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Elliptic Analog of the Toda Lattice
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1 Introduction

The main goal of this paper is to construct the action-angle variables for a finite-dimen-

sional Hamiltonian system of equations

ẍn =
(
ẋ2n − 1

)(
V(xn, xn+1) + V(xn, xn−1)

)
, xn+N = xn, (1.1)

where

V(u, v) = ζ(u− v) + ζ(u+ v) − ζ(2u) = −
1

2

℘ ′(u− v) − ℘ ′(u+ v)
℘(u− v) − ℘(u+ v)

, (1.2)

and to identify it as an elliptic analog of N-periodic Toda lattice. Here ℘(x) = ℘(x |

2ω, 2ω ′) and ζ(x) = ζ(x | 2ω, 2ω ′) are classical Weierstrass functions.

Recently, finite-dimensional integrable soliton systems have attracted very spe-

cial interest due to their unexpected relations to the theory of supersymmetric gauge

models. The celebrated Seiberg-Witten ansatz [39], [40] identifies moduli space of physi-

cally nonequivalent vacua of themodel withmoduli space of a certain family of algebraic

curves. In [3] , [20] it was shown that the family of curves corresponding to 4-dimensional

N = 2 supersymmetric SU(Nc) theory is defined by the equation

w2 −wPNc(E) +Λ
2Nc = 0, PNc(E) = E

Nc +

Nc−1∑
i=0

uiE
i. (1.3)

In [14] it was noted that this family can be identified with the family of spectral curves

ofNc-periodic Toda lattice, and the Seiberg-Witten ansatz was linked with theWhitham
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384 I. Krichever

perturbation theory of finite-gap solutions of soliton equations proposed in [23], [24].

Integrable systems related to various gaugemodels coupledwithmatter hypermultiplets

in various representations were considered in [2], [4]–[13], [15], [16], [18], [19], [28], [29],

[31]–[37], [41], and [42], where a more complete list of references can be found.

In [13], [32] theNc-periodic spin chain related to an XYZmodel was proposed as

a soliton counterpart of N = 1 supersymmetric SU(Nc) theory in six dimensions com-

pactified in two directions and coupled with Nf = 2Nc matter hypermultiplets. Spectral

curves of the Nc-periodic homogeneous XYZ spin chain have the form

w2 −wPelNc(z) +Q
el
2Nc(z) = 0, (1.4)

where PelNc(z) and Q
el
2Nc
(z) are elliptic polynomials, that is, elliptic functions with poles

of order Nc and 2Nc at the point z = 0. Note that (1.4) is an elliptic deformation of the

family of curves found in [17] for a 4-dimensional N = 2 supersymmetric SU(Nc) model

coupled with matter hypermultiplets.

A particular case of (1.4), when Qel2Nc (z) is a constant, Q
el
2Nc
(z) = Λ2Nc can be

seen as an elliptic deformation of (1.3). The corresponding family of curves depends on

Nc parameters, which can be chosen as Λ, and the coefficients ui of the representation

of PelN(z) in the form

PelN(z) =
(−1)N

(N− 1)!
∂N−2
z ℘(z) +

N−2∑
i=1

ui∂
i−1
z ℘(z) + u0 . (1.5)

An attempt to find a soliton system corresponding to the family of spectral curves defined

by the equation

w2 −wPelN(z) +Λ
2N = 0 (1.6)

led us to (1.1). After the system was found, it turned out that, by itself, it is not new.

Up to a change of variables qn = ℘(xn), it coincides with one of the systems listed

in [1] , where the classification of all Toda-type chains that have Toda-type symmetries

was obtained. The new results obtained in this work are an isomorphism of (1.1) with

a pole system corresponding to elliptic solutions of a 2-dimensional Toda lattice, the

construction of action-angle variables, and an explicit solution of the system in terms

of the theta-functions.

In [28], [29] it was shown that a wide class of solutions of the Seiberg-Witten

ansatz can be described in terms of a special foliation on the moduli space of curves

with punctures.That allows us to consider such systems as reductions of 2-dimensional
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Elliptic Analog of the Toda Lattice 385

soliton equations. Following this approach, let us note that (1.6) defines an algebraic

curve Γ as a 2-sheeted cover of the elliptic curve Γ0 with periods 2ω, 2ω ′. Let P± be

preimages on Γ of z = 0. According to the construction of [22], any algebraic curve with

two punctures generates a family of algebro-geometric solutions of the 2-dimensional

Toda lattice

(
∂2tt − ∂

2
xx

)
ϕn = 4

(
eϕn+1−ϕn − eϕn−ϕn−1

)
, (1.7)

parameterized by points of the Jacobian J(Γ) of the curve.

In the next section we show that algebro-geometric solutions ϕn(x, t) corre-

sponding to Γ defined by (1.6) are periodic in n up to the shift,ϕn = ϕn+N+2N lnΛ, and

have the form

ϕn(x, t) = αn(t) + ln
σ
(
x− xn+1(t) + a

)
σ
(
x+ xn+1(t) + a

)
σ
(
x− xn(t) + a

)
σ
(
x+ xn(t) + a

) . (1.8)

Substitution of (1.8) into (1.7) leads to (1.1) for xn(t).

In Section 3 we construct a new Lax representation for (1.1) and show that the

spectral curve defined by the Lax operator has the form (1.6).We also prove that if xn(t)

is a solution of (1.1), then there exist functions αn(t) (unique up to the transformation

αn(t) → αn(t) + c1t + c2 , ci = const), such that the functions ϕn(x, t) of the form (1.8)

satisfy (1.7).

