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Abstract: We construct the integrable model corresponding to theN = 2 supersym-
metricSU(N) gauge theory with matter in the antisymmetric representation, using the
spectral curve found by Landsteiner and Lopez through M Theory. The model turns
out to be the Hamiltonian reduction of aN + 2 periodic spin chain model, which is
Hamiltonian with respect to the universal symplectic form we had constructed earlier
for general soliton equations in the Lax or Zakharov–Shabat representation.

1. Introduction

The main goal of this paper is to construct the integrable model which corresponds to the
N = 2 SUSYSU(N) Yang–Mills theory with a hypermultiplet in the antisymmetric
representation. The 1994 work of Seiberg and Witten [1] had shown that the Wilson
effective action ofN = 2 SUSY Yang–Mills theory is determined by a fibration of
spectral curves� equipped with a meromorphic one-formdλ, now known as the Seiberg–
Witten differential. It was soon recognized afterwards [2–4] that this set-up is indicative
of an underlying integrable model, with the vacuum moduli of the Yang–Mills theory
corresponding to the action variables of the integrable model. In fact, in the special case of
hyperelliptic curves, a similar set-up for the construction of action variables as periods
of a meromorphic differential had been introduced in [5]. This unexpected relation
betweenN = 2 Yang–Mills theories on one hand and integrable models has proven to
be very beneficial for both sides. The Seiberg–Witten differential has led to a universal
symplectic form for soliton equations in the Lax or Zakharov–Shabat representation
[6,7]. The connection with integrable models has helped solve theSU(N)Yang–Mills
theory with a hypermultiplet in the adjoint representation [4,8], as well as pure Yang–
Mills theories with arbitrary simple gauge groupsG [3]. Conversely, the connection with
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Yang–Mills theories has led to new integrable models, such as the twisted Calogero–
Moser systems associated withYang–Mills theories with non-simply laced gauge group
and matter in the adjoint representation [9], and the elliptic analog of the Toda lattice
[10]. 1

Despite all these successes, we still do not know at this moment how to identify or
construct the correct integrable model corresponding to a givenYang–Mills theory. This
is a serious drawback, since the integrable model can be instrumental in investigating key
physical issues such as duality, the renormalization group, or instanton corrections [13–
15]. At the same time, the list of spectral curves continues to grow, thanks in particular
to methods from M theory [16,17] and geometric engineering [18]. It seems urgent to
develop methods which can identify the correct integrable model from a given spectral
curve and Seiberg–Witten differential.

In the case of interest in this paper, namely theSU(N) gauge theory with antisym-
metric matter, the Seiberg–Witten differential and spectral curve had been found by
Landsteiner and Lopez [17] using branes and M theory. The Seiberg–Witten differential
dλ is given by

dλ = x
dy

y
. (1.1)

The spectral curve is of the form

y3−(3�N+2+x2
N∑
i=0

uix
i)y2+(3�N+2+x2

N∑
i=0

(−)iuix
i)�N+2y−�3(N+2) = 0,

(1.2)

where� is a renormalization scale. For theSU(N) gauge theories, one restricts to
uN = 1, uN−1 = 0, so that the moduli dimension isN − 1, which is the rank of the
gauge groupSU(N). The Landsteiner–Lopez curve (1.2) and differential (1.1) have
been studied extensively by Ennes, Naculich, Rhedin, and Schnitzer [20]. In particular,
they have verified that the curve and differential do reproduce the correct perturbative
behavior of the prepotential predicted by asymptotic freedom. The problem which we
wish to address here is the one of finding a dynamical system which is integrable in the
sense that it admits a Lax pair, and which corresponds to the Landsteiner–Lopez curve
and Seiberg–Witten differential (1.1) in the sense that its spectral curve is of the form
(1.2), and its action variables are the periods ofdλ alongN − 1 suitable cycles on�.

We have succeeded in constructing two integrable spin chain models, whose spectral
curves are given exactly by the Landsteiner–Lopez curves. However, the action variables
of the desired integrable model must be given bydλ = x

dy
y

, and here the two models
differ significantly. For one model, referred to asthe odd divisor spin model, the 2-form
resulting fromdλ vanishes identically. For the other, referred to asthe even divisor spin
model, the Hamiltonian reduction of the 2-form resulting fromdλ to the moduli space
of vacua{uN = 1, uN−1 = 0} is non-degenerate, and the reduced system is indeed
Hamiltonian with respect to this symplectic form, with HamiltonianH = uN−2. Thus
the latter model is the integrable system we are looking for.

1 We refer to [11,12] for more complete lists of references.
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Our main result is as follows2. Letqn, pn be 3-dimensional vectors which areN + 2
periodic, i.e.pn+N+2 = pn, qn+N+2 = qn, and satisfy the constraints

pT
n qn = 0, (1.3)

pn = g0p−n−1, qn = g0q−n−1, (1.4)

whereg0 is the diagonal matrix

g0 =

1 0 0

0 −1 0
0 0 1


 . (1.5)

Consider the dynamical system

ṗn = pn+1

pT
n+1qn

+ pn−1

pT
n−1qn

+ µnpn, q̇n = − qn+1

pT
n qn+1

− qn−1

pT
n qn−1

− µnpn (1.6)

for some scalar functionsµn(t). The system is invariant under the gauge groupG gen-
erated by the following gauge transformations:

pn → λnpn, qn → λ−1
n qn, (1.7)

pn → WT pn, qn → W−1qn. (1.8)

HereW is a 3× 3 matrix which commutes withg0, Wg0 = g0W . Define the 3× 3
matricesL(x) andM(x) by

L(x) =
N+1∏
n=0

(1 + xqnp
T
n ), M(x) = x

(
qN+1p

T
0

pT
0 qN+1

− q0p
T
N+1

pT
N+1q0

)
. (1.9)

Main Theorem. • The dynamical system (1.6) is equivalent to the Lax equation

L̇(x) = [M(x), L(x)]; (1.10)

• The spectral curves � = {R(x, y) ≡ det
(
yI − L(x)

) = 0} are invariant under the
flow (1.6), and are exactly the curves of the Landsteiner–Lopez form (1.2) (with �N+2

normalized to 1);
• There is a natural map (qn, pn) → (�,D) from the space of all spin chains satisfying

the constraints (1.3,1.4)to the space of pairs (�,D), where � is a Landsteiner–Lopez
curve, and D = {z1, · · · , z2N+1} is a divisor whose class [D] = [Dσ ] is symmetric
under the involution

σ : (x, y) = z → zσ = (−x, y−1). (1.11)

For a given (qn, pn),D is the set of poles of the Bloch functionψ0,L(x)ψ0 = yψ0(x);

2 The notation is explained in greater detail in Sects. 3 and 5.
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• Let M0 be the space of pairs {�, [D]}, where � is a Landsteiner–Lopez curve with
uN = 1, uN−1 = 0, and [D] is a divisor class which is symmetric under the involution
σ . Then the space M0 has dimension 2(N−1). The map (qn, pn) → (�,D) descends
to a map between the two spaces

{(qn, pn)}/G ↔ M0, (1.12)

where on the left-hand side, we have factored out the gauge group G from the space
of periodic spin chains satisfying the constraints (1.3,1.4). At a generic curve � and
a divisor [D] in general position, the map (1.12)is a local isomorphism.

• Let the action variables ai and the angle variables φi be defined on the space M0 by

ai =
∮
Ai

dλ, φi =
2N+1∑
i=1

∫ zi

dωi, (1.13)

where {Ai}1≤i≤N−1 and {dωi}1≤i≤N−1, are respectively a basis for the even cycles
and a basis for the even holomorphic differentials on �. Then

ω =
N−1∑
i=1

δai ∧ δφi (1.14)

defines a symplectic form on the 2(N − 1)-dimensional space M0;
• The dynamical system (1.6)is Hamiltonian with respect to the symplectic form (1.14).

The Hamiltonian is H = uN−2.

In terms of the(qn, pn) dynamical variables, the Hamiltonian can be expressed under
the form

H = uN−2

uN

− u2
N−1

2u2
N

=
N+1∑
n=0

(pT
n qn−3)

(pT
n qn−1)(p

T
n−1qn−2)(p

T
n−2qn−3)

− (pT
n qn−2)

2

2(pT
n qn−1)2(p

T
n−1qn−2)2

,

(1.15)

where we have used the constraintuN = 1,uN−1 = 0 to writeH asH = uN−2
uN

− u2
N−1

2u2
N

.

We would like to note the similarity of the Lax matrixL in (1.9) to the 2× 2 Lax
matrix used in [21] for the integration of a quasi-classical approximation to a system of
reggeons inQCD.

A key tool in our analysis is the construction of [6,7], which shows that symplectic
forms constructed in terms of Seiberg–Witten differentials can also be constructed di-
rectly in terms of the Lax representation of integrable models. The latter are given by
the following universal formula [6,7]:

ω = 1

2

∑
α

ResPα

〈
ψ∗

n+1δLn(x) ∧ δψn

〉
dx, (1.16)

whereψn andψ∗
n+1 are the Bloch and dual Bloch functions of the system, andPα are

marked punctures on the spectral curve�. In the present case,Pα are the 3 points on�
abovex = ∞.
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Finally, we note that the odd divisor spin model (which we describe in Sects. 3.1
and 6) may be of independent interest. Although the symplectic form associated to the
Seiberg-differentialx dy

y
is degenerate in this case, the model does admit a Hamiltonian

structure with non-degenerate symplectic form, but one which is associated rather with
the formdλ(1) = ln y dx

x
. As suggested in [19], the form lny dx

x
is also indicative of

supersymmetric Yang–Mills theories, but in 5 or 6 dimensions withN = 1 supersym-
metry.

2. Geometry of the Landsteiner–Lopez Curve

We begin by identifying the geometric features of the generic Landsteiner–Lopez curve
which will play an important role in the sequel. Fixing the normalization�N+2 = 1,
we can write

� : R(x, y) ≡ y3 − f (x)y2 + f (−x)y − 1 = 0, (2.1)

wheref (x) is a polynomial of the form

f (x) = 3 + x2PN(x), PN(x) =
N∑
i=0

uix
i . (2.2)

The parametersu0, · · · , uN are the moduli of the Landsteiner–Lopez curve.

• The Landsteiner–Lopez curve� is a three-fold covering of the complex plane in the
x variable. It is invariant under the involutionσ defined in (1.11). The important points
on� are the singular points, the points abovex = ∞, and the branch points. We discuss
now all these points in turn.• The singular points are the points where

∂xR(x, y) = ∂yR(x, y) = 0. (2.3)

The generic Landsteiner–Lopez curve has exactly one singular point, namely(x, y) =
(0,1). At this point, Eq. (2.1) has a triple root, and all three sheets of the curve intersect.
For generic values of the moduliui , all three solutionsy ofR(x, y) = 0 can be expressed
as power series inx in a neighborhood ofx = 0,

y(x) = 1 +
∞∑
i=1

yix
i . (2.4)

In fact, we can substitute (2.4) into (2.1) to find recursively all coefficientsyi , with the
first coefficienty1 a solution of

y3
1 − u0y1 + 2u1 = 0. (2.5)

For genericu0, u1, this equation does admit three distinct solutions fory1, which lead
in turn to the three distinct solutions. These three distinct solutions provide effectively
a smooth resolution of the curve�, where the crossing pointy = 1 abovex = 0 has
been separated into 3 distinct pointsQα, 1 ≤ α ≤ 3. Under the involutionσ , the leading
terms in the three solutions (2.4) transform as

(x,1 + y1x + · · · ) → (−x, (1 − y1x + · · · )−1) = (−x,1 + y1x + · · · ). (2.6)
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Since the three solutionsy1 of Eq. (2.5) are distinct for generic values of the moduliui ,
we see that each of the three pointsQα abovex = 0 are fixed under the involutionσ .

