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Abstract. We present a Lax pair for the field elliptic Calogero–Moser system and establish a
connection between this system and the Kadomtsev–Petviashvili equation. Namely, we consider
elliptic families of solutions of the KP equation such that their poles satisfy a constraint of being
balanced. We show that the dynamics of these poles is described by a reduction of the field elliptic
CM system.

We construct a wide class of solutions to the field elliptic CM system by showing that any
N -fold branched cover of an elliptic curve gives rise to an elliptic family of solutions of the KP
equation with balanced poles.

Key words: KP equation, Calogero–Moser system, Lax pair.

1. Introduction

The main goal of this paper is to establish a connection between the field analog of the elliptic
Calogero–Moser system (CM) introduced in [10] and the Kadomtsev–Petviashvili equation (KP).
This connection is a next step along the line that goes back to the paper [1], where the dynamics of
the poles of elliptic (rational or trigonometric) solutions of the Korteweg–de Vries equation (KdV)
was described in terms of commuting flows of the elliptic (rational or trigonometric) CM system.

It was shown in the earlier paper [7] of one of the authors that the constrained correspondence
between a theory of the elliptic CM system and a theory of the elliptic solutions of the KdV equation
becomes an isomorphism for the case of the KP equation. It turns out that a function u(x, y, t)
that is an elliptic function with respect to the variable x satisfies the KP equation if and only if it
has the form

u(x, y, t) = −2
N∑

i=1

℘(x− qi(y, t)) + c, (1.1)

and its poles qi as functions of y satisfy the equations of motion of the elliptic CM system. The
latter is a system of N particles on an elliptic curve with pairwise interactions. Its Hamiltonian
has the form

H2 =
1
2

N∑
i=1

p2
i − 2

∑
i�=j

℘(qi − qj),

where ℘(q) is the Weierstrass ℘-function. The dynamics of the particles qi with respect to t coincides
with the commuting flow generated by the third Hamiltonian H3 of the system. Recall that the
elliptic CM system is a completely integrable system. It admits a Lax representation L̇ = [L,M ],
where L = L(z) and M = M(z) are (N × N) matrices depending on a spectral parameter z [4].
The involutive integrals Hn are defined as Hn = n−1 TrLn .

An explicit theta-functional formula for algebro-geometric solutions of the KP equation provides
an algebraic solution of the Cauchy problem for the elliptic CM system [7]. Namely, the positions
qi(y) of the particles at any time y are roots of the equation

θ(�Uqi + �V y + �Z |B) = 0,
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where θ(z |B) is the Riemann theta function constructed with the help of the matrix of b-periods
of the holomorphic differentials on a time-independent spectral curve Γ. The spectral curve is given
by R(k, z) = det(kI − L(z)) = 0, and the vectors �U , �V , �Z are determined by the initial data.

The correspondence between finite-dimensional integrable systems and pole systems of various
soliton equation has been extensively studied in [2, 8, 9, 11, 12]. A general scheme for construct-
ing such systems using a specific inverse problem for linear equations with elliptic coefficients is
presented in [8].

The problem we address in this paper is as follows. The KP equation

3
4
uyy =

∂

∂x

(
ut − 1

4
uxxx − 3

2
uux

)
(1.2)

is the first equation in a hierarchy of commuting flows. A general solution of the entire hierarchy
is known to be of the form

u(x, y, t, t4, . . . ) = 2
∂2

∂x2
ln τ(x, y, t, t4, . . . ), x = t1, y = t2, t = t3,

where τ is the so-called KP tau function. We consider solutions u that are elliptic function with
respect to some variable tk or a linear combination λ =

∑
k αktk of times.

It is instructive first to consider the algebraic-geometric solutions of the KP equation. According
to [6], any smooth algebraic curve Γ with a puncture defines a solution of the KP hierarchy by the
formula

u = 2
∂2

∂x2
ln θ

( ∑
k

�Uktk + �Z
∣∣ B)

, x = t1, (1.3)

where, as before, B is the matrix of b-periods of the normalized holomorphic differentials on Γ
and �Z is the vector of Riemann constants. The vectors �Uk are the vectors of b-periods of certain
meromorphic differentials on Γ. The algebraic-geometric solution is elliptic with respect to some
direction if there is a vector �Λ that spans an elliptic curve E embedded in the Jacobian J(Γ). This
is a nontrivial constraint, and the corresponding algebraic curves form a subspace of codimension
g − 1 in the moduli space of all curves. If the vector �Λ does exist, then the theta-divisor intersects
the shifted elliptic curve E +

∑
k
�Uktk at finitely many points λi(t1, t2, . . . ).

A straightforward verification shows that if u(x, y, t, λ) is an elliptic family of solutions of the
KP equation, then it has the form

u = −2
N∑

i=1

[λ2
i x℘(λ− λi) − λi xxζ(λ− λi)] + c(x, y, t), λi = λi(x, y, t). (1.4)

Since u is an elliptic function, it follows that the sum of its residues is zero, and therefore,
∑

i λixx =
0. We shall consider only solutions u with poles λi satisfying an additional constraint. Namely, we
say that the poles λi , i = 1, . . . , N , are balanced if they can be represented in the form

λi(x, y, t) = qi(x, y, t) − hx,
N∑

i=1

qi(x, y, t) = const, (1.5)

where h is an arbitrary nonzero constant. We prove that if the poles of u are balanced, then the
functions qi(x, y) satisfy the equations

qi yy = −
{

q2
i y

h− qi x

}
x

+
1

Nh
(h− qi x)