The last section is devoted to the Hamiltonian theory of system (1.1). Equations

(1.1) are generated by the Hamiltonian

H =

N−1∑
n=0

ln sh−2
(pn

2

)
+ ln

(
℘(xn − xn−1) − ℘(xn + xn−1)

)
(1.9)

and by the canonical Poisson brackets {pm, xn} = δnm. We emphasize that although this

Hamiltonian structure can be easily checked directly, it was found by the author using

the algebro-geometric approach to Hamiltonian theory of the Lax equations proposed

in [28], [29] and developed in [25]. The main advantage of this approach is that it allows

us to simultaneously find the action-angle variables and a generating differential that

defines low-energy effective prepotential.

Note that from the relation of system (1.1) to a 2-dimensional Toda lattice, it

is clear that degeneration of the elliptic curve Γ0 corresponds to a degeneration of this

system to the Toda lattice. It would be very interesting to consider this degeneration

explicitly on the level of the Hamiltonian structure.We consider this problem elsewhere.
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386 I. Krichever

2 Elliptic solutions of a 2-dimensional Toda lattice

Algebro-geometric solutions of a 2-dimensional Toda lattice were constructed in [22].

Let Γ be a smooth genus g algebraic curve with fixed local coordinates z±(Q) in neigh-

borhoods of two punctures P± ∈ Γ, z±(P±) = 0. Then for any set of g points γ1 , . . . , γg

in general position, there exists a unique function ψn(x, t,Q) such that the following

conditions hold.

(1) As a function of the variableQ ∈ Γ, ψn(x, t,Q) is meromorphic on Γ outside the

punctures P± and has at most simple poles at the points γs (if all of them are distinct).

(2) In the neighborhoods of the punctures, the function ψn has the form

ψn = z
∓N
± e(x±t)z−1

( ∞∑
s=0

ξ±s (x, t)z
s
±

)
, ξ+0 = 1. (2.1)

Uniqueness of ψn implies that it satisfies the following system of linear equations:

(∂t + ∂x)ψn(x, t,Q) = 2ψn+1(x, t,Q) + vn(x, t)ψn(x, t,Q), (2.2)

(∂t − ∂x)ψn(x, t,Q) = 2cn(x, t)ψn−1(x, t), (2.3)

where the coefficients are defined by the leading coefficient ξ−0 of expansion (2.1) with

the help of the formulae

vn = (∂t + ∂x)ϕn(x, t), cn = e
ϕn(x,t)−ϕn−1 (x,t) , ϕn(x, t) = ln ξ

−
0 (x, t). (2.4)

Compatibility of (2.2) and (2.3) implies that ϕn(x, t) is a solution of the 2-dimensional

Toda lattice (1.7).

The function ψn(x, t,Q) is called the Baker-Akhiezer function and can be ex-

plicitly expressed in terms of the Riemann theta-function associated with a matrix of

b-periods of holomorphic differentials on Γ . The corresponding formula for ϕn is as

follows.

Let us fix a basis of cycles ai, bi, i = 1, . . . , g, on Γ with the canonical matrix of

intersections ai ◦ aj = bi ◦ bj = 0, ai ◦ bj = δij. The basis of normalized holomorphic

differentials dΩh
j (Q), j = 1, . . . , g, is defined by conditions

∮
ai
dΩh

j = δij. The b-periods

of these differentials define the Riemann matrix Bkj =
∮
bj
dΩh

k . The basic vectors ek of

Cg and the vectors Bk,which are columns of the matrix B, generate a lattice B in Cg. The

g-dimensional complex torus

J(Γ) =
Cg

B
, B =

∑
nkek +mkBk, nk,mk ∈ Z, (2.5)
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Elliptic Analog of the Toda Lattice 387

is called the Jacobian variety of Γ . A vector with the coordinates

Ak(Q) =

∫Q

P+

dΩh
k (2.6)

defines the Abel map A : Γ → J(Γ).

The Riemann matrix has a positive-definite imaginary part. The entire function

of g variables z = (z1 , . . . , zg),

θ(z) = θ(z | B) =
∑

m∈Zg

e2πi(z,m)+πi(Bm,m)

is called the Riemann theta-function. It has the following monodromy properties:

θ(z+ ek) = θ(z), θ(z+ Bk) = e
−2πizk−πiBkkθ(z). (2.7)

The function θ(A(Q)+Z) is a multivalued function ofQ, but according to (2.7), the zeros

of this function are well defined. For Z in a general position, the equation θ(A(Q)+Z) = 0

has g zeros γ1 , . . . , γg. The vector Z and the divisor of these zeros are connected by the

relation Z = −
∑

sA(γs) +K, where K is the vector of Riemann constants.

Let us introduce normalized Abelian differentials dΩ(x) and dΩ(t) of the second

kind.They are holomorphic on Γ except at the punctures P±. In the neighborhoods of P±,

they have the form

dΩ(x) = d
(
z−1
± +O(1)

)
, dΩ(t) = d

(± z−1
± +O(1)

)
.

Normalized means that they have zero a-periods. The vectors of b-periods of these dif-

ferentials are denoted by 2πiV and 2πiW, that is, the coordinates of the vectors V andW

are equal to

Vk =
1

2πi

∮
bk

dΩ(x) , Wk =
1

2πi

∮
bk

dΩ(t) . (2.8)

Let dΩ(n) be a normalized Abelian differential of the third kind with simple poles at the

punctures P± with residues ∓1. From the Riemann bilinear relations, it follows that the
vector of its b-periods satisfies the relation

Uk =
1

2πi

∮
bk

dΩ(n) = A(P−) −A(P+). (2.9)

If we choose a branch of the Abelian integral Ω(n) near P+ such that Ω(n) = − ln z+ +

O(z+), then near P− it has the form

Ω(n) = ln z− + I0 +O(z−).
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388 I. Krichever

Theorem 2.1 (see [22]). The Baker-Akhiezer function is equal to

ψn(x, t,Q) =
θ
(
A(Q) + nU+ xV + tW + Z

)
θ(Z)

θ
(
nU+ xV + tW + Z

)
θ
(
A(Q) + Z

) exp (nΩ(n) + xΩ(x) + tΩ(t) ).
(2.10)

The function ϕn(x, t) given by the formula

ϕn(x, t) = nI0 + ln
θ
(
(n+ 1)U+ xV + tW + Z

)
θ
(
nU+ xV + tW + Z

) (2.11)

is a solution of a 2-dimensional Toda lattice. �

For a generic set of algebro-geometric data, the functionϕn(x, t) given by (2.11) is

a quasi-periodicmeromorphic function of all the variables (n, x, t). In [30] the solutions of

a 2-dimensionalToda latticewhich are elliptic in the discrete variable nwere considered.