• For generic values of the moduliui , there are also three distinct branches ofy(x) near
x = ∞. A first branchy(x) = O(xN+2) with a pole of orderN +2 can be readily found

y(x) = xN+2(uN + uN−1x
−1 + uN−2x

−2 + · · · ). (2.7)

(The first three coefficients iny(x) turn out to be exactly the first three coefficients
uN, uN−1 anduN−2 in the polynomialPN(x) of (2.2).) We denote byP1 the correspond-
ing point abovex = ∞. In view of the involutionσ , a second branchy(x) = O(x−(N+2))

with a zero of orderN + 2 exists which is the image of the first branch underσ

y(x) = (−x)−(N+2) 1

uN

(
1 + uN−1

uN

x−1 + u2
N−1 − uNuN−2

u2
N

x−2 + · · ·
)
. (2.8)

The corresponding point abovex = ∞ is denotedP3. Finally, the involutionσ implies
that the third branchy(x) is regular and fixed underσ

y(x) = (−)N+2[1 + O

(
1

x

) ]
. (2.9)

Denoting the corresponding point abovex = ∞ by P2, we have

σ : P1 ↔ P3, σ : P2 ↔ P2. (2.10)

• The branching points of� over thex-plane are just the zeroes on� of the function
∂yR(x, y) which are different from the singular pointsQα. This function has a pole of
order 2(N + 2) at P1 and a pole of order(N + 2) at each of the pointsP2 andP3.
Therefore, it has 4N + 8 zeros. At each of the pointsQα the function∂yR(x, y) has
zeros of order 2. Hence

#{Branch Points} = 4N + 2. (2.11)

Note that for generic moduliui , neither 0 nor∞ is a branch point, in view of our
previous discussion. Also for genericui , we can assume that the ramification index at
all branch points is 2. Thus the total branching number is just the number of branch
points. Since the number of sheets is 3, the Riemann-Hurwitz formula can be written as
g(�) = −3 + 1

2(4N + 2) + 1 in this case. Thus the genusg(�) of the curve� is

g(�) = 2N − 1. (2.12)

• For generic moduliui , the involutionσ : � → � has exactly four fixed points, namely
the three pointsQα abovex = 0 and the pointP2 abovex = ∞. That implies that the
factor-curve�/σ has genus

g(�/σ) = N − 1. (2.13)

The involutionσ induces an involution of the Jacobian varietyJ (�) of �. The odd part
JPr(�) of J (�) is the Prym variety and the even part is isogenic to the JacobianJ (�/σ)

of the factor-curve�/σ . The dimension of the space of divisors[D] which are even
underσ is equal to dimJ (�/σ) = N − 1.
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3. The Spin Models

We introduce two systems with the same family of spectral curves (2.1). One system
has non-trivial dynamics along the even while the other system has non-trivial dynamics
along the odd (Prym) directions of the Jacobian. The system corresponding to theSU(N)

Yang–Mills theory with a hypermultiplet in the anti-symmetric representation is the even
system. We sketch here the outline of the construction of both models, leaving the full
discussion to Sects. 4-5.

Both models are periodic spin chain models, with a 3-dimensional complex vector at
each site. We view three-dimensional vectorss as column vectors, with componentssα,
1 ≤ α ≤ 3. We denote bysT the transpose ofs, which is then a three-dimensional row
vector, with componentssα. In particular,sT s is a scalar, whilessT is a 3× 3 matrix.
Since the odd divisor spin model is simpler, we begin with it.

3.1. The odd divisor spin model. The odd divisor spin model is a(N+2)-periodic chain
of complex three-dimensional vectorssn = sN+n+2, sn = (sn,α), α = 1,2,3, subject
to the constraint

sTn sn =
3∑

α=1

sαn sn,α = 0, (3.1)

and the following equations of motion:

ṡn = sn+1

sTn+1sn
− sn−1

sTn−1sn
. (3.2)

The constraint (3.1) and the equations of motion are invariant under transformation of
the spin chain by a matrixV satisfying the conditionV T V = I ,

sn → V sn. (3.3)

The odd divisor spin model is integrable in the sense that the equations of motion are
equivalent to a Lax pair. To see this, we define the 3× 3 matricesLn(x) andMn(x) by

Ln(x) = 1 + x sns
T
n , (3.4)

Mn(x) = x
1

sTn sn−1
(sn−1s

T
n + sns

T
n−1). (3.5)

Then the compatibility condition for the system of equations

ψn+1 = Ln(x)ψn, (3.6)

ψ̇n = Mn(x)ψn (3.7)

is given by

L̇n(x) = Mn+1(x)Ln(x) − Ln(x)Mn(x). (3.8)
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A direct calculation shows that forLn(x) andMn(x) defined as in (3.5), this equa-
tion is equivalent to the equations of motion (3.2) for the spin model. Define now the
monodromy matrixL(x) by

L(x) = LN+1(x) · · ·L0(x) =
N+1∏
n=0

Ln(x), (3.9)

where the ordering in the product on the right-hand side starts by convention with the
lowest indices on the right. ThenL(x) andM(x) = M0(x) form themselves a Lax pair

L̇(x) = [M(x), L(x)]. (3.10)

This is easily verified using (3.8), since

L̇(x) =
N+1∑
k=0

N+1∏
n=k+1

Ln(x) L̇k ×
k−1∏
n=0

Ln(x) (3.11)

=
N+1∑
k=0

N+1∏
n=k+1

Ln(x)(Mk+1Lk − LkMk)

k−1∏
n=0

Ln(x) (3.12)

=
N+1∑
k=0

N+1∏
n=k+1

Ln(x)Mk+1

k∏
n=0

Ln(x) −
N+1∑
k=0

N+1∏
n=k

Ln(x)Mk

k−1∏
n=0

Ln(x) (3.13)

= MN+2L(x) − L(x)M0(x). (3.14)

In particular, the characteristic equation ofL(x) is time-independent and defines a time-
independent spectral curve

� = {(x, y); 0 = R(x, y) ≡ det(yI − L(x))}. (3.15)

We assert that these spectral curves are Landsteiner–Lopez curves (2.1). In fact, it follows
immediately from the expression (3.5) that detLn(x) = 1, Ln(x) = Ln(x)

T , and
Ln(x)

−1 = L(−x). Thus

detL(x) = 1, L(x)−1 = L(−x). (3.16)

These two equations imply that det(yI −L(x)) is of the form (2.1) for some polynomial
f (x). To obtain the expression (2.2) forf (x), it suffices to observe that

f (x) = Tr L(x) = Tr (1 + x

N+1∑
n=0

sns
T
n ) + O(x2) = 3 + O(x2). (3.17)

Define the moduliui of the curveR(x, y) = 0 as in (2.1) byf (x) = 3+ x2∑N
i=0 uix

i .
Then the correspondence between the dynamical variablessn, 0 ≤ n ≤ N + 1, and the
moduliui is given by

ui =
∑
Ii

sTn1
sn2s

T
n2
sn3 · · · sTni−1

sni , (3.18)

where the summation runs over the setIi of all orderedi-th multi-indicesn1 < n2 <

· · · < ni .
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To obtain the phase space of the model, we consider the space of all(N +2)-periodic
spin chainssn, subject to the constraint (3.1), and modulo the equivalencesn ∼ V sn,
whereV is a matrix satisfyingV T V = I . The dimension of this space is

dim {sn}/{sn ∼ V sn} = 2N + 1. (3.19)

Indeed, the(N + 2)-periodic spin chainssn have 3(N + 2) degrees of freedom. The
constraint (3.1) removesN + 2 degrees of freedom, and the equivalencesn ∼ V sn re-
moves 3 others, since the dimension of the matricesV withV T V is 3.A 2N -dimensional
symplectic manifoldLodd is obtained by setting

Lodd = {sn; uN = constant }/{sn ∼ V sn}. (3.20)

On the spaceLodd, the system is Hamiltonian with respect to the symplectic form defined
by the differentialdλ(1) = (ln x)

dy
y

, with Hamiltonian

H(1) = uN−1

uN

=
N+1∑
n=0

(sTn+1sn−1)

(sTn+1sn)(s
T
n sn−1)

. (3.21)

The action-variables are the periods of the differentialdλ(1) = −(ln x)
dy
y

over a basis of
N cycles for the curve�, which are odd under the involutionσ . If the curve� is viewed
as a two–sheeted cover of�/σ , theseN odd curves can be realized as theN cuts along
which the sheets are to be glued.

3.2. The even divisor spin model. The even divisor spin model is the Hamiltonian re-
duction of a periodic spin chain model which incorporates a natural gauge invariance.

The starting point is a(N + 2)-periodic chain of pairs of three-dimensional complex
vectorspn = (pn,α), qn = (qn,α), 1 ≤ α ≤ 3, satisfying the constraints (1.3). We
impose the equations of motion (1.6). As noted before, the constraints and the equations
of motion are invariant under the gauge transformations (1.7,1.8). In particular, a gauge
fixed version of the equations of motion (1.6) is

ṗn = pn+1

pT
n+1qn

+ pn−1

pT
n−1qn

, q̇n = − qn+1

pT
n qn+1

− qn−1

pT
n qn−1

. (3.22)

This version follows from the other one by the gauge transformation

pn → λn(t)pn, qn → λ−1
n (t)qn, λ(t) = exp

(
−
∫ t

µn(t
′)dt ′

)
. (3.23)

We shall see in the next section that the system (1.6) admits a Lax representation.
A reduced system is defined as follows. We impose the additional constraints (1.4).

With these constraints, the spectral curves of the system are the Landsteiner–Lopez
curves (2.1). The dimension of the phase spaceM of all (qn, pn) subjected to the
previous constraints and divided by the gauge groupG of (1.7,1.8), is

dimM ≡ dim {(qn, pn)}/G = 2N. (3.24)

To see this, assume thatN is even (the counting forN odd is similar). Then the constraint
(1.4) reduces the number of degrees of the(N + 2)-periodic spin chain(qn, pn) to the
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number 3(N + 2) of a (N + 2)-periodic spin chain. The constraint (1.3) and the gauge
transformation (1.7) each eliminatesN

2 +1 degrees of freedom. Now the dimension of the
space of matricesW satisfyingWg0 = g0W is 5. However, in the gauge transformation
(1.8), the matricesW which are diagonal have already been accounted for in the gauge
transformation (1.7). Altogether, we arrive at the count which we announced earlier.

