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ABSTRACT. We present a Lax pair for the field elliptic Calogero-Moser system and establish a
connection between this system and the Kadomtsev-Petviashvili equation. Namely, we consider
elliptic families of solutions of the KP equation such that their poles satisfy a constraint of being
balanced. We show that the dynamics of these poles is described by a reduction of the field elliptic
CM system.

We construct a wide class of solutions to the field elliptic CM system by showing that any
N-fold branched cover of an elliptic curve gives rise to an elliptic family of solutions of the KP
equation with balanced poles.
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1. Introduction

The main goal of this paper is to establish a connection between the field analog of the elliptic
Calogero-Moser system (CM) introduced in [10] and the Kadomtsev—Petviashvili equation (KP).
This connection is a next step along the line that goes back to the paper [1], where the dynamics of
the poles of elliptic (rational or trigonometric) solutions of the Korteweg—de Vries equation (KdV)
was described in terms of commuting flows of the elliptic (rational or trigonometric) CM system.

It was shown in the earlier paper [7] of one of the authors that the constrained correspondence
between a theory of the elliptic CM system and a theory of the elliptic solutions of the KdV equation
becomes an isomorphism for the case of the KP equation. It turns out that a function u(zx,y,t)
that is an elliptic function with respect to the variable x satisfies the KP equation if and only if it
has the form

N
i=1

and its poles ¢; as functions of y satisfy the equations of motion of the elliptic CM system. The
latter is a system of N particles on an elliptic curve with pairwise interactions. Its Hamiltonian

has the form
1
Hy = 5219? -2 o6 — ),
i=1 i#j

where p(q) is the Weierstrass p-function. The dynamics of the particles g; with respect to ¢ coincides
with the commuting flow generated by the third Hamiltonian Hj3 of the system. Recall that the
elliptic CM system is a completely integrable system. It admits a Lax representation L = [L, M],
where L = L(z) and M = M(z) are (N x N) matrices depending on a spectral parameter z [4].
The involutive integrals H,, are defined as H, = n~' Tr L".

An explicit theta-functional formula for algebro-geometric solutions of the KP equation provides
an algebraic solution of the Cauchy problem for the elliptic CM system [7]. Namely, the positions
qi(y) of the particles at any time y are roots of the equation

0(Uqi+Vy+Z|B)=0,

*Research is supported in part by the National Science Foundation under grant DMS-01-04621.

0016-2663/02/3604-0253 $27.00 (©2002 Plenum Publishing Corporation 253



where 0(z| B) is the Riemann theta function constructed with the help of the matrix of b-periods
of the holomorphic differentials on a time-independent spectral curve I'. The spectral curve is given
by R(k,z) = det(kI — L(z)) = 0, and the vectors U, V, Z are determined by the initial data.

The correspondence between finite-dimensional integrable systems and pole systems of various
soliton equation has been extensively studied in [2,8,9,11,12]. A general scheme for construct-
ing such systems using a specific inverse problem for linear equations with elliptic coefficients is
presented in [8].

The problem we address in this paper is as follows. The KP equation

3 0 1 3
Zuyy = % (ut - Z Uprr — 5 UUx) (12)

is the first equation in a hierarchy of commuting flows. A general solution of the entire hierarchy
is known to be of the form

2

U(fl)‘,y,t,t4,...) :2w1n7—(l‘ay7tat4v"')a T =t, y:tQa t:t?)’

where 7 is the so-called KP tau function. We consider solutions w that are elliptic function with
respect to some variable ¢; or a linear combination A =), ajty of times.

It is instructive first to consider the algebraic-geometric solutions of the KP equation. According
to [6], any smooth algebraic curve I' with a puncture defines a solution of the KP hierarchy by the
formula

6

where, as before, B is the matrix of b—perlods of the normalized holomorphic differentials on I’
and Z is the vector of Riemann constants. The vectors (jk are the vectors of b-periods of certain
meromorphic differentials on I'. The algebraic-geometric solution is elliptic with respect to some
direction if there is a vector A that spans an elliptic curve & embedded in the Jacobian J (T"). This
is a nontrivial constraint, and the corresponding algebraic curves form a subspace of codimension
g — 1 in the moduli space of all curves. If the vector A does exist, then the theta-divisor intersects
the shifted elliptic curve &+ ), Uity at finitely many points Aiti,te,...).