N∑
k=1

{
q2
k y

h− qk x

}
x

+ 2(h− qi x)
δU(q)
δqi

− 2
Nh

(h− qi x)
N∑

k=1

(h− qk x)
δU(q)
δqk

, 1 � i � N, (1.6)
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where

U(q) =
N∑

i=1

q2
i xx

4(h− qi x)
− 1

2

∑
j �=i

[(h− qj x)qi xx − (h− qi x)qj xx]ζ(qi − qj)

+
1
2

∑
j �=i

[(h− qj x)2(h− qi x) + (h− qj x)(h− qi x)2]℘(qi − qj). (1.7)

Here δ/δqi is the variational derivative. Since U(q) depends only on qi and their first and second
derivatives, we have

δU(q)
δqi

=
∂U(q)
∂qi

− d

dx

∂U(q)
∂qi x

+
d2

dx2

∂U(q)
∂qi xx

, 1 � i � N,

Equations (1.6) can be identified with a reduction of a special case of the Hamiltonian system
introduced in [10]. We refer to the latter system as a field analog of the elliptic Calogero–Moser
system. The phase space of this system is the space of functions q1(x), . . . , qN (x), p1(x), . . . , pN (x),
the Poisson brackets are given by

{qi(x), pj(x̃)} = δijδ(x− x̃),

and the Hamiltonian is equal to

Ĥ =
∫

H(x) dx, H =
N∑

i=1

p2
i (h− qi x) − 1

Nh

( N∑
i=1

pi(h− qi x)
)2

− Ũ(q), (1.8)

where

Ũ(q) = U(q) +
∂

∂x

(
h

2

∑
i�=j

(qi x − qj x)ζ(qi − qj)
)
.

The corresponding equations of motion are presented in Section 3 (see (3.1)). Note that if the qi

are independent of x, then (1.8) is reduced to the Hamiltonian of the elliptic CM system.
In particular, for N = 2 the Hamiltonian reduction of this system corresponding to the con-

straint
∑

i qi = 0 is a Hamiltonian system on the space of two functions q(x), p(x), where we
set

q = q1 = −q2,
1
h
p(h2 − q2

x) = p1(h− qx) = −p2(h− qx).

The Poisson brackets are canonical, i.e., {q(x), p(x̃)} = δ(x− x̃), while the Hamiltonian density H
in the coordinates {p, q} can be rewritten as

H =
2
h
p2(h2 − q2

x) − h
q2
xx

2(h2 − q2
x)

− 2h(h2 − 3q2
x)℘(2q).

A. Shabat noticed that the equations of motion given by this Hamiltonian are equivalent to the
Landau–Lifshitz equation. This case N = 2 was independently studied in [13].

The paper is organized as follows. In Sections 2 and 3 we show that the field analog of the
elliptic CM system describes a solution of the inverse Picard type problem for the linear equation(

∂

∂y
− L

)
ψ(x, y, λ) = 0, L =

∂2

∂x2
+ u(x, y, λ), (1.9)

which is one of the equations in the auxiliary linear problem for the KP equation. Namely, it turns
out that if equation (1.9) with a family of potentials of the form (1.4) elliptic in λ has N linearly
independent double-Bloch solutions meromorphic in λ, then the variables qi = λi + hx satisfy the
equations of motion generated by the Hamiltonian (1.8). Just as in [7], this inverse problem provides
a Lax representation for the Hamiltonian system (3.1).

In Section 4, we show that if u(x, y, t, λ) is an elliptic family of solutions of the KP equation
with balanced poles, then the corresponding family of operators ∂/∂y − L has infinitely many
double-Bloch solutions. Consequently, the dynamics of qi(x, y, t) with respect to y coincides with
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the equations of motion of the field elliptic CM system. We are quite sure that the dynamics of qi

with respect to all times of the KP hierarchy coincides with the hierarchy of commuting flows for
the system (3.1), but this question is yet open. We plan to investigate it elsewhere.

In the last section we consider the finite-gap solutions of the KP hierarchy corresponding to
an algebraic curve which is an N -fold branched cover of the elliptic curve. We show that they are
elliptic with respect to a certain linear combination λ of the times tk . Moreover, as a function
of λ these solutions have precisely N poles. Therefore, they provide a wide class of exact algebraic
solutions of the field elliptic CM system.

The definitions and properties of classical elliptic functions and the Riemann θ-function are
gathered in the appendix.

2. The Generating Problem

Let us choose a pair of periods 2ω1, 2ω2 ∈ C, where Im(ω2/ω1) > 0. A meromorphic function
f(λ) is said to be double-Bloch if it satisfies the following monodromy properties:

f(λ + 2ωa) = Baf(λ), a = 1, 2.

The complex constants Ba are called Bloch multipliers. Equivalently, f(λ) is a section of a linear
bundle over the elliptic curve E = C/Z[2ω1, 2ω2].

We consider the nonstationary Schrödinger operator

∂y − L = ∂y − ∂2
xx − u(x, y, λ), ∂x = ∂/∂x, ∂y = ∂/∂y,

where the potential u(x, y, λ) is a double-periodic function of the variable λ. We do not assume
any special dependence on the other variables. Our goal is to find the potentials u(x, y, λ) such
that the equation

(∂y − L )ψ(x, y, λ) = 0 (2.1)

has sufficiently many double-Bloch solutions. The existence of such solutions turns out to be a very
restrictive condition (see the discussion in [8]).