It was found that dynamics of its poles coincide with the elliptic Ruijsenaars-Schneider

system [38]. In this paper we consider solutions that are elliptic in the variable x and

are periodic in n.

The condition that ϕn is elliptic in one of the variables is equivalent to the prop-

erty that the complex linear subspace in J(Γ) spanned by the corresponding directional

vector is compact, that is, it is an elliptic curve Γ0 . In the case of the x-variable it means

that the vectors 2ωαV,α = 1, 2, belong to the lattice B defined by (2.5):

2ωαV =
∑
k

nα
kek +m

α
kBk, nα

k ,m
α
k ∈ Z. (2.12)

Here and below,ω1 = ω,ω2 = ω
′ are half-periods of the elliptic curve Γ0 .

Theorem 2.2. Let Γ be a smooth curve defined by (1.6), and let P± be preimages on Γ of

the point z = 0 ∈ Γ0 with local coordinates in their neighborhoods defined by the local

coordinate z on Γ0 . Then the corresponding algebro-geometric solutions given by (2.11)

satisfy the relation

ϕn+N(x, t) = ϕn(x, t) + 2N lnΛ, (2.13)

and have the form (1.8), that is,

ϕn(x, t) = αn(t) + ln
σ
(
x− xn+1(t) + a

)
σ
(
x+ xn+1(t) + a

)
σ
(
x− xn(t) + a

)
σ
(
x+ xn(t) + a

) .
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Elliptic Analog of the Toda Lattice 389

The functions xn(t) defined by this representation satisfy equations (1.1). The functions

αn satisfy the relation

4eαn−1 (t)−αn(t) =
(
1− ẋ2n(t)

)
W(xn, xn+1)W(xn, xn−1), (2.14)

where

W(u, v) =
σ(u− v)σ(u+ v)

σ(2u)
. (2.15)

�

Proof. The first statement of the theorem is a direct corollary of the uniqueness of the

Baker-Akhiezer function. The projection Q = (w, z) ∈ Γ → w defines w = w(Q) as a

function on the curve. This function is holomorphic on Γ outside the puncture P+,where

it has the pole of order N, w = z−N(1 + O(z)). At the point P−, it has zero of order N,

w = Λ2NzN(1+O(z)). Therefore, we have the equality

ψn+N(x, t,Q) = w(Q)ψn(x, t,Q), (2.16)

because the functions defined by its left- and right-hand sides have the same analytical

properties.

Let us consider the functions

Tα(z) = e
2ζ(z)ωα−2ηαz , ηα = ζ(ωα). (2.17)

They are double-periodic and holomorphic on Γ0 except at z = 0. Again, comparison of

analytical properties of the left- and right-hand sides proves the equality

ψn(x+ 2ωα, t,Q) = Tα(z)ψn(x, t,Q), Q = (w, z). (2.18)

The function eϕn is defined as a ratio of the leading coefficients of an expansion of ψn

on two sheets of Γ . Therefore, it does not change under the shifts x → x + 2ωα, and

consequently, it is an elliptic function of the variable x. From (2.11) it follows that if we

denote roots of the equation θ(nU + xV + tW + Z) = 0 in the fundamental domain of Γ0

by xjn(t), j = 1, . . . ,D, then

eϕn(x,t) = eαn(t)
D∏
j=1

σ
(
x− xjn+1(t)

)
σ
(
x− xjn(t)

) . (2.19)

Our next step is to show that eϕn has only two poles and zeros in Γ0 .

 at U
 C

olorado Library on A
pril 20, 2011

im
rn.oxfordjournals.org

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


390 I. Krichever

Lemma 2.1. The function θ(xV+ξ) corresponding to a smooth algebraic curve Γ, defined

by (1.6) as a function of the variable x, is an elliptic theta-function of weight 2, that is,

it can be represented in the form

θ(xV + ξ) = r(ξ)σ
(
x− x1(ξ)

)
σ
(
x− x2(ξ)

)
. (2.20)

�

Proof. Let us find the coefficients of expansion (2.12). The branching points z±i of Γ over

Γ0 are roots of the equations PelN(z) = ±ΛN. In a generic case, when they are distinct, the

curve Γ is smooth. The Riemann-Hurwitz formula 2g− 2 = ν, which connects genus g of

branching cover of an elliptic curve with a number ν of branching points, implies that Γ

has genus N + 1. We choose ai, bi cycles on it as follows: ai, i = 1, . . . ,N − 1, are cycles

around cuts between branching points z+i , z
−
i , and aN and aN+1 are two preimages of

a-cycle on Γ0 . (We assume that a- and b-cycles on Γ0 correspond to the periods 2ω and

2ω ′, resp.)