A straightforward verification shows that if u(z,y,t, \) is an elliptic family of solutions of the
KP equation, then it has the form

= _QZ zx@ )‘ A zxa:C(/\ - Az)] + c(a:,y,t), )\z = )‘i(xvyat)‘ (14)

Since u is an elliptic function, it follows that the sum of its residues is zero, and therefore, ) . Xizz =
0. We shall consider only solutions u with poles \; satisfying an additional constraint. Namely, we
say that the poles A;, : =1,..., N, are balanced if they can be represented in the form

N
)\z(x,%t) = qz(x7y7t> - h.’IJ, qu<m7 yut) = const, (15)

where h is an arbitrary nonzero constant. We prove that if the poles of u are balanced, then the
functions ¢;(z,y) satisfy the equations

q; 1 (a4
L 'y ——(h —a; Yy
Qi yy {h—qiz}x—i_]\fh(h Qz:p)g{h_qkm}x

N
oU(q) 2 .
— = (h—qix — Q) ——2, 1<i<N, 1.
sl ) Do k) T i (1.6)

+ 2(h - Qi:p)
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where

N
ZZ; 4(h ql_m;w ; ;[(h —Qj2)Gize — (M — Qiz)q22)C(0 — q5)
5 M= 4522 ai2) + (h = 452)(h — 42 lolas — 0). (L)

J#Z

Here 0/0¢q; is the variational derivative. Since U(q) depends only on ¢; and their first and second
derivatives, we have

6U(q) _ 9U(q) d 9U(g )+ 4> 9U(q)
0q; - Jq; dx 0¢; = dz? 0g; ze

1<i<N,

Equations (1.6) can be identified with a reduction of a special case of the Hamiltonian system
introduced in [10]. We refer to the latter system as a field analog of the elliptic Calogero-Moser
system. The phase space of this system is the space of functions ¢ (x), ..., qn(x), p1(z),...,pn(x),
the Poisson brackets are given by

{ai(x),pj (%)} = dij6(x — T),

and the Hamiltonian is equal to
N 1 /& 2
i [nwa, 0= sz ) - g (Lnti—an) ~T@, 09
i=1
where

~ o (h
00 =V + 5 SRR W)
i#j
The corresponding equations of motion are presented in Section 3 (see (3.1)). Note that if the ¢
are independent of x, then (1.8) is reduced to the Hamiltonian of the elliptic CM system.
In particular, for N = 2 the Hamiltonian reduction of this system corresponding to the con-

straint ). ¢; = 0 is a Hamiltonian system on the space of two functions ¢(z), p(x), where we
set

1
q9=q = —q, Ep(h2 — @) =pi(h— qz) = —pa(h — q).

The Poisson brackets are canonical, i.e., {q(x),p(Z)} = é(x — Z), while the Hamiltonian density H
in the coordinates {p, ¢} can be rewritten as

2

W= @2) — h =2 9p(h? — 3¢2)0(2q).
p (h" —qz) 202 — g2) ( q3)9(2q)
A. Shabat noticed that the equations of motion given by this Hamiltonian are equivalent to the
Landau-Lifshitz equation. This case N = 2 was independently studied in [13].

The paper is organized as follows. In Sections 2 and 3 we show that the field analog of the
elliptic CM system describes a solution of the inverse Picard type problem for the linear equation

0 82

which is one of the equations in the auxiliary linear problem for the KP equation. Namely, it turns
out that if equation (1.9) with a family of potentials of the form (1.4) elliptic in A has N linearly
independent double-Bloch solutions meromorphic in A, then the variables ¢; = \; + hx satisfy the
equations of motion generated by the Hamiltonian (1.8). Just as in [7], this inverse problem provides
a Lax representation for the Hamiltonian system (3.1).

In Section 4, we show that if u(x,y,t, A) is an elliptic family of solutions of the KP equation
with balanced poles, then the corresponding family of operators 0/0y — % has infinitely many
double-Bloch solutions. Consequently, the dynamics of g;(z,y,t) with respect to y coincides with

255



the equations of motion of the field elliptic CM system. We are quite sure that the dynamics of g;
with respect to all times of the KP hierarchy coincides with the hierarchy of commuting flows for
the system (3.1), but this question is yet open. We plan to investigate it elsewhere.

In the last section we consider the finite-gap solutions of the KP hierarchy corresponding to
an algebraic curve which is an N-fold branched cover of the elliptic curve. We show that they are
elliptic with respect to a certain linear combination A of the times t;. Moreover, as a function
of A these solutions have precisely N poles. Therefore, they provide a wide class of exact algebraic
solutions of the field elliptic CM system.