A basis in the space of the double-Bloch functions can be written in terms of the fundamental
function Φ(λ, z) defined by the formula

Φ(λ, z) =
σ(z − λ)
σ(z)σ(λ)

eζ(z)λ. (2.2)

This function is a solution of the Lamè equation

Φ′′(λ, z) = Φ(λ, z)[℘(z) + 2℘(λ)]. (2.3)

It follows from the monodromy properties of the Weierstrass functions that Φ(λ, z) is double-
periodic as a function of z , although it is not elliptic in the classical sense because of the essential
singularity at z = 0 for λ �= 0. It also follows that Φ(λ, z) is double-Bloch as a function of λ;
namely

Φ(λ + 2ωa, z) = Ta(z)Φ(λ, z), Ta(z) = exp[2ωaζ(z) − 2ηaz], a = 1, 2.

In the fundamental domain of the lattice defined by the periods 2ω1 and 2ω2 , the function Φ(λ, z)
has a unique pole at the point λ = 0 with the following expansion in a neighborhood of this point:

Φ(λ, z) = λ−1 + O(λ). (2.4)

Let f(λ) be a double-Bloch function with Bloch multipliers Ba . The gauge transformation

f(λ) 	→ f̃(λ) = f(λ)ekλ

does not change the poles of f and produces a double-Bloch function f̃(λ) with Bloch multipliers
B̃a = Bae

2kωa . The two pairs of Bloch multipliers Ba and B̃a connected by such a relation are said
to be equivalent. Note that for all equivalent pairs of Bloch multipliers the product Bω2

1 B−ω1
2 is a
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constant depending only on the equivalence class. Further, note that any pair of Bloch multipliers
can be represented in the form

Ba = Ta(z)e2ωak, a = 1, 2,

with an appropriate choice of the parameters z and k.
There is no differentiation with respect to the variable λ in equation (2.1). Thus, it suffices to

study the double-Bloch solutions ψ(x, t, λ) with Bloch multipliers Ba such that Ba = Ta(z) for
some z .

It follows from (2.4) that a double-Bloch function f(λ) with simple poles λi in the fundamental
domain and with Bloch multipliers Ba = Ta(z) can be represented in the form

f(λ) =
N∑

i=1

siΦ(λ− λi, z), (2.5)

where si is the residue of the function f(λ) at the pole λi . Indeed, the difference of the left- and
right-hand sides in (2.5) is a double-Bloch function with the same Bloch multipliers as f(λ). It is
also holomorphic in the fundamental domain. Therefore, it is zero, since any nonzero double-Bloch
function with at least one of the Bloch multipliers distinct from 1 has at least one pole in the
fundamental domain.

Now we are in position to present the generating problem for equations (1.6).

Theorem 1. Equation (2.1), where the potential is given by

u(x, y, λ) = −2
N∑

i=1

[(λi x)2℘(λ− λi) + λi xx ζ(λ− λi)] + c(x, y) (2.6)

and has the balanced set of poles (1.5), has N linearly independent double-Bloch solutions with
Bloch multipliers Ta(z), that is, solutions of the form (2.5), if and only if

c(x, y) =
2

Nh
U(q) − 1

2Nh

N∑
i=1

q2
i y

h− qi x
, (2.7)

and the functions qi(x, y) satisfy (1.6).
If (2.1) has N linearly independent solutions of the form (2.5) for some z, then they exist for

all values of z.

Proof. We begin with a remark. If u(x, y, λ) is an elliptic function with a balanced set of poles, then
it is necessarily of the form (2.6) provided that there exist N linearly independent double-Bloch
solutions of (2.1) for all values of the parameter z in a neighborhood of z = 0.

Indeed, let us substitute (2.5) into (2.1). First, we conclude that the potential u has at most
double poles at the points λi . Thus, the potential is of the form

u(λ, x, y) =
N∑

i=1

[ai℘(λ− λi) + biζ(λ− λi)] + c(x, y)

with some unknown coefficients ai = ai(x, y) and bi = bi(x, y). Now the coefficients of the singular
part of the right-hand side in (2.1) must be zero. The vanishing of the coefficient of (λ − λi)−3

implies that ai = −2(λi x)2 . The vanishing of the coefficient of (λ− λi)−2 gives the equations

2si xλi x = si(λi y − λi xx − bi) −
∑
j �=i

sjaiΦ(λi − λj , z). (2.8)
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Finally, the vanishing of the coefficient of (λ− λi)−1 results in the equations

si y − si xx = si

(
λ2

i x℘(z) +
∑
j �=i

[ai℘(λi − λj) + bjζ(λi − λj)] + c

)

+
∑
j �=i

sj(aiΦ′(λi − λj , z) + bjΦ(λi − λj , z)). (2.9)

Equations (2.8) and (2.9) are linear equations on si = si(x, y, z). If we introduce the vector �S =
(s1, . . . , sN ) and the matrices L = (Lij), A = (Aij) with matrix elements

Lij = δijξi + (1 − δij)λi xΦ(λi − λj , z), where ξi =
λi y − λi xx − bi

2λi x
, (2.10)

and

Aij = δij

(
λ2

i x℘(z) +
∑
j �=i

[−2λ2
i x℘(λi − λj) + bjζ(λi − λj)] + c

)

+ (1 − δij)(−2λ2
i xΦ′(λi − λj , z) + bjΦ(λi − λj , z)).

then equations (2.8) and (2.9) can be rewritten in the form

�Sx = L�S, �Sy = �Sxx + A�S = (L2 + Lx + A)�S. (2.11)

Let M = L2 +Lx +A; then the compatibility of equations (2.11) is equivalent to the zero-curvature
equation for L and M , i.e.