From the definition of the differential dΩ(x) , it follows that

dΩ(x) = d
(
ζ(z) −

η

ω
z
)
. (2.21)

Therefore, the coordinates of the vector V defined by (2.8) are equal to

Vi = 0, i = 1, . . . ,N− 1, VN = VN+1 =
1

πi

(
η ′ −

η

ω
ω ′
)
= −

1

2ω
. (2.22)

Comparing the vector of b-periods of dΩ(x) with the vector (0, . . . , 0, 2ω ′, 2ω ′) of b-

periods of the differential dz, considered as a differential on Γ, we get

∮
bi

dΩ(x) = −
πi

2ωω ′

∮
bi

dz, i = 1, . . . ,N+ 1. (2.23)

The a-periods of dz are equal: (0, . . . , 0, 2ω, 2ω). Therefore,

dz = 2ω
(
dΩh

N + dΩ
h
N+1

)
,

where dΩh
i are normalized holomorphic differentials. From (2.23), we finally obtain that

2ω ′V = −BN − BN+1, (2.24)

where Bi is the vector of b-periods of dΩh
i . The monodromy properties of θ-function

imply

θ
(
(x+ 2ω)V + Z

)
= θ(xV + Z), θ

(
(x+ 2ω ′)V + Z

)
= el(x) θ(xV + Z), (2.25)
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Elliptic Analog of the Toda Lattice 391

where

l(x) = πi
(
2x(VN + VN+1) + BN+1,N+1

+ BN,N − BN,N+1 − BN+1,N + 2ZN+1 + 2ZN

)
.

Using (2.22), we obtain

dl(x) = −
2πi

ω
dx. (2.26)

The number D of zeros of the function θ(xV + ξ) in the fundamental domain can be

found by integrating the logarithmic derivative of this function over the boundary of the

domain. From (2.25) and (2.26), it follows that

D =
1

2πi

∮
∂G0

d ln θ(xV + Z) = 2. (2.27)
�

The equality (2.20) implies that the index j in (2.19) takes values j = 1, 2. The

sums of zeros and poles of an elliptic function are equal to each other (modulo periods

of Γ0). Hence, x
j
n(t) can be represented in the form

x1n = xn(t) + a(t), x2n(t) = −xn(t) + a(t). (2.28)

To complete a proof of (1.8), we need only to show that a(t) does not depend on t.

Let us substitute (2.19) into (1.7). A priori, the difference of the left- and right-

hand sides of (1.7) is an elliptic function of x with poles of degree 2 at the points xjn(t)

and xjn+1(t). Vanishing of the pole of degree 2 at x
i
n implies that

(
ẋin
)2
− 1 = Fin

(
xin
)
, (2.29)

where

Fin(x) = rn

∏
j σ
(
x− xjn+1

)
σ
(
x− xjn−1

)
∏

j �=i σ
2
(
x− xjn

) , rn = −4e
αn−αn−1. (2.30)

Vanishing of the pole of degree 1 at xin implies that

ẍin = ∂xF
i
n

(
xin
)
= Fin(x

i
n)
(
∂x ln F

i
n

(
xin
))

=
((
ẋin
)2
− 1
)∑

j

ζ
(
xin − x

j
n+1

)
+ ζ
(
xin − x

j
n−1

)
− 2

∑
j �=i

ζ
(
xin − x

j
n

) .
(2.31)
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392 I. Krichever

Substitution of (2.28) in (2.30) shows that

F1n
(
x1n
)
= F2n

(
x2n
)
= rn(t)W(xn, xn+1)W(xn, xn−1).

Hence, we obtain the equality (ẋ1n)
2 = (ẋ2n)

2 , which implies that ȧ = 0. Equalities (1.8)

and (2.14) are proved. At the same time, substitution of (2.28) into (2.31) gives us (1.1).

�

3 Generating problem and Lax representation

In this section we construct the Lax representation for (1.1) following an approach pro-

posed in [21] and developed in [26], [27] , and [30] (see the summary in [25]). According

to this approach, pole dynamics can be obtained simultaneously with its Lax represen-

tation from a specific inverse problem for a linear operator with elliptic coefficients.

In the most general form the inverse problem is to find linear operators with

elliptic coefficients that have sufficient double-Bloch solutions. Ameromorphic function

f(x) is called double-Bloch if it has the following monodromy properties:

f(x+ 2ωα) = Bαf(x), α = 1, 2. (3.1)

The complex numbersBα are calledBlochmultipliers. (In otherwords, f is ameromorphic

section of a vector bundle over the elliptic curve.) It turns out that existence of the double-

Bloch solutions is so restrictive that only in exceptional cases do such solutions exist.

The basis in the space of double-Bloch functions can be written in terms of the

fundamental function Φ(x, z) defined by the formula

Φ(x, z) =
σ(z− x)

σ(z)σ(x)
eζ(z)x. (3.2)

From the monodromy properties of theWeierstrass functions, it follows that Φ, consid-

ered as a function of z, is double-periodic:Φ(x, z+2ωα) = Φ(x, z), though it is not elliptic

in the classical sense due to essential singularity at z = 0 for x �= 0. As a function of x,

the function Φ(x, z) is a double-Bloch function, that is,

Φ(x+ 2ωα, z) = Tα(z)Φ(x, z),

where Tα(z) are given by (2.17). In the fundamental domain of the lattice defined by 2ωα,

the function Φ(x, z) has a unique pole at the point x = 0:

Φ(x, z) = x−1 +O(x). (3.3)
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Elliptic Analog of the Toda Lattice 393

Let f(x) be a double-Bloch function with simple poles xi in the fundamental domain and

with Bloch multipliers Bα (such that at least one of them is not equal to 1). Then it can

be represented in the form

f(x) =

N∑
i=1

ciΦ(x− xi, z)e
kx, (3.4)

where ci is the residue of f at xi, and (z, k) are parameters such thatBα = Tα(z) exp(2ωαk).

Now we are in position to present the generating problem for (1.1).