The phase space{(qn, pn)}/G itself can be reduced further, to a lower-dimensional
phase space defined by suitable constraints on the moduli space(u0, · · · , uN). It turns
out that there are 2 possible natural further reductions, each related to its own choice of
differentialdλ and corresponding Hamiltonian structure:

• On the(2N − 2)-dimensional phase space defined by the constraints

M0 = {(qn, pn); uN = 1, uN−1 = 0}/G (3.25)

the system is Hamiltonian with respect to the symplectic form defined by the differential
dλ = x

dy
y

. Here we have used the same notation for the space just introduced and
the spaceM0 described in the Main Theorem, in anticipation of their isomorphism
which will be established later in Sect. 4. The Hamiltonian is given byH = uN−2 or
equivalently by (1.15).

The action-variables are periods ofdλ along a basis ofN − 1 cyclesAi of � which
are even under the involutionσ . (Equivalently, theAi correspond to a basis of cycles for
the factor curve�/σ .) This is the desired integrable Hamiltonian system, corresponding
to theN = 2 supersymmetricSU(N) Yang–Mills theory with a hypermultiplet in the
anti-symmetric representation.

• On the(2N − 2)-dimensional phase spaceM2 defined by the constraints

M2 = {(qn, pn); u0 = constant, u1 = constant}/G (3.26)

the system is Hamiltonian with respect to the symplectic form defined by the differential
dλ(2) = − 1

x
dy
y

. This symplectic form coincides with the natural form

ω =
∑
n

dpT
n ∧ dqn (3.27)

with respect to which the system (1.6) is manifestly Hamiltonian, with Hamiltonian

H(p, q) = ln uN = 1

2

N+1∑
n=0

ln
[
(p+

n qn−1)(p
+
n−1qn)

]
. (3.28)

The action-variables are the periods of the differentialdλ(2) = − dy
xy

over again the even
cyclesAi of the earlier case.

4. The Direct and Inverse Spectral Transforms

We concentrate now on the even divisor spin model. The main goal of this section is to
describe the map stated in the main theorem, which associates to the spin chain(qn, pn)

a geometric data(�, [D]),
(qn, pn) → (�, [D]). (4.1)
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The curve� is obtained by showing that the dynamical system (1.6) for(pn, qn) admits a
Lax representatioṅL(x) = [M(x), L(x)], in which case� is the spectral curve{det(yI−
L(x)) = 0}. The Lax operatorL(x) also gives rise to the Bloch function, which is
essentially its eigenvector. The divisorD is obtained by taking the divisor of poles of
the Bloch function. A characteristic feature of the even divisor spin model is that the
equivalence class of this divisor[D] is even under the involutionσ . The map (4.1)
descends to a map from the space of equivalence classes of(qn, pn) under the gauge
groupG to the space of geometric data(�, [D]). These two spaces are of the same
dimension 2N : we saw this in (3.24) for the first space, while for the second, the number
2N of parameters is due toN+1 parameters for the Landsteiner–Lopez curves (including
uN anduN−1), andN−1 parameters for the even divisors[D]. It is a fundamental fact in
the theory that the map (4.1) becomes then a bijective correspondence of generic points

{qn, pn)}/G ↔ {(�, [D])}. (4.2)

We shall refer to the construction→ described above asthe direct problem. The reverse
construction←, which recaptures the dynamical variables(pn, qn) from the geometric
data(�, [D]) will be referred to asthe inverse problem. As usual in the geometric theory
of solitons [22], it will be based on the construction of a Baker–Akhiezer function. We
now provide the details.

4.1. The Lax representation. We exhibit first the Lax representation for the system (1.6).
The desired formulas can be obtained from a slight modification of the easier odd spin
model treated in Sect. 3.1. Letpn, qn be (N + 2)-periodic, three-dimensional vectors
satisfyingpT

n qn = 0, and define matrix-valued functionsLn(x) andMn(x) by

Ln(x) = 1 + x qnp
T
n , Mn(x) = x

(
qn−1p

T
n

pT
n qn−1

− qnp
T
n−1

pT
n−1qn

)
. (4.3)

Then a direct calculation shows that the matrix functionsLn(x) andMn(x) satisfy the
Lax equation

∂tLn = Mn+1Ln − LnMn (4.4)

if and only if the vectorspn andqn satisfy the equations of motion (1.6).
As before, Eq. (4.4) is a compatibility condition for the linear systemψn+1 =

Ln(x)ψn, ψ̇n = Mn(x)ψn. To obtain the spectral curve�, we observe that the same
arguments as in the case of the odd spin model show that the matrixM(x) = M0(x) and
the monodromy matrixL(x) defined byL(x) = ∏N+1

n=0 Ln(x) form again a Lax pair

L̇(x) = [M(x), L(x)]. (4.5)

Thus the spectral curve� = {(x, y);R(x, y) ≡ det(yI − L(x)) = 0} is time-indepen-
dent and well-defined. We have used here the same notationR(x, y) as for (2.1), since
the equation det(yI − L(x)) is indeed of the Landsteiner–Lopez form. To see this, we
note that detLn(x) = 1 andLn(−x) = Ln(x)

−1. Together with the constraint (1.4),
this implies

detL(x) = 1, L(−x) = g0L
−1(x)g0. (4.6)
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But we also have nearx = 0

Tr L(x) = Tr (1 + x

N∑
n=0

qnp
T
n ) + O(x2) = 3 + 0(x2), (4.7)

so that det(yI − L(x)) is of the form (2.1).
We observe that the expressionR(x, y) = det(yI − L(x)) is invariant with re-

spect to the gauge transformations (1.7) and (1.8). Therefore, if we writeR(x, y) in the
Landsteiner–Lopez form (2.1) with moduliui , the moduliui are well-defined functions
on the factor-spaceM. In analogy with the odd spin case,ui can be written in terms of
the dynamical variables(pn, qn) as

uk =
∑
Ik

(p+
i1
qi2)(p

+
i2
qi3) · · · (p+

ik
qi1). (4.8)

Here the summation is again over setsIk of multi-indicesI = (i1 < i2 < . . . < ik).

4.2. General properties of Bloch functions. The pointsQ = (x, y) of the spectral curve
� = {(x, y); det(yI −L(x)) = 0} parametrize the Bloch functions{ψn(Q)}0≤n≤N+1 of
the spin model.We begin by recalling the definition of Bloch functions, and by describing
their main properties in the case of our model.

• We fix a generic choice of moduli parametersui . Then the matrixL(x) has 3 distinct
eigenvaluesy, except possibly at a finite number of pointsx. LetQ = (x, y). The Bloch
solutionψn(Q) for the spin model{Ln(x)}0≤n≤N+1 is the functionψn(Q) with the
following properties:

8n+1(Q) = Ln(x)8n(Q), 8N+n+2(Q) = y8n(Q). (4.9)

These equations determineψn(Q) only up to a multiplicative constant. To normalize
ψn(Q), we observe that for generic moduli parametersui , there are only finitely many
pointsQ, where the eigenvectorψ0(Q) of the matrixL(x) satisfies the linear constraint∑3

α=1 ψ
α
0 (Q) = 0. Outside of these points, we can fixψn(Q) by the following normal-

ization condition:

3∑
α=1

ψα
0 = 1. (4.10)

The Bloch functionψn(Q) is then determined on the spectral curve� outside of a finite
number of points, and hence uniquely on�. Furthermore, the components ofψn(Q) are
meromorphic functions on�. This follows from the constraint (4.10) and the equation
L(x)ψ0(Q) = yψ0(Q). They imply thatψ0(Q) is a rational expression iny and in
the entries of the matrix(Lαβ(x) − Lα3(x)) 1≤α≤3

1≤β≤2
, in view of Cramer’s rule for solving

inhomogeneous systems of linear equations. Sincex, y andLαβ(x) are all meromorphic
functions on�, our assertion follows.

• The exceptional points excluded in the preceding construction of Bloch functions are
the points whereL(x) has multiple eigenvalues, and the points where the eigenvector
ψ0(Q) lies in the linear subspace of equation

∑3
α=1 ψ

α
0 (Q) = 0. By restricting ourselves

to generic values of the moduliui , we can make the convenient assumption that these two
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sets of points are disjoint. In this case, it is evident that at points where
∑3

α=1 ψ
α
0 (Q) = 0,

the functionψ0(Q) develops a pole.
Consider now a pointx0 �= 0, where the matrixL(x) has a multiple eigenvalue. Let

(x − x0)
1/b be the local holomorphic coordinate centered at the pointsQ lying above

x0, where the branching indexb can be either 1 or 2. (We can exclude the possibility
b = 3 by a genericity assumption on the moduliui .) The holomorphic functiony on the
surface� can be expanded as

y = y0 + εy1(x − x0)
1/b + O(x − x0), (4.11)

whereεb = 1 is a root of unity. Ifb = 1, it follows that

∂xR(x0, y0) = ∂yR(x0, y0) = 0, (4.12)

which means that the curve is singular at(x0, y0). By a genericity assumption on the
moduli ui , the only singular point on� is at x0 = 0, and this possibility has been
excluded. Thusb = 2, and the curve� has a branch point atx0 if and only if L(x0)

has multiple eigenvalues. The matrixL(x0) can now be shown to be a Jordan cell, i.e.,
L(x0) is of the form

L(x0) =

λ1 µ 0

0 λ2 0
0 0 λ3


 (4.13)

in a suitable basis, for someµ �= 0 andλ1 = λ2 �= λ3. In fact,L(x0) has only one
double eigenvalue by genericity assumptions onui . The three branches of the functiony
consist then of one branch which is of the formλ3+y1(x−x0)+· · · and is holomorphic
in the variablex − x0. The other two branches are of the form

y = λ1 ± y1(x − x0)
1/2 + · · · . (4.14)

We must havey1 �= 0, for otherwisey = λ1+O(x−x0), and the same argument which
ruled out the branching indexb = 1 would imply that� is singular atx0. Now forx near
but distinct fromx0, the Bloch functionψ0(Q) also has 3 distinct branches. Letψ± be
the branches corresponding to the eigenvalues in (4.14), and expand them as

ψ± = ψ
(0)
± + (x − x0)

1/2ψ
(1)
± + O(x − x0). (4.15)

Up toO(x − x0), the eigenvector condition can be expressed as

L(x)(ψ
(0)
± + (x − x0)

1/2ψ
(1)
± ) = (λ1 ± y1(x − x0)

1/2)(ψ
(0)
± + (x − x0)

1/2ψ
(1)
± ).