Ly −Mx + [L,M ] = 0. (2.12)

The entries of M can be computed with the help of the identities (A.2)

Mii = λi x

( N∑
k=1

λk x

)
℘(z) + m0

i ,

Mij = −λi x

( N∑
k=1

λk x

)
Φ′(λi − λj , z) + mijΦ(λi − λj , z), i �= j

(2.13)

where
m0

i = ξ2
i + ξi x −

∑
k �=i

λk x(2λ2
k x + λi x)℘(λi − λk) +

∑
k �=i

bkζ(λi − λk) + c,

mij = λi x(ξi + ξj) + λi xx + bi +
∑
k �=i,j

λi xλk x η(λi, λk, λj).

The coefficients bi can be determined from the off-diagonal part of the zero curvature equation.
The left-hand side of the equation corresponding to a pair of indexes i �= j is a double-periodic
function of z . It is holomorphic except at z = 0, where it has the form O(z−3) exp[(λi − λj)ζ(z)].
Such a function is zero if and only if the coefficients of z−3 , z−2 , and z−1 vanish. A straightforward
computation shows that the coefficient of z−3 vanishes identically, while the coefficient at z−2 is
equal to ( N∑

k=1

λk x

)
(bi + 2λi xx).

Since our assumption prevents the first factor from vanishing, we conclude that bi = −2λi xx . Given
this, another straightforward computation shows that the coefficient of z−1 also vanishes identically.

The zero curvature equation (2.12) is not only a necessary but also a sufficient condition for
(2.1) to have solutions of the form (2.5). Now the following lemma completes the proof of the
theorem.
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Lemma 1. Let L = (Lij(x, y, z)) and M = (Mij(x, y, z)) be defined by formulas (2.10) and
(2.13), where bi = −2λi xx and the set of λi(x, y), i = 1, . . . , N is balanced. Then L and M satisfy
equation (2.12) if and only if c(x, y) is given by (2.7) and the functions qi(x, y) solve (1.6).

Proof. It was mentioned above that all off-diagonal equations in (2.12) become identities if
bi = −2λi xx . The diagonal part of the zero curvature equation (2.12) is simplified with the help of
identities (A.2) and (A.3). Under the change of variables λi = qi − hx, it acquires the form

qi yy = −2(h− qi x)cx +
{
q2
i xx − q2

i y

h− qi x
+ qi xxx

}
x

+ 4(h− qi x)
∑
j �=i

[(h− qj x)3℘′(qi − qj)

− 3(h− qj x)qj xx ℘(qi − qj) + qj xxx ζ(qi − qj)]. (2.14)

Now consider the sum of equations (2.14) for all i from 1 to N . Since the poles are balanced, it
follows that the left-hand side vanishes and the coefficient of cx becomes −2Nh. The other terms
on the right-hand side can be rewritten as

∂

∂x

(
−

N∑
i=1

q2
i y

h− qi x
+ 4U(q)

)
.

Therefore, c is given by (2.7) up to an arbitrary function of y, which does not affect equations (2.14).
Finally, substituting (2.7) into (2.14), we arrive at (1.6).

3. The Field Analog of the Elliptic Calogero–Moser System

In this section, we show that equations (1.6) can be obtained as a reduction of the field elliptic
CM system.

In [15], the elliptic CM system was identified with a special case of the Hitchin system on an
elliptic curve with a puncture. In [10], a Hamiltonian theory of zero curvature equations on algebraic
curves was developed and identified with infinite-dimensional field analogs of the Hitchin system.
In particular, it was shown that the zero curvature equation on an elliptic curve with a puncture
can be viewed as a field generalization of the elliptic CM system.

The field elliptic CM system is a Hamiltonian system on the space of functions {qi(x), pi(x)}N
i=1

equipped with the canonical Poisson brackets

{qi(x), qj(x̃)} = {pi(x), pj(x̃)} = 0, {qi(x), pj(x̃)} = δij δ(x− x̃), 1 � i, j � N.

Its Hamiltonian is given by (1.8). Note that Ũ(q) is an elliptic function in each of the variables qi ,
i = 1, . . . , N . Substituting the definition of Ũ(q) into (1.8), we obtain the following expression for
the hamiltonian density:

H =
N∑

i=1

p2
i (h− qi x) − 1

Nh

( N∑
i=1

pi(h− qi x)
)2

−
N∑

i=1

q2
i xx

4(h− qi x)
− 1

2

∑
i�=j

[qi xqj xx − qj xqi xx]ζ(qi − qj)

+
1
2

∑
i�=j

[(h− qi x)2(h− qj x) + (h− qi x)(h− qj x)2 − h(qi x − qj x)2]℘(qi − qj).
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The equations of motion are

q̇i = 2pi(h− qi x) − 2
Nh

N∑
k=1

pk(h− qk x)(h− qi x),

ṗi = −2pipi x +
2

Nh

{ N∑
k=1

pipk(h− qk x)
}

x

+
{

qi xxx

2(h− qi x)
+

q2
i xx

4(h− qi x)2

}
x

+ 2
∑
j �=i

[qj xxxζ(qi − qj) − 3(h− qj x)qj xx℘(qi − qj) + (h− qj x)3℘′(qi − qj)].