The definitions and properties of classical elliptic functions and the Riemann #-function are
gathered in the appendix.

2. The Generating Problem

Let us choose a pair of periods 2wi, 2wy € C, where Im(wy/wi) > 0. A meromorphic function
f(A) is said to be double-Bloch if it satisfies the following monodromy properties:

FON+2w,) = Baf(N), a=1,2.

The complex constants B, are called Bloch multipliers. Equivalently, f()) is a section of a linear
bundle over the elliptic curve &= C/Z[2w1, 2wo).
We consider the nonstationary Schrodinger operator

Oy — L= 0, — 02, —u(z,y,\), Oy = 0/0x, 0y = 0/0y,

where the potential u(z,y, A) is a double-periodic function of the variable A. We do not assume
any special dependence on the other variables. Our goal is to find the potentials u(x,y, A) such
that the equation

Oy — L)p(x,y,A) =0 (2.1)

has sufficiently many double-Bloch solutions. The existence of such solutions turns out to be a very
restrictive condition (see the discussion in [8]).

A basis in the space of the double-Bloch functions can be written in terms of the fundamental
function ®(\, z) defined by the formula

o(z—A)
BN, 2) = ——— L S@A 2.2
This function is a solution of the Lame equation

"(X,z) = @(\, 2)[p(2) + 2p(N)]. (2.3)

It follows from the monodromy properties of the Weierstrass functions that ®(\,z) is double-
periodic as a function of z, although it is not elliptic in the classical sense because of the essential
singularity at z = 0 for X\ # 0. It also follows that ®(\,z) is double-Bloch as a function of A;
namely

Q(A + 2wy, 2) = To(2)P(A, 2), To(z) = exp[2wa((z) — 2naz], a=1,2.

In the fundamental domain of the lattice defined by the periods 2w; and 2ws, the function ®(\, 2)
has a unique pole at the point A = 0 with the following expansion in a neighborhood of this point:

DN, z2) = AT+ 00N). (2.4)
Let f(\) be a double-Bloch function with Bloch multipliers B,. The gauge transformation
FO) = F) = 1)t

does not change the poles of f and produces a double-Bloch function f(A) with Bloch multipliers
B, = Bge?*a_ The two pairs of Bloch multipliers B, and B, connected by such a relation are said

to be equivalent. Note that for all equivalent pairs of Bloch multipliers the product By?B; ! is a
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constant depending only on the equivalence class. Further, note that any pair of Bloch multipliers
can be represented in the form

B, = Ta(z)e2w“k, a=1,2,

with an appropriate choice of the parameters z and k.

There is no differentiation with respect to the variable A in equation (2.1). Thus, it suffices to
study the double-Bloch solutions ¥(x,t, A) with Bloch multipliers B, such that B, = T,(z) for
some z.

It follows from (2.4) that a double-Bloch function f(\) with simple poles ); in the fundamental
domain and with Bloch multipliers B, = T;(2) can be represented in the form

Zsz )\ )‘27 z (25)

where s; is the residue of the function f(\) at the pole \;. Indeed, the difference of the left- and
right-hand sides in (2.5) is a double-Bloch function with the same Bloch multipliers as f(A). It is
also holomorphic in the fundamental domain. Therefore, it is zero, since any nonzero double-Bloch
function with at least one of the Bloch multipliers distinct from 1 has at least one pole in the
fundamental domain.

Now we are in position to present the generating problem for equations (1.6).

Theorem 1. Equation (2.1), where the potential is given by

N

u(@,y,A) = =2 [(Miz)20(A = Xi) + Aiza C(A = N)] + (=, 9) (2.6)

=1

and has the balanced set of poles (1.5), has N linearly independent double-Bloch solutions with
Bloch multipliers To(z), that is, solutions of the form (2.5), if and only if

N

2 1 a;
i=1

and the functions q;(xz,y) satisfy (1.6).
If (2.1) has N linearly independent solutions of the form (2.5) for some z, then they exist for
all values of z.

Proof. We begin with a remark. If u(z,y, A) is an elliptic function with a balanced set of poles, then
it is necessarily of the form (2.6) provided that there exist N linearly independent double-Bloch
solutions of (2.1) for all values of the parameter z in a neighborhood of z = 0.

