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Abstract: We construct the integrable model corresponding tothe- 2 supersym-
metric SU (N) gauge theory with matter in the antisymmetric representation, using the
spectral curve found by Landsteiner and Lopez through M Theory. The model turns
out to be the Hamiltonian reduction of + 2 periodic spin chain model, which is
Hamiltonian with respect to the universal symplectic form we had constructed earlier
for general soliton equations in the Lax or Zakharov—Shabat representation.

1. Introduction

The main goal of this paper is to construct the integrable model which corresponds to the
N = 2 SUSY SU (N) Yang—Mills theory with a hypermultiplet in the antisymmetric
representation. The 1994 work of Seiberg and Witten [1] had shown that the Wilson
effective action ofA/ = 2 SUSY Yang-Mills theory is determined by a fibration of
spectral curveE equipped with a meromorphic one-forth, now known as the Seiberg—
Witten differential. It was soon recognized afterwards [2—4] that this set-up is indicative
of an underlying integrable model, with the vacuum moduli of the Yang—Mills theory
corresponding to the action variables of the integrable model. In fact, in the special case of
hyperelliptic curves, a similar set-up for the construction of action variables as periods
of a meromorphic differential had been introduced in [5]. This unexpected relation
between\ = 2 Yang-Mills theories on one hand and integrable models has proven to
be very beneficial for both sides. The Seiberg—Witten differential has led to a universal
symplectic form for soliton equations in the Lax or Zakharov—Shabat representation
[6,7]. The connection with integrable models has helped solvé§thgV) Yang—Mills
theory with a hypermultiplet in the adjoint representation [4, 8], as well as pure Yang—
Mills theories with arbitrary simple gauge grou@g3]. Conversely, the connection with
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Yang—Mills theories has led to new integrable models, such as the twisted Calogero—
Moser systems associated with Yang—Mills theories with non-simply laced gauge group
and Tatter in the adjoint representation [9], and the elliptic analog of the Toda lattice
[10].

Despite all these successes, we still do not know at this moment how to identify or
construct the correct integrable model corresponding to a given Yang—Mills theory. This
is a serious drawback, since the integrable model can be instrumental in investigating key
physical issues such as duality, the renormalization group, or instanton corrections [13—
15]. At the same time, the list of spectral curves continues to grow, thanks in particular
to methods from M theory [16,17] and geometric engineering [18]. It seems urgent to
develop methods which can identify the correct integrable model from a given spectral
curve and Seiberg—Witten differential.

In the case of interest in this paper, namely $lt&(N) gauge theory with antisym-
metric matter, the Seiberg—Witten differential and spectral curve had been found by
Landsteiner and Lopez [17] using branes and M theory. The Seiberg—Witten differential
dJ is given by

d
ar=x2. (1.1)
y
The spectral curve is of the form
y3_(3AN+2+x2 Z M[Xl)y2+(3AN+2+.X2 Z(—)ZM[XI)AN+2_)7—A3(N+2) — 0’
i=0 i=0
(1.2)

where A is a renormalization scale. For tt#/(N) gauge theories, one restricts to
uy = 1, uy_1 = 0, so that the moduli dimension ¢ — 1, which is the rank of the
gauge groupSU (N). The Landsteiner-Lopez curve (1.2) and differential (1.1) have
been studied extensively by Ennes, Naculich, Rhedin, and Schnitzer [20]. In particular,
they have verified that the curve and differential do reproduce the correct perturbative
behavior of the prepotential predicted by asymptotic freedom. The problem which we
wish to address here is the one of finding a dynamical system which is integrable in the
sense that it admits a Lax pair, and which corresponds to the Landsteiner—Lopez curve
and Seiberg-Witten differential (1.1) in the sense that its spectral curve is of the form
(1.2), and its action variables are the periodgiofalongN — 1 suitable cycles of.

We have succeeded in constructing two integrable spin chain models, whose spectral
curves are given exactly by the Landsteiner—Lopez curves. However, the action variables

of the desired integrable model must be giverday= x%, and here the two models

differ significantly. For one model, referred tothe odd divisor spin model, the 2-form
resulting fromd . vanishes identically. For the other, referred tdtaseven divisor spin
model, the Hamiltonian reduction of the 2-form resulting frei to the moduli space

of vacua{uy = 1, un_1 = 0} is non-degenerate, and the reduced system is indeed
Hamiltonian with respect to this symplectic form, with Hamiltonilh= u y_>. Thus

the latter model is the integrable system we are looking for.

1 We refer to [11,12] for more complete lists of references.
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Our main result is as follows Letg,, p, be 3-dimensional vectors which ake+ 2
periodic, i.€.py+N+2 = Pn, gn+N+2 = gn, and satisfy the constraints

Padn =0, (1.3)
Pn = 80P-n-1,  qn = 804-n—1, (1.4)
wheregg is the diagonal matrix
100
go=]0-10]. (1.5)
001
Consider the dynamical system
. DPn+1 DPn-1 . dn+1 qn-1
Pn = Tn+ + Tn + UnPn, Gn=— Tn+ - Tn — UnPn (16)
Ppy149n D, _149n Pndn+1  PpQqn-1

for some scalar functions,, (). The system is invariant under the gauge gréugen-
erated by the following gauge transformations:

Dn —> A Pn, qn — )V;J-Qn» (17)
o= Wlp, q,— W_lq,,. (1.8)

Here W is a 3x 3 matrix which commutes witlgo, Wgo = goW. Define the 3x 3
matricesL (x) andM (x) by

phc aN+1Py  doPy
L(x) = l_[(1+anl7nT), M(x)=x ( - 0 _ - NH) ) (1.9)
n=0 PodnN+1 PN4+140
Main Theorem. e The dynamical system (1.6)is equivalent to the Lax equation
L(x) =[M(x), LX)]; (1.10)

e The spectral curvesT” = {R(x, y) = det(yI — L(x)) = 0} are invariant under the
flow (1.6), and are exactly the curves of the Landsteiner—Lopezform (1.2) (with ANV +2
normalized to 1);

e Thereisanatural map (¢, p,) — (I, D) fromthe space of all spin chains satisfying
the constraints (1.3,1.4)to the space of pairs (I', D), whereT" isa Landsteiner—Lopez
curve,and D = {z1, - -- , zan+1} isadivisor whose class [D] = [D?] is symmetric
under the involution

o (y)=z—->2" =(-x,y . (2.11)
For agiven (g, p»), D istheset of polesof the Bloch function g, L(x)¥0 = yyo(x);

2 The notation is explained in greater detail in Sects. 3 and 5.
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e Let My be the space of pairs {I", [D]}, where I' is a Landsteiner—Lopez curve with
uy = 1,uy_1 = 0,and[D]isadivisor classwhichissymmetric under theinvolution
o . Thenthe space Mg hasdimension2(N —1). Themap (g,, p») — (', D) descends
to a map between the two spaces

{(gn, Pn)}/ G < Mo, (1.12)

where on the left-hand side, we have factored out the gauge group G from the space
of periodic spin chains satisfying the constraints (1.3,1.4) At a generic curve I' and
adivisor [D] in general position, the map (1.12)isalocal isomorphism.

e Lettheaction variablesa; and the angle variables ¢; be defined on the space Mg by

2N+1

%
a; =¢ dx, ¢ = Z / dw;, (1.13)
Ai i=1

where {A;}1<i<n—1 and {dw; }1<i<n—1, are respectively a basis for the even cycles
and a basis for the even holomorphic differentialson I'. Then
N-1
w=)daj A5, (1.14)

i=1

defines a symplectic formon the 2(N — 1)-dimensional space Mo;
e Thedynamical system(1.6)isHamiltonian with respect to the symplectic form (1.14)
The Hamiltonianis H = uy_».

Interms of theg,,, p,) dynamical variables, the Hamiltonian can be expressed under
the form

2
UN—2 Uy
Uy 2u§
N+1

H =

(1.15)
(pZQn—3) (pI{CIn—Z)Z

=0 (pZQn—l)(p,1T_1QH—2)(p,1T_2qn—3) 2(pan,1_1)2(pnT_1qn_2)2 ’

2

. . u
where we have used the constraifgt = 1, uy_1 = O to write H asH = “;V};Z — %
N

We would like to note the similarity of the Lax matrix in (1.9) to the 2x 2 Lax
matrix used in [21] for the integration of a quasi-classical approximation to a system of
reggeons inQCD.

A key tool in our analysis is the construction of [6, 7], which shows that symplectic
forms constructed in terms of Seiberg—Witten differentials can also be constructed di-
rectly in terms of the Lax representation of integrable models. The latter are given by
the following universal formula [6, 7]:

=5 Y Re%, V7 15 La(x) A 0 dr. (1.10)

wherey,, andy;, , are the Bloch and dual Bloch functions of the system, Bpdre
marked punctures on the spectral curvdn the present casé&, are the 3 points ot
abovex = oo.
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Finally, we note that the odd divisor spin model (which we describe in Sects. 3.1
and 6) may be of independent interest. Although the symplectic form associated to the
Seiberg-differen'[iaicdT,y is degenerate in this case, the model does admit a Hamiltonian
structure with non-degenerate symplectic form, but one which is associated rather with
the formdiy = In ydT". As suggested in [19], the form Lr% is also indicative of
supersymmetric Yang—Mills theories, but in 5 or 6 dimensions With= 1 supersym-
metry.

