the monodromy of Ψ along the loop

aba−1b−1 is equal to
J(A, B) = B−1A−1BA, (6.3)
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where A, B are the monodromies corresponding to the cycles a and b. The mon-
odromy of Ψ along b segment of the loop is A−1BA = BJ . From (5.8) it follows
that the sum of integrals of Ω0 along the a and a−1 segments of the loop is equal
to

I1 = −Tr(A−1δA ∧ δ(BJ)J−1B−1)

= −Tr
[
A−1δA ∧ δBB−1 +B−1A−1(δA)B ∧ δJJ−1

]
. (6.4)

The monodromy of Ψ along the a−1 segment of the loop is A−1J . Therefore, the
sum of integrals of Ω0 along b and b−1 segments of the loop is equal to

I2 = −Tr
[
(A−1B−1δ(BA)−A−1δA) ∧ δ(A−1J)J−1A

]
= −Tr[−B−1δB ∧ δAA−1 +B−1δB ∧ δJJ−1]. (6.5)

The sum χ = I1 + I2 equals

χ(A, B) = Tr
[
B−1δB∧δAA−1−A−1δA∧δBB−1+δJJ−1∧B−1A−1δ(AB)

]
. (6.6)

Due to analytical continuation, the solution Ψ on the segment of the loop L differs
from the normalized solution Ψ0 used in the previous formulae by the factor

H1 = 1; Hk = Jk−1Jk−2 · · · J1, k > 1; Js = J(As, Bs). (6.7)

From (5.8) it follows that the integral of Ω0 over (akbka
−1
k b−1

k ) under the transfor-
mation Ψ = Ψ0Hk acquires an additional term

Tr(J−1
k δJk ∧ δHkH

−1
k ). (6.8)

a1

b1

a−1
1

b−1
1

Pm

P1

Cm

C1

Q Q

Q

Q

Q

γs

γ1

Figure 1.
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Let us denote the integral of Ω0 over L by

ω1(A, B) :=
∮
L

Ω0 =
g∑

k=1

[
χ(Ak, Bk) + Tr(J−1

k δJk ∧ δHkH
−1
k )
]
. (6.9)

It is a two-form on the space of sets of matrices A = {Ak}, B = {Bk}.
Next we compute the integral of Ω0 along the cycle Cm, which goes along one

side of the cut cm, then goes around Pm along a small circle c′m, and finally goes
back along the other side of cm (see Fig. 1).

Consider first the integral of Ω0 around the puncture. We split the circle c′ into
2h+ 1 arcs cν which lie in the sectors Vν (here and below we skip, for brevity, the
index m of the puncture). Recall that in each of the sectors the formal solution ψ
of (3.1) given by Lemma 3.1 is an asymptotic series for the holomorphic function
Ψν = Ψg−1

ν . Let Ων be given by the same formula as for Ω0 with Ψ replaced by
Ψν . Then, ∫

cν

Ω0 =
∫

cν

Ων + Tr
[∫

cν

d(Ψ−1
ν δΨν) ∧ δgνg

−1
ν

]
. (6.10)

The form Ω̃ defined by (5.4), where ψ is the formal solution (3.1), gives an asymp-
totic series for Ων in Vν . Therefore, as c′ shrinks to the puncture,

lim
c′→P

∑
ν

∫
cν

Ων = (2πi) resP Ω̃. (6.11)

The sum of second terms in (6.10) equals

Tr
(
Ψ−1

2h+1(p)δΨ2h+1(p) ∧ δg2h+1g
−1
2h+1 −Ψ−1

1 (p)δΨ1(p) ∧ δg1g−1
1

)
+

2h∑
ν=1

Tr
(
Ψ−1

ν (pν)δΨν(pν) ∧ δgνg
−1
ν −Ψ−1

ν+1(pν)δΨν+1(pν) ∧ δgν+1g
−1
ν+1

)
, (6.12)

where pν ∈ Vν ∩ Vν+1 is the common endpoint of the arcs cν and cν+1. The point
p is the intersection point of the cut c and the circle c′. We assume that the cut
tends to the puncture in the intersection V1 ∩ V2h+1.

The matrices Ψ2h+1 and Ψ1 are connected by the relation Ψ2h+1 = Ψ1e
2πiK0 .

Recall that the monodromy µ along the whole path C is µ = g−1
1 e2πiK0g2h+1.