Theorem 3.1. The equation

(∂t + ∂x)Ψn = 2Ψn+1 + vn(x, t)Ψn (3.5)

with an elliptic coefficient of the form

vn(x, t) = γn(t) +

2∑
i=1

[
hi
n(t)ζ

(
x− xin(t)

)
− hi

n+1(t)ζ
(
x− xin+1(t)

)]
, (3.6)

where

x1n(t) = xn(t) + a, x2n(t) = −xn(t) + a, a = const, (3.7)

has two linear independent double-Bloch solutions with Bloch multipliers Tα(z) (for

some z), that is, solutions of the form

Ψn(x, t) =

2∑
i=1

cinΦ
(
x− xin(t), z

)
(3.8)

if and only if the functions xn(t) satisfy (1.1).

If (3.5) has two linear independent solutions of the form (3.8) for some z, then

they exist for all values of z. �

Proof. Let us substitute (3.8) into (3.5). Both sides of the equation are double-Bloch

functions with the same Bloch multipliers and with the pole of order 2 at xin, and the

simple pole at xin+1 . They coincide if and only if the coefficients of their singular parts

at these points are equal to each other. The equality of the coefficients at (x − xin)
−2

implies that

hi
n = ẋ

i
n − 1. (3.9)
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The equality of residues at xin+1 is equivalent to the equation

cin+1 = 2
−1hi

n+1

∑
j

Φ
(
xin+1 − x

j
n

)
cjn. (3.10)

The equality of residues at xin is equivalent to the equation

∂tc
i
n =M

i
nc

i
n + h

i
n

∑
j �=i

Φ
(
xin+1 − x

j
n

)
cjn, (3.11)

where

Mi
n = γn −

∑
j

h
j
n+1ζ

(
xin − x

j
n+1

)
+

∑
j �=i

hj
nζ
(
xin − x

j
n

)
. (3.12)

Equations (3.10) and (3.11) are linear equations for cin. Their compatibility is just a

system of the equations

∂t
(
lnhi

n+1

)
Φ
(
xin+1 − x

j
n

)
+
(
ẋin+1 − ẋ

j
n

)
Φ ′(xin+1 − x

j
n

)
=
(
Mi

n+1 −M
j
n

)
Φ
(
xin+1 − x

j
n

)
+

∑
k �=i

Φ
(
xin+1 − x

k
n+1

)
hk
n+1Φ

(
xkn+1 − x

j
n

)
−

∑
k �=j

Φ
(
xin+1 − x

k
n

)
hk
nΦ
(
xkn − x

j
n

)
, (3.13)

which can be written in the matrix form as

∂tLn =Mn+1Ln − LnMn, (3.14)

where Ln and Mn are matrices defined by the right-hand sides of (3.10) and (3.11).

Equation (3.14) is a necessary and sufficient condition for the existence of solutions of

(3.5) that have the form (3.8). Therefore, the following statement completes a proof of

the theorem.

Lemma 3.1. Let Ln = (L
ij
n(t, z)) andMn = (M

ij
n(t, z)) be defined by the formulae

Lijn = 2
−1hi

n+1Φ
(
xin+1 − x

j
n, z
)
, Mii

n =M
i
n, Mij = h

i
nΦ
(
xin − x

j
n, z
)
, i �= j,
(3.15)

where x1n = xn, x
2
n = −xn, h

i
n = ẋ

i
n − 1, andM

i
n is given by (3.12) with γn such that

γn − γn−1 = dt ln

(
(ẋ2n − 1)σ

2(2xn)

σ(xn − xn+1)σ(xn + xn+1)σ(xn − xn−1)σ(xn + xn−1)

)
. (3.16)

Then they satisfy equation (3.14) if and only if the functions xn(t) solve (1.1). �
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Note that (3.16) defines γn(t) up to a constant shift γn(t) → γn(t) + g(t), which

corresponds to the gauge transformation Ψn → egΨn of equation (3.5) and which does

not effect equations for xn.

Proof. The right- and left-hand sides of (3.13) are double-periodic functions of z that

are holomorphic except at z = 0, where they have the form O(z−2) exp((xin+1 − x
j
n)ζ(z)).

Such functions are equal if and only if the corresponding coefficients at z−2 and z−1 are

equal. The equality of the coefficients at z−2 gives

(
ẋin+1 − ẋ

j
n

)
= hi

n+1 − h
j
n +

∑
k

(
hk
n − h

k
n+1

)
= hi

n+1 − h
j
n, (3.17)

which is fulfilled due to (3.9). (The second equality in (3.17) holds because v(x, t) is an

elliptic function of x and, therefore, a sum of its residues is equal to zero.)

The equality of the coefficients at z−1 in the expansion of (3.13) at z = 0 gives

∂t
(
lnhi

n+1

)
−
(
ẋin+1 − ẋ

j
n

)
ζ
(
xin+1 − x

j
n

)
=Mi

n+1 −M
j
n +

∑
k �=i

hk
n+1

[
ζ
(
xin+1 − x

k
n+1

)
+ ζ
(
xkn+1 − x

j
n

)]
−

∑
k �=j

hk
n

[
ζ
(
xin+1 − x

k
n

)
+ ζ
(
xkn − x

j
n

)]
.

(3.18)

The second line in (3.18) is equal up to the sign to the sum of residues at xkn, k �= j, and
at xkn+1 , k �= i, of the elliptic function

ṽn(x, t) = vn(x, t)
[
ζ
(
xin+1 − x

)
+ ζ
(
x− xjn

)]
.

Therefore, it equals to the sum of residues of this function at xin+1 and x
j
n. We have

res
xin+1

ṽn(x, t) + res
xjn

ṽn(x, t) =
(
hj
n − h

i
n+1

)
ζ
(
xin+1 − x

j
n

)
+Mj

n − γn

−
∑
k

hk
nζ
(
xin+1 − x

k
n

)
+

∑
k �=i

hk
n+1ζ

(
xin+1 − x

k
n+1

)
.