2. Geometry of the Landsteiner—L opez Curve

We begin by identifying the geometric features of the generic Landsteiner—Lopez curve
which will play an important role in the sequel. Fixing the normalizatioht? = 1,
we can write

: R,y =y — f@)y*+ f(—=x)y —1=0, (2.1)

where f (x) is a polynomial of the form

N
f) =3+x%Py(x), Py(x)=) ux'. (2.2)
i=0
The parametersyo, - - - , uy are the moduli of the Landsteiner—Lopez curve.

e The Landsteiner—Lopez curteis a three-fold covering of the complex plane in the
x variable. It is invariant under the involutiendefined in (1.11). The important points
onT are the singular points, the points abave: oo, and the branch points. We discuss
now all these points in turr. The singular points are the points where

0xR(x,y) =0yR(x,y) =0. (2.3)

The generic Landsteiner—Lopez curve has exactly one singular point, namely—=

(0, 1). At this point, Eq. (2.1) has a triple root, and all three sheets of the curve intersect.
For generic values of the moduli, all three solutions of R(x, y) = 0 can be expressed

as power series im in a neighborhood of = 0,

o0
Y =14 yix'. (2.9)
i=1
In fact, we can substitute (2.4) into (2.1) to find recursively all coefficigntsith the
first coefficienty; a solution of

3 — uoyr +2u1 = 0. (2.5)

For generiasg, u1, this equation does admit three distinct solutionsyfgrwhich lead

in turn to the three distinct solutions. These three distinct solutions provide effectively
a smooth resolution of the cunig where the crossing point = 1 abovex = 0 has
been separated into 3 distinct poidls, 1 < o < 3. Under the involutiow, the leading
terms in the three solutions (2.4) transform as

G ltyx 4o = (x, A=y 4+ ) H=(-x, 1+ yx+-). (26)
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Since the three solutiong of Eq. (2.5) are distinct for generic values of the modai
we see that each of the three poigts abovex = 0 are fixed under the involutios.

e For generic values of the modulj, there are also three distinct branches @f) near
x = oo. Afirstbranchy(x) = 0 (xV*+2) with a pole of ordewV + 2 can be readily found

+o). (2.7)

(The first three coefficients im(x) turn out to be exactly the first three coefficients
uy,uy—1anduy_inthe polynomialPy (x) of (2.2).) We denote by, the correspond-
ing pointabover = oo. Inview of the involutiors, asecond brancgh(x) = O (x~(N+2)
with a zero of ordetV + 2 exists which is the image of the first branch under

) = N2y Fuy_ax Tt Fuy_ox?

UN “12\/

1 _ U2, L —unUN—
y(x) = (_x)*(NJrZ)_ (1+ un 1,.-1 + N_l—NNzx*2 + . ) . (2.8)
un
The corresponding point abowe= oo is denotedPs. Finally, the involutiono implies
that the third brancly(x) is regular and fixed under

) = (V140 (%) 1 2.9)

Denoting the corresponding point abowe= co by P, we have

o:Pr< P3, o0:Py< P (2.10)

e The branching points df over thex-plane are just the zeroes dhof the function
dyR(x, y) which are different from the singular poing,. This function has a pole of
order AN + 2) at P, and a pole of ordetN + 2) at each of the point®, and Ps.
Therefore, it has # + 8 zeros. At each of the poinig, the functiond, R(x, y) has
zeros of order 2. Hence

#{Branch Points= 4N + 2. (2.11)

Note that for generic moduli;, neither 0 noroo is a branch point, in view of our
previous discussion. Also for genetig, we can assume that the ramification index at

all branch points is 2. Thus the total branching number is just the number of branch
points. Since the number of sheets is 3, the Riemann-Hurwitz formula can be written as
g =-3+ %(4N + 2) + 1in this case. Thus the gengd") of the curverl is

gl =2N —1. (2.12)

e For generic moduli;, the involutiono : ' — T has exactly four fixed points, namely
the three pointg), abovex = 0 and the pointP; abovex = oco. That implies that the
factor-curvel’ /o has genus

gT'/o) =N —1. (2.13)

The involutions induces an involution of the Jacobian varigtyl™) of I'. The odd part
JPr (") of J(I) is the Prym variety and the even part is isogenic to the Jacolgigyy )
of the factor-curve/o. The dimension of the space of divisdi®] which are even
undero is equal to dim/(I'/o) = N — 1.
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3. The Spin Models

We introduce two systems with the same family of spectral curves (2.1). One system
has non-trivial dynamics along the even while the other system has non-trivial dynamics
along the odd (Prym) directions of the Jacobian. The system corresponding (e
Yang—Mills theory with a hypermultiplet in the anti-symmetric representation is the even
system. We sketch here the outline of the construction of both models, leaving the full
discussion to Sects. 4-5.

Both models are periodic spin chain models, with a 3-dimensional complex vector at
each site. We view three-dimensional vectoes column vectors, with componens
1 < o < 3. We denote by’ the transpose of, which is then a three-dimensional row
vector, with components®. In particular,s”s is a scalar, whiles” is a 3x 3 matrix.
Since the odd divisor spin model is simpler, we begin with it.

3.1. Theodd divisor spinmodel. The odd divisor spin model is@ + 2)-periodic chain
of complex three-dimensional vectors= sy1n+2, sn = (sn.a), @ = 1,2, 3, subject
to the constraint

3
snTsn = Zs,‘fsn,a =0, (3.1)

a=1
and the following equations of motion:

Sn—1

. Sn+1

fp= omtl | nl (3.2)
ST N ST N
n+1°n n—1°n

The constraint (3.1) and the equations of motion are invariant under transformation of
the spin chain by a matriX satisfying the conditiov” Vv = I,

sn —> Vi, (3.3)

The odd divisor spin model is integrable in the sense that the equations of motion are
equivalent to a Lax pair. To see this, we define the 3 matrices., (x) andM,, (x) by

L,(x)=1+x snsnT, (3.4)
1

My (x) = x— (sn_lsnT + s,,snT_l). (3.5)
sTs

non—

Then the compatibility condition for the system of equations

VYnt1 = Ln(X)¥n, (3.6)
Yn = Mu(x)¥n (3.7)

is given by

Ly(x) = Mys1(x)Ly(x) — Ly (x) My (x). (3.8)
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A direct calculation shows that fak, (x) and M, (x) defined as in (3.5), this equa-
tion is equivalent to the equations of motion (3.2) for the spin model. Define now the
monodromy matrix_(x) by

N+1
L(x) = Ly41(x) - Lo(x) = [ ] La(®), (3.9)

where the ordering in the product on the right-hand side starts by convention with the
lowest indices on the right. Thei(x) andM (x) = Mg(x) form themselves a Lax pair
L(x) = [M(x), L(x)]. (3.10)

This is easily verified using (3.8), since

. N+1 N+1
Ly =" ] La@)Li x HL (x) (3.11)
k=0 n=k+1
N+1 N+1 k-1
=Y ] Lo MisaLi — L) [ ] Latx) (3.12)
k=0 n=k+1 n=0
N+1 N+1 N+1N+1
=> Il L(x)Mk+1]"[L(x> Z]‘[L(x)Mk]"[L(x) (3.13)
k=0 n=k+1 k=0 n=k
= My+2L(x) — L(x)Mo(x). (3.14)

In particular, the characteristic equation/afr) is time-independent and defines a time-
independent spectral curve

I'={(x,y);0=R(x,y) =det(yI — L(x))}. (3.15)

We assertthat these spectral curves are Landsteiner—Lopez curves (2.1). In fact, it follows
immediately from the expression (3.5) that dg{x) = 1, L,(x) = L,(x)T, and
L,(x)"1 = L(=x). Thus

detL(x) =1, L(x)"*=L(—x). (3.16)

These two equations imply that def — L(x)) is of the form (2.1) for some polynomial
f(x). To obtain the expression (2.2) fgi(x), it suffices to observe that

N+1
fO=TrLE@) =Trd+x Y ss)) + 0x?) =3+ 0(x?). (3.17)
n=0

Define the moduli; of the curveR(x, y) = 0 asin (2.1) byf (x) = 3+ x2 YN ju;x'.
Then the correspondence between the dynamical varighl®s< n < N + 1, and the
moduliu; is given by

_ T T T
u; = E SpySnaSnySng " Sp,_1Snis (3.18)

where the summation runs over the gebf all ordered;i-th multi-indicesny < ny <
< nj.
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To obtain the phase space of the model, we consider the spacé®@fal)-periodic
spin chainss,,, subject to the constraint (3.1), and modulo the equivalepce Vs,,
whereV is a matrix satisfying/” V = I. The dimension of this space is

dim{s,}/{s, ~ Vs,} = 2N + 1L (3.19)

Indeed, thg N + 2)-periodic spin chains, have 3N + 2) degrees of freedom. The
constraint (3.1) removes + 2 degrees of freedom, and the equivalence- Vs, re-
moves 3 others, since the dimension of the matricesth V7 V is 3. A 2N-dimensional
symplectic manifoldz°% is obtained by setting

£odd — {sn; uy = constant }/{s, ~ Vs,}. (3.20)

On the spacg£°9d, the system is Hamiltonian with respect to the symplectic form defined
by the differentialii 1) = (In x)%, with Hamiltonian

N+1 T
UN-1 (8y4157-1)
Hgy=——=Y e (3.21)
un =0 (Sn+1sn)(sn Sn—1)
The action-variables are the periods of the differemtiqly = —(Inx) d)—y over a basis of

N cycles for the curvé, which are odd under the involutien If the curverl is viewed
as a two—sheeted coverBfo, theseN odd curves can be realized as thiecuts along
which the sheets are to be glued.

3.2. The even divisor spin model. The even divisor spin model is the Hamiltonian re-
duction of a periodic spin chain model which incorporates a natural gauge invariance.

The starting pointis &V + 2)-periodic chain of pairs of three-dimensional complex
vectorsp, = (Pna)s qn = (qna), 1 < a < 3, satisfying the constraints (1.3). We
impose the equations of motion (1.6). As noted before, the constraints and the equations
of motion are invariant under the gauge transformations (1.7,1.8). In particular, a gauge
fixed version of the equations of motion (1.6) is

. Pn+1 Pn-1 . qn+1 qn—1
Pn= et = e — (3.22)
Ppy14n Pn_19n Py qn+1 Pndn-1

This version follows from the other one by the gauge transformation

t
Pn = 2O Pny Gn — A O G, M) = eXp<— / un(t’)dt’>. (3.23)

We shall see in the next section that the system (1.6) admits a Lax representation.