(3.1)

Let us make a remark on the notation. Throughout this section, dots stand for derivatives with
respect to the variable y, which we treat as a time variable. In view of the connection with the KP
equation,this time variable corresponds to the second time of the KP hierarchy, for which y is the
standard notation.

One can readily verify that the subspace N defined by the constraint

N∑
i=1

qi(x) = const, (3.2)

is invariant with respect to system (3.1). On that subspace, the first two terms of the Hamiltonian
density H can be represented in the form

H =
1

2Nh

(∑
i�=j

(pi − pj)2(h− qi x)(h− qj x)
)
− Ũ(q). (3.3)

Therefore, the Hamiltonian (1.8) restricted to N is invariant under the transformation

pi(x) → pi(x) + f(x), (3.4)

where f(x) is an arbitrary function. The left-hand side of the constraint (3.2) is the first integral
corresponding to this symmetry. The canonical symplectic form is also invariant with respect to
((3.4)). Therefore, the Hamiltonian system (3.1) restricted to N can be reduced to the quotient
space. The reduction can be described as follows.

Consider the variables 7i = pi + κ, i = 1, . . . , N , where

κ = − 1
Nh

N∑
k=1

pk(h− qk x). (3.5)

They are invariant with respect to the symmetry (3.4) and satisfy the equation

N∑
k=1

7k(h− qk x) = 0. (3.6)

A straightforward substitution shows that equations (3.1) imply the system of equations

q̇i = 27i(h− qix),

7̇i = −27i7i x +
2

Nh

{ N∑
k=1

72k(h− qkx) − U(q)
}

x

+
{

qi xxx

2(h− qi x)
+

q2
i xx

4(h− qi x)2

}
x

+ 2
∑
j �=i

[(h− qj x)3℘′(qi − qj) − 3(h− qj x)qj xx ℘(qi − qj) + qj xxx ζ(qi − qj)],

(3.7)

Theorem 2. Equations (1.6) are equivalent to the restriction of system (3.7) to the subspace
M defined by the constraints (3.2) and (3.6).
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Proof. Let us show that equations (1.6) imply (3.7). The first equations can be regarded as a
definition of 7i , i = 1, . . . , N . Taking their derivative, we obtain

q̈i = 27̇i(h− qi x) − 27i(27i x(h− qi x) − 27iqi xx). (3.8)

Therefore,

7̇i = 27i7i x − 272i
qi xx

h− qi x
+

q̈i

2(h− qi x)
.

To obtain the second equation in (3.7) it suffices to substitute the right-hand side of (2.14) for q̈i

and use formula (2.7).
Conversely, equation (3.8) can be used to derive (1.6) from (3.7).
Note that a solution of (3.7) restricted to the subspace M defines a solution of (3.1) uniquely

up to initial data. Namely, it can be verified directly that if κ(x, y) is a solution of the equation

κ̇ =
{
−κ2 +

2
Nh

N∑
k=1

72i (h− qkx) − 2
Nh

U(q)
}

x

(3.9)

and {7i, qi} is a solution of (3.7) on M, then {qi, pi = 7i − κ} is a solution of (3.1).
Our final goal in this section is to present a Lax pair for the field elliptic CM system.
Theorem 3. System (3.1) admits a zero curvature representation, i. e. it is equivalent to the

matrix equation
L̃y − M̃x + [L̃, M̃ ] = 0,

with Lax matrices L̃ = (L̃ij) and M̃ = (M̃ij) of the form

L̃ij = −δijpi + (1 − δij)αiαjΦ(qi − qj , z),

M̃ij = δij [−Nhα2
i℘(z) + m̃0

i ] + (1 − δij)αiαj [NhΦ′(qi − qj , z) − m̃ijΦ(qi − qj , z)],
(3.10)

where α2
i = qi x − h,

m̃0
i = p2

i +
αixx

αi
+ 2κpi −

∑
j �=i

[α2
j (2α4

i + α2
j )℘(qi − qj) + 4αiαi xζ(qi − qj)],

m̃ij = pi + pj + 2κ +
αi x

αi
− αj x

αj
+

∑
k �=i,j

α2
kη(qi, qk, qj),

and κ is given by (3.9).

Proof. If we subject the matrices L and M given by (2.10) and (2.13) to a gauge transformation

L 	→ gxg
−1 + gLg−1, M 	→ gyg

−1 + gMg−1,

where g = (gij) is a diagonal matrix with gij = δij(λi x)−1/2 , and then substitute λi = qi − hx
and λi y/2λi x = 7i , then we obtain a Lax pair for system (3.7). To obtain (3.10), we apply another
gauge transformation with g = eKI and substitute 7i = pi + κ, i = 1, . . . , N . Here K = K(x, y) =∫ x

κ(x̃, y) dx̃. Note that Ky = −κ2 − c in view of (3.9) and (2.7).

4. Elliptic Families of Solutions of the KP Equation

The KP equation (1.2) is equivalent to the commutation condition

[∂y − L, ∂t − A ] = 0, ∂y = ∂/∂y, ∂t = ∂/∂t, (4.1)

for the auxiliary linear differential operators

L = ∂2
xx + u(x, y, t), A = ∂3

xxx +
3
2
u∂x + w(x, y, t), ∂x =

∂

∂x
.

