Holomorphic bundles and scalar difference operators: one-point constructions

I. M. Krichever and S. P. Novikov

As in [1], we shall consider a non-singular algebraic curve Γ with a distinguished point $P_{0}=\infty$ and a local coordinate $z=k^{-1}, z\left(P_{0}\right)=0$. We denote by $A=A\left(\Gamma, P_{0}\right)$ the ring of algebraic functions with a single pole at P_{0}. We prescribe the 'inverse problem data' as a sequence of points $\left(\gamma_{1}, \ldots, \gamma_{l g}\right)$, where l is the 'rank' and g is the genus of Γ, parameters $\alpha_{s j}, s=1, \ldots, l g$, $j=1, \ldots, l-1$ and an $l \times l$ matrix-valued function $\chi_{n}^{(0)}(k)(n \in \mathbb{Z})$ with the only non-zero elements $\chi^{(0) p, p+1}=1, p \leq l-1, \chi^{(0) l q}=a_{q}, q=1, \ldots, l$, where a_{q} are polynomials in k depending on n.

Theorem 1. For any vector η_{0} and generic data there exists a unique vector-valued 'BakerAkhiezer' function $\psi_{n}(P), P \in \Gamma$, meromorphic on $\Gamma \backslash P_{0}$ with poles of order one at the points γ_{s}, where the residues are connected by $\left(\operatorname{res}_{\gamma_{s}} \psi^{q+1}\right)=\alpha_{s q}\left(\operatorname{res}_{\gamma_{s}} \psi^{1}\right), s=1, \ldots, l g, q=1, \ldots, l-1$. In a neighbourhood of $\infty=P_{0}$ the vector-valued function ψ has the asymptotics $\psi=\left[\eta_{0}+\right.$ $\left.\sum_{s \geq 1} \eta_{s n} k^{-s}\right] \Psi^{(0)}, \Psi_{x}^{(0)}=\chi^{(0)} \Psi^{(0)}$ or $\Psi_{n+1}^{(0)}=\chi_{n}^{(0)} \Psi_{n}^{(0)}, \Psi^{(0)}$ being an $l \times l$-matrix.

Theorem 2. Suppose that the matrix $\chi^{(0)}$ depends on k in such a way that only one of the functions $a_{j n}(k)$ has the form $a_{j}=k-v_{j, n+1}^{(0)}$ and all the remaining a_{q} are independent of k for $q \neq j$. Then for any function $f(P) \in A\left(\Gamma, P_{0}\right)$ with a pole of order τ there is a unique operator L_{f} of the form

$$
L_{f}=\sum_{-M}^{+N} u_{p n} T^{p}
$$

where $N=\tau(l-j+1), M=\tau(j-1), T \psi_{n}=\psi_{n+1}$ and $M+N=\tau l$, such that the vectorvalued Baker-Akhiezer function ψ constructed in Theorem 1 with $\eta_{0}=\left(\eta_{0}^{q}\right), \eta_{0}^{q}=\delta^{q j}$ satisfies the equation

$$
L_{f} \psi=f \psi
$$

Remark. For $j=1$ this assertion is contained in [1] and [2] in the continuous case. Recall that (α, γ) are the Tyurin parameters characterizing the framed holomorphic stable bundle η, where $c_{1}(\operatorname{det} \eta)=l g$. All the earlier constructions of commutative difference operators (of rank 1) required no fewer that two 'infinite' points on Γ. We note that symmetric operators $M=N$ are possible only in the case of even rank $l=2 j-2$.

Following the idea of [1], we consider the multiparameter vector-valued Baker-Akhiezer function. It is determined by the same data ($\Gamma, P_{0}, \gamma_{s}, \alpha_{s j}, z=k^{-1}$) as in Theorem 1 , but in addition for each new variable t_{p} a matrix $M^{(0 p)}, p=1,2, \ldots$ is given. The 'input' matrix $\Psi_{n}^{(0)}$ is determined by the equations $\left(t=\left(t_{1}, t_{2}, \ldots\right)\right)$

$$
\Psi_{n+1}^{(0)}=\chi_{n}^{(0)} \Psi_{n}^{(0)}, \quad \Psi_{t_{p}}^{(0)}=M^{(0 p)} \Psi^{(0)}, \quad p=1,2, \ldots
$$

where the $\chi^{(0)}$ are chosen as in Theorem 2.
Theorem 3. For any $l \geq 2$ one can choose matrices $M^{(0 p)}, p=1,2, \ldots$, in such a way that the vector-valued Baker-Akhiezer function ψ determines a two-dimensionalized Toda lattice hierarchy of solutions of the inverse problem $\left(\Gamma, P_{0}, z=k^{-1}, \gamma_{s}, \alpha_{s q}\right)$. (The solution determined by ψ will be called a solution of rank l.)