A reduced system is defined as follows. We impose the additional constraints (1.4).
With these constraints, the spectral curves of the system are the Landsteiner-Lopez
curves (2.1). The dimension of the phase spadeof all (¢,, p») subjected to the
previous constraints and divided by the gauge gréugf (1.7,1.8), is

dim M = dim {(gn, pn)}/G = 2N. (3.24)

To see this, assume thatis even (the counting fav odd is similar). Then the constraint
(1.4) reduces the number of degrees of tNe+ 2)-periodic spin chair{g,, p,) to the
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number 3N + 2) of a (N + 2)-periodic spin chain. The constraint (1.3) and the gauge
transformation (1.7) each eIiminat%erl degrees of freedom. Now the dimension of the
space of matrice® satisfyingWgo = goW is 5. However, in the gauge transformation
(1.8), the matrice$V which are diagonal have already been accounted for in the gauge
transformation (1.7). Altogether, we arrive at the count which we announced earlier.
The phase spadgqg,, p,)}/G itself can be reduced further, to a lower-dimensional
phase space defined by suitable constraints on the moduli gpgce- , uy). It turns
out that there are 2 possible natural further reductions, each related to its own choice of
differentialdx and corresponding Hamiltonian structure:

e Onthe(2N — 2)-dimensional phase space defined by the constraints
Mo = {(gn, pn); un =1, uy—1=0}/G (3.25)

the system is Hamiltonian with respect to the symplectic form defined by the differential
dr = x%. Here we have used the same notation for the space just introduced and
the spaceMy described in the Main Theorem, in anticipation of their isomorphism
which will be established later in Sect. 4. The Hamiltonian is giverfby= u_2 or
equivalently by (1.15).

The action-variables are periodsdf along a basis oN — 1 cyclesA; of I which
are even under the involutien (Equivalently, theA; correspond to a basis of cycles for
the factor curve™/o.) This is the desired integrable Hamiltonian system, corresponding
to the N = 2 supersymmetricU (N) Yang—Mills theory with a hypermultiplet in the
anti-symmetric representation.

e Onthe(2N — 2)-dimensional phase spagdé, defined by the constraints

Mo = {(gn, pn); uo = constant u1 = constant/G (3.26)
the system is Hamiltonian with respect to the symplectic form defined by the differential
dip) = —)—%d)—y This symplectic form coincides with the natural form
=Y dpl Adgy (3.27)
n

with respect to which the system (1.6) is manifestly Hamiltonian, with Hamiltonian

N+1
H(p,q) =Mnuy =53 In[(pan-D (P, 1a0)]- (3.28)
n=0
The action-variables are the periods of the differentiab) = —% over again the even

cyclesA; of the earlier case.

4. The Direct and I nver se Spectral Transforms

We concentrate now on the even divisor spin model. The main goal of this section is to
describe the map stated in the main theorem, which associates to the spi@ghaip
a geometric datél’, [D]),

(Gns pn) — (I, [D]). 4.1)
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The curve is obtained by showing that the dynamical system (1.6)#gr g,) admits a
Laxrepresentatioh(x) = [M(x), L(x)],inwhich casé" isthe spectral curviget(yl—

L(x)) = 0}. The Lax operatot(x) also gives rise to the Bloch function, which is
essentially its eigenvector. The divispbris obtained by taking the divisor of poles of
the Bloch function. A characteristic feature of the even divisor spin model is that the
equivalence class of this divis§D] is even under the involutioro. The map (4.1)
descends to a map from the space of equivalence classgg,gf,) under the gauge
group G to the space of geometric datR, [D]). These two spaces are of the same
dimension 2V: we saw this in (3.24) for the first space, while for the second, the number
2N of parameters is due 16+ 1 parameters for the Landsteiner—Lopez curves (including
uy anduy_1), andN — 1 parameters for the even divis¢i3]. It is a fundamental factin

the theory that the map (4.1) becomes then a bijective correspondence of generic points

{an, P)}/ G < {(I', [DD}. (4.2)

We shall refer to the constructien described above dke direct problem. The reverse
construction«—, which recaptures the dynamical variabi@g, ¢,) from the geometric
data(T, [D]) will be referred to ashe inverse problem. As usual in the geometric theory

of solitons [22], it will be based on the construction of a Baker—Akhiezer function. We
now provide the details.

4.1. TheLaxrepresentation. We exhibit first the Lax representation for the system (1.6).
The desired formulas can be obtained from a slight modification of the easier odd spin
model treated in Sect. 3.1. Let,, g, be (N + 2)-periodic, three-dimensional vectors
satisfyingp! ¢, = 0, and define matrix-valued functiodis, (x) and M, (x) by

(4.3)

T T
-1 qnP,_
La(x) =1+ xqupT, Mn(x)=x<"" Pn 20 1) .

Pran—1 PZ_]_%

Then a direct calculation shows that the matrix functidpéx) and M, (x) satisfy the
Lax equation

oL, = My1L, — L, M, (4.4)

if and only if the vectorg, andg, satisfy the equations of motion (1.6).

As before, Eq. (4.4) is a compatibility condition for the linear syst¢m1 =
L, (x)¥y, 1’#,, = M, (x)¥,. To obtain the spectral cunde, we observe that the same
arguments as in the case of the odd spin model show that the mé&trix= Mo (x) and

the monodromy matrixX (x) defined byL (x) = ]'[flvjol L, (x) form again a Lax pair

L(x) = [M(x), L(x)]. (4.5)

Thus the spectral cunié = {(x, y); R(x, y) = det(yI — L(x)) = 0} is time-indepen-
dent and well-defined. We have used here the same not&tiony) as for (2.1), since
the equation dety/ — L(x)) is indeed of the Landsteiner—Lopez form. To see this, we
note that deL, (x) = 1 andL,(—x) = L,(x)~L. Together with the constraint (1.4),
this implies

detL(x) =1, L(—x) = goL *(x)go. (4.6)
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But we also have near= 0

N
TrLx) =Tr(l+x ) gupp) + 0(x%) =3+ 0(x?), (4.7)
n=0

so that dety!/ — L(x)) is of the form (2.1).

We observe that the expressi®ix, y) = det(yl — L(x)) is invariant with re-
spect to the gauge transformations (1.7) and (1.8). Therefore, if we R(itey) in the
Landsteiner—Lopez form (2.1) with moduli, the modulix; are well-defined functions
on the factor-spacg1. In analogy with the odd spin case, can be written in terms of
the dynamical variable&,, ¢,,) as

we=Y_(piLai)(pihais) -+ (P giy). (4.8)
I

Here the summation is again over sgt®f multi-indices! = (i1 <i2 < ... < iy).

4.2. General propertiesof Bloch functions. The pointsQ = (x, y) of the spectral curve

[ = {(x, y); det(yl — L(x)) = O} parametrize the Bloch functiofig,, (Q)}o<n<n-+1 Of

the spin model. We begin by recalling the definition of Bloch functions, and by describing
their main properties in the case of our model.

e We fix a generic choice of moduli parametafs Then the matrix.(x) has 3 distinct
eigenvaluey, except possibly at a finite number of pointd.et O = (x, y). The Bloch
solution v, (Q) for the spin modekL, (x)}o<n<n+1 IS the functiony, (Q) with the

following properties:

\I’[n—i-l(Q) = L,(x)¥,(0), \I'[N+n+2(Q) = Y‘I/n(Q)' (49)

These equations determingg, (Q) only up to a multiplicative constant. To normalize
¥, (Q), we observe that for generic moduli parameigrghere are only finitely many
pointsQ, where the eigenvectary(Q) of the matrixL (x) satisfies the linear constraint
zf;:l Y5 (Q) = 0. Outside of these points, we can {ix(Q) by the following normal-
ization condition:

dowg=1 (4.10)

The Bloch functiony,, (Q) is then determined on the spectral cuFveutside of a finite
number of points, and hence uniquelylonFurthermore, the componentsiaf (Q) are
meromorphic functions ofr. This follows from the constraint (4.10) and the equation
L(x)yo(Q) = yyo(Q). They imply thatyo(Q) is a rational expression ip and in
the entries of the matrikL,g(x) — Lq3(x)) E%Eg’ in view of Cramer’s rule for solving

inhomogeneous systems of linear equations. SingeandL g (x) are all meromorphic
functions onl", our assertion follows.

e The exceptional points excluded in the preceding construction of Bloch functions are
the points wherd.(x) has multiple eigenvalues, and the points where the eigenvector

Yo(Q) liesinthe linear subspace of equat@i:1 V5 (Q) = 0. Byrestricting ourselves
to generic values of the moduli, we can make the convenient assumption that these two
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sets of points are disjoint. Inthis case, itis evident that at points v@é;el Y5 (Q) =0,
the functionyo(Q) develops a pole.