(4.16)

This is equivalent to

L(x0)ψ
(0)
± = λ1ψ

(0)
± , (L(x0) − λ1)ψ

(1)
± = ±y1ψ

(0)
± . (4.17)

Clearly, this equation admits no solution ifL(x0) is diagonal. ThusL(x0) is of the
form (4.13) withµ �= 0. We can now identify the coefficientsψ(0)

± andψ
(1)
± in the

Puiseux expansion (4.15). The eigenspace ofL(x0) corresponding to the eigenvalueλ1
is one-dimensional and generated by a single vectorφ1, which we can take to satisfy the
normalization condition (4.10). Evidently,ψ(0)

± = φ1. Letφ2 be the second basis vector
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in the basis with respect to whichL(x0) takes the Jordan form (4.13), i.e.,L(x0)φ2 =
y1φ2 + µφ1. Then the second equation above is solved by

ψ
(1)
± = ±(

y1

µ
φ2 + νφ1), (4.18)

where the constantν is chosen so that
∑3

α=1 ψ
(1),α
± = 0.

• Outside a finite number of pointsx, the matrixL(x) has 3 distinct eigenvaluesy(a) and
three distinct eigenfunctionsψ0(a), 1 ≤ a ≤ 3, normalized uniquely by the condition
(4.10). The function

det2
{
ψ0(1) ψ0(2) ψ0(3)

}
(4.19)

is independent of the ordering of bothψ0(a) and the corresponding eigenvaluesy(a). By
the preceding observations, it can be expressed as a rational function ofx andy(a), which
is also symmetric under permutations ofy(a). Thus it is actually an unambiguous and
rational function ofx. We observe that the function det2

{
ψ0(1) ψ0(2) ψ0(3)

}
vanishes

at exactly those values ofx which are branch points for the spectral curve det(yI −
L(x)) = 0. Indeed, we saw earlier that the branch pointsx0 are exactly the points
whereL(x0) has multiple eigenvalues. Outside pointsx0 whereL(x0) has multiple
eigenvalues, the determinant (4.19) is readily seen to be�= 0 (it may be infinite, because
of the normalization (4.10)). Conversely, assume thatx0 is a branch point. Then our
preceding discussion shows that forx nearx0

det2
{
ψ0(1) ψ0(2) ψ0(3)

}
(x) = (x − x0)det2

{
φ1 φ2 ψ0(3)

}+ O(x − x0)
3/2. (4.20)

This shows that det2
{
ψ0(1) ψ0(2) ψ0(3)

}
(x0) = limx→x0det2

{
ψ0(1) ψ0(2) ψ0(3)

}
(x)

= 0, establishing the observation. Furthermore, since the vectorsφ1, φ2, andψ0(3)
are linearly independent by construction, we obtain the important fact that the order of
vanishing of the square of the determinant in (4.19) at a branch point is exactly 1. (More
generally, for an arbitrary branching indexb, the order of vanishing of the square of the
determinant is equal tob − 1, although we do not need this more general version here,
thanks to our genericity assumption on the moduliui .)

• We can now determine the number of poles of the Bloch functionψ0(Q) outside of
the pointsPa abovex = ∞. Clearly, this number is half of the number of poles of the
expression (4.19) outside ofx = ∞. Now atx = ∞, we saw that the operatorL(x) has
3 eigenvalues, so that (4.19) does not vanish there. Furthermore, we shall show later that
ψ0(Q) is finite at all three points abovex = ∞. Thus (4.19) has neither a zero nor a pole
atx = ∞. In view of the preceding discussion, the number of zeroes of (4.19) is equal
to the number of branch points of�. We showed earlier, using the Riemann-Hurwitz
formula, that the number of branch points of� is 4N + 2. It follows that the number of
poles, and hence of zeroes ofψ0(Q) on� is 2N + 1.

• The poles ofψn(Q) outside of the pointsPa lying abovex = ∞ are indepen-
dent ofn. To see this, we letS0(x) be the 3× 3 identity matrixI , and setSn(x) =
Ln−1(x)Sn−1(x) = ∏

0≤k≤n−1 Lk(x). Thenψn(Q) can be expressed as

ψn(Q) = Ln−1(x)ψn−1(Q) =
∏

0≤k≤n−1

Lk(x)ψ0(Q) = Sn(x)ψ0(x). (4.21)

This shows that the poles ofψn(Q) outside ofPa can only occur at the poles ofψ0(Q).
For generic values of the moduliui , we can assume that all the poles ofψn(Q), 0 ≤ n ≤
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N + 1, are exactly of the same order 1 when they occur outside of the pointsPa above
x = ∞.

• Let D = {z1, · · · , z2N+1} be the divisor of poles of the Bloch functionψn(Q). Then
a fundamental property of the even divisor spin chain model is the invariance of the
equivalence divisor class[D] of D under the involutionσ

[D] = [Dσ ]. (4.22)

In other words, there exists a meromorphic function on� with poles atzn andzσn . This
is a consequence of howL(x) transforms under the involutionx → −x, y → y−1,

L(−x) = g0L(x)−1g0. (4.23)

This transformation rule implies thatg0ψ0(Q) is a Bloch function at(−x, y−1) if ψ0(Q)

is a Bloch function at(x, y). Thusg0ψ0(Q) must coincide withψ0(Q
σ ) up to normal-

ization

g0ψ0(Q) = f (Q)ψ0(Q
σ ). (4.24)

Since bothψ0(Q) andψ0(Q
σ ) are meromorphic functions, the functionf (Q) is mero-

morphic. This proves (4.22).
We summarize the discussion in the following lemma:

Lemma 4.1. The vector-functionψn(Q) is a meromorphic vector-function on�. Outside
the punctures Pa (which are the points of � situated over x = ∞) it has g+2 = 2N +1
poles {z1, . . . , z2N+1}, which are n-independent. The divisor class [D] of D is invariant
with respect to the involution σ , i.e. there exists a function f (Q) on � with poles at zj
and zeroes at zσj .

4.3. The direct problem. In the previous discussion, we made use only of the fact that the
curveR(x, y) = 0 is the spectral curve of a matrixL(x) which satisfies the involution
conditionL(−x) = L(x)−1. In particular, the discussion applies for generic values of
the moduliui parametrizing the curves.

We consider now the direct problem for the system (1.6), where the matrixL(x) arises
more specifically in terms of the dynamical variables(qn, pn)asL(x) = ∏N+1

n=0 Ln(x) =∏N+1
n=0 (1 + xqnp

T
n ). The discussion in the previous section has provided a precise de-

scription of the right-hand side of the map (4.1). It is also evident that the map descends
to the equivalence classes of(qn, pn) under the gauge groupG.

It is convenient to exploit the gauge transformation (1.8) to normalize the Bloch
functions atx = 0. First, we observe thatLn(0) = I for all n, so thatψn(Qa) is
independent ofn. Furthermore, the Lax operatorL(x) can be written nearx = 0 as

L(x) = I + xT + O(x2), (4.25)

where the matrixT is given by

T =
N+1∑
n=0

qnp
T
n . (4.26)
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In particular,T satisfies the condition

T = g0T g0. (4.27)

in view of the constraintpn = g0p−n−1,qn = g0q−n−1. Next, recall from our discussion
of the Landsteiner–Lopez curve in Sect. 2 thatT has 3 distinct eigenvaluesy1(Qa), and
that y can be expanded asy = 1 + y1(Qα)x + O(x2) nearQa . Expandingψ0(Q)

nearQa asψ0(Q) = ψ0(Qa)+O(x), and using the preceding expansion forL(x), the
conditionL(x)ψ0(Q) = yψ0(Q) for Bloch functions can be rewritten as

(I + xT )(ψ0(Qa) + xψ ′
0(Qa)) = (1 + yax)(ψ0(Qa) + xψ ′

0(Qa)) + O(x2). (4.28)

This implies

T ψ0(Qa) = yaψ0(Qa) (4.29)

i.e.,ψ0(Qa) are precisely the three eigenvectors ofT , corresponding to the eigenvalues
ya . If we let80(0) be the 3× 3 matrix whose columns are the vectorsψ0(Qa), then the
transformation law (4.27) implies that80(0) satisfies the condition

80(0) = g080(0)g0. (4.30)

Now the transformation (1.8) on(qn, pn) does not change the curve� and the divisor
D, but changes the matrix80(0) intoW80(0). But80(0) commutes with the matrixg0,
and hence so does its inverse. This means that the inverse qualifies as one of the gauge
transformationsW allowed in (1.8). Under such a gauge transformationW , the Bloch
function80(0) gets transformed to the identity

80(0) = I. (4.31)

Henceforth we can assume then this normalization, andpn, qn satisfies the condition

T β
α =

N+1∑
n=0

qn,αp
β
n = yα

1 δ
β
α . (4.32)

Our main task is to establish that the map (4.2) is generically locally invertible. This
is the goal of the next section on the inverse spectral problem, but in order to motivate
the constructions given there, we identify here the basic behavior of the Bloch function
ψn(x, y) near the pointsPα abovex = ∞. For(x, y) nearPα, set

ψn(x, y) = xpnα

∞∑
k=0

ψn,k(Pα)x
−k. (4.33)

Herepnα is the order of the pole (or zero whenpnα < 0) of ψn(x, y) nearPα, which
may vary with bothn andα. The following lemma identifies the coefficientsψn,k(Pα)

up to normalization:
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Lemma 4.2. • In the neighborhood of the puncture P1 (where y = O(xN+2)), the
vector-function ψn has a pole of order n and the leading coefficient ψn,0(P1) of its
expansion is equal to

ψn,0(P1) = αnqn−1, (4.34)

where the scalar αn satisfy the recurrence relation

αn+1 = (pT
n qn−1)αn. (4.35)

The next coefficient ψn,1(P1) satisfies

ψn+1,1 = ψn,0 + qn(p
T
n ψn,1). (4.36)

• In the neighborhood of the puncture P3 (where y = O(x−N−2)) the vector-function
ψn has a zero of order n and the leading coefficient ψn,0(P3) of its expansion is equal
to

ψn,0(P3) = βnqn, (4.37)

where the scalar βn satisfies the recurrence relation

βn+1 = − 1

(pT
n qn+1)

βn. (4.38)

• In the neighborhood of the punctureP2 (where y = 1) the vector-functionψn is regular
and its evaluation ψn,0(P2) at P2 is orthogonal to both pn and pn−1, i.e.,

pT
n ψn,0(P2) = pT

n−1ψn,0(P2) = 0. (4.39)

Proof. First, we show that for generic moduli, the Bloch functionψ0(x, y) is regular
near eachPα. Observe thatψN+2(x, y) = L(x)ψ0(x, y) = yψ0(x, y). Now the relation
ψn+1 = Ln(x)ψn can be inverted to produce

ψn(x, y) = Ln(x)
−1ψn+1(x, y) = (1 − xqnp

T
n )ψn+1(x, y). (4.40)

Applying this relationN + 2 times, we may write

ψ0(x, y) = y(1 − xq0p
T
0 ) · · · (1 − xqN+1p

T
N+1)ψ0(x, y). (4.41)

Consider first the neighborhood of the pointP3, wherey is of orderx−(N+2). If ψ0(x, y)

admits the expansion (4.33) nearP3 with ψ0,0(P3) �= 0, then we must have

ψ0,0 = (−)N+2q0(p
T
0 q1) · · · (pT

NqN+1)(p
T
N+1ψ0,0). (4.42)

This shows thatψ0,0(P3) is proportional to the vectorq0, sayψ0,0 = βq0. Now recall
that the Bloch functionψ0(x, y) satisfies the normalization condition (4.10) throughout.
This implies that

∑3
α=1 ψ0,0(P3) = 0 if the ordern0(P3) of the pole ofψ0(x, y) at

P3 is positive. For generic values of the moduli of the curve�, we may assume that∑3
α=1 q0α �= 0. It follows thatβ0 = 0 and henceψ0,0(P3) = 0, which contradicts the

definition ofψ0,0(P3). This shows thatn0(P3) = 0, and the Bloch functionψ0(x, y)

is regular atP3. The argument nearP1 is similar and even more direct, just using the
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equationyψ0(x, y) = ψN+2(x, y) = ∏N+1
n=0 (1 + xqnp

T
n )ψ0(x, y). It shows, inciden-

tally, that the leading coefficientψ0,0(P1) is proportional toqN+1. At P2, the regularity
of ψ0(x, y) follows from the regularity ofψ0(x, y) at the other two pointsP1 andP3,
and from the fact that for generic moduli, the determinant (4.19) is regular.