We use this representation to derive our main result.
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Theorem 4. Let u(x, y, t, λ) be an elliptic family of solutions of the KP equation with balanced
set of poles λi(x, y, t) = qi(x, y, t)−hx, i = 1, . . . , N . Then u(x, y, t, λ) has the form (1.4), and the
dynamics of the functions qi(x, y, t) with respect to y is described by system (1.6).

Proof. Substituting u into (1.2), we readily conclude that u may have poles in λ of at most
second order. Moreover, matching the coefficients of the expansions of the left- and right-hand sides
in (1.2) near the pole λi , we find that the principal part of the solution u coincides with the one
given by (1.4).

The next step is to show that the operator equation (4.1) implies the existence of double-Bloch
solutions for the equation (∂y − L )ψ(x, y, t, λ) = 0.

Let us define a matrix S(x, y, t, z) as the solution of the linear differential equation ∂xS = LS ,
where L = (Lij) and

Lij = δij

(
λi y + λi xx

2λi x

)
+ (1 − δij)λi x Φ(λi − λj , z),

with initial conditions S(0, y, t, z) = S0(y, t, z), where S0 is a nonsingular matrix. By Φ we denote
the row vector (Φ(λ− λ1, z), . . . ,Φ(λ− λN , z)). It follows readily that the vector (∂y − L )ΦS has
at most simple poles at λi , i = 1, . . . , N . Therefore, it is equal to ΦD for some matrix D. The
commutation relation (4.1) implies that Dx = LD. To show this, consider the vector

(∂t − A )ΦD = (∂t − A )(∂t − L )ΦS = (∂y − L )(∂t − A )ΦS.

It has poles of at most third order, and therefore, the vector (∂t −A )ΦS has at most simple poles.
In this case, however, the vector

(∂t − A )(∂t − L )ΦS = (∂y − L )(∂t − A )ΦS = (∂t − A )ΦD

has poles of at most second order. The absence of third-order poles in the expression (∂t − A )ΦD
is equivalent to the equation Dx = LD.

Since S and D are solutions of the same linear differential equation in x, it follows that they
differ by a matrix independent of x: D(x, y, t, z) = S(x, y, t, z)T (y, t, z). Let us define a matrix
F (y, t, z) from the equation ∂yF + TF = 0 and the initial condition F (0, t, z) = I . Here I is the
identity matrix. Let S̃ = SF ; then

(∂y − L )ΦS̃ = (∂y − L )ΦSF = ΦDF + ΦSFy = ΦS (TF + Fy) = 0,

and the components of the vector ΦS̃ are independent double-Bloch solutions of (2.1).
To complete the proof, it suffices to apply Theorem 1.

5. The Algebraic-Geometric Solutions

According to [6], a smooth genus g algebraic curve Γ with fixed local coordinate w at a puncture
P0 defines solutions of the entire KP hierarchy by the formula

u(t) = 2
∂2

∂x2
ln θ

( ∑
k

�Uktk + �Z
∣∣∣ B)

+ const .

Here B = (Bjk) is a matrix of b-periods of normalized holomorphic differentials ωh
k , i.e.∮

ai

ωh
j = δij , Bij =

∮
bi

ωh
j , (5.1)

and the vectors �Uk = (�U j
k) are vectors of b-periods,

�U j
k =

1
2πi

∮
bj

dΩk,

∮
aj

dΩk = 0,

of the normalized meromorphic differentials dΩk of the second kind, defined by their expansions

dΩk = dw−k + O(1)dw (5.2)
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in a neighborhood of P0 .
Let Γ be an N -fold branched cover of an elliptic curve E:

ρ : Γ → E.

Then the induced map of the Jacobians defines an embedding of E in J(Γ), i.e. ρ∗E ⊂ J(Γ).
Therefore, each N -fold cover of E defines an elliptic family of solutions of the KP equation. The
following assertion shows that the corresponding solutions have exactly N poles. Moreover, if the
local coordinate w at the puncture P0 is ρ∗(λ), then the poles are balanced. Here λ is a flat
coordinate on E.

Theorem 5. Let Γ be a smooth N -fold branched cover of the elliptic curve E, and let P0 ∈ Γ
be a preimage of the point λ = 0 on E. Let dΩk be a normalized meromorphic differential on Γ
with the only pole at P0 of the form (5.2), where w = ρ∗(λ), and let 2πi�U and 2πi�V be the vectors
of b-periods of the differentials dΩ1 and dΩ2 , respectively. Then the equation

θ(�Λλ + �Ux + �V y |B) = 0 (5.3)

has N balanced roots λi(x, y) = qi(x, y) − x/N ,
∑

i qi(x, y) = 0, and the functions qi satisfy
system (1.6).

Proof. Let 2ω1 , 2ω2 be the periods of E such that Im(τ) = Im(ω2/ω1) > 0. The Jacobian
J(Γ) is the quotient of C

g by the lattice B spanned by the basis vectors �ei ∈ C
g , i = 1, . . . , g and

the columns �Bi = (Bij) ∈ C
g , i = 1, . . . , g, of the matrix B . Let �Λ be a vector in C

g that spans
ρ∗E ⊂ J(Γ). Note that not only �Λ ∈ B, but also τ�Λ ∈ B.

The function θ(
∑

k
�Uktk +�Λλ+ �Z |B) viewed as a function of λ has a finite number D of zeros.

Its monodromy properties (A.4) imply that it can be rewritten in the form

θ
(∑

k
�Uktk + �Λλ + �Z

∣∣ B)
= f(t)ec1λ+c2λ2

D∏
i=1

σ(λ− λi(t)),

where c1 and c2 are constants.
Note, that the λi are defined modulo the periods of E. To count them, we integrate d ln θ along

the boundary of the fundamental domain of ρ∗E in C
g .