Consider now a pointg # 0, where the matrix (x) has a multiple eigenvalue. Let
(x — x0)¥” be the local holomorphic coordinate centered at the paintging above
x0, where the branching indexcan be either 1 or 2. (We can exclude the possibility
b = 3 by a genericity assumption on the moduyli) The holomorphic function on the
surfacel” can be expanded as

y = yo+eyi(x —x0)"" + 0 (x — x0), (4.11)
wheree? = 1 is a root of unity. If> = 1, it follows that
axR(xO, )’0) = ayR(x07 }’0) = 0’ (412)

which means that the curve is singular(a, yo). By a genericity assumption on the
moduli u;, the only singular point of” is atxg = 0, and this possibility has been
excluded. Thu$ = 2, and the curvéd™ has a branch point afy if and only if L(xg)
has multiple eigenvalues. The matiiXxg) can now be shown to be a Jordan cell, i.e.,

L(xp) is of the form
A O
Lxg)=] 020 (4.13)

0 0 A3

in a suitable basis, for some # 0 andi1 = A2 # A3. In fact, L(xp) has only one
double eigenvalue by genericity assumptiong ofThe three branches of the functipn
consist then of one branch which is of the fakg# y1 (x — xp) +- - - and is holomorphic
in the variablex — xg. The other two branches are of the form

y=M=Enk —xo)l/z—i---- . (4.14)

We must have # 0, for otherwisey = A1+ O (x — xp), and the same argument which
ruled out the branching indéx= 1 would imply thafl" is singular atcg. Now forx near
but distinct fromxg, the Bloch function/g(Q) also has 3 distinct branches. Lt be
the branches corresponding to the eigenvalues in (4.14), and expand them as

v =92 + x —x0Y2yP + 0(x — x0). (4.15)

Up to O (x — xp), the eigenvector condition can be expressed as

MDW9+@—mW%fﬁ#MiM@—mW5W9+@—WW%%)@
4.1

This is equivalent to

Loy =2y, (Lxo) — a)v = 3192, (4.17)

Clearly, this equation admits no solution fif(xg) is diagonal. Thud.(xp) is of the
form (4.13) withu # 0. We can now identify the coefficiem',s(io) and wf) in the
Puiseux expansion (4.15). The eigenspack(@af) corresponding to the eigenvalig
is one-dimensional and generated by a single vegtowhich we can take to satisfy the

normalization condition (4.10). Evidentlw,f) = ¢1. Let o be the second basis vector
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in the basis with respect to whidh(xg) takes the Jordan form (4.13), i.&.(x0)¢2 =
y1¢2 + ne¢1. Then the second equation above is solved by

1
v =+Cg2 + vou), (4.18)
where the constantis chosen so thazgzl wf)’“ =0.

e Outside a finite number of points the matrixL (x) has 3 distinct eigenvalugsa) and
three distinct eigenfunctiongg(a), 1 < a < 3, normalized uniquely by the condition
(4.10). The function

def{yo(2) ¥o(2) ¥o(3)} (4.19)

is independent of the ordering of batla (a) and the corresponding eigenvalugs). By
the preceding observations, it can be expressed as a rational functianaf(a), which

is also symmetric under permutationsydf:). Thus it is actually an unambiguous and
rational function ofc. We observe that the function 8({3%(1) Yo(2) I/f0(3)} vanishes
at exactly those values af which are branch points for the spectral curve(gét—
L(x)) = 0. Indeed, we saw earlier that the branch poingsare exactly the points
where L(xg) has multiple eigenvalues. Outside pointswhere L(xg) has multiple
eigenvalues, the determinant (4.19) is readily seen tg Bdit may be infinite, because
of the normalization (4.10)). Conversely, assume thais a branch point. Then our
preceding discussion shows that fonearxg

def{yo(1) ¥o(2) Y03 }(x) = (x — xo)def{p1 ¢2 Yo(3)} + O(x — x0)*2. (4.20)

This shows that dé{yo(1) ¥0(2) Yo(3)}(x0) = lim— ,def{yo(1) ¥o(2) Yo(3)}(x)

= 0, establishing the observation. Furthermore, since the vegiorg,, and yo(3)

are linearly independent by construction, we obtain the important fact that the order of
vanishing of the square of the determinant in (4.19) at a branch point is exactly 1. (More
generally, for an arbitrary branching indexthe order of vanishing of the square of the
determinant is equal tb — 1, although we do not need this more general version here,
thanks to our genericity assumption on the modl)

e We can now determine the number of poles of the Bloch funatigiQ) outside of

the pointsP, abovex = oco. Clearly, this number is half of the number of poles of the
expression (4.19) outside of= co. Now atx = oo, we saw that the operaténx) has

3 eigenvalues, so that (4.19) does not vanish there. Furthermore, we shall show later that
Yo(Q) is finite at all three points abowe= co. Thus (4.19) has neither a zero nor a pole

atx = oo. In view of the preceding discussion, the number of zeroes of (4.19) is equal
to the number of branch points of. We showed earlier, using the Riemann-Hurwitz
formula, that the number of branch pointslofs 4N + 2. It follows that the number of
poles, and hence of zeroesyaf(Q) onT is 2N + 1.

e The poles ofy, (Q) outside of the pointsP, lying abovex = oo are indepen-
dent ofn. To see this, we lefp(x) be the 3x 3 identity matrix/, and setS, (x) =
L, 1(x)Sp—1(x) = ]‘[OSkSn_1 Li(x). Theny,, (Q) can be expressed as

Yn(Q) = Ly—1(x)¥n-1(0) = 1_[ Li(x)¥o(Q) = Su(x)o(x). (4.21)
0<k<n-1

This shows that the poles @f, (Q) outside ofP, can only occur at the poles @6 (Q).
For generic values of the moduli, we can assume that all the poleg/ef Q),0 < n <
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N + 1, are exactly of the same order 1 when they occur outside of the pjratsove

X = OQ.

e Let D ={z1,---, zon+1} be the divisor of poles of the Bloch functiah, (Q). Then

a fundamental property of the even divisor spin chain model is the invariance of the
equivalence divisor clag®] of D under the involutiorr

[D] = [D°]. (4.22)

In other words, there exists a meromorphic functioTowith poles atz, andz{ . This
is a consequence of hoiM(x) transforms under the involution— —x, y — y~1,

L(—x) = goL(x) 1go. (4.23)

This transformation rule implies thagyo(Q) is a Bloch function at—x, y~1) if ¥o(Q)
is a Bloch function atx, y). Thusgoyo(Q) must coincide withjg(Q°) up to normal-
ization

goYo(Q) = f(Q)Yo(Q?). (4.24)

Since bothy(Q) andy(Q°) are meromorphic functions, the functigitQ) is mero-
morphic. This proves (4.22).
We summarize the discussion in the following lemma:

Lemma 4.1. Thevector-function v, (Q) isameromor phic vector-functiononT". Outside
the punctures P, (which arethe pointsof I" situated over x = oo) ithasg+2 =2N+1
poles{zi, ..., zan+1}, which aren-independent. Thedivisor class[D] of D isinvariant
with respect to the involution o, i.e. there exists a function f(Q) on T with polesat z;
and zeroes at z?.

4.3. Thedirect problem. In the previous discussion, we made use only of the fact that the
curveR(x, y) = 0 is the spectral curve of a matrix(x) which satisfies the involution
conditionL(—x) = L(x)~L. In particular, the discussion applies for generic values of
the modulix; parametrizing the curves.

We consider now the direct problem for the system (1.6), where the niatrparises
more specifically interms of the dynamical variaklgs p,) asL(x) = ]'[flvjol L,(x)=
]'[f:’jol(l + xgn pI). The discussion in the previous section has provided a precise de-
scription of the right-hand side of the map (4.1). It is also evident that the map descends
to the equivalence classes(@f,, p,) under the gauge groug.

It is convenient to exploit the gauge transformation (1.8) to normalize the Bloch
functions atx = 0. First, we observe that, (0) = I for all n, so thaty,,(Q,) is
independent ofi. Furthermore, the Lax operatdrx) can be written near = 0 as

L(x)=1+xT + 0(x?), (4.25)
where the matriX’ is given by

N+1
T=) anp,- (4.26)
n=0



554 I. Krichever, D. H. Phong

In particular,T satisfies the condition
T = goT go. (4.27)

inview of the constrainp, = gop—n—1,9» = gog—n—1. Next, recall from our discussion
of the Landsteiner—Lopez curve in Sect. 2 thidtas 3 distinct eigenvalues(Q,), and
that y can be expanded as = 1 + y1(Qq)x + O(x?) nearQ,. Expandingyo(Q)
nearQ, asvo(Q) = ¥o(Q,) + O(x), and using the preceding expansion fdx), the
conditionL (x)yo(Q) = yyo(Q) for Bloch functions can be rewritten as

(I + xT)W0(Qa) + x¥0(Qa)) = (1+ yax) (Y0(Qa) + x9(Qa)) + O(x?). (4.28)
This implies
TY0(Qa) = ya¥o(Qa) (4.29)

i.e.,¥o(Q,) are precisely the three eigenvectorgoicorresponding to the eigenvalues
vaq. Ifwe let Wp(0) be the 3x 3 matrix whose columns are the vectgrg( Q. ), then the
transformation law (4.27) implies thaty(0) satisfies the condition

Wo(0) = goWo(0)go. (4.30)

Now the transformation (1.8) oy, , p,) does not change the curVeand the divisor

D, but changes the matrikg(0) into W W (0). But Wp(0) commutes with the matrixo,

and hence so does its inverse. This means that the inverse qualifies as one of the gauge
transformationdV allowed in (1.8). Under such a gauge transformationthe Bloch
function W(0) gets transformed to the identity

Wo(0) = 1. (4.32)
Henceforth we can assume then this normalization,;ang,, satisfies the condition

N+1

T =" quapf = y38. (4.32)
n=0

Our main task is to establish that the map (4.2) is generically locally invertible. This
is the goal of the next section on the inverse spectral problem, but in order to motivate
the constructions given there, we identify here the basic behavior of the Bloch function
¥, (x, y) near the point®, abovex = oco. For (x, y) nearP,, set

Yulx,y) = xPne Z 1ﬁrz,lc(Poz)x_k~ (4-33)

k=0

Here p, is the order of the pole (or zero wher), < 0) of ¥, (x, y) nearP,, which
may vary with bothn andw. The following lemma identifies the coefficients, x(Py)
up to normalization:
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Lemma4.2. e In the neighborhood of the puncture P1 (where y = O (xV12)), the
vector-function v, has a pole of order n and the leading coefficient v, o(P1) of its
expansion is equal to

Vn,0(P1) = Qnqn-1, (4.34)
where the scalar «,, satisfy the recurrence relation
i1 = (P Gu—1)%. (4.35)
The next coefficient v, 1(P1) satisfies
V11 = Y0 + Gu(py ¥, 1)- (4.36)

o In the neighborhood of the puncture P3 (where y = O (x~"~?)) the vector-function
Y, hasa zero of order n and the leading coefficient v, o(P3) of itsexpansion is equal
to