It is now easy to see that the functionsψn(x, y) have the zeroes and poles spelled
out in Lemma 4.2. The recurrence relations stated there can also be read off the defining
relationsψn+1 = Ln(x)ψn(x). For example, nearP1, we find

xn+1
(
ψn+1,0 + 1

x
ψn+1,1 + · · ·

)
= xn(1 + xqnp

T
n )

(
ψn,0 + 1

x
ψn,1 + · · ·

)
.

(4.43)

This implies

ψn+1,0 = qn(p
T
n ψn,0), (4.44)

ψn+1,1 = ψn,0 + qn(p
T
n ψn,1). (4.45)

The relations (4.35, 4.36) follow. NearP2, we write instead

x−n

(
ψn,0 + 1

x
ψn,1 + · · ·

)
= x−n−1(1 − xqnp

T
n )

(
ψn+1,0 + 1

x
ψn+1,1 + · · ·

)
.

(4.46)

This implies

ψn,0 = −qn(p
T
n ψn+1,0), (4.47)

ψn,1 = ψn+1,0 − qn(p
T
n ψn+1,1). (4.48)

which gives (4.37, 4.38). Finally nearP2, we get

ψn+1,0 + 1

x
ψn+1,1 + · · · =

(
1 + xqnp

T
n )(ψn,0 + 1

x
ψn,1 + · · ·

)
. (4.49)

This implies thatpT
n ψn,0 = 0. Furthermore,ψn+1,0 = ψn,0 + qn(p

T
n ψn,1). Multiplying

on the left bypT
n , we conclude thatpT

n ψn+1,0 = 0. This establishes (4.39), and Lemma
4.2 is proved. ��

4.4. The inverse spectral problem. It is now a standard procedure in the geometric theory
of soliton equations to solve the inverse problem using the concept of the Baker–Akhiezer
function originally proposed in [22].The main properties of the Baker–Akhiezer function
in our model are the following.

• Let � be a Landsteiner–Lopez curve defined by Eq. (2.1). Then for a divisorD of
degreeg+2 = 2N+1 in general position, there exists a unique vector-functionφn(t,Q)

such that:

(a) φn(t,Q) is meromorphic on� outside the puncturesP1, P3. It has at most simple
poles at the pointszi of the divisorD (if all of them are distinct);
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(b) In the neighborhood of the puncturesP1 andP3, it has respectively the form

φn = xnext

( ∞∑
k=0

φn,k(P1)x
−k

)
, Q → P1, (4.50)

φn = x−ne−xt

( ∞∑
k=0

φn,k(P3)x
−k

)
, Q → P3. (4.51)

(c) At the pointsQa , φn(Q) is regular, andφn(Qa) is equal to

φn,α(t,Qβ) = δα,β . (4.52)

The arguments establishing the existence of the Baker–Akhiezer functionφn are well-
known, so we shall be brief. First, we recall that as shown in [22] for any algebraic curve
with two punctures, any fixed local coordinate in the respective neighborhoods of the
punctures, and for any divisorD of degreeg there exists a unique (up to a constant factor)
function with the analytic properties stated above. Now let(P1, P3) be the punctures, and
letx−1 be the local coordinate near either one of the punctures. We can easily show that if
D has degreeg + 2, the dimension of the space of such functions is equal to 3. We form
the 3-dimensional vector whose components are just the three independent functions
from this space. This 3-dimensional vector is unique up to multiplication by a constant
matrix. We fix this matrix by the normalization condition (4.52). This establishes our
claim.

The functionφn(t,Q) can be written explicitly in terms of the Riemannθ -function
associated with�. Theθ -function is an entire function ofg = 2N −1 complex variables
z = (z1, . . . , zg), and is defined by its Fourier expansion

θ(z1, . . . , zg) =
∑

m∈Zg
e2πi<m,z>+πi<τm,m>,

whereτ = τij is the period matrix of�. Theθ -function has the following monodromy
properties with respect to the latticeZg + τZg:

θ(z + l) = θ(z), θ(z + τ l) = exp[−iπ < τl, l > −2iπ < l, z >] θ(z),
wherel is an integer vector,l ∈ Zg. The complex torusJ (�) = Cg/Zg + τZg is the
Jacobian variety of the curve�. The Abel transform

� � Q → Ak(Q) =
∫ Q

Q0

dωk

imbeds the curve� into its Jacobian variety. Heredωk is a basis ofg holomorphic
differentials, normalized as dual to theA-cycles of a symplectic homology basis for�.

According to the Riemann–Roch theorem, for each divisorD = z1+. . .+zg+2 in the
general position, there exists a unique meromorphic functionrα(Q) with rα(Qβ) = δαβ
andD as the divisor of its poles. It can be written explicitly as (see details in [23]):

rα(Q) = fα(Q)

fα(Qα)
, fα(Q) = θ(A(Q) + Zα)

∏
β �=α θ(A(Q) + Fβ)∏l
m=1 θ(A(Q) + Sm)

,
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where

Fβ = − K − A(Qβ) −
g−1∑
j=1

A(zj ), Sm = − K − A(zg−1+m) −
g−1∑
j=1

A(zj ),

Zα = Z0 − A(Rα), Z0 = − K −
g+2∑
j=1

A(zj ) +
3∑

α=1

A(Qα),

whereK is the vector of Riemann constants.
Let dG0 anddG1 be the unique normalized meromorphic differentials on�, which

are holomorphic outsideP1 andP3, and with the property thatdG0 has simple poles
at the punctures with residues∓1, dG1 is regular atP3, and has the formdG1 =
dx(1+O(x−1)) atP1. The normalization means that the differentials have zero periods
aroundA-cycles ∮

A

dG0 =
∮
A

dG1 = 0.

We observe that the differentialdGσ
1 (Q) = dG(Qσ ) has a pole only atP3, and is there

of the form−dx(1 + O(x−1)).
LetV andU be the vectors whose components are theB-periods of the differentials

dG0 anddG1 respectively

V = 1

2πi

∮
B

dG1, U = 1

2πi

∮
B

dG0.

The Baker–Akhiezer functionφn(t,Q) is given by

φn,α(t,Q) = rα(Q)
θ(A(Q) + tU+ + nV + Zα) θ(Z0)

θ(A(Q) + Zα) θ(tU+ + nV + Z0)
exp

(∫ Q

Qα

ndG0 + tdG+
)
,

(4.53)

wheredG+ = dG1 + dGσ
1 andU+ = U + Uσ .

• The Baker–Akhiezer functionφn is a Bloch function, in the sense that

φN+2+n(t,Q) = yφn(t,Q). (4.54)

This is just a consequence of the fact that both sides of the equation satisfy the criteria for
the Baker–Akhiezer function, and that the Baker–Akhiezer function is unique. Similarly,
the uniqueness of the Baker–Akhiezer function implies that, if the divisorD is equivalent
to Dσ , then the functionφn satisfies

φn(t,Q) = g0φ−n(t,Q
σ )f (Q), (4.55)

wheref (Q) is a function with poles atγs and zeros atγ σ
s . Without loss of generality,

we may assume thatf (Q1) = f (Q3) = −f (Q2) = 1.

• Let φn(t,Q) be the Baker–Akhiezer function corresponding to� and the divisorD
of degree 2g + 2. Letpn(t) be a vector orthogonal toφn,0(P3, t) (the leading term in
the expansion (4.50)), and toφn(t, P2), i.e.

pT
n φn,0(P3) = pT

n φn(t, P2) = 0, (4.56)
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andqn be the vector

qn = φn,0(P1)

pT
n φn−1,0(P1)

. (4.57)

The vector functionspn, qn are then(N+2)-periodic and mutually orthogonal, and they
satisfy the contraint (4.31). As can be expected from the gauge invariance (1.7) in the
direct problem, the functionspn(t) andqn(t) which we obtain this way are defined only
up to a multiplierµn(t). However, the operatorsLn andMn(x) are uniquely defined by
the expression (4.3). Furthermore, again by uniqueness of the Baker–Akhiezer function,
the Baker–Akhiezer functionφn(Q) satisfies

ψn+1(t,Q) = Ln(x)ψn(t,Q), (∂t − Mn(x))ψn(t,Q) = 0. (4.58)

Thus the vector function(qn(t), pn(t)) is a solution of the dynamical system (1.6). If the
equivalence class of the divisorD is invariant with respect toσ , then(pn, qn) satisfies
in addition the relation (1.4).

• The Baker–Akhiezer functionφn(t,Q) satisfies the same defining Bloch property
(4.54) as the Bloch functionψn(Q), except for the different normalizations, which is
(4.52) in the case ofφn(t,Q) and (4.10) in the case ofψn(Q). It follows that

ψn(t,Q) = r−1(t,Q)φn(t,Q), r(t,Q) =
3∑

α=1

φ0,α(Q) (4.59)

is a Bloch solution of (4.9) normalized by the condition (4.10). This leads to the following
description of the dynamical system (1.6).

Let pn(t), qn(t) be vector functions (subject to constraints (1.3, 1.4, 4.31) ) which
satisfy Eqs. (1.6). Then thet-dependence of the divisorD under the map (4.1)

(pn(t), qn(t)) �−→ {�,D(t) =
2N+1∑
j=1

zj (t)} (4.60)

coincides with the dynamics of the zeroes of the functionr(t,Q) given by (4.59). The
dynamics of the Bloch eigenfunction of (4.9) (i.e. normalized by (4.10)) are described
by

(∂t − Mn(t, x))ψn(t,Q) = µ(t,Q)ψn(t,Q), µ = −∂t ln r(t,Q). (4.61)

We observe that the linearization of the equations of motion on the Jacobian of the
curve is a direct corollary of the linear dependence ont of the exponential factor in the
expansion ofψn(t,Q) near the punctures.