The embedding of E in J(Γ) is defined by the equivalence classes of the divisors ρ∗(z) − ρ∗(0),
where ρ∗(z) is the divisor of preimages on Γ of a point z ∈ E. Preimages on Γ of a- and b-cycles
of E are some linear combination of the basis cycles on Γ, i.e.

ρ∗a =
g∑

k=1

nkak + mkbk, ρ∗b =
g∑

k=1

n′
kak + m′

kbk.

Therefore, the vector �Λ is equal to

�Λ =
g∑

k=1

nk�ek + mk
�Bk, τ �Λ =

g∑
k=1

n′
k�ek + m′

k
�Bk.

The usual residue argument implies that

2πiD =
∮

∂(ρ∗E)
d ln θ =

∫
τ�Λ

(∫
�Λ
d ln θ

)
−

∫
�Λ

(∫
τ�Λ

d ln θ

)
The monodromy properties of the theta function imply that

D =
g∑

k=1

(nkm
′
k − n′

kmk).

The right-hand side of the last formula is the intersection number of the cycles ρ∗a and ρ∗b, i. e.,

D = (ρ∗a) ∩ (ρ∗b) = N (a ∩ b) = N,
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and so the theta function has exactly N zeros λi , i = 1, . . . , N .
Now let us show that the set of λi is balanced. In a way similar to the residue argument above,

we find that

−2πi
N∑

j=1

∂λj

∂tk
=

∮
∂(ρ∗E)

(∂tk ln θ) dλ =
∫

b
dλ

(∫
ρ∗a

dΩk

)
−

∫
a
dλ

( ∫
ρ∗b

dΩk

)
. (5.4)

Let Tr dΩ = ρ∗(dΩk) be the sum of dΩk on all sheets of Γ over a point λ ∈ E. It is a meromorphic
differential on E. Since the local coordinate w near the puncture is defined by the projection ρ, we
have

Tr dΩk =
(−1)k

(k − 1)!
℘(k−1)(λ) dλ + rk dλ, (5.5)

where rk is a constant. The right-hand side of (5.4) can be rewritten as 2πi resλ=0(Tr Ωk) dλ. For
k > 1, it is equal to zero, and for k = 1 we have

res
λ=0

(Tr Ω1) dλ = res
λ=0

ζ(λ) dλ = 1.

Therefore, we obtain
N∑

i=1

∂λj

∂x
= −1,

N∑
i=1

∂λj

∂tk
= 0, k > 1, (5.6)

and consequently, the λi , i = 1, . . . , N , satisfy (1.5). Note that our choice of a local coordinate near
the puncture corresponds to h = 1/N . An arbitrary nonzero value of h can be obtained by setting
w = ρ∗(λ/Nh). The proof of Theorem 5 is complete.

Remark. If the qi(x, y), i = 1, . . . , N are periodic functions of x, the algebraic curve Γ can be
identified with the spectral curve for the equation (∂x − L)�S = 0 (see [10]).

Appendix

A.1. Elliptic functions. Here we list the definitions and basic properties of the classical
elliptic functions (see [3] for details). Let 2ω1, 2ω2 ∈ C be a pair of periods, Im(ω2/ω1) > 0. The
Weierstrass sigma function is defined by the infinite product

σ(z) = z
∏

m2+n2 �=0

(
1 − z

ωmn

)
exp

{
z

ωmn
+

z2

2ω2
mn

}
, ωmn = 2mω1 + 2nω2.

The product converges for every z to an entire function with simple zeros at the points z = ωmn .
The Weierstrass zeta function and ℘-function are then defined by

ζ(z) =
σ′(z)
σ(z)

, ℘(z) = −ζ ′(z).

It follows directly from this definition that σ(z) and ζ(z) are odd functions, while ℘(z) is an even
function. Under shifts of the periods, the Weierstrass functions are transformed as follows:

σ(z + 2ωa) = e2ηa(z+ωa)σ(z), ζ(z + 2ωa) = ζ(z) + 2ηa, a = 1, 2,

where ηa = ζ(ωa) and η1ω2 − η2ω1 = πi/2. The ℘-function is double-periodic

℘(z + 2ω1) = ℘(z + 2ω2) = ℘(z) = ℘(−z)

and can be regarded as a function on the elliptic curve Γ = C
/
Z[2ω1, 2ω2], where it has the only

(double) pole at z = 0. It is useful to write out the Laurent expansions of the Weierstrass functions
in a neighborhood of z = 0:

σ(z) = z + O(z5), ζ(z) =
1
z

+ O(z3), ℘(z) =
1
z2

+ O(z2).

A.2. Identities for the function Φ(λ, z). Here we collect some useful identities involving
the function Φ(λ, z) defined by (2.2).
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The derivative of Φ(λ, z) with respect to the variable λ is equal to

Φ′(λ, z) = Φ(λ, z)[ζ(z) − ζ(λ) − ζ(z − λ)] (A.1)

We also have the following product identities:
Φ(λ− µ, z)Φ(µ− λ, z) = ℘(z) − ℘(λ− µ),

Φ(λ− ν, z)Φ(ν − µ, z) = −Φ′(λ− µ, z) + Φ(λ− µ, z)η(λ, ν, µ),
(A.2)

where in the second equation we use the notation

η(λ, ν, µ) = ζ(λ− ν) + ζ(ν − µ) − ζ(λ− µ).