(3.19)

Substitution of the right-hand side of the last equality into (3.18) implies (after the shift

n+ 1 → n) that

ḣi
n

hi
n

= γn − γn−1 +
∑
k �=i

2hk
nζ
(
xin − x

k
n

)
−

∑
k

[
hk
n+1ζ

(
xin − x

k
n+1

)
+ hk

n−1ζ
(
xin − x

k
n−1

)]
.

(3.20)
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From (3.9), it follows that (3.20) can be rewritten in the form

ẍin
ẋin − 1

= ∂xG
i
n

(
xin
)
+ ∂tG

i
n

(
xin
)
, (3.21)

where the function

Gi
n(x) = an + ln

(∏
k σ
(
x− xkn+1

)
σ
(
x− xkn−1

)
∏

k �=i σ
2
(
x− xkn

) )
, ∂tan = γn − γn−1, (3.22)

depends on t through the dependence on t of xim and an, only. By the chain rule, we have

dt

(
Gi

n

(
xin
))
= ẋin∂xG

i
n

(
xin
)
+ ∂tG

i
n

(
xin
)
, dt =

d

dt
. (3.23)

Therefore,

ẍin
ẋin − 1

=
(
1− ẋin

)
∂xG

i
n

(
xin
)
+ dt

(
Gi

n

(
xin
))
. (3.24)

From (3.7), it follows that

G1
n

(
x1n
)
= G2

n

(
x2n
)
= Gn(xn), ∂xG

1
n

(
x1n
)
= −∂xG

2
n

(
x2n
)
= ∂xGn(xn),

where

Gn(x) = an + ln

(
σ(x− xn+1)σ(x+ xn+1)σ(x− xn−1)σ(x+ xn−1)

σ2(x+ xn)

)
. (3.25)

Therefore, for i = 1, 2, (3.24) has the form

ẍn

ẋn − 1
= dt

(
Gn(xn)

)
− (ẋn − 1)∂xGn(xn), (3.26)

ẍn

ẋn + 1
= dt

(
Gn(xn)

)
− (ẋn + 1)∂xGn(xn). (3.27)

Equations (3.26) and (3.27) are equivalent to the equations

ẍn =
(
ẋ2n − 1

)
∂xGn(xn), dt

(
Gn(xn)

)
= dt ln

(
ẋ2n − 1

)
. (3.28)

The first among them coincides with (1.1) for xn, and the second one (compare it with

(2.14)) is equivalent to the definition of γn by (3.16). Lemma 3.1 and Theorem 3.1 are

proved. �
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4 Direct problem: Spectral curves

In this section we consider periodic n-solutions of (1.1).

Lemma 4.1. Let xn(t) = xn+N(t) be a solution of (1.1). Then

I =

N∏
n=1

(
σ(xn − xn+1)σ(xn + xn+1)σ(xn − xn−1)σ(xn + xn−1)(

ẋ2n − 1
)
σ2(2xn)

)
(4.1)

is an integral of motion, I = const, and the monodromy matrix

T(t, z) =

N−1∏
n=0

Ln(t, z) (4.2)

satisfies the Lax equation

∂tT = [M0 , T ]. (4.3)
�

Proof. If xn(t) is periodic in n, then the corresponding matrix functions Ln(t, z) and

Mn(t, z) defined by (3.15) satisfy the relations

Ln+N = Ln, Mn+N =Mn − dt(ln I). (4.4)

Therefore, (3.14) implies that

∂tT = −dt(ln I)T + [M0 , T ]. (4.5)

Note that if ∂tI = 0, then (4.5) coincides with (4.3), and, therefore, the second statement

of the Lemma follows from the first one.

Equation (4.5) implies that the function

P(z) = I(t)
(
tr T(t, z)

)
(4.6)

is time-independent.

Matrix entries of Ln are double-periodic functions that are holomorphic on Γ0

except at z = 0. Therefore, (tr T) is also double-periodic and holomorphic on Γ0 outside

z = 0. In order to prove that this function is meromorphic on Γ0 , it is enough to note that

Ln has the form

Ln(t, z) = gn+1 L̃ng
−1
n , (4.7)
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398 I. Krichever

where

gn =

(
exnζ(z) 0

0 e−xnζ(z)

)
.

From (3.2), it follows that in the neighborhood of z = 0,

L̃n = (z)
−1 L̃0n + L̃

1
n +O(z), (4.8)

where

L̃0n =
1

2

(
1− ẋn+1 1− ẋn+1

1+ ẋn+1 1+ ẋn+1

)
(4.9)

and

L̃1n =
1

2

(
1− ẋn+1 0

0 1+ ẋn+1

)(
−ζ(xn+1 − xn) −ζ(xn+1 + xn)

ζ(xn+1 + xn) ζ(xn+1 − xn)

)
. (4.10)

Therefore,

tr T = tr

(
N−1∏
n=0

L̃n(t, z)

)
= z−N

(
1+ 0(z)

)
. (4.11)

The last equality shows that (tr T) is a monic elliptic polynomial PelN(z). Therefore, at

z = 0, we have P(z) = I(t)z−N(1 + 0(z)). Hence, I(t) is an integral of (1.1) because P(z)

does not depend on z. Lemma 4.1 is proved. �

Due to (4.3) the spectral curve Γ defined by the characteristic equation

R(w, z) ≡ det (w− T(t, z)) = w2 − (tr T)w+ det T = 0 (4.12)

is time-independent.