Vn,0(P3) = Bngn, (4.37)
where the scalar 8, satisfies the recurrence relation
1
Bn1 = —mﬁn. (4.38)

o Intheneighborhood of the puncture P, (where y = 1) thevector-function ,, isregular
and its evaluation v, o(P2) at P; isorthogonal to both p, and p,_1, i.e,

PEVn0(P2) = pl_1ym.o(P2) = 0. (4.39)

Proof. First, we show that for generic moduli, the Bloch functigg(x, y) is regular
near eaclP,. Observe thafry 2(x, y) = L(x)¥o(x, y) = y¥o(x, y). Now the relation
Yur1 = L, (x)¥, can be inverted to produce

Y (6, ) = L) M1 (x, ») = L= xgupDD¥ns1(x, y). (4.40)

Applying this relationV + 2 times, we may write

Yox, y) = y(L—xqopg) - - (L — xgn41P ) Yo(x, ¥). (4.41)

Consider first the neighborhood of the poitat wherey is of orderx =V +2) If yo(x, y)
admits the expansion (4.33) neRy with v o(P3) # 0, then we must have

Yoo = (—)""q0(pLq0) - - (PRan+D (P 1¥0,0). (4.42)

This shows thatyg o(P3) is proportional to the vectafo, sayyo o = Bgo. Now recall
that the Bloch function/g(x, y) satisfies the normalization condition (4.10) throughout.
This implies thath[=1 Yo.0(P3) = 0 if the orderng(P3) of the pole ofyo(x, y) at

P is positive. For generic values of the moduli of the cufvewe may assume that
Zgzl qoe # 0. It follows thatBg = 0 and hence) o(P3) = 0, which contradicts the
definition of Y0, 0(P3). This shows thako(P3) = 0, and the Bloch functiong(x, y)

is regular atP3. The argument neaP; is similar and even more direct, just using the
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equationyyo(x, y) = ¥y2(x, y) = [0 (1+ xgapI)¥o(x, y). It shows, inciden-

tally, that the leading coefficienftg o(P1) is proportional tazy 1. At P2, the regularity
of ¥o(x, y) follows from the regularity ofjo(x, y) at the other two point®; and P3,
and from the fact that for generic moduli, the determinant (4.19) is regular.

It is now easy to see that the functioprg(x, y) have the zeroes and poles spelled
outin Lemma 4.2. The recurrence relations stated there can also be read off the defining
relationsy,, 11 = L, (x)¥, (x). For example, neaP;, we find

1 1
xn+1 (1//n+1,o + ;wﬂ+l,1 + .- > =x"(1+ anp,?) (Iﬂn,o + ;1/;”’1 + - ) i

(4.43)
This implies
Vnt1.0 = Gn(Pr ¥n.0), (4.44)
wn—i-l,l = wn,O + gn (PZWn,l)- (4-45)

The relations (4.35, 4.36) follow. Ne@, we write instead

1 1
x" <%,o + ;%,1 +-- ) = "Y1~ xquph) (Wn+1,o + ;%H,l + - )

(4.46)
This implies
Y0 = —dn (P Yn+1,0), (4.47)
Vil = Vnt1.0 — Gn(Py Ynt1.1). (4.48)
which gives (4.37, 4.38). Finally ned, we get
1 T 1
1anrl,O + )_Cl//nJrl,l +---=(1+ X4qn Py )(1/’:1,0 + ;I/In,l +--- ). (4-49)

This implies thatp! v,,.0 = 0. Furthermorey,,+1.0 = ¥n.0 + ¢ (p! ¥.1). Multiplying
on the left byp!, we conclude thap! v,,+1.0 = 0. This establishes (4.39), and Lemma
4.2 is proved. O

4.4. Theinversespectral problem. Itis now a standard procedure in the geometric theory

of soliton equations to solve the inverse problem using the concept of the Baker—Akhiezer
function originally proposed in[22]. The main properties of the Baker—Akhiezer function
in our model are the following.

e LetI" be a Landsteiner—Lopez curve defined by Eq. (2.1). Then for a diyisof
degreez+2 = 2N +1in general position, there exists a unique vector-funetign, Q)
such that:

(a) ¢n(t, Q) is meromorphic orf" outside the punctureB;, Ps. It has at most simple
poles at the points; of the divisorD (if all of them are distinct);
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(b) In the neighborhood of the puncturBsand P, it has respectively the form

¢y = x"e"! (Z ¢n,k(P1>x—k> . Q- Py, (4.50)
k=0
On = x e <Z ¢n,k(P3)xk> , Q0 — Ps (4-51)
k=0

(c) Atthe pointsQ,, ¢,(Q) is regular, and, (Q,) is equal to

¢n,a(ta Qﬁ) = 80{,;‘5- (4-52)

The arguments establishing the existence of the Baker—Akhiezer furgtiare well-
known, so we shall be brief. First, we recall that as shown in [22] for any algebraic curve
with two punctures, any fixed local coordinate in the respective neighborhoods of the
punctures, and for any divis@r of degree; there exists a unique (up to a constant factor)
function with the analytic properties stated above. Now#et P3) be the punctures, and
letx 1 be the local coordinate near either one of the punctures. We can easily show that if
D has degreg + 2, the dimension of the space of such functions is equal to 3. We form
the 3-dimensional vector whose components are just the three independent functions
from this space. This 3-dimensional vector is unique up to multiplication by a constant
matrix. We fix this matrix by the normalization condition (4.52). This establishes our
claim.

The functiong, (z, Q) can be written explicitly in terms of the Riema#rfunction
associated witlir. Thed-function is an entire function ¢f = 2N — 1 complex variables
z=(z1,...,2g), and is defined by its Fourier expansion

0(z1, ..., Zg) = Z 627”'<m,z>+71i<rm,m>7
meZ8

wherer = t;; is the period matrix of*. Theé-function has the following monodromy
properties with respect to the lattizé + tZ8:

0(z+1) =06(2), O(z+tl) =exp—in < tl,l > -2ir <1,z >]0(2),

wherel is an integer vectol, € Z8. The complex torug (I') = C8/Z8 + tZ8 is the
Jacobian variety of the cundé. The Abel transform

0
FBQ—>Ak(Q)=/ do
Qo

imbeds the curvd™ into its Jacobian variety. Heréw;, is a basis ofg holomorphic
differentials, normalized as dual to tiecycles of a symplectic homology basis for
According to the Riemann—Roch theorem, for each divi$et z1+. .. +z,,2inthe
general position, there exists a unique meromorphic funeto@) with ., (Qg) = 84p
and D as the divisor of its poles. It can be written explicitly as (see details in [23]):

3 LO(A(Q) + Fp)
fe(Q) o) a0 + 2y 12 i

r«(0)= fa(Qa) [15,_10(A(Q) + Sw)
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where
g—1 g—1
Fp=—K—AQp) =Y AR, Su=—K—AGg14m) — Y AG)),
j=1 j=1
g+2 3
Zy = Zo — A(Ry), Zo= —K—=) A+ Y AQu)
j=1 a=1

whereK is the vector of Riemann constants.
Let dQ2p andd 21 be the unique normalized meromorphic differentialdgnvhich
are holomorphic outsid®; and P3, and with the property thatQg has simple poles
at the punctures with residuesl, d21 is regular atPs;, and has the forndQ; =
dx(1+ 0(x~1)) at P,. The normalization means that the differentials have zero periods

aroundA-cycles
ygdszo:fdszlzo.
A A

We observe that the differentidt2{ (Q) = d2(Q?) has a pole only aP3, and is there
of the form—dx(1+ O (x~1)).

Let V andU be the vectors whose components areBhgeriods of the differentials
dQo andd 21 respectively

1 1
V=—rno @ dQi, U=— @ dQo.
27i Jp ! Zniﬁ 0

The Baker—Akhiezer functiog,, (¢, Q) is given by

_ O(A(Q) +tUT +nV + Zy) 0(Zo) Q0 N
bt Q) = ro (@ G LA T SO D exp(/a ndS0 + 1dS )
(4.53)

wheredQt = dQ1 +dQ§ andUT = U + U°.
e The Baker—Akhiezer functiog, is a Bloch function, in the sense that

ON+2+n(t, Q) = ydu(t, Q). (4.54)

This is just a consequence of the fact that both sides of the equation satisfy the criteria for
the Baker—Akhiezer function, and that the Baker—Akhiezer function is unique. Similarly,
the uniqueness of the Baker—Akhiezer function implies that, if the divisisrequivalent

to D7, then the functior, satisfies

where f(Q) is a function with poles ag, and zeros ay?” . Without loss of generality,
we may assume thagt(Q1) = f(Q3) = —f(Q2) = 1.

e Let ¢, (¢, Q) be the Baker—Akhiezer function correspondingtand the divisorD
of degree 2 + 2. Let p,(¢) be a vector orthogonal t9, o(Ps, t) (the leading term in
the expansion (4.50)), and g (z, P»), i.e.

Prbno(P3) = pléa(t, P2) =0, (4.56)
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andg, be the vector

@n,0(P1)
pren_10(P1)

The vector functiong,,, ¢, are then N + 2)-periodic and mutually orthogonal, and they
satisfy the contraint (4.31). As can be expected from the gauge invariance (1.7) in the
direct problem, the functiong, (+) andg,, (+) which we obtain this way are defined only

up to a multiplierw, (t). However, the operatois, andM,, (x) are uniquely defined by

the expression (4.3). Furthermore, again by uniqueness of the Baker—Akhiezer function,
the Baker—Akhiezer functiog, (Q) satisfies

Ynt1(t, Q) = La ()Y (t, @), (9 — Mu(x) (2, Q) = 0. (4.58)

Thus the vector functioty, (r), p,(¢)) is a solution of the dynamical system (1.6). If the
equivalence class of the divisaér is invariant with respect te, then(p,, ¢,) satisfies
in addition the relation (1.4).

e The Baker—Akhiezer functiom, (z, Q) satisfies the same defining Bloch property
(4.54) as the Bloch functioi, (Q), except for the different normalizations, which is
(4.52) in the case af, (¢, Q) and (4.10) in the case af,(Q). It follows that

(4.57)

n =

3
nt, Q) = 1Y, Q)¢u(t, 0, r(t. Q) =Y $0.a(Q) (4.59)
a=1

is a Bloch solution of (4.9) normalized by the condition (4.10). This leads to the following
description of the dynamical system (1.6).