Indeed, let us substitute (2.5) into (2.1). First, we conclude that the potential v has at most
double poles at the points A;. Thus, the potential is of the form

N

u(hz,y) = [aip(h = X) + biC(A = X)) + e, y)
=1

with some unknown coefficients a; = a;(z,y) and b; = b;(z,y). Now the coefficients of the singular
part of the right-hand side in (2.1) must be zero. The vanishing of the coefficient of (A — \;)~3
implies that a; = —2(\;;)?. The vanishing of the coefficient of (A — ;)2 gives the equations

231‘3:)\@'90 = Si()\iy ”;J; - Z sja, )\j, Z). (28)
JFi

257



Finally, the vanishing of the coefficient of (A — )\;)~! results in the equations

Siy_simx:5i< i +ZCL¢@ +b C( j)]'i‘C)

J#i
+ Z Sj(CLi(I)/()\Z’ - )\jv Z) + bJ(I)()\Z - )\j, Z)) (29)
J#i
Equations (2.8) and (2.9) are linear equations on s; = s;(z,y, ). If we introduce the vector § =
(s1,...,5n) and the matrices L = (L;;j), A = (A;;) with matrix elements
>\iy - )\z Tx bz
Lij = ij&i + (1 = 6ij)Xia®(Xi = Ajy 2),  where § = ———=——, (2.10)
and
Aij Z(Sij( iz +Z 2)\22 )\j)—i-bjC()\i—)\j)] +C)
J#i
+ (1= 0) (=227, (N = X, 2) +0;@(\i — Aj, 2)).
then equations (2.8) and (2.9) can be rewritten in the form
S, =LS, S,=S..+AS=(L*+L,+A)S. (2.11)

Let M = L?+ L, + A; then the compatibility of equations (2.11) is equivalent to the zero-curvature
equation for L and M, i.e.

L,— M, +[L,M]=0. (2.12)
The entries of M can be computed with the help of the identities (A.2)

N
M;; = )\zx(z )\m) p(2) +m3,
k=1

N (2.13)
M,;j = _/\im<z)\kx>¢)/(/\i — /\j,z) + mijCI)(/\i — )\j,Z), 1#£ ]
k=1

where

my =&+ &z — D Mal@A, + Nia)phi — M) + > beC(hi — M) +c
k#i k#i

mij = Niz (& + &) + Nige + b + Z iz Az M(Aiy Aks Aj).
k#i,5

The coefficients b; can be determined from the off-diagonal part of the zero curvature equation.
The left-hand side of the equation corresponding to a pair of indexes ¢ # j is a double-periodic
function of z. It is holomorphic except at z = 0, where it has the form O(z73) exp[(A; — A;)((2)].
Such a function is zero if and only if the coefficients of 273, 272, and z~! vanish. A straightforward
computation shows that the coefficient of z~3 vanishes identically, while the coefficient at 272 is
equal to

N
k=1
Since our assumption prevents the first factor from vanishing, we conclude that b; = —2\; ;.. Given
this, another straightforward computation shows that the coefficient of 2~! also vanishes identically.
The zero curvature equation (2.12) is not only a necessary but also a sufficient condition for
(2.1) to have solutions of the form (2.5). Now the following lemma completes the proof of the
theorem.
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Lemma 1. Let L = (L;j(x,y,2)) and M = (M;;j(z,y,2)) be defined by formulas (2.10) and
(2.13), where b; = —2\; 4, and the set of \i(x,y), i =1,..., N is balanced. Then L and M satisfy
equation (2.12) if and only if c(x,y) is given by (2.7) and the functions ¢;(x,y) solve (1.6).

Proof. It was mentioned above that all off-diagonal equations in (2.12) become identities if
b = —2)\; 2. The diagonal part of the zero curvature equation (2.12) is simplified with the help of
identities (A.2) and (A.3). Under the change of variables \; = ¢; — hz, it acquires the form

2 g
Qiyy = _2(h - qix)cac + {M + Qix:vac}
T

h— iz
+4(h = i) Y _[(h = 4j2)¢ (0 — a5)
i - S(h - qj:c)‘]j:c:r: p(% - Qj) + 4j xxx C(QZ - Qj)]' (214)

Now consider the sum of equations (2.14) for all ¢ from 1 to N. Since the poles are balanced, it
follows that the left-hand side vanishes and the coeflicient of ¢; becomes —2Nh. The other terms
on the right-hand side can be rewritten as

< E:h%;m+4U@0.