Therefore, the first two terms in (6.12) give

Tr
[
Ψ−1

1 δΨ1 ∧ (e2πiK0δg2h+1g2h+1e
−2πiK0 − δg1g−1

1 )
]

= Tr
(
Ψ−1

1 δΨ1 ∧ g1δµµ−1g−1
1

)
. (6.13)

Boundary values of Ψ on the two sides of the cut c between Q and P satisfy the
relation Ψ+ = Ψ−µ. Therefore, the sum of integrals of Ω0 along the first and the
last segments of the path C equals

− Tr
(
Ψ−1(p)δΨ(p) ∧ δµµ−1

)
= Tr

(
δµµ−1 ∧ g−1

1 δg1 + δµµ−1 ∧ g−1
1 Ψ−1

1 (p)δΨ1(p)g1
)
. (6.14)

Here we use the relation Ψ(p) = Ψ1(p)g1. The sum of (6.13) and (6.14) is equal to

I3 = Tr(δµµ−1 ∧ g−1
1 δg1). (6.15)
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Recall that Ψν+1 = ΨνSν , where the Stokes matrix Sν equals Sν = gνg
−1
ν+1. There-

fore, the terms of the sum in (6.12) are equal to

Tr
[
−S−1

ν δSν ∧ δgν+1g
−1
ν+1 + Ψ−1

ν (pν)δΨν(pν) ∧ (δgνg
−1
ν − Sνδgν+1g

−1
ν+1S

−1
ν )
]

= Tr
(
−δSνS

−1
ν ∧ δgνg

−1
ν + Ψ−1

ν δΨν ∧ δSνS
−1
ν

)
.

In the sector Vν we have Ψνe
−Kw−h

= O(1), where K is the leading exponent K−h.
Therefore, (3.10) implies

lim
pν→P

Tr(Ψ−1
ν δΨν ∧ δSνS

−1
ν ) = 0. (6.16)

Hence, the second term in (6.12) tends to

I4 =
2h∑

ν=1

Tr(−δSνS
−1
ν ∧ δgνg

−1
ν ), (6.17)

as c′ shrinks to P . Let us denote the sum of (6.15) and (6.17) by

σ(S, G, K0) = Tr
(
δµµ−1 ∧G−1δG−

2h∑
ν=1

δSνS
−1
ν ∧ δgνg

−1
ν

)
, (6.18)

where S = {Sν}, and matrices µ, gν are given by (3.13), (3.14). The integral
of Ω0 along C equals σ(S, G, K0) under the assumption that Ψ = Ψ0, where
Ψ0 = 1 at the initial point of the cycle. Due to analytic continuation along the
path C =

∏
m Cm, the initial value for the cycle Cm equals

F1 = 1; Fm = µm−1µm−2 · · ·µ1, m > 1. (6.19)

From (5.8) it follows that the integral of Ω0 along the segment Cm of the path C
acquires under the transformation Ψ = Ψ0Fm the additional term

Tr(µ−1
m δµm ∧ δFmF

−1
m ). (6.20)

Let us define a family of two-forms on the space of sets of matrices S = {S(m)
ν },

G = {G(m)} parameterized by a set K0 = {K(m)
0 } of diagonal matrices:

ω2(S, G |K0) :=
∮
C

Ω0 − 2πi
∑
m

resPm Ω̃

=
∑
m

[
σ(S(m), Gm, K

(m)
0 ) + Tr(µ−1

m δµm ∧ δFmF
−1
m )

]
. (6.21)

Summarizing we obtain the following statement.

Theorem 6.1. The symplectic form ω defined by (5.3) is equal to

ω =
1

4πi
[
ω2(S, G |K0)− ω1(A, B)

]
, (6.22)

where ω1 and ω2 are given by (6.9) and (6.21), respectively.
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It would be quite interesting to check directly that formula (6.22) defines a
symplectic structure on orbits of the adjoint action of SLr on the space of the sets
(A, B, S, G) of matrices, which satisfy the only relation

←∏
k

(B−1
k A−1

k BkAk) =
←∏
m

µm. (6.23)

The factors in (6.23) are ordered so that the indices increase from right to left.