Let p,(¢), g, (z) be vector functions (subject to constraints (1.3, 1.4, 4.31) ) which
satisfy Egs. (1.6). Then thedependence of the divis@ under the map (4.1)

2N+1

(Pn(8), gn () —> {0, D(t) = Y z;(1)) (4.60)

j=1

coincides with the dynamics of the zeroes of the functign Q) given by (4.59). The
dynamics of the Bloch eigenfunction of (4.9) (i.e. normalized by (4.10)) are described

by
B — My (t, X)) Yn(t, Q) = n(t, Q¥ (t, Q), n=—dInr, 0). (4.61)

We observe that the linearization of the equations of motion on the Jacobian of the
curve is a direct corollary of the linear dependence ofthe exponential factor in the
expansion of}, (¢, Q) near the punctures.

e As we saw earlier, the normalization (4.31) can be achieved by the action (1.8) of
a subgroup of matrice® which commutes wittgg. In order to getM, we have to
consider in addition the action of diagonal matrid€s The basic observation is the
following:

Let the Baker—Akhiezer functiong, (z, Q) andv/’(z, Q) correspond to equivalent
divisors D and D', respectively. Then

Va1, Q) = Wi (t, Qh(Q), (4.62)
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whereh(Q) is a function with poles ab and zeros aD’, andW is a diagonal matrix
W= h‘l(Qa)Sa,,g. To establish (4.62), it suffices to check that both sides of the equation
have the same analytical properties. Equation (4.62) implies that the vegtays
defined by equivalent divisors are related by a transformation (1.8) with a diagonal
matrix W. Altogether, we have established the following part of the Main Theorem of
Sect. 1:

Theorem 1. The map (4.1) identifies the reduced phase space M with a bundle over
the space of algebraic curvesT" defined by (2.1) with fx (x) of theform (2.2). At generic
data, the map has bijective differential. The fiber of the bundle isthe Jacobian J (I'g) of
the factor-curveI'g = I' /o,

M = (T, [D] € J(To)}. (4.63)

5. Hamiltonian Theory and Seiberg-Witten Differential: The Even Divisor Model

We come now to the crucial issue of how to determine the symplectic forms with respect
to which the system (1.6) is Hamiltonian. For this, we rely on the Hamiltonian approach
proposed in [6] and [7] for general soliton equations expressible in terms of Lax or
Zakharov—Shabat equations. This approach was effective in the study of gauge theories
with matter in the fundamental representation. Further applications were given in [10]
and [24]. We review its main features.

5.1. The symplectic formsintermsof the Lax operator. In order to find the Hamiltonian
structure of the equations starting with the Lax operator, we need to identify a two-form
on the phase spackt of vectors(q,, p,), written in term of the Lax operatak (x).
Candidates for such two-forms are

3
1
om =5 ) Ress, (W11(Q)8Ln(x) A 8¥(Q))

dx
xm
a=1

(5.1)

The various expressions in this equation are defined as follows. The ndtgtjstands
for a sum over one period of the periodic functigin

N+1

()= fu- (5.2)

n=0

The expressiony;s(Q) is the dual Baker—Akhiezer function, which is the row-vector
solution of the equation

Vit (QLa(@ = ¥, (D), ¥512(0) = v Y5(Q), (5.3)

normalized by the condition
Yo (Q)Yo(Q) = 1. (5.4)
Note that (4.9) and (5.3) imply thaty 1 Yn+1 = ¥ 1 (Ln ()Yn) = (Y 1 Ln (X)) Yy =

¥y, does not depend om We would also like to emphasize that, unlike the Bloch
function ¥,,(Q) which does not have-independent zeroes, the normalization (5.4)
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allows the dual Bloch functiony,*(Q) to have such zeroes. In fact, they occur at the
poles ofy, (Q).

In (5.1), the differentiab denotes the exterior differential with respect to the moduli
parameters of\. (This is in order to distinguisi from the differentiald, which is
the exterior differential on the surfade) Thus the external differentialL, (z) can
be viewed as a one-form oM, valued in the space of operator-valued meromorphic
functions onI". Similarly the Bloch function/, (Q) and dual Bloch functiong;; (Q)
are functions oM, valued respectively in the space of column-vector-valued and the
space of row-vector-valued meromorphic functionslorit follows thatsv,, (Q) is a
one-form onM, valued in the space of column-vector-valued meromorphic functions
onT'. The expression,; 18L,(x) A 8y, (x) is then a two-form onM, valued in the
space of meromorphic functions @h and for eachn integer, the expression

N dx
S-Z(m) = (llfn+15Ln (x) A Svfn(x)) x_m (55)
is a meromorphic 1-form oR. This justifies (5.1) as a two-form oM.

In (5.1), we have allowed for a later choice of an integelVe shall see shortly that
holomorphicity requirements restrict toOm < 2, and that the symplectic form of the
N = 2 SUSY with a hypermultiplet in the anti-symmetric representation is obtained by
settingm = 0.

Sometimes it is useful to think of the symplectic fowras

1 dx

W) = SRES o0 Tr <(w;jl(x)5Ln(x) A B\Dn(x))> = (5.6)
whereW, (x) is a matrix with the columng, (Q ; (x)), Q;(x) = (x, y;) corresponding
to different sheets of. The matrix¥, (x) is of course not defined globally. Note that
Y¥(Q) are the rows of the matri»kl,jl(x). That implies thatl* (Q) as a function on the
spectral curve is meromorphic outside the punctures, has poles at the branching points
of the spectral curve, and zeroes at the palesf ¥, (Q). These analytical properties
will be crucial in the sequel.

5.2. Thesymplecticformsintermsof x and y. A remarkable property of the symplectic
form defined by (5.1) in terms of the Lax operald() is that it can, under quite general
circumstances, be rewritten in terms of the meromorphic funcii@msly on the spectral
curvel'. More precisely, we have

2N+1

8
Om) = — Z §Iny(z;) A x—fn(Zi). (5.7)
i=1

The meaning of the right-hand side of this formula is as follows. The spectral curve is
equipped by definition with the meromorphic functiong®?) andx(Q). Their evalu-
ationsx(z;), y(z;) at the points; define functions on the spacet, and the wedge
product of their external differentials is a two-form g#.

The proof of the formula (5.7) is very general and does not rely on any specific form
of L,,. For the sake of completeness we present it here in detail, although it is very close
to the proof of Lemma 5.1 in [24].

Recall that the expressidR,, defined in (5.5) is a meromorphic differential on the
spectral curva™. Therefore, the sum of its residues at the punctiess equal to the
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opposite of the sum of the other residuedoiform < 2, the differentiak2,,) is regular
at the points situated over= 0, thanks to the normalization (4.31), which insures that
3v,(Q) = O(x). Otherwise, it has poles at the polgsof v,,(Q) and at the branch
pointss;, where we have seen thaf, ,(Q) has poles. We analyze in turn the residues
at each of these two types of poles.

First, we consider the poles of ¥, (Q). By genericity, these poles are all distinct
and of first order, and we may write

1
Yo =Yno@)———+---. (5.8)
x —x(z;)
It follows thatsvy,, has a pole of second orderzt

8x(zi)

8Yn = Yn i) o T 5.9
Yn = Y0z )(x Y. (5.9)
In view of the fact thaty,;, ; has a simple zero at and hence can be expressed as
Yns1 = Vg0 —x(@)) + -+, (5.10)
we obtain
* Sx * dx
Res, Q) = (Wn-i—l,OaLner) A x_m(Zi) = (wn.;.l(SLan) A x_m(Zi)- (5.11)

The key observation now is that the right-hand side can be rewritten in terms of the
monodromy matrix_ (x). In fact, the recursive relations (4.9) and (5.3) imply that

N+1 n—1
<W;T+15Ln1ﬂn> = <W7\<]+2 ( l_[ Lm) 3L, <l_[ Lm) 1,00> (5-12)
m=0

m=n+1

N+1 N+1 n—1
=> ¢;+2( I1 Lm) 8Ly (]—[ Lm) Yo (5.13)
n=0 m=n+1 m=0

= Y20 LYo = Yod In yyo. (5.14)

In the last equality, we have used the standard formula for the variation of the eigenvalue
of an operatony);8 Lo = ¥5dyvo. Altogether, we have found that

Sx
Res, Q) = 8Ny (@) A =5 (@0). (5.15)

The second set of poles 6f,, is the set of branching points of the cover. The
pole of ¢ ats; cancels with the zero of the differentidk, dx(s;) = 0, considered
as a differential o". The vector-functiony, is holomorphic ak;. However,s,, can
develop a pole as we see below. If we take an expansian, @f the local coordinate
(x — x(s5;))¥2 (in general position when the branching point is simple) and consider its
variation we get

Y = 1//n,O + wn,:t(x - x(si))l/z +---, (516)
1 Sx(s;)
8y = —Elﬁn,iw (5.17)
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. . dl/fn
Comparing with=

= %wn,i—l))m + .-+, We may write

(—x(s;
d
Sy = — dl//n

8x(si) + O(1). (5.18)

X

This shows thatW,, has a simple pole at. Similarly, we may write
dy
3y = —d—(Sx(si) +0(@). (5.19)
X

The identities (5.18) and (5.19) imply that

dydx
Res, Q) = Res, [(w:HSLndwn) A xﬁ’_dy] . (5.20)
Arguing as for (5.12), this can be rewritten as
dydx
Res, Q) = Res, [(1/;,”(,+28de0) A xmdy] . (5.21)

Due to the antisymmetry of the wedge product, we may rep@lade (5.21) by(§ L —35y).
Then using the identities