[^0]Example. Let $g=1, l=2, a_{1}=-c_{n+1}^{(0)}, a_{2}=k-v_{n+1}^{(0)}$ and let the data $\left(\gamma_{1}, \gamma_{2}, \alpha_{1}, \alpha_{2}\right)$ and the function $f(P)=\lambda=k^{2}$ be given on Γ. We use the Baker-Akhiezer vector Ψ_{n} to construct a matrix $\widehat{\Psi}_{n}$ with rows ψ_{n}, ψ_{n+1}. We have $\widehat{\Psi}_{n+1}=\chi_{n} \widehat{\Psi}_{n}$, where $\chi_{n}=\left(-c_{n+1}^{0,1}, k-v_{n+1}\right)+O\left(k^{-1}\right)$. The poles of χ_{n} are at the points $\gamma_{s n}$, where $\gamma_{s 0}=\gamma_{s}, s=1,2$. The zeros of $\left(\operatorname{det} \chi_{n}\right)$ are at the points $\gamma_{s, n+1}$. Moreover, $\alpha_{s n} \operatorname{res}_{\gamma_{s n}} \chi^{i 1}=\operatorname{res}_{\gamma_{s n}} \chi^{i 2}, i=1,2, \alpha_{s, n+1}=-\chi^{22}\left(\gamma_{s, n+1}\right)$. The quantity $\gamma_{1 n}+\gamma_{2 n}=c$ is independent of n. The operators L_{f} can be computed effectively. For $f=\lambda=-P(z)$ and $c=0$ we have the fourth-order symmetrizable operator

$$
\begin{gathered}
\lambda \psi_{n}=L_{\lambda} \psi_{n}=\left[\left(L_{2}\right)^{2}+u_{n}\right] \psi_{n}, \quad L_{2} \psi_{n}=\psi_{n+1}+v_{n} \psi_{n}+c_{n} \psi_{n-1} \\
u_{n}=-\left[\wp\left(\gamma_{n-1}\right)+\wp\left(\gamma_{n-2}\right)\right]+b_{n-1}+b_{n-2}, \quad \wp(z)=-\zeta^{\prime}(z) \\
b_{n}=2 \wp^{\prime}\left(\gamma_{n}\right)\left[\wp\left(\gamma_{n+1}+\gamma_{n}\right)-\wp\left(\gamma_{n+1}-\gamma_{n}\right)\right]\left[\wp^{\prime}\left(\gamma_{n+1}+\gamma_{n}\right)-\wp^{\prime}\left(\gamma_{n+1}-\gamma_{n}\right)\right]^{-1} \\
c_{n}=\left(\alpha_{1 n}-\alpha_{2 n}\right)^{-1}\left[\zeta\left(\gamma_{n+1}-\gamma_{n}\right)-\zeta\left(\gamma_{n+1}+\gamma_{n}\right)+2 \zeta\left(\gamma_{n}\right)\right] .
\end{gathered}
$$

Here $\gamma_{n}=\gamma_{1 n}$ and v_{n} are arbitrary functions, $\alpha_{1 n}$ and $\alpha_{2 n}$ being determined by

$$
\begin{aligned}
& \alpha_{1, n+1}=-v_{n+1}+\zeta\left(\gamma_{n+1}\right)+\frac{\alpha_{1 n}}{\alpha_{1 n}-\alpha_{2 n}} \zeta\left(\gamma_{n+1}-\gamma_{n}\right)+\frac{\alpha_{2 n}}{\alpha_{1 n}-\alpha_{2 n}} \zeta\left(\gamma_{n+1}+\gamma_{n}\right) \\
& \alpha_{2, n+1}=-v_{n+1}-\zeta\left(\gamma_{n+1}\right)-\frac{\alpha_{1 n}}{\alpha_{1 n}-\alpha_{2 n}} \zeta\left(\gamma_{n+1}-\gamma_{n}\right)-\frac{\alpha_{2 n}}{\alpha_{1 n}-\alpha_{2 n}} \zeta\left(\gamma_{n+1}+\gamma_{n}\right)
\end{aligned}
$$

We consider the time dynamics with $t=t_{1}, M^{(01)}=\chi_{n}^{(0)}+\operatorname{diag}\left(v_{n}^{(0)}, v_{n+1}^{(0)}\right)$. For the BakerAkhiezer matrix $\widehat{\Psi}_{n}(t)$ we have $\widehat{\Psi}_{n t}=M_{n} \widehat{\Psi}_{n}$, where $M_{n}=\chi_{n}+\operatorname{diag}\left(v_{n}, v_{n+1}\right)+O\left(k^{-1}\right)$. From the compatibility of the variables n and t we obtain a non-linear system for $\left(c_{n}(t), v_{n}(t)\right)$:

$$
\begin{gathered}
\dot{c}_{n+1}=c_{n+1}\left(v_{n+1}-v_{m}\right), \quad \dot{v}_{n+1}=c_{n+2}-c_{n+1}+\varkappa_{n+1}-\varkappa_{n} \\
\chi_{n}^{22}=k-v_{n}+\varkappa_{n} k^{-1}+O\left(k^{-2}\right)
\end{gathered}
$$

This system is a discretization of the so-called 'Krichever-Novikov equation' in [1]. The coefficient \varkappa_{n} can be computed explicitly using the Tyurin parameter dynamics. In a forthcoming note we shall consider two- (and more) point constructions of rank $l-1$, in which case a number of new phenomena will appear.

Bibliography

[1] I. M. Krichever and S. P. Novikov, Uspekhi Mat. Nauk 35:6 (1980), 47-68; English transl., Russian Math. Surveys 35:6 (1980), 53-79.
[2] I. M. Krichever, Funktsional. Anal. i Prilozhen. 12:3 (1978), 20-31; English transl., Functional Anal. Appl. 12 (1978), 175-185.

University of Maryland at College Park

[^0]: AMS 1991 Mathematics Subject Classification. Primary 35Q99.