Example. Let us consider the case of meromorphic connections on the rational
curve with one irregular singularity of order 2 and one regular singularity. Without
loss of generality, we assume that L̃ = Ldz has irregular singularity at z = 0 and
regular singularity at z =∞, i. e.,

L = l−1z
−2 + l0z

−1. (6.24)

Let us fix a gauge in which l1 = K∞0 is a diagonal matrix. Then the monodromy
matrix at the infinity is µ∞ = exp(2πiK∞0 ). Recall that we always assume that
the exponents are fixed. The monodromy data at z = 0 are two Stokes matrices
S1, S2, transition matrix G, and the exponents K1, K0. The monodromy matrix
at z = 0 equals

µ0 = G−1e2πK0S−1
2 S−1

1 G = µ−1
∞ . (6.25)

The transition matrices to the first and to the second sectors at z = 0 equal

g1 = G, g2 = S−1
1 G. (6.26)

Substitution of (6.26) into (6.18) implies

4πi ω = −Tr
(
δS1S

−1
1 ∧ δGG−1 + δS2S

−1
2 ∧ δ(S−1

1 G)G−1S1

)
. (6.27)

Using skew-symmetry of the wedge product and (6.25), we can rewrite the last term
as

Tr
(
δS2S

−1
2 ∧ δ(S−1

1 G)G−1S1

)
= Tr

(
S−1

2 δS2 ∧ δ(S−1
2 S−1

1 G)G−1S1S2

)
= Tr

(
e2πiK0S−1

2 δS2e
−2πiK0 ∧ δGG−1

)
. (6.28)

Hence,

ω = − 1
4πi

Tr
[
(δS1S

−1
1 + e2πiK0S−1

2 δS2e
−2πiK0) ∧ δGG−1

]
. (6.29)

Formula (6.29) coincides (up to a factor 2) after the change of notations G = C,
S1 = b−1

+ , S2e
−2πK0 = b− with formula (14) in [2], where the symplectic structure

on the space of monodromy data for the linear system (6.24) was idenitfied with
the symplectic structure of the group G∗ dual to G = GLr.

7. The Whitham equations

It is well-known, that the family of flat (ε 6= 0)-connections on holomorphic
vector bundles over an algebraic curve Γ with punctures extends to a smooth family
over the whole ε-plane. The central fiber over ε = 0 is identified with the cotangent
bundle to the moduli space of holomorphic vector bundles on Γ. The correspondence
(2.14) makes these statements transparent.
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The space of meromorphic ε-connections with fixed multiplicities h = {hm} of
poles is the quotient space Aε(h)/SLr of the space of meromorphic differentials
L̃ε such that ε−1Lε ∈ A(h). A meromorphic differential L̃ε ∈ Aε(h) satisfies the
constraints (2.4), (2.5), (2.7) and the condition

resγs
Tr L̃ = (αT

s βs) = ε. (7.1)

The characteristic property of meromorphic ε-connections is that in the neighbor-
hood of the points γs they are of the form

L̃ = ε dΦs(z)Φ−1
s (z) + Φs(z)L̃s(z)Φ−1

s (z), (7.2)

where L̃s and Φs are holomorphic at γs, and detΨs has at most simple zero at
γs. In the earlier work of the author [21] the space A0(h) was called the space of
Lax matrices, and orbits of the adjoint action of SLr on subspaces of A0(h) with
fixed singular parts of the eigenvalues were identified with phase spaces of Hitchin
systems.

The space Aε(h) is a bundle over the moduli space Mg,1(h). Let L̃ε(τ) be a
one-parameter deformation of L̃ε which preserves the full set of monodromy data
(3.15) associated with a holomorphic solution of the equation

ε dΨ = L̃Ψ. (7.3)

Along the lines of the proof of Lemma 4.1 it can be shown that the singularities of
M = ∂τΨΨ−1 are of the form ε−1L̃ε/dE. Therefore, in order to get a smooth at
ε = 0 family of isomonodromy equations, it is necessary to make a proper rescaling
of coordinates onMg,1(h). Namely, if we introduce the fast coordinates ta = e−1Ta,
then the isomonodromy equations are equivalent to the Lax equations

∂ta
L̃ε − ε dMa + [L̃ε, Ma] = 0, (7.4)

where matrices Ma = Ma(L̃ε) are defined by the same analytical properties as
above in Section 4. Moreover, the corresponding Hamiltonians are given by the
same formulae (5.11).

Remark. Here and below we use the coordinates Ta onMg,1 introduced in Section 4,
but mainly our arguments do not rely on any specific choice of the coordinates.