Therefore, c is given by (2.7) up to an arbitrary function of y, which does not affect equations (2.14).
Finally, substituting (2.7) into (2.14), we arrive at (1.6). O

3. The Field Analog of the Elliptic Calogero—Moser System

In this section, we show that equations (1.6) can be obtained as a reduction of the field elliptic
CM system.

In [15], the elliptic CM system was identified with a special case of the Hitchin system on an
elliptic curve with a puncture. In [10], a Hamiltonian theory of zero curvature equations on algebraic
curves was developed and identified with infinite-dimensional field analogs of the Hitchin system.
In particular, it was shown that the zero curvature equation on an elliptic curve with a puncture
can be viewed as a field generalization of the elliptic CM system.

The field elliptic CM system is a Hamiltonian system on the space of functions {g;(z), p;(z)}}¥,
equipped with the canonical Poisson brackets

{ai(2),4;(2)} = {pi(2),p;(%)} =0, {qi(),p;(T)} = dij6(x — T), 1<i,j<N.
Its Hamiltonian is given by (1.8). Note that U (q) is an elliptic function in each of the variables ¢;,

i =1,...,N. Substituting the definition of U(g) into (1.8), we obtain the following expression for
the hamiltonian density:

N N 2 N
1 qlwl’ 1
H:Zp?(h—qm)—Nh<Zpi(h—qm > 24 P —52[%9&%‘”—ijqz‘mK(qz‘—Qj)
= =1 i—1 itj
+z Z —iz)*(h = gj2) + (h = qiz)(h = ¢j2)* — M(giz — ¢j2)°10(ai — 4j)-

175]
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The equations of motion are

¢ = 2pi(h — qiz) — thk = @ra)(h — Gia),

2 Qi xxx q?m
——2p¢p¢x+m{2pmk(h—qz€x)} +{2(h_ R )2} (3.1)
k=1 z dix qix z

3. 7/
+22 @ wexC(qi — ¢5) = 3(h — ¢j2)@jzap(@ — @;) + (h — ¢52)°9 (¢ — ¢5)]-
J#i

Let us make a remark on the notation. Throughout this section, dots stand for derivatives with
respect to the variable y, which we treat as a time variable. In view of the connection with the KP
equation,this time variable corresponds to the second time of the KP hierarchy, for which y is the
standard notation.

One can readily verify that the subspace .4 defined by the constraint

N
Z gi(z) = const, (3.2)
i=1

is invariant with respect to system (3.1). On that subspace, the first two terms of the Hamiltonian
density H can be represented in the form

1 ~
= 3Nk (Z@i — )k~ qia) (h— qjm)> ). 53
i
Therefore, the Hamiltonian (1.8) restricted to .4 is invariant under the transformation
pi@) = pi(@) + f(2), (3.4)

where f(x) is an arbitrary function. The left-hand side of the constraint (3.2) is the first integral
corresponding to this symmetry. The canonical symplectic form is also invariant with respect to
((3.4)). Therefore, the Hamiltonian system (3.1) restricted to .4 can be reduced to the quotient
space. The reduction can be described as follows.

Consider the variables ¢; = p; + k, i =1,..., N, where

Zpk Qkx (35)
They are invariant with respect to the symmetry (3.4) and satisfy the equation
N
> lp(h = qrs) =0. (3.6)
k=1

A straightforward substitution shows that equations (3.1) imply the system of equations

gi = 20;(h — giz),

N 2
5 2 qixxx q;
Ui = —200; o + — P2 (h — 2) — izTx
" Nh{z el = Gka) U(Q)};p+{2(h_Qix) ” 4(h — qiz)? }x (3.7)
+2) [(h—452)°0 (6 — 45) = 3(h — j2)@j 0w 9(@s — ) + Qe C(2i — 5));
J#i

Theorem 2. Equations (1.6) are equivalent to the restriction of system (3.7) to the subspace
A defined by the constraints (3.2) and (3.6).
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Proof. Let us show that equations (1.6) imply (3.7). The first equations can be regarded as a
definition of ¢;, ¢ = 1,..., N. Taking their derivative, we obtain

Gi = 20;(h — Giz) — 20;(20i (B — Qi) — 20iGi 2)- (3.8)
Therefore,

) 2 Qizx q;
Uy =20:0; 5 — 205 —— + S —ga)
To obtain the second equation in (3.7) it suffices to substitute the right-hand side of (2.14) for ¢;
and use formula (2.7).
Conversely, equation (3.8) can be used to derive (1.6) from (3.7). O

Note that a solution of (3.7) restricted to the subspace .# defines a solution of (3.1) uniquely
up to initial data. Namely, it can be verified directly that if x(z,y) is a solution of the equation

;= 2, 2 Nezh 2U 3.9
e= {0 ) - U@} 39)

and {¢;,q;} is a solution of (3.7) on .#, then {¢;,p; = ¢; — Kk} is a solution of (3.1).
Our final goal in this section is to present a Lax pair for the field elliptic CM system.