Note that η is a completely antisymmetric function of its arguments. To complete the list of
identities required for our computations, we differentiate formulas (A.2) and obtain

Φ′(λ− µ, z)Φ(µ− λ, z) − Φ(λ− µ, z)Φ′(µ− λ, z) = −℘′(λ− µ),

Φ′(λ− ν, z)Φ(ν − µ, z) − Φ(λ− ν, z)Φ′(ν − µ, z) = −Φ(λ− µ)[℘(λ− ν) − ℘(ν − µ)].
(A.3)

A.3. The Riemann θ-function. Let Γ be a genus g algebraic curve with given basis of cycles
ai , bi , i � 1 � g, with intersections ai ◦ bj = δij . Let B be the matrix of normalized holomorphic
differentials ωh

i , see (5.1). Then B is a Riemann matrix, i.e. a symmetric g×g matrix with positive
definite imaginary part ImB > 0.

The Riemann θ function associated with the curve Γ is the analytic function of g complex
variables �z = (z1, . . . , zg) defined by the Fourier expansion

θ(�z |B) =
∑
�n∈Zg

e2πi(�m,�z)+πi(B �m,�m).

The Riemann θ-function has the following monodromy properties with respect to the lattice B

spanned by the basis vectors �ei ∈ C
g , i = 1, . . . , g, and the columns Bi ∈ C

g of the matrix B :
θ(�z + �n |B) = θ(�z |B),

θ(�z + B�n |B) = exp[−2πi(�n, �z) − πi(B�n,�n)] θ(�z |B).
(A.4)

Here �n is a vector with integer components.

References

1. H. Airault, H. McKean, and J. Moser, “Rational and elliptic solutions of the Korteweg–de
Vries equation and related many-body problem,” Commun. Pure Appl. Math., 30, No. 1, 95–
148 (1977).

2. O. Babelon, E. Billey, I. Krichever, and M. Talon, “Spin generalisation of the Calogero–Moser
system and the matrix KP equation,” In: Topics in Topology and Mathematical Physics, Amer.
Math. Soc. Transl., Ser. 2, Vol. 170, Amer. Math. Soc., Providence, 1995, pp. 83–119.

3. H. Bateman and A. Erdelyi, Higher Transcendental Functions, Vol. II, McGraw-Hill, 1953.
4. F. Calogero, “Exactly solvable one-dimensional many-body systems,” Lett. Nuovo Cimento (2),
13, No. 11, 411–416 (1975).

5. I. Krichever, “An algebraic-geometric construction of the Zakharov–Shabat equation and their
periodic solutions,” Dokl. Akad. Nauk USSR, 227, No. 2, 291–294 (1976).

6. I. Krichever, “The integration of nonlinear equation with the help of algebraic-geometrical
methods,” Funkts. Anal. Prilozhen., 11, No. 1, 15–31 (1977).

7. I. Krichever, “Elliptic solutions of Kadomtsev–Petviashvili equations and integrable systems of
particles,” Funkts. Anal. Prilozhen., 14, No. 1, 45–54 (1980).

8. I. Krichever, “Elliptic solutions to difference non-linear equations and nested Bethe ansatz
equations,” In: Calogero–Moser–Sutherland models (Montreal, QC, 1997), CRM Ser. Math.
Phys., Springer-Verlag, New York, 2000, pp. 249–271.

9. I. Krichever, “Elliptic analog of the Toda lattice,” Internat. Math. Res. Notices, No. 8, 383–412
(2000).



266

10. I. Krichever, Vector Bundles and Lax Equations on Algebraic Curves, hep-th/0108110 (2001).
11. I. Krichever, O. Lipan, P. Wiegmann, and A. Zabrodin, “Quantum integrable models and

discrete classical Hirota equations,” Comm. Math. Phys., 188, No. 2, 267–304 (1997).
12. I. Krichever and A. Zabrodin, “Spin generalisation of the Ruijsenaars–Schneider model, the

nonabelian two-dimensionalized Toda lattice, and representations of the Sklyanin algebra,”
Usp. Mat. Nauk, 50, No. 6, 3–56 (1995).

13. A. Levin, M. Olshanetsky, and A. Zotov, Hitchin Systems — Symplectic Maps and Two-
Dimensional Version, arXiv:nlin.SI/0110045 (2001).

14. A. Gorsky and N. Nekrasov, Elliptic Calogero–Moser System from Two-Dimensional Current
Algebra, hep-th/9401021.

15. N. Nekrasov, “Holomorphic bundles and many-body systems,” Comm. Math. Phys., 180, No. 3,
587–603 (1996).

16. A. M. Perelomov, Integrable Systems of Classical Mechanics and Lie Algebras, Vol. I, Birkhauser
Verlag, Basel, 1990.

17. E. Markman, “Spectral curves and integrable systems,” Compositio Math., 93, 255–290 (1994).

Department of Mathematics, Columbia University, USA
e-mail: alakhm@math.columbia.edu
Landau Institute for Theoretical Physics, Moscow, Russia,
Institute for Theoretical and Experimental Physics, Moscow, Russia,
Department of Mathematics, Columbia University, USA
e-mail: krichev@math.columbia.edu
Department of Mathematics, Columbia University, USA
e-mail: yurik@math.columbia.edu

Translated by A. A. Akhmetshin, I. M. Krichever, and Yu. S. Volvovski