As it follows from [21], equations (7.4) for ε = 0

∂ta
L̃0 = [Ma, L̃0] (7.5)

coincide with the Lax equations for commuting flows of the Hitchin system cor-
responding to the second order Hamiltonians given by the same formula (5.11).
Equations (7.5) describe isospectral deformations. If L̃0 ∈ A0(h) is a solution of
(7.5), then the spectral curve Γ̂ of L̃0 defined by the characteristic equation

det(k̃ − L̃0) = k̃r +
∑

i

uik̃
i = 0 (7.6)

is time-independent. The spectral transform identifies A0(h) with the Jacobian
bundle over the moduli space S of spectral curves. The fiber of this bundle over Γ̂
is the Jacobian J(Γ̂). The bijective correspondence between A(h) and the Jacobian
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bundle over S can be seen as a parameterization of A0(h) in the form L̃0 = L̃0(φ | I).
Here and below we regard L̃0(φ | I) as an abelian function of the variable φ ∈ J(Γ̂)
depending on I ∈ S. The function L̃0(φ | I) takes values in the space of meromorphic
matrix differentials on Γ. The motion equations are linearized on the Jacobian of
the spectral curve, and therefore, the general solution of (7.5) can be represented
in the form L̃0 = L̃0(Ut | I), where Ut =

∑
a Uata, and Ua = Ua(I) are constant

vectors depending on I (see details in [21]).
The main goal of this section is to apply ideas of the Whitham averaging method

to construct asymptotic solutions of isomonodromy equations (7.4)

L̃ε = L̃0 + εL̃1 + ε2L̃2 + · · · , Mε = M0 + εM1 + ε2M2 + · · · , (7.7)

where the leading terms are of the form

L̃0(ε−1S(T ) | I(T )), M0 = (ε−1S(T ) | I(T )), (7.8)

and T = εt are slow variables. If the vector-function function S(T ) satisfies the
equation

∂TS(T ) = U(I(T )) = U(T ), i. e., S(T ) =
∫ T

U(T ) dT, (7.9)

then the leading term of (7.7) satisfies the original equation up to first order in ε.
All other terms of the asymptotic series are obtained from non-homogeneous linear
equations whose homogeneous part is just the linearization of the original nonlinear
equation at the background of the exact solution L̃0. In general, the asymptotic
series becomes unreliable on scales of the original variables t of order ε−1. In order
to have a reliable approximation, one needs to require a special dependence on the
parameters I(T ). Geometrically, we note that ε−1S(T ) agrees to first order with
Ut, and t are the fast variables. Thus L̃0(ε−1S(T ) | I(T )) describes a motion which
is to first order the original fast periodic motion on the Jacobian, combined with
a slow drift on the moduli space of exact solutions. The equations which describe
this drift are in general called Whitham equations, although there is no systematic
scheme to obtain them.

Below we follow the lines of the scheme proposed in [16], where the Whitham
equations for general (2 + 1) integrable soliton systems were derived. First, we in-
troduce sets of Abelian differentials dvr

a, dv
i
a on spectral curves Γ̂. The differentials

dvr
a, dv

i
a are real normalized, i. e., their periods are pure imaginary,

Re
∮

c

dvr
a = Re

∮
c

dvi
a = 0, c ∈ H1(Γ̂). (7.10)

For indices a = n the corresponding differentials have poles only at the preimages
qj
n of the point qn on Γ̂, where

dvr
n = dkj(z) +O(1), dvi

n = i dkj(z) +O(1), (7.11)

and kj(z) is the corresponding branch of the eigenvalue of L̃(z)/dE, i. e., the cor-
responding root of the equation

det(k − L̃0/dE) = 0, k = k̃/dE. (7.12)
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For indices a = bj the corresponding differentials are holomorphic on Γ̂, with cuts
along all preimages al

j ∈ H1(Γ̂) of the cycle aj ∈ H1(Γ), and their boundary values
on two sides of the cut al

j satisfy the relation

(dvr
bj

)+ − (dvr
bj

)− = dkl, (dvi
bj

)+ − (dvi
bj

)− = i dkl. (7.13)

Here, as before, kl is the corresponding eigenvalue of L̃/dE. Note that dvr
a + idvi

a

is a holomorphic differential.

Theorem 7.1. A necessary condition for the existence of asymptotic solution (7.7)
of isomonodromy equation (7.4) with leading term (7.8) and with bounded first
correction term L̃1 are the equations

∂Xa k̃ = −dvr
a, ∂Ya k̃ = −dvi

a, (7.14)

where Xa and Ya are the real and imaginary parts of the slow variable Ta = Xa+iYa.

It can be shown along the lines of [16] that equations (7.14) are generating form
of the equations on the space S of spectral curves (see details in [23], [24], [18], [17]).

Equations (7.14) can be written in the form

∂Ta
k̃ = −dva, (7.15)

where

∂Ta =
1
2

(
∂

∂xa
− i ∂

∂y

)
, dva =

1
2
(dvr

a − i dvi
a). (7.16)

Remark. Equation (7.15) is a particular case of exact solutions of the universal
Whitham hierarchy. It is connected with the theory of WDVV equations and the
Seiberg–Witten theory of N = 2 supersymmetric gauge models (see [23], [24], [18],
[17]).