Theorem 3. System (3.1) admits a zero curvature representation, i.e. it is equivalent to the
matrix equation
L, — M, +[L,M] =0,
with Laz matrices L = (EU) and M = (]\Z]) of the form
Lij = —0ipi + (1 — 8i)aic;®(q; — g5, 2), (3.10)
M;; = 0i5|-Nho?p(2) + ml] + (1 — 8ij) i [NL &' (q; — g5, 2) — iy ®(q; — 5. 2)),

2 _
where o = iz — h,

_ Q;
m; = p; + i;m + 2Kp; — Z[a?@a? +a5)plg — q5) + 4o o (g — q5)],
’ i#i

~ Q. Qjy 2
Mij = pi+pj + 26+ —= — =2+ " ajn(ai, ar, 4)),

67 ay =

k#i,j
and K 1is given by (3.9).

Proof. If we subject the matrices L and M given by (2.10) and (2.13) to a gauge transformation

1

L gegt+gLg™, Mgyt +gMgt,

where g = (gi;) is a diagonal matrix with g;; = (5Z-j()\m)_1/2, and then substitute \; = ¢; — hx
and A;y/2X\;i; = ¢;, then we obtain a Lax pair for system (3.7). To obtain (3.10), we apply another
gauge transformation with g = eT and substitute ¢; = p; + x, i =1,...,N. Here K = K(z,y) =
[* k(Z,y) dz. Note that K, = —k? — ¢ in view of (3.9) and (2.7). O
4. Elliptic Families of Solutions of the KP Equation
The KP equation (1.2) is equivalent to the commutation condition
[0y — £,0, — ] =0, 0y = 0/0y, 0, = 0/0t, (4.1)
for the auxiliary linear differential operators

3
L= 8§z+u(m,y,t), o = 8§m—|—§u6z—|—w($,y,t), Op = —.

We use this representation to derive our main result.
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Theorem 4. Let u(xz,y,t,\) be an elliptic family of solutions of the KP equation with balanced
set of poles \i(xz,y,t) = ¢;(x,y,t) —hx, i=1,...,N. Then u(z,y,t,\) has the form (1.4), and the
dynamics of the functions q;(xz,y,t) with respect to y is described by system (1.6).

Proof. Substituting u into (1.2), we readily conclude that u may have poles in A of at most
second order. Moreover, matching the coefficients of the expansions of the left- and right-hand sides
in (1.2) near the pole \;, we find that the principal part of the solution w coincides with the one
given by (1.4).

The next step is to show that the operator equation (4.1) implies the existence of double-Bloch
solutions for the equation (9, — £)¢(z,y,t,\) = 0.

Let us define a matrix S(x,y,t,2) as the solution of the linear differential equation 0,5 = LS,
where L = (L;;) and

Lij = 5@']‘ <y2)\“c> + (1 — 51]))‘zx CID()\Z — )\j, Z),

with initial conditions S(0,y,t,2) = So(y,t, z), where Sy is a nonsingular matrix. By ® we denote
the row vector (®(A — A1, 2),...,2(A— Ay, 2)). It follows readily that the vector (9, — £)®S has
at most simple poles at A;, i = 1,..., N. Therefore, it is equal to ®D for some matrix D. The
commutation relation (4.1) implies that D, = LD. To show this, consider the vector

(O — )®D = (0y — &) (0 — L)PS = (0y — £L)(0y — &) DPS.
It has poles of at most third order, and therefore, the vector (9, — «/)®S has at most simple poles.
In this case, however, the vector

(O — )0y — £L)PS = (0 — £L)(0 — )PS = (0y — «/)PD

has poles of at most second order. The absence of third-order poles in the expression (9, — «)®D
is equivalent to the equation D, = LD.