Lemma 4.2. The characteristic equation (4.12) has the form (1.3). �

Proof. Wehave alreadyproved that (tr T)has the form (1.5).The relationΦ(x, z)Φ(−x, z) =

℘(z) − ℘(x), which is equivalent to the addition formula for the Weierstrass σ-function,

implies that

detLn(t, z) = 2
−2
(
ẋ2n+1 − 1

)[
℘(xn+1 − xn) − ℘(xn+1 + xn)

]
. (4.13)
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Elliptic Analog of the Toda Lattice 399

Therefore, although Ln(t, z) depends on z, its determinant does not depend on z. Hence,

(det T) is also z-independent. As it does not depend on t, we identify Λ2N in (1.6) with

Λ2N = det T(t, z) = 2−2N
N−1∏
n=0

(
ẋ2n − 1

)(
℘(xn − xn−1) − ℘(xn + xn−1)

)
= 2−2NeH, (4.14)

where H is the Hamiltonian of system (1.1). Lemma 4.2 is proved. �

For a generic pointQ of the spectral curve Γ, that is, for a pair (w, z) that satisfies

(4.12), there exists a unique solution Cn = (c
i
n(t,Q)) of the equations

Cn+1(t,Q) = Ln(t, z)Cn(t,Q), ∂tCn(t,Q) =Mn(t, z) (4.15)

such that

Cn+N(t,Q) = wCn(t,Q) (4.16)

and the unique solution Cn = (c
i
n(t,Q)) is normalized by the condition

c10(0,Q)Φ
(
− x0(0), z

)
+ c20(0,Q)Φ

(
x0(0), z

)
= 1. (4.17)

Remark. Normalization (4.17) corresponds to a usual normalization Ψ0(0, 0,Q) = 1 of

the solution Ψn(x, t,Q) of (3.5) defined by (3.8).

Theorem 4.1. The coordinates cin(t,Q) of the vector-valued function Cn(t,Q) are mero-

morphic functions on Γ except at the preimages P± of z = 0. Their poles γ1 , . . . , γN+1 do

not depend on n and t. The projections z(γs) of these poles on Γ0 satisfy the constraint

N+1∑
s=1

z(γs) = 0. (4.18)

In the neighborhoods of P±, the coordinates of Cn(t,Q) have the form

c1n(t,Q) = z
∓nχ1n,±(t, z)e

(±t+xn(t))z
−1

, (4.19)

c2n(t,Q) = z
∓nχ2n,±(t, z)e

(±t−xn(t))z
−1

, (4.20)

where χin,±(t, z) are regular functions of z:

χin,+(t, z) = zχ
i
n,+(t) +O(z

2), χin,−(t, z) = χ
i
n,−(t) + zχ

i,1
n,−(t) +O(z

2) (4.21)
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such that the leading coefficients of their expansions have the form

χ1n,+(t) = c(t)(1− ẋn), χ2n,+(t) = c(t)(1+ ẋn), c(0) = 1, (4.22)

χ1n,−(t) = sn(t), χ2n,−(t) = −sn(t), (4.23)

where functions sn satisfy the relation

sn+1 = 2
−2
(
ẋ2n+1 − 1

)[
℘(xn+1 − xn) − ℘(xn+1 + xn)

]
sn. (4.24)

�

Proof. Vector-columns S(1)n and S(2)n of the matrix-function

S
ij
0 = δij, Sn(t, z) =

n−1∏
m=0

Lm(t, z), n > 0, (4.25)

are holomorphic functions on Γ0 except at z = 0. They satisfy the equation S
(i)
n+1= LnS

(i)
n .

Therefore, the Bloch solution Cn of (4.15) has the form

Cn(t,Q) = h1(Q)S
(1)
n (t, z) + h2(Q)S

(2)
n (t, z), (4.26)

where hi(Q), Q = (w, z) ∈ Γ, are the coordinates of the normalized eigenvector of the

monodromy matrix T(z), corresponding to the eigenvalue w. They are equal to

h1(Q) =
1

r(Q)
T12 (z), h2(Q) =

1

r(Q)

(
w− T11 (z)

)
, (4.27)

where T ij(z) are entries of the monodromy matrix and the normalization constant r(Q)

equals

r(Q) = T12 (z)Φ
(
− x0(0), z

)
+
(
w− T11 (z)

)
Φ
(
x0(0), z

)
. (4.28)

The function r(Q) has the pole of degree N + 1 at P+ and the pole of degree N at P−.

Therefore, it has 2N+ 1 zeros.

Let us show thatN of these zeros are situated over roots of the equation T12 (z) = 0

on one of the sheets of Γ . Indeed, if T12 (z) = 0, then eigenvalues w(z) of the monodromy

matrix are equal to T11 (z) or T12 (z). Therefore, r = 0 at the points Q = (T11 (z), z). Equa-

tions (4.27) imply that Cn has no poles at these points. The poles γs of Cn(t,Q) on Γ

outside the punctures P± are the other zeros of r(Q) and do not depend on n and t. Let

us now prove that they satisfy (4.18).
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The function r∗(z) = r(Q)r(Qσ) with σ : Q → Qσ as a permutation of sheets of Γ,

is a well-defined function on Γ0 with the pole of degree 2N+ 1 at z = 0. As it was shown

above, it is divisible by T12 (z).Therefore, the ratio r∗(z)/T12 (z) is an elliptic function with

the pole of degreeN+1 at z = 0 and zeros at the points z(γs). Divisors of zeros and poles

of an elliptic function are equivalent. Therefore, (4.18) is proved.

From (4.7), it follows that the vector-function C̃n = g
−1
n Cn is a Bloch solution of

the equation C̃n+1 = L̃nC̃n. Let us first consider the neighborhood of the puncture P+,

which corresponds to the branch w = z−N(1+O(z)) of the eigenvalue of the monodromy

matrix.