Yng28L —8y) =8y 5 o(y — L), (5.22)
(y — L)dyo = (dL — dy)yo. (5.23)

which result fromyry, ,(L — y) = (L — y)¥o = 0, we obtain

dydx
xmdy’

Res, Q = Res, (¥ 3,2(dL — dy)yo) A (5.24)

Now the differentiald L does not contribute to the residue, sintke(s;) = 0. Fur-

thermore, i ,vo = y Wivo = y~t Thussy} ,v0 = —¥i. ,0%0 — y~28y.
Exploiting again the antisymmetry of the wedge product, we arrive at

dx
Res, Q@ = Res, (¥§,20%0) A (Syx—m. (5.25)

Recall that we have normalized the Bloch functigs(Q) atx = 0 by (4.31), and
that nearr = 0, the functiony is of the form (2.4). Thugvyo = O(x) andsy = O(x)
nearx = 0, and the differential form

dx
(VR4 20%0) A by (5.26)
is holomorphic atr = 0 for 0 < m < 2. It is manifestly holomorphic at all the other
points ofl", except at the branching pointsand the poless, - - - , zoy 1. Therefore
2N+1

d d
Y Res, (¥280) /\(Syx—; =~ 3" Res, (V,28%0) /\Syx—;. (5.27)

Si i=1
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Using again the expressions (5.16, 5.18) §erand 6y, and the fact thay,  , =
y—lwg, the right-hand side of (5.27) can be recognized as

2N+1

Z 51 y(zi) A ((Z’)) (5.28)
The sum of (5.15) and (5.28) gives (5.7), since
2N
200 = — Z Res, Q(m) — Z Res, Q(m)- (5.29)
i=1 Si

The identity (5.7) is proved.

5.3. Action-angle variables and Seiberg—Witten differential. The expression (5.7) for
the symplectic formy,,) suggests its close relation with the following one-formlan

dx
diemy =Iny PR (5.30)

Strictly speaking, the forrd ) is not a meromorphic differential in the usual sense,
because of the multiple-valuedness ofyinHowever, the ambiguities in In are fixed
multiples of 2ri, which disappear upon differentiation. Thus, the fetiy,, is no dif-
ferent from the usual meromorphic differentials, as far as the construction of symplectic

forms is concerned. Also, the fordt ) and the formﬁx—’"”% (for m # 1, for

m=1,—(n x)d—,y) differ by an exact differential, and we shall not distinguish between
them. From this point of view, the Seiberg—Witten form (1.1) can be identified with the
form —di ).

Our spin chain model has led so far to &-2limensional phase spadé, equipped
with several candidate symplectic formsg,), 1 < m < 2. We still have to reducé
to a(2N — 2)-dimensional phase space, and to identify the correct symplectic form.
Remarkably, both selections are tied to a key physical requirement for the one-form
which corresponds to the Seiberg—Witten of/a= 2 SUSY gauge theory, namely the
holomorphicity of its variations under moduli deformations.

Itis an important feature of” = 2 Yang—Mills theories that the masses of the theory
are not renormalized. Since the masses of the theory correspond to the poles of the
Seiberg—Witten differential, it foIIows thatéd . must be holomorphic. Thus we need
to examine the poles éfd). = §In y >, and identify the subvarieties 8t along which
3d is holomorphic. There are 3 such subvarieties, corresponding to the choiees of

e On the varietyM» = M N {ug = co, u1 = c1}, the differentials di2) = (§In y)

has no pole ap,, sincey = 1 + 0 (x?) nearx = 0. On the other hand, the dlfferentlal
&5 vanishes at = oo, s0é In y 5 is also holomorphic there, aidd A2 is holomorphic.

° Onthe varietyMg = Mﬂ{uN =1, uy_1 = 0}, the differentiab di o) = (5 In y)dx

is automatically holomorphic at = 0. Nearoo, in view of the expansion () foy, we
haves In y = O(x?) if we vary only the moduli withinM5. Thussd o) is holomorphic.

e On the varietyM; = M N {uy = 1}, the differentials d11y = (§Iny)< is still
holomorphic, becaus&Iny = O(x) Nearx = oo, the sole constraw{tuN 1 =1}
suffices to guarantee thatn y = 0( ). ThusédA 1y is holomorphic.
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Whenm and hence/A, is even under the involutios, action-angle variables can
be introduced as follows. RestrictedAd ), §dA ) is holomorphic, and hence can be
expressed for suitable coefficients as

2N-1

SdAmy = Z (dap)dw;, (5.31)
i=1

wheredw; is a basis of & — 1 holomorphic one-forms ofi. Sincedx ) is even,
only holomorphic one-formgw; which are even can occur on the right-hand side. We
identify such forms with forms ofi /o. We choose a symplectic homology basijs B;

and a dual basis of holomorphic fornie;, 1 <i < N — 1, for the factor curvé’/o.
The variables;; andap; can then be defined by

a; :f dA@my, api =¢ dA(m). (5.32)
A; B

The interpretation of the variablesis as action variables from the viewpoint of the spin
model and as vacuum moduli from the viewpoint of tke= 2 SUSY gauge theory.
Evidently, their variations coincide with ti; of Eq. (5.31).

Next, the angle variable, 1 <i < N — 1, are defined by

2N+1
D={z1,- ,2on+1} —> ¢i = Z / dw;. (5.33)
j=1

We claim now that, forn even, the symplectic form,,, is a genuine symplectic form
when restricted td1 ), and that; andg; as defined above are action-angle coordinates
for W(m)

N-1
Oy = Y _ 8ai A ONMp). (5.34)
i=1

To see this, we evaluate the two—foﬂﬁZ?Z

stituting in (5.31), we find that it is equal to

11 /5, 8dA) in two different ways. Sub-

N-1 N-1
8 Sai¢i) =Y 8¢i Adai. (5.35)
i=1 i=1
On the other hand, we can also write
2N+1 g 2N+1 g d 2N+1 5 ‘
5 Z/’adx =5 Z/I(Mny)—:l =3 #A(Mny)(zj).
j=1 Qo j=1 Qo X j=1 X (ZJ)

(5.36)

Comparing the two formulas, and making use of (5.7), we obtain the desired equation
(5.34).

We observe that for the present even divisor spin model, the spacand the form
d\ 1y are not applicable. In fact, there are difficulties with both the dimensiafgf
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whichis odd, and the angle variablgsdefined by (5.33), which would vanish identically
because the class of the divisbris even.

For theN = 2 SUSY Yang-Mills theory with a hypermultiplet in the antisymmetric
representation, the spectral curves are giverMyy. The symplectic form is them ),
which provides an independent check of the choice of Seiberg—Witten form found by
Landsteiner and Lopez.

5.4. The Hamiltonian of the Flow. We show now that the even divisor spin model is a
Hamiltonian system. More precisely, restricted to each of the phase spaggsr M 2),

the system is Hamiltonian with the corresponding symplectic form, with a corresponding
Hamiltonian. We would like to stress that, once again, the arguments to these ends are
quite general, and use only the expressiondgy, in terms of the Lax operator.

Lemma5.1. Let m beeither 0 or 2. Then Egs. (1.6) restricted on M., are Hamiltonian
with respect to the symplectic formw,,) given by (5.1). The Hamiltonians H,, aregiven

by

Hq) = uy—2, (5.37)
N+1 N+1

Hey=Inuy = 3 I(pfan-0) = 5 D NP an-1) (P 19)]- (5.38)
n=0 n=0

Proof. By definition, a vector field); on a symplectic manifold is Hamiltonian, if its
contractiony, w (X) = w(X, 9;) with the symplectic form is an exact one-foldH (X).
The functionH is the Hamiltonian corresponding to the vector figldThus

1 . . d
Lo, wm) = 5 > Rew, ((Vri18Lnvm) — (Vi1 Lad¥n)) x_’)’i (5.39)

Now under the flow (1.6), the Lax operatdts(x) flow according to the Lax equation
(4.4), while the Bloch functiony,, flow according to (4.61). Consequently,

, 1
o, Om) = 3 > Res,
o

(V28 La(My + 1) W) = (W 1 (M 1Ly — Ly My)8r,)) j—f,. (5.40)
SinceL, Y, = ¥,41, it follows that
Vo aMu 1LYy = Vo i My 1¥ng1 — Yy aMu 18 Ly,
Upon averaging im, we obtain
(V1 (Mps1Ln — LaMp)8Yn) = — (¥ 1M 28 L n) - (5.41)
For alln, bothé L, (x) andM,, (x) vanish att = 0. The differential form
N dx
(Vi1 GLnMy + Maa8Ln) Yn) =2 (5.42)

is thus holomorphic at = 0, in both cases: = 0 andm = 2. As we have seen, outside
of x = oo, the poles ofys;, , are at the branch ponits and are cancelled by the zeroes
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of dx there, while the poles af, are cancelled by the zeroesf ;. Thus the above
differential form is holomorphic outside af = 0. The sum of its residues &, must
be zero

dx

D Res, (Viy1 (BLuMy + My1Ly) ) o = 0. (5.43)
The expression (5.40) fé5, () reduces to
. 1 « dx
13, W(m) = E Z ReSDa (<wn+18Lnl/fn>ﬂ(Qa t)) x_m (5-44)
Applying the arguments leading to (5.12), we obtain
. 1 dx
i Om) = 5 > resp,8(In y)u(t, ) (5.45)

As follows from (4.50,4.51), and (4.61) the functiag, Q) is holomorphic atP,, while
it has the following expansion at the punctuds Ps:

i, @)=-x+01), Q- P; ut, Q=x+01), Q— P (546)

We consider now the cases = 2 andm = 0 separately. Whem = 2, the form
M—z is regular atP,, and has simple poles with opposite residuegaaind P3. Since

dIny =duy + 0(;) near P, it follows immediately that
i@ =d8(nuy). (5.47)

Whenm = 0, we observe that the forid In y)dx is regular atx = co. Indeed, the
constralntSAN = 1,uy_1 = 0 defining the phase spadely in this case imply that
dIny = O( 2) near all three point®;, P», and P3. For P; and Ps, this statement is a
direct consequence of (2.7) and (2.8). Rar this follows from the fact that three roots
yq Of the Landsteiner—Lopez curve (2.1) must satﬁggzl ve = 1. Returning to the
residues in (5.45), we see that the patatdoes not contribute. As for the poings and
Ps3, they contribute exactly the coefficiemt;_» in the expansions (2.7) and (2.8) for

ialw(o) = 51/{/\172. (5.48)

The lemma is proved. O

5.5. The symplectic formintermsof (p,, g,). The expression (5.1) for the symplectic
formsw,, in terms of the Lax operator also provides a straightforward way of writing
w(m) in terms of the dynamical variablég,, p,). Such an expression for the forng,
appears complicated. But it is quite simple for the fesg, and we derive it here.