Since S and D are solutions of the same linear differential equation in x, it follows that they
differ by a matrix independent of z: D(z,y,t,z) = S(z,y,t,2)T(y,t,z). Let us define a matrix
F(y,t, z) from the equation 0,F + TF = 0 and the initial condition F'(0,t,z) = I. Here I is the

identity matrix. Let S=S8F ; then
(8, — L)®BS = (8, — L)BSF = ®DF + ®SF, = &S (TF + F,) =0,
and the components of the vector ®S are independent double-Bloch solutions of (2.1).
To complete the proof, it suffices to apply Theorem 1. ]
5. The Algebraic-Geometric Solutions

According to [6], a smooth genus g algebraic curve I" with fixed local coordinate w at a puncture
Py defines solutions of the entire KP hierarchy by the formula

2
u(t) = 2aln0<ZUktk +7 j B> + const .
k

Ox?

Here B = (Bjj) is a matrix of b-periods of normalized holomorphic differentials wZ, ie.

% w]h = 51']" Bi]’ = f w]h, (51)
a; b’L

and the vectors Uy = ( q,z ) are vectors of b-periods,

L1
0= = ¢ doy. ¢ dn—o,
2mi Jy, a

of the normalized meromorphic differentials df2; of the second kind, defined by their expansions
dQy, = dw™" + O(1)dw (5.2)
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in a neighborhood of Fy.
Let I" be an N-fold branched cover of an elliptic curve &

p: ' =&

Then the induced map of the Jacobians defines an embedding of & in J(I'), i.e. p*& C J(I).
Therefore, each N-fold cover of & defines an elliptic family of solutions of the KP equation. The
following assertion shows that the corresponding solutions have exactly N poles. Moreover, if the
local coordinate w at the puncture Py is p*()\), then the poles are balanced. Here \ is a flat
coordinate on &.

Theorem 5. Let I' be a smooth N -fold branched cover of the elliptic curve &, and let Py € I’
be a preimage of the point A = 0 on &. Let dQd; be a normalized meromorphic differential on T’
with the only pole at Py of the form (5.2), where w = p*(\), and let 2wiU and 27iV be the vectors
of b-periods of the differentials dS2y and dS2s, respectively. Then the equation

O(AN+ Uz +Vy|B)=0 (5.3)
has N balanced roots Ai(z,y) = qi(z,y) — /N, > . qi(x,y) = 0, and the functions q; satisfy
system (1.6).

Proof. Let 2wy, 2wy be the periods of & such that Im(7) = Im(ws/w1) > 0. The Jacobian
J(T") is the quotient of CY by the lattice 2 spanned by the basis vectors €; € C9, i =1,...,g and
the columns B; = (By;) € CY9, i =1,...,g, of the matrix B. Let A be a vector in CY that spans
p*& C J(I'). Note that not only A € #, but also TA € 2.

The function 6(3", Uty + AN+ Z | B) viewed as a function of A has a finite number D of zeros.
Its monodromy properties (A.4) imply that it can be rewritten in the form

D
0 <Zk Ut + A\ + Z | B) = f(t)ecrMtea) 1_[10'<)\ — Ni(2),
i=
where ¢; and ¢y are constants.
Note, that the \; are defined modulo the periods of &. To count them, we integrate d1ln @ along
the boundary of the fundamental domain of p*& in CY.
The embedding of & in J(I') is defined by the equivalence classes of the divisors p*(z) — p*(0),
where p*(z) is the divisor of preimages on I' of a point z € & Preimages on I' of a- and b-cycles
of & are some linear combination of the basis cycles on I, i.e.

9 g
pra = Z ngag + mebg, p'b = Z nyax + mpby.
k=1 k=1

Therefore, the vector A is equal to
g g
K = angk +mk§k, TKZ Zn%é’k +m§€§k
k=1 k=1
The usual residue argument implies that

2miD = d1n9:/ </dln9> —/ </ dln9>
o(p* &) A A A A

The monodromy properties of the theta function imply that

g
D= Z(nmn;C — njmy).
k=1

The right-hand side of the last formula is the intersection number of the cycles p*a and p*b, i.e.,
D = (p*a) N (p*d) = N (anb) = N,
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and so the theta function has exactly N zeros A\;, i =1,..., N.
Now let us show that the set of \; is balanced. In a way similar to the residue argument above,
we find that

N
—271'1'2(3?] :% (9, In6) d\ = /d)\</ ko> —/dA(/ ko>. (5.4)
J=1 k A(p*&) b pra a p*b

Let TrdQ2 = p.(d€) be the sum of d€ on all sheets of I" over a point A € & It is a meromorphic
differential on &. Since the local coordinate w near the puncture is defined by the projection p, we
have

Teaoy = -0 600 d + e da 5.5
where 7 is a constant. The right-hand side of (5.4) can be rewritten as 2miresy—o(Tr Q) d\. For
k > 1, it is equal to zero, and for £k = 1 we have

§isb(Tr Q) d\ = §i%§()\) d\ = 1.