Corollary 7.1. The real parts of periods of the differential k̃ over the spectral curve
are integrals of Whitham equations. The correspondence

L̃0 7−→ Re
∮

c

k̃, c ∈ H1(Γ̂), (7.17)

defines a flat connection on the bundle S over Mg(h)

Proof of the theorem. Substitution of series (7.7) into (7.4) gives non-homogeneous
linear equation for the first order terms

∂tL̃1 + [L̃0, M1] + [L̃1, M0] = dM0 − ∂T L̃0 − t
g∑

i=1

(∂TUi)∂φi
L̃0, (7.18)

where ∂T = (∂T I)∂I , and φi are coordinates on fibers of the Jacobian bundle. Here
and below, we skip for brevity index a, i. e., t = ta, and T = Ta. Let ψ and ψ∗ be
solutions of the adjoint systems of equations

L̃0ψ = k̃ψ, ∂tψ = M0ψ, (7.19)

ψ∗L̃0 = k̃ψ∗, ∂tψ
∗ = −ψ∗M0. (7.20)
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Here ψ∗ is a vector-row, normalized by the condition ψ∗ψ = 1. From (7.18), (7.19),
(7.20) it follows that

∂t(ψ∗L1ψ) = −ψ∗
(
∂T L̃0 − dM0 + t

g∑
i=1

(∂TUi)∂φi
L̃0

)
ψ. (7.21)

From the equations

ψ∗(δL̃0 − δk̃)ψ = −ψ∗(L̃0 − k̃)δψ = 0, (7.22)

and the normalization ψ∗ψ = 1 it follows that

ψ∗δL̃0ψ = δk̃. (7.23)

Variations of L̃0 with respect to variables φi preserve the spectral curve, i. e., for
such variations one has δk̃ = 0. Hence,

ψ∗(∂φi
L̃0)ψ = 0. (7.24)

Equation (7.23) also implies

∂T k̃ = ψ∗(∂T L̃)ψ. (7.25)

Equations (7.19), (7.20) imply

ψ∗(dM0)ψ = −ψ∗M0 dψ + ψ∗(∂t dψ) = ∂t(ψ∗dψ). (7.26)

Hence, (7.21) can be written as

∂t(ψ∗L1ψ) + ∂T k̃ − ∂t(ψ∗dψ) = 0. (7.27)

In [21] it was shown that the solution ψ of equations (7.19) is the conventional
Baker–Akhiezer function on Γ̂. Therefore, it can be written explicitly in terms of
Riemann theta-functions of the spectral curve. In [16] the original formulae were
adapted for the averaging procedure. In order to complete the proof of the theorem,
we do not need these formulae in full. Let us present necessary facts.

The function ψ = ψ(x, y; P ), and the dual Baker–Akhiezer function ψ∗ consid-
ered as functions of real variables x, y can be represented in the form

ψ(x, y; P ) = Φ(xUr + yU i + ζ; P ) exp
(
−
∫ P

x dvr + y dvi

)
, (7.28)

ψ∗(x, y; P ) = Φ∗(xU i + yUr + ζ; P ) exp
(∫ P

x dvr + y dvi

)
, (7.29)

where Ur, U i are real 2g-dimensional vectors, and for each P ∈ Γ̂ the functions
Φ(ζ; P ) and Φ∗(ζ; P ), as functions of 2g real variables ζ = (ζ1, . . . , ζ2g), have the
following monodromy properties:

Φ(ζ + ei; P ) = wiΦ(ζ), Φ∗(ζ + ei; P ) = w−1
i Φ∗(ζ; P ), |wi| = 1, (7.30)

where ei are the basis vectors of R2g.
The functions L̃0, ψ and ψ∗ as functions of the complex variable t = x + iy

are meromorphic functions. Therefore, if L1 is uniformly bounded outside some
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neighborhood of the singularity locus, then the average value 〈∂t(ψL1ψ)〉 in t of
the first term in (7.27) equals zero,

〈f(t)〉 = lim
Λi→∞

Λ−1
i

∫ Λi

0

f dt. (7.31)

It is necessary to make few remarks to clarify the averaging procedure. First of all,
we assume that 0 and Λi are not in the locus. The integral is taken along the path
in the complex plane of the variable t, which does not intersect singularities.

As it follows from (7.28)–(7.30), the average value of the last term in (7.27) does
exist but depends on the direction in t-plane. If we consider t as a real variable,
then this average equals −dvr. For t = iy it equals −dvi, and therefore the theorem
is proved. �
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