We haveSL, = x 8(g, pl'), and the contributions of the three poifsabovex = co
can be evaluated as follows.

At the pointPy, y = 0(xN+2) Yo = O(X™), Yuy1 = O(x~@+D) and thus the
differential (6L, A &pn) is regular. The residue & vanishes.
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At the point P, ¥, andy,; , are regular. Using the same notation as in (4.33), we
write

Y = Ym0+ Ynax T, (5.49)
Vi1 = Vo100 + Varn1x T+ (5.50)
In analogy with (ref), from the equation
Vi1 = Y La ()™ = ¥ (L= xqupy), (5.51)
it follows that
Vu09n = Vyi1,00n = 0. (5.52)
The residue aP» is then readily identified
Resp, (Y18 Ln A 8Yn) i—; = RGSDZW,TH,OM%P,,T) A 5%,0)% (5.53)
= —(¥s11.00Gn A 8Py )¥n 1) (5.54)
=1 (5.55)
At the pointPs, y = O(x~V=2), and
Y = YnoX " A P ax T (5.56)
Vo1 = Vo oX T U (5.57)

It follows that the residue is given by

Ress, (U151 A 89

=[5 1108@n D) A SYn1 + Y1 18(@npl) A SYmo] (5.58)

We now make use of Eq. (5.51) to derive recursion relations between the coefficients of

*
n?

dx
%2

Yri10=—YnotnPr. Yni11="Yno— Vi1dnPy - (5.59)

They imply that

¢:+1,an =0, 1ﬂrTJrl,lqn = ‘ﬁ:,o%- (5.60)
As a consequence, the first term on the right-hand side of () simplifies to
Vir1,08@nPn) ASYn1 = Vi1 08dn A Py 81 (5.61)

Now recall that we introduced the coefficiedit by v, = B,¢9,. Comparing with the
equation (), we obtain

Bu = —py ¥n1 (5.62)

and the preceding term becomes

Y 1.08@nDn) ASYn1 = —V1.08Gn A 8By — Viy1008qn ASP)Ym1.  (5.63)
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On the other handp! v, o = 0, and the second term on the right-hand side of () can be
rewritten as

Vi1 18(@n Py ) A SYn0 = Vi1 10n8P) A SWn0— Vi i118Gn A (P V0. (5.64)

Altogether, we obtain the following expression for the residuBsat

Res; (Y 18Ly A 8v) i—z =1+, (5.65)
where the terms Il and Il are defined by
Il = —[¥,1.008Gn AP V1 + ¥, 118Gn A Sp1)Wn0], (5.66)
W= — (W5 1.00Gn A 8Bn — Wiy 1.1an8P1 A 8Yn0). (5.67)
We claim that the term Ill can be simplified to
N = —8pI' A 8qy. (5.68)

In fact, in view of the recursion relations (5.59) and the fact that= 8,4,, it can be
rewritten as

W=~ 0an) (P 8Gn A 8B + DL A (8Bn)dn + 8p) A Budan).- (5.69)

The first two terms on the right-hand side cancel, sinfe, = 0. As for the remaining
term, we note that the normalizatigrf y,, = 1 implies neatP3

1= ox ™"+ 0" (Bugnx" + 0" D) = Y oBugn + Ox™H  (5.70)

from which it follows thaty.; 58,4, = 1. The identity (5.68) is established.
Finally, it is readily seen that the remaining terms | and Il combine into

3
dx
| +11 == Res, (I//:+15qn A 5pr{1/fn> =. (5.71)
a=1

But the 1-form(y*, 18g, A 8pI ¥) < is meromorphic on the spad& with poles only
at the pointsP, abovex = oo andQ, abovex = 0. We can deform then contours and
rewrite lI+11l as residues a,,

3

|+ 1 = Y Resy, (Vis1an A 3] ) ax (5.72)

a=1 x

At x = 0, we havey,, , = ¥, and this expression is determined by the normalization
condition (4.31) on the matri¥ . In terms ofy,,, the normalization (4.31) can be restated
as the normalization conditiop*(0)y,/ = I as an identity between 8 3 matrices.
Thus I+ 1l = 3(8¢4, A 3p,), and we obtain the final formula for the symplectic fagm
in terms ofp, andg,,

N+1

=2 8q] Abpa. (5.73)
n=0
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6. Hamiltonian Theory and Seiberg—Witten Differential: The Odd Divisor M odel

The main difference between the even and the odd divisor spin models is in the parity of
the divisorD of poles of the Bloch function,, (Q). For the odd divisor spin model)
is essentially odd under the involutien: (x, y) — (—x, y~1) in the following sense:

3
[DI+[D°]=K+2) Py (6.1)

a=1

Here K is the canonical class, which is the divisor class of any meromorphic 1-forms
onT. As in the case of the even divisor spin model, the relation (6.1) is a consequence
of the transformation of.(x) undero, which is in this casé.(—x) = (L(x)"H)T. This
implies thatyo(Q°) andyo(Q)* are both dual Bloch functions fdr(x), and thus

¥ (Q) = ¥o(Q?) f(Q). (6.2)

where f(Q) is a meromorphic function ofi. But the zeroes of the dual Bloch function
Y are exactly the poles afo(Q), while its poles are exactly the branch points of the
surface”. Thus the preceding equation implies the following equation for divisor classes

[branch points— [D] = [D?]. (6.3)

To determine the divisor of the branch pointsiofwe consider the differentialx,
viewed as a meromorphic form dh Sincedx has a pole of order 2 at eac¢h, and a
zero at each branch point, we hgeanch pointg— 222:1 P, = K, and the desired
relation (6.1) follows.

e We discuss briefly the direct and the inverse problems for the odd divisor spin system.
Once the difference in parity of the divisor of poles of the Bloch functions is taken
into account, the direct problem is treated in exactly the same way as before. As for
the inverse problem, we need only a few minor modifications in expansions near the
puncturesP:, P3, which we give (cf. (4.50, 4.51) now

¢n = x"e! (Z ¢n,k(Pl)x_k> , O— Py, (6-4)
k=0
On = x et (Z ¢n,k(P3)xk> , 0 — P3,. (6.5)
k=0

They lead to minor modifications in the exact formulas for the Baker—Akhiezer function

dn(t, Q) (cf. (4.53)):

B 0(A(Q) +1tU~ +nV + Zy) 6(Zo) 2 _
On,a(t, Q) = ra(Q)Q(A(Q) T Z,) 0GU-+nV + Zo) eXp(/a nd20 + td2 )1
(6.6)

wheredQ™ =dQ, —dQf andU™ =U - U°.
We show that if the divisoD satisfies (6.1), then the corresponding Baker—Akhiezer
function satisfies the relation

¢r(t, Q) = ¢ (t, Q°) f(Q), (6.7)
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where as beforg are the rows of the matrix inverse to the matrix

qu,a(x) = ¢n,a(P/S)- (6.8)

Here the point®, (x) are the three preimages.obnT on different sheets. Of course,
the matrix®, (x) does depend on the ordereing of sheets, but one can check that if
for P, (x) we definep;(P,) as the corresponding row of the inverse matrix, théris
well-defined. As before has poles at all the branching points and zeroes at the points
of the divisorD.

To establish (6.7), we show that

D bualt, Py ()¢ 5(t, Py) f(Py) = Sap. (6.9)

Indeed, from (6.4) and (6.5), it follows that the functign. (z, Q)¢, s(Q°) f(Q) is
holomorphic everywhere except at the branching points (the poles and the essential
singularities at the puncturds, overx = oo cancel each other; there are no poles at
D andD? becausef (Q) has zeros at these points). Therefore, the left-hand side of the
above equation is a holomorphic functiomofthe poles at the branching points cancel
upon the summation). Hence it is a constant, which can be found by taking.

The uniqueness ap, and the relation (6.7) implies as before that it satisfies the
equation

¢n+1 = Ln(x)¢na 3!¢n =M, (x)¢nv (610)

whereL, andM,, have the form (3.4,3.5).

e We come now to the Hamiltonian structure of the odd divisor spin model. Recall that
we had introduced the spagd©dd of spin chains. Solving the direct and inverse spectral
problem as in the case of the even divisor spin model, we can identf§F with the
space of geometric data

3
MY (T, D; [D]+[D°] = K+2) P} (6.11)
a=1

We can verify that the space on the right-hand sideNisi21 dimensional, as it should
be: there arev + 1 moduli parameters for the curdg, and N parameters for the
antisymmetric divisof D]. The same discussion as in Sects 5.3 and 5.4 for the even
divisor spin model shows that, in the present case, the only candidate for the symplectic
form is the formw(y), restricted to the &-dimensional phase spaﬂaﬁdd defined by

MSI = M0 gy = 1) (6.12)
The corresponding action and angle variables are now given by

2N+1

2j
dd .
a; = ﬁqdddl(l)’ ¢ = 2;- / da)lo , 1<i<N, (613)
1 j:

whered»? and A°% are respectively a basis of odd holomorphic differentials and a
basis of oddd-cycles. We have then as before

N
w1 = ZSaj A 5¢j. (6.14)
j=1
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