Therefore, we obtain

N N
O\ O\,
2 =1, 2 =0, k>1, 5.6
i1 ox ; 8tk ( )
and consequently, the \;, i = 1,..., N, satisfy (1.5). Note that our choice of a local coordinate near
the puncture corresponds to h = 1/N. An arbitrary nonzero value of h can be obtained by setting
w = p*(A\/Nh). The proof of Theorem 5 is complete. O
Remark. If the ¢;(x,y), i =1,..., N are periodic functions of x, the algebraic curve I' can be

—

identified with the spectral curve for the equation (0, — L)S = 0 (see [10]).
Appendix

A.1. Elliptic functions. Here we list the definitions and basic properties of the classical
elliptic functions (see [3] for details). Let 2w;, 2wy € C be a pair of periods, Im(ws/w1) > 0. The
Weierstrass sigma function is defined by the infinite product

2
z z z
o(2) = ZHm2+n27A0 (1 B ) exp{ + } 5 Wmn = 2mw1 + 2nws.

Winn, Wmn  2w2,,
The product converges for every z to an entire function with simple zeros at the points z = wy,,.
The Weierstrass zeta function and p-function are then defined by

o'(2)

=53 el =),
It follows directly from this definition that o(z) and {(z) are odd functions, while p(z) is an even
function. Under shifts of the periods, the Weierstrass functions are transformed as follows:
0(2 4 2wy) = 29 g(2), (24 2wa) = C(2) + 20, a=1,2,
where 1, = ((ws) and nywe — new; = wi/2. The p-function is double-periodic
p(z + 2w1) = p(2 + 2ws) = p(2) = p(—2)
and can be regarded as a function on the elliptic curve I' = C / Z[2w1, 2ws], where it has the only

(double) pole at z = 0. It is useful to write out the Laurent expansions of the Weierstrass functions
in a neighborhood of z = 0:

o) =2+0(),  (()=2+0(),  olz) = 5 +0(2).

A.2. Identities for the function ®(\, z). Here we collect some useful identities involving
the function ®(\, z) defined by (2.2).
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The derivative of ® (A, z) with respect to the variable X is equal to
(A, 2) = @(\, 2)[C(2) — C(A) = ¢(z = A)] (A1)
We also have the following product identities:
QA =, 2)®(1 = A, 2) = p(2) — p(A — p),
(I)()‘ -V Z)q)<y - K Z) = —@/(A — My Z) + q)<)\ - M Z)U(Aa v, M)u
where in the second equation we use the notation
n(A v, ) = CA=v) +¢(v —p) = C(A = p).

Note that 7 is a completely antisymmetric function of its arguments. To complete the list of
identities required for our computations, we differentiate formulas (A.2) and obtain

(X = 1, 2)®(p = A, 2) = (A — 1, )@ (0 = A\, 2) = —p' (A — ),
'\ =1, 2)(v — p,2) = (A = v, 2)0' (v — p1, 2) = =X = p)[p(A = v) — p(v — p)].

(A.2)

(A.3)

A.3. The Riemann O-function. Let I" be a genus g algebraic curve with given basis of cycles
a;, b;, 1 <1< g, with intersections a; o b; = d;;. Let B be the matrix of normalized holomorphic
differentials wzh, see (5.1). Then B is a Riemann matrix, i.e. a symmetric g X g matrix with positive
definite imaginary part Im B > 0.

The Riemann 6 function associated with the curve I' is the analytic function of g complex

variables 7= (21, ..., 24) defined by the Fourier expansion
9(2| B) _ Z eQ?T’i(?ﬁ,E)-‘,—TFi(Bﬂ_:L,ﬂ_:L)'
neZLI

The Riemann 6#-function has the following monodromy properties with respect to the lattice %
spanned by the basis vectors €; € C9, i =1,...,¢, and the columns B; € C9 of the matrix B:

0(Z+1|B)=6(Z|B),
0(Z+ Bii| B) = exp[—2mi(7i, Z) — mi(Bi, )| 6(Z| B).

Here 71 is a vector with integer components.

(A.4)
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