• As we saw earlier, the normalization (4.31) can be achieved by the action (1.8) of
a subgroup of matricesW which commutes withg0. In order to getM, we have to
consider in addition the action of diagonal matricesW . The basic observation is the
following:

Let the Baker–Akhiezer functionsψn(t,Q) andψ ′(t,Q) correspond to equivalent
divisorsD andD′, respectively. Then

ψ ′
n(t,Q) = Wψn(t,Q)h(Q), (4.62)
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whereh(Q) is a function with poles atD and zeros atD′, andW is a diagonal matrix
W = h−1(Qα)δα,β . To establish (4.62), it suffices to check that both sides of the equation
have the same analytical properties. Equation (4.62) implies that the vectorspn, qn
defined by equivalent divisors are related by a transformation (1.8) with a diagonal
matrixW . Altogether, we have established the following part of the Main Theorem of
Sect. 1:

Theorem 1. The map (4.1) identifies the reduced phase space M with a bundle over
the space of algebraic curves � defined by (2.1) with fN(x) of the form (2.2). At generic
data, the map has bijective differential. The fiber of the bundle is the Jacobian J (�0) of
the factor-curve �0 = �/σ ,

M = {�, [D] ∈ J (�0)}. (4.63)

5. Hamiltonian Theory and Seiberg–Witten Differential: The Even Divisor Model

We come now to the crucial issue of how to determine the symplectic forms with respect
to which the system (1.6) is Hamiltonian. For this, we rely on the Hamiltonian approach
proposed in [6] and [7] for general soliton equations expressible in terms of Lax or
Zakharov–Shabat equations. This approach was effective in the study of gauge theories
with matter in the fundamental representation. Further applications were given in [10]
and [24]. We review its main features.

5.1. The symplectic forms in terms of the Lax operator. In order to find the Hamiltonian
structure of the equations starting with the Lax operator, we need to identify a two-form
on the phase spaceM of vectors(qn, pn), written in term of the Lax operatorL(x).
Candidates for such two-forms are

ω(m) = 1

2

3∑
α=1

ResPα

〈
8∗

n+1(Q)δLn(x) ∧ δ8n(Q)
〉 dx
xm

. (5.1)

The various expressions in this equation are defined as follows. The notation〈fn〉 stands
for a sum over one period of the periodic functionfn:

〈fn〉 =
N+1∑
n=0

fn. (5.2)

The expressionψ∗
n (Q) is the dual Baker–Akhiezer function, which is the row-vector

solution of the equation

ψ∗
n+1(Q)Ln(z) = ψ∗

n (Q), ψ∗
N+2(Q) = y−1ψ∗

0 (Q), (5.3)

normalized by the condition

ψ∗
0 (Q)ψ0(Q) = 1. (5.4)

Note that (4.9) and (5.3) imply thatψ∗
n+1ψn+1 = ψ∗

n+1(Ln(x)ψn) = (ψ∗
n+1Ln(x))ψn =

ψ∗
nψn does not depend onn. We would also like to emphasize that, unlike the Bloch

function ψn(Q) which does not haven-independent zeroes, the normalization (5.4)
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allows the dual Bloch functionψ∗
n (Q) to have such zeroes. In fact, they occur at the

poles ofψn(Q).
In (5.1), the differentialδ denotes the exterior differential with respect to the moduli

parameters ofM. (This is in order to distinguishδ from the differentiald, which is
the exterior differential on the surface�.) Thus the external differentialδLn(z) can
be viewed as a one-form onM, valued in the space of operator-valued meromorphic
functions on�. Similarly the Bloch functionψn(Q) and dual Bloch functionsψ∗

n (Q)

are functions onM, valued respectively in the space of column-vector-valued and the
space of row-vector-valued meromorphic functions on�. It follows thatδψn(Q) is a
one-form onM, valued in the space of column-vector-valued meromorphic functions
on �. The expressionψ∗

n+1δLn(x) ∧ δψn(x) is then a two-form onM, valued in the
space of meromorphic functions on�, and for eachm integer, the expression

G(m) = 〈
ψ∗

n+1δLn(x) ∧ δψn(x)
〉 dx
xm

(5.5)

is a meromorphic 1-form on�. This justifies (5.1) as a two-form onM.
In (5.1), we have allowed for a later choice of an integerm. We shall see shortly that

holomorphicity requirements restrict to 0≤ m ≤ 2, and that the symplectic form of the
N = 2 SUSY with a hypermultiplet in the anti-symmetric representation is obtained by
settingm = 0.

Sometimes it is useful to think of the symplectic formω as

ω(m) = 1

2
Resx=∞ Tr

〈(
8−1

n+1(x)δLn(x) ∧ δ8n(x)
)〉 dx

xm
, (5.6)

where8n(x) is a matrix with the columnsψn(Qj (x)), Qj (x) = (x, yj ) corresponding
to different sheets of�. The matrix8n(x) is of course not defined globally. Note that
ψ∗

n (Q) are the rows of the matrix8−1
n (x). That implies that8∗

n(Q) as a function on the
spectral curve is meromorphic outside the punctures, has poles at the branching points
of the spectral curve, and zeroes at the poleszj of 8n(Q). These analytical properties
will be crucial in the sequel.

5.2. The symplectic forms in terms of x and y. A remarkable property of the symplectic
form defined by (5.1) in terms of the Lax operatorL(x) is that it can, under quite general
circumstances, be rewritten in terms of the meromorphic functionsx andy on the spectral
curve�. More precisely, we have

ω(m) = −
2N+1∑
i=1

δ ln y(zi) ∧ δx

xm
(zi). (5.7)

The meaning of the right-hand side of this formula is as follows. The spectral curve is
equipped by definition with the meromorphic functionsy(Q) andx(Q). Their evalu-
ationsx(zi), y(zi) at the pointszi define functions on the spaceM, and the wedge
product of their external differentials is a two-form onM.

The proof of the formula (5.7) is very general and does not rely on any specific form
of Ln. For the sake of completeness we present it here in detail, although it is very close
to the proof of Lemma 5.1 in [24].

Recall that the expressionG(m) defined in (5.5) is a meromorphic differential on the
spectral curve�. Therefore, the sum of its residues at the puncturesPα is equal to the
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opposite of the sum of the other residues on�. Form ≤ 2, the differentialG(m) is regular
at the points situated overx = 0, thanks to the normalization (4.31), which insures that
δψn(Q) = O(x). Otherwise, it has poles at the poleszi of ψn(Q) and at the branch
pointssi , where we have seen thatψ∗

n+1(Q) has poles. We analyze in turn the residues
at each of these two types of poles.

First, we consider the poleszi of ψn(Q). By genericity, these poles are all distinct
and of first order, and we may write

ψn ≡ ψn,0(zi)
1

x − x(zi)
+ · · · . (5.8)

It follows thatδψn has a pole of second order atzi

δψn = ψn,0(zi)
δx(zi)

(x − x(zi))2
+ · · · . (5.9)

In view of the fact thatψ∗
n+1 has a simple zero atzi and hence can be expressed as

ψ∗
n+1 ≡ ψ∗

n+1,0(x − x(zi)) + · · · , (5.10)

we obtain

ResziG(m) = 〈
ψ∗

n+1,0δLnψn

〉 ∧ δx

xm
(zi) = 〈

ψ∗
n+1δLnψn

〉 ∧ δx

xm
(zi). (5.11)

The key observation now is that the right-hand side can be rewritten in terms of the
monodromy matrixL(x). In fact, the recursive relations (4.9) and (5.3) imply that

〈
ψ∗

n+1δLnψn

〉 =
〈
ψ∗

N+2

(
N+1∏

m=n+1

Lm

)
δLn

(
n−1∏
m=0

Lm

)
ψ0

〉
(5.12)

=
N+1∑
n=0

ψ∗
N+2

(
N+1∏

m=n+1

Lm

)
δLn

(
n−1∏
m=0

Lm

)
ψ0 (5.13)

= ψ∗
N+2δLψ0 = ψ0δ ln yψ0. (5.14)

In the last equality, we have used the standard formula for the variation of the eigenvalue
of an operator,ψ∗

0δLψ0 = ψ∗
0δyψ0. Altogether, we have found that

ResziG(m) = δ ln y(zi) ∧ δx

xm
(zi). (5.15)

The second set of poles ofG(m) is the set of branching pointssi of the cover. The
pole ofψ∗

n at si cancels with the zero of the differentialdx, dx(si) = 0, considered
as a differential on�. The vector-functionψn is holomorphic atsi . However,δψn can
develop a pole as we see below. If we take an expansion ofψn in the local coordinate
(x − x(si))

1/2 (in general position when the branching point is simple) and consider its
variation we get

ψn = ψn,0 + ψn,±(x − x(si))
1/2 + · · · , (5.16)

δψn = −1

2
ψn,±

δx(si)

(x − x(si))1/2 + · · · . (5.17)
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Comparing withdψn

dx
= 1

2ψn,± 1
(x−x(si ))

1/2 + · · · , we may write

δψn = −dψn

dx
δx(si) + O(1). (5.18)

This shows thatδ8n has a simple pole atsi . Similarly, we may write

δy = −dy

dx
δx(si) + O(1). (5.19)

The identities (5.18) and (5.19) imply that

RessiG(m) = Ressi

[〈
ψ∗

n+1δLndψn

〉 ∧ δy dx

xmdy

]
. (5.20)

Arguing as for (5.12), this can be rewritten as

RessiG(m) = Ressi

[(
ψ∗

N+2δLdψ0
) ∧ δydx

xmdy

]
. (5.21)

Due to the antisymmetry of the wedge product, we may replaceδL in (5.21) by(δL−δy).
Then using the identities

ψ∗
N+2(δL − δy) = δψ∗

N+2(y − L), (5.22)

(y − L)dψ0 = (dL − dy)ψ0, (5.23)

which result fromψ∗
N+2(L − y) = (L − y)ψ0 = 0, we obtain

RessiG = Ressi
(
δψ∗

N+2(dL − dy)ψ0
) ∧ δydx

xmdy
. (5.24)

Now the differentialdL does not contribute to the residue, sincedL(si) = 0. Fur-
thermore,ψ∗

N+2ψ0 = y−1ψ∗
0ψ0 = y−1. Thus δψ∗

N+2ψ0 = −ψ∗
N+2δψ0 − y−2δy.

Exploiting again the antisymmetry of the wedge product, we arrive at

RessiG = Ressi
(
ψ∗

N+2δψ0
) ∧ δy

dx

xm
. (5.25)

Recall that we have normalized the Bloch functionψ0(Q) at x = 0 by (4.31), and
that nearx = 0, the functiony is of the form (2.4). Thusδψ0 = O(x) andδy = O(x)

nearx = 0, and the differential form

(
ψ∗

N+2δψ0
) ∧ δy

dx

xm
(5.26)

is holomorphic atx = 0 for 0 ≤ m ≤ 2. It is manifestly holomorphic at all the other
points of�, except at the branching pointssi and the polesz1, · · · , z2N+1. Therefore

∑
si

Ressi
(
ψ∗

N+2δψ0
) ∧ δy

dx

xm
= −

2N+1∑
i=1

Reszi
(
ψ∗

N+2δψ0
) ∧ δy

dx

xm
. (5.27)
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Using again the expressions (5.16, 5.18) forψ0 and δψ0, and the fact thatψ∗
N+2 =

y−1ψ∗
0 , the right-hand side of (5.27) can be recognized as

2N+1∑
i=1

δ ln y(zi) ∧ δx(zi)

xm(zi)
. (5.28)

The sum of (5.15) and (5.28) gives (5.7), since

2ω(m) = −
2N∑
i=1

ResziG(m) −
∑
si

RessiG(m). (5.29)

The identity (5.7) is proved.

5.3. Action-angle variables and Seiberg–Witten differential. The expression (5.7) for
the symplectic formω(m) suggests its close relation with the following one-form on�:

dλ(m) = ln y
dx

xm
. (5.30)

Strictly speaking, the formdλ(m) is not a meromorphic differential in the usual sense,
because of the multiple-valuedness of lny. However, the ambiguities in lny are fixed
multiples of 2πi, which disappear upon differentiation. Thus, the formdλ(m) is no dif-
ferent from the usual meromorphic differentials, as far as the construction of symplectic
forms is concerned. Also, the formdλ(m) and the form 1

m−1x
−m+1 dy

y
(for m �= 1; for

m = 1,−(ln x)
dy
y

) differ by an exact differential, and we shall not distinguish between
them. From this point of view, the Seiberg–Witten form (1.1) can be identified with the
form −dλ(0).

Our spin chain model has led so far to a 2N -dimensional phase spaceM, equipped
with several candidate symplectic formsω(m), 1 ≤ m ≤ 2. We still have to reduceM
to a (2N − 2)-dimensional phase space, and to identify the correct symplectic form.
Remarkably, both selections are tied to a key physical requirement for the one-form
which corresponds to the Seiberg–Witten of aN = 2 SUSY gauge theory, namely the
holomorphicity of its variations under moduli deformations.

It is an important feature ofN = 2Yang–Mills theories that the masses of the theory
are not renormalized. Since the masses of the theory correspond to the poles of the
Seiberg–Witten differentialdλ, it follows thatδdλ must be holomorphic. Thus we need
to examine the poles ofδ dλ = δ ln y dx

xm , and identify the subvarieties ofM along which
δdλ is holomorphic. There are 3 such subvarieties, corresponding to the choices ofm:

• On the varietyM2 = M ∩ {u0 = c0, u1 = c1}, the differentialδ dλ(2) = (δ ln y)dx
x2

has no pole atQα, sincey = 1+O(x2) nearx = 0. On the other hand, the differential
dx
x2 vanishes atx = ∞, soδ ln y dx

x2 is also holomorphic there, andδdλ(2) is holomorphic.

• On the varietyM0 = M∩{uN = 1, uN−1 = 0}, the differentialδ dλ(0) = (δ ln y)dx

is automatically holomorphic atx = 0. Near∞, in view of the expansion () fory, we
haveδ ln y = O(x2) if we vary only the moduli withinM2. Thusδdλ(0) is holomorphic.

• On the varietyM1 = M ∩ {uN = 1}, the differentialδ dλ(1) = (δ ln y)dx
x

is still
holomorphic, becauseδ ln y = O(x). Nearx = ∞, the sole constraint{uN−1 = 1}
suffices to guarantee thatδ ln y = O( 1

x
). Thusδdλ(1) is holomorphic.
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Whenm and hencedλ(m) is even under the involutionσ , action-angle variables can
be introduced as follows. Restricted toM(m), δdλ(m) is holomorphic, and hence can be
expressed for suitable coefficientsδai as

δdλ(m) =
2N−1∑
i=1

(δai)dωi, (5.31)

wheredωi is a basis of 2N − 1 holomorphic one-forms on�. Sincedλ(m) is even,
only holomorphic one-formsdωi which are even can occur on the right-hand side. We
identify such forms with forms on�/σ . We choose a symplectic homology basisAi, Bi

and a dual basis of holomorphic formsdωi , 1 ≤ i ≤ N − 1, for the factor curve�/σ .
The variablesai andaDi can then be defined by

ai =
∮
Ai

dλ(m), aDi =
∮
Bi

dλ(m). (5.32)

The interpretation of the variablesai is as action variables from the viewpoint of the spin
model and as vacuum moduli from the viewpoint of theN = 2 SUSY gauge theory.
Evidently, their variations coincide with theδai of Eq. (5.31).

Next, the angle variablesφi , 1 ≤ i ≤ N − 1, are defined by

D = {z1, · · · , z2N+1} �−→ φi =
2N+1∑
j=1

∫ zj

dωi. (5.33)

We claim now that, form even, the symplectic formω(m) is a genuine symplectic form
when restricted toM(m), and thatai andφi as defined above are action-angle coordinates
for ω(m)

ω(m) =
N−1∑
i=1

δai ∧ δφi onM(m). (5.34)

To see this, we evaluate the two-formδ
(∑2N+1

j=1

∫ zj
Q0

δ dλ
)

in two different ways. Sub-
stituting in (5.31), we find that it is equal to

δ(

N−1∑
i=1

δai φi) =
N−1∑
i=1

δφi ∧ δai . (5.35)

On the other hand, we can also write

δ


2N+1∑

j=1

∫ zj

Q0

δ dλ


 = δ


2N+1∑

j=1

∫ zj

Q0

(δ ln y)
dx

xm


 =

2N+1∑
j=1

δx(zj )

xm(zj )
∧ (δ ln y)(zj ).

(5.36)

Comparing the two formulas, and making use of (5.7), we obtain the desired equation
(5.34).

We observe that for the present even divisor spin model, the spaceM1 and the form
dλ(1) are not applicable. In fact, there are difficulties with both the dimension ofM1
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which is odd, and the angle variablesφi defined by (5.33), which would vanish identically
because the class of the divisorD is even.

For theN = 2 SUSYYang–Mills theory with a hypermultiplet in the antisymmetric
representation, the spectral curves are given byM0. The symplectic form is thenω(0),
which provides an independent check of the choice of Seiberg–Witten form found by
Landsteiner and Lopez.

5.4. The Hamiltonian of the Flow. We show now that the even divisor spin model is a
Hamiltonian system. More precisely, restricted to each of the phase spacesM(0) orM(2),
the system is Hamiltonian with the corresponding symplectic form, with a corresponding
Hamiltonian. We would like to stress that, once again, the arguments to these ends are
quite general, and use only the expression forω(m) in terms of the Lax operator.

Lemma 5.1. Let m be either 0 or 2. Then Eqs. (1.6) restricted on M(m) are Hamiltonian
with respect to the symplectic form ω(m) given by (5.1). The Hamiltonians H(m) are given
by

H(0) = uN−2, (5.37)

H(2) = ln uN =
N+1∑
n=0

ln(p+
n qn−1) = 1

2

N+1∑
n=0

ln[(p+
n qn−1)(p

+
n−1qn)]. (5.38)

Proof. By definition, a vector field∂t on a symplectic manifold is Hamiltonian, if its
contractioni∂t ω(X) = ω(X, ∂t ) with the symplectic form is an exact one-formδH(X).
The functionH is the Hamiltonian corresponding to the vector field∂t . Thus

i∂t ω(m) = 1

2

∑
α

ResPα

(〈
ψ∗

n+1δLnψ̇n

〉− 〈
ψ∗

n+1L̇nδψn

〉) dx
xm

. (5.39)

Now under the flow (1.6), the Lax operatorsLn(x) flow according to the Lax equation
(4.4), while the Bloch functionψn flow according to (4.61). Consequently,

i∂t ω(m) = 1

2

∑
α

ResPα

(〈
ψ∗

n+1δLn(Mn + µ)ψn

〉− 〈
ψ∗

n+1(Mn+1Ln − LnMn)δψn

〉) dx
xm

. (5.40)

SinceLnψn = ψn+1, it follows that

ψ∗
n+1Mn+1Lnδψn = ψ∗

n+1Mn+1ψn+1 − ψ∗
n+1Mn+1δLnψn.

Upon averaging inn, we obtain〈
ψ∗

n+1(Mn+1Ln − LnMn)δψn

〉 = − 〈ψ∗
n+1Mn+1δLnψn

〉
. (5.41)

For alln, bothδLn(x) andMn(x) vanish atx = 0. The differential form

〈
ψ∗

n+1 (δLnMn + Mn+1δLn)ψn

〉 dx
xm

(5.42)

is thus holomorphic atx = 0, in both casesm = 0 andm = 2. As we have seen, outside
of x = ∞, the poles ofψ∗

n+1 are at the branch ponits and are cancelled by the zeroes
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of dx there, while the poles ofψn are cancelled by the zeroes ofψ∗
n+1. Thus the above

differential form is holomorphic outside ofx = 0. The sum of its residues atPα must
be zero

∑
α

ResPα

〈
ψ∗

n+1 (δLnMn + Mn+1δLn)ψn

〉 dx
xm

= 0. (5.43)

The expression (5.40) fori∂t ω(m) reduces to

i∂t ω(m) = 1

2

∑
α

ResPα

(〈ψ∗
n+1δLnψn〉µ(Q, t)

) dx
xm

. (5.44)

Applying the arguments leading to (5.12), we obtain

i∂t ω(m) = 1

2

∑
α

resPαδ(ln y)µ(t,Q)
dx

xm
. (5.45)

As follows from (4.50,4.51), and (4.61) the functionµ(t,Q) is holomorphic atP2, while
it has the following expansion at the puncturesP1, P3:

µ(t,Q) = −x + O(1), Q → P1; µ(t,Q) = x + O(1), Q → P3. (5.46)

We consider now the casesm = 2 andm = 0 separately. Whenm = 2, the form
µdx

x2 is regular atP2, and has simple poles with opposite residues atP1 andP3. Since

δ ln y = δuN + O( 1
x
) nearP1, it follows immediately that

i∂t ω(2) = δ(ln uN). (5.47)

Whenm = 0, we observe that the form(δ ln y)dx is regular atx = ∞. Indeed, the
constraintsuN = 1, uN−1 = 0 defining the phase spaceM0 in this case imply that
δ ln y = O( 1

x2 ) near all three pointsP1, P2, andP3. ForP1 andP3, this statement is a
direct consequence of (2.7) and (2.8). ForP2, this follows from the fact that three roots
yα of the Landsteiner–Lopez curve (2.1) must satisfy

∏3
α=1 yα = 1. Returning to the

residues in (5.45), we see that the pointP2 does not contribute. As for the pointsP1 and
P3, they contribute exactly the coefficientuN−2 in the expansions (2.7) and (2.8) fory,

i∂t ω(0) = δuN−2. (5.48)

The lemma is proved. ��

5.5. The symplectic form in terms of (pn, qn). The expression (5.1) for the symplectic
formsω(m) in terms of the Lax operator also provides a straightforward way of writing
ω(m) in terms of the dynamical variables(qn, pn). Such an expression for the formω(0)
appears complicated. But it is quite simple for the formω(2), and we derive it here.

We haveδLn = x δ(qnp
T
n ), and the contributions of the three pointsPa abovex = ∞

can be evaluated as follows.
At the pointP1, y = O(xN+2), ψn = O(xn), ψn+1 = O(x−(n+1)), and thus the

differential〈ψ∗
n+1δLn ∧ δψn〉 dxx2 is regular. The residue atP1 vanishes.



568 I. Krichever, D. H. Phong

At the pointP2, ψn andψ∗
n+1 are regular. Using the same notation as in (4.33), we

write

ψn = ψn,0 + ψn,1x
−1 + · · · , (5.49)

ψ∗
n+1 = ψ∗

n+1,0 + ψ∗
n+1,1x

−1 + · · · . (5.50)

In analogy with (ref), from the equation

ψ∗
n+1 = ψ∗

nLn(x)
−1 = ψ∗

n (1 − xqnp
T
n ), (5.51)

it follows that

ψ∗
n,0qn = ψ∗

n+1,0qn = 0. (5.52)

The residue atP2 is then readily identified

ResP2

〈
ψ∗

n+1δLn ∧ δψn

〉 dx
x2 = ResP2〈ψ∗

n+1,0δ(qnp
T
n ) ∧ δψn,0〉dx

x
(5.53)

= −〈ψ∗
n+1,0δqn ∧ (δpT

n )ψn,1〉 (5.54)

≡ I. (5.55)

At the pointP3, y = O(x−N−2), and

ψn = ψn,0x
−n + ψn,1x

−n−1 + · · · , (5.56)

ψ∗
n+1 = ψ∗

n+1,0x
n+1 + ψ∗

n+1,1x
n + · · · . (5.57)

It follows that the residue is given by

ResP3

〈
ψ∗

n+1δLn ∧ δψn

〉 dx
x2

= [
ψ∗

n+1,0δ(qnp
T
n ) ∧ δψn,1 + ψ∗

n+1,1δ(qnp
T
n ) ∧ δψn,0

]
(5.58)

We now make use of Eq. (5.51) to derive recursion relations between the coefficients of
ψ∗

n ,

ψ∗
n+1,0 = −ψ∗

n,0qnp
T
n , ψ∗

n+1,1 = ψ∗
n,0 − ψ∗

n,1qnp
T
n . (5.59)

They imply that

ψ∗
n+1,0qn = 0, ψ∗

n+1,1qn = ψ∗
n,0qn. (5.60)

As a consequence, the first term on the right-hand side of () simplifies to

ψ∗
n+1,0δ(qnp

T
n ) ∧ δψn,1 = ψ∗

n+1,0δqn ∧ pT
n δψn,1. (5.61)

Now recall that we introduced the coefficientβn by ψn = βnqn. Comparing with the
equation (), we obtain

βn = −pT
n ψn,1 (5.62)

and the preceding term becomes

ψ∗
n+1,0δ(qnp

T
n ) ∧ δψn,1 = −ψ∗

n+1,0δqn ∧ δβn − ψ∗
n+1,0(δqn ∧ δpT

n )ψn,1. (5.63)
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On the other hand,pT
n ψn,0 = 0, and the second term on the right-hand side of () can be

rewritten as

ψ∗
n+1,1δ(qnp

T
n ) ∧ δψn,0 = ψ∗

n+1,1qnδp
T
n ∧ δψn,0 − ψ∗

n+1,1δqn ∧ (δpT
n )ψn,0. (5.64)

Altogether, we obtain the following expression for the residue atP3:

ResP3

〈
ψ∗

n+1δLn ∧ δψn

〉 dx
x2 = II + III , (5.65)

where the terms II and III are defined by

II = −[ψ∗
n+1,0(δqn ∧ δpT

n )ψn,1 + ψ∗
n+1,1(δqn ∧ δpT

n )ψn,0], (5.66)

III = −(ψ∗
n+1,0δqn ∧ δβn − ψ∗

n+1,1qnδp
T
n ∧ δψn,0). (5.67)

We claim that the term III can be simplified to

III = −δpT
n ∧ δqn. (5.68)

In fact, in view of the recursion relations (5.59) and the fact thatψn = βnqn, it can be
rewritten as

III = −ψ∗
n,0qn)

(
pT
n δqn ∧ δβn + δpT

n ∧ (δβn)qn + δpT
n ∧ βnδqn

)
. (5.69)

The first two terms on the right-hand side cancel, sincepT
n qn = 0. As for the remaining

term, we note that the normalizationψ∗
nψn = 1 implies nearP3

1 = (ψ∗
n,0x

−n + O(x−n−1))(βnqnx
n + O(xn−1)) = ψ∗

n,0βnqn + O(x−1) (5.70)

from which it follows thatψ∗
n,0βnqn = 1. The identity (5.68) is established.

Finally, it is readily seen that the remaining terms I and II combine into

I + II = −
3∑

a=1

ResPa

〈
ψ∗

n+1δqn ∧ δpT
n ψn

〉 dx
x

. (5.71)

But the 1-form
〈
ψ∗

n+1δqn ∧ δpT
n ψn

〉
dx
x

is meromorphic on the space�, with poles only
at the pointsPa abovex = ∞ andQa abovex = 0. We can deform then contours and
rewrite II+III as residues atQa ,

I + II =
3∑

a=1

ResQa

〈
ψ∗

n+1δqn ∧ δpT
n ψn

〉 dx
x

. (5.72)

At x = 0, we haveψ∗
n+1 = ψ∗

n , and this expression is determined by the normalization
condition (4.31) on the matrixW . In terms ofψn, the normalization (4.31) can be restated
as the normalization conditionψ∗

n (0)ψ
T
n = I as an identity between 3× 3 matrices.

Thus I+ II = 3 〈δqn ∧ δpn〉, and we obtain the final formula for the symplectic formω
in terms ofpn andqn,

ω = 2
N+1∑
n=0

δqT
n ∧ δpn. (5.73)
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6. Hamiltonian Theory and Seiberg–Witten Differential: The Odd Divisor Model

The main difference between the even and the odd divisor spin models is in the parity of
the divisorD of poles of the Bloch functionψn(Q). For the odd divisor spin model,D
is essentially odd under the involutionσ : (x, y) → (−x, y−1) in the following sense:

[D] + [Dσ ] = K + 2
3∑

α=1

Pα. (6.1)

HereK is the canonical class, which is the divisor class of any meromorphic 1-forms
on�. As in the case of the even divisor spin model, the relation (6.1) is a consequence
of the transformation ofL(x) underσ , which is in this caseL(−x) = (L(x)−1)T . This
implies thatψ0(Q

σ ) andψ0(Q)∗ are both dual Bloch functions forL(x), and thus

ψ∗
0 (Q) = ψ0(Q

σ )f (Q), (6.2)

wheref (Q) is a meromorphic function on�. But the zeroes of the dual Bloch function
ψ∗

0 are exactly the poles ofψ0(Q), while its poles are exactly the branch points of the
surface�. Thus the preceding equation implies the following equation for divisor classes

[branch points] − [D] = [Dσ ]. (6.3)

To determine the divisor of the branch points of�, we consider the differentialdx,
viewed as a meromorphic form on�. Sincedx has a pole of order 2 at eachPa , and a
zero at each branch point, we have[branch points] − 2

∑3
a=1 Pa = K, and the desired

relation (6.1) follows.

• We discuss briefly the direct and the inverse problems for the odd divisor spin system.
Once the difference in parity of the divisor of poles of the Bloch functions is taken
into account, the direct problem is treated in exactly the same way as before. As for
the inverse problem, we need only a few minor modifications in expansions near the
puncturesP1, P3, which we give (cf. (4.50, 4.51) now

φn = xnext

( ∞∑
k=0

φn,k(P1)x
−k

)
, Q → P1, (6.4)

φn = x−next

( ∞∑
k=0

φn,k(P3)x
−k

)
, Q → P3, . (6.5)

They lead to minor modifications in the exact formulas for the Baker–Akhiezer function
φn(t,Q) (cf. (4.53)):

φn,α(t,Q) = rα(Q)
θ(A(Q) + tU− + nV + Zα) θ(Z0)

θ(A(Q) + Zα) θ(tU− + nV + Z0)
exp

(∫ Q

Qα

ndG0 + tdG−
)
,

(6.6)

wheredG− = dG1 − dGσ
1 andU− = U − Uσ .

We show that if the divisorD satisfies (6.1), then the corresponding Baker–Akhiezer
function satisfies the relation

φ∗
n(t,Q) = φT

n (t,Qσ )f (Q), (6.7)
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where as beforeφ∗
n are the rows of the matrix inverse to the matrix

Mβ
n,α(x) = φn,α(Pβ). (6.8)

Here the pointsPα(x) are the three preimages ofx on� on different sheets. Of course,
the matrixMn(x) does depend on the ordereing of sheets, but one can check that if
for Pα(x) we defineφ∗

n(Pα) as the corresponding row of the inverse matrix, thenφ∗
n is

well-defined. As beforeφ∗
n has poles at all the branching points and zeroes at the points

of the divisorD.
To establish (6.7), we show that∑

α

φn,α(t, Pγ (x))φ
σ
n,β(t, Pγ )f (Pγ ) = δα,β . (6.9)

Indeed, from (6.4) and (6.5), it follows that the functionφn,α(t,Q)φn,β(Q
σ )f (Q) is

holomorphic everywhere except at the branching points (the poles and the essential
singularities at the puncturesPα overx = ∞ cancel each other; there are no poles at
D andDσ becausef (Q) has zeros at these points). Therefore, the left-hand side of the
above equation is a holomorphic function ofx (the poles at the branching points cancel
upon the summation). Hence it is a constant, which can be found by takingx = 0.

The uniqueness ofφn and the relation (6.7) implies as before that it satisfies the
equation

φn+1 = Ln(x)φn, ∂tφn = Mn(x)φn, (6.10)

whereLn andMn have the form (3.4,3.5).
• We come now to the Hamiltonian structure of the odd divisor spin model. Recall that
we had introduced the spaceModd of spin chains. Solving the direct and inverse spectral
problem as in the case of the even divisor spin model, we can identityModd with the
space of geometric data

Modd
1 ↔ {�,D; [D] + [Dσ ] = K + 2

3∑
α=1

Pα}. (6.11)

We can verify that the space on the right-hand side is 2N + 1 dimensional, as it should
be: there areN + 1 moduli parameters for the curve�, andN parameters for the
antisymmetric divisor[D]. The same discussion as in Sects 5.3 and 5.4 for the even
divisor spin model shows that, in the present case, the only candidate for the symplectic
form is the formω(1), restricted to the 2N -dimensional phase spaceModd

1 defined by

Modd
1 = Modd ∩ {uN = 1}. (6.12)

The corresponding action and angle variables are now given by

ai =
∮
Aodd

i

dλ(1), φi =
2N+1∑
j=1

∫ zj

dωodd
i , 1 ≤ i ≤ N, (6.13)

wheredωodd
i andAodd

i are respectively a basis of odd holomorphic differentials and a
basis of oddA-cycles. We have then as before

ω(1) =
N∑

j=1

δaj ∧ δφj . (6.14)
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