The vector-function Xn(t)with the coordinates given by (4.22) satisfies the equa-

tion Xn+1 = L̃0nXn, where L̃0n is defined in (4.8). That implies that, in the neighborhood

of P+, the vector-function Cn(t,Q) has the form stated in the theorem up to a time-

dependent factor f+(t, z). Substitution of (4.19), (4.20) into ∂tCn = MnCn shows that

∂tf = O(z). Therefore, the analytical properties of Cn near P+ are established.

Now we prove by induction that at P− equalities (4.19), (4.20), and (4.23) hold.

For n = 0, they are fulfilled by the normalization conditions. Let us first prove that if

(4.19), (4.20), and (4.23) hold for n ′ ≤ n, then

2κn =
(
ζ(xn+1 + xn) − ζ(xn+1 − xn)

)
sn + χ

1,1
n,− + χ

1,2
n,− = 0. (4.29)

Indeed, Cn+1 = LnCn implies that C̃n+1 at P− has the form

C̃n+1 = z
n

(
(1− ẋn+1)κn

(1+ ẋn+1)κn

)
+O(zn+1). (4.30)

Hence,

C̃N =

(
N−1∏

m=n+1

Lm

)
C̃n+1 = z

2n−N−1

(
(1− ẋ0)κn

(1+ ẋ0)κn

)
+O

(
z2n−N

)
. (4.31)

If κn �= 0, then the last equality contradicts themonodromy property C̃N = wC̃0 = O(z
N).

Therefore,κn = 0, and then (4.30) shows that C̃n+1 has zero of ordern+1 at P−.Therefore,

a step of induction for equalities (4.19), (4.20) is proved. The same arguments show that

if (4.23) does not hold, then the vector C̃N has zero of order (2n − N), which again

contradicts the relation C̃N = O(z
N).

Equalities (4.19), (4.20) near P− are proved, possibly up to a time-dependent fac-

tor f−(t, z). Their substitution into ∂tCn =MnCn shows that ∂tf− = O(z) and completes

a proof of (4.19), (4.20), and (4.23).

 at U
 C

olorado Library on A
pril 20, 2011

im
rn.oxfordjournals.org

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


402 I. Krichever

Let Cn(z) be a matrix formed by the vectors Cn(t,Qi(z)), corresponding to two

different sheets Qi(z) = (wi(z), z) of Γ . This matrix is defined up to a permutation of

sheets. From (4.19)–(4.23), it follows that in the neighborhood of z = 0,

Cn(z) =

(
exnζ(z) 0

0 e−xnζ(z)

)[(
(1− ẋn)c sn

(1+ ẋn)c −sn

)
+O(z)

]

×
(
z−n+1etζ(z) 0

0 zne−tζ(z)

)
.

(4.32)

Therefore,

detCn = −2csnz+O(z
2), (4.33)

and from the definition of Cn, we have Cn+1 = LnCn. Hence,

sn+1 = sn detLn, (4.34)

which coincides with (4.24). Theorem 4.1 is proved. �

The correspondence that assigns a set of algebro-geometric data {Γ,D} to each

solution xn(t) = xn+N(t) of (1.1), is a direct spectral transform. The following statement

shows that the results of Section 2 can be seen as the inverse spectral transform.

Corollary 4.1. The solution

Ψn(x, t,Q) = c
1
n(t,Q)Φ

(
x− xn(t), t

)
+ c2n(t,Q)Φ

(
x+ xn(t), t

)
(4.35)

of (3.5) is equal to Ψn(x, t,Q) = c(t)ψn(x, t,Q), where ψn(x, t,Q) is the Baker-Akhiezer

function corresponding to Γ and the divisorD of the poles of Cn; the factor c(t) is defined

in (4.22).

All the solutions xn(t) of (1.1) have the form xn = (1/2)(x
1
n− x

2
n),where x

i
n(t) are

roots of

θ
(
nU+ xin(t)V +Wt+ Z

)
= 0. (4.36)

Here θ(z) is the Riemann theta-function corresponding to Γ ; vectors U,V,W are defined

by (2.8), (2.9); vector Z corresponds to the divisor D via the Abel transform. �

As follows from the Theorem 4.1, the function Ψn defined by (4.35) has the same

analytical properties on Γ as the function c(t)ψn. Therefore, they coincide. Equation

(4.36) immediately follows from (2.10) for ψn.
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5 Action-angle variables

Until now we have not used the Hamiltonian structure of (1.1). Moreover, a priori, it is

not clear why a system that has arisen as a pole system of elliptic solutions of the 2-

dimensionalToda lattice is Hamiltonian.The general algebro-geometric approach,which

allows us to derive a Hamiltonian structure starting from the Lax representation, was

proposed and developed in [28], [29] , and [25].

Themain goal of this section is to construct action-angle variables for (1.1). First

of all, let us summarize the necessary results of the previous sections. A point (pn, xn)

of the phase space M of the system defines a matrix function Ln(z) with the help of the

formulae

Lijn = 2
−1hi

n+1Φ
(
xin+1 − x

j
n, z
)
, (5.1)

x1n = xn, x2n = −xn, h1
n = hn − 1, h2

n = −hn − 1, hn =
1+ epn

1− epn
.

(5.2)

This function defines the spectral curve Γ (with the help of (4.12)) and the divisor D of

poles γ1 , . . . , γN+1 of the Baker-Akhiezer function Cn(Q) = (c
1
n(Q), c

2
n(Q)):

Cn+1(Q) = Ln(z)Cn(Q), CN(Q) = wC0(Q), Q = (w, z) ∈ Γ, (5.3)

normalized by the condition

c10(0,Q)Φ(−x0 , z) + c
2
0(Q)Φ(x0 , z) = 1. (5.4)

The divisor D satisfies (4.18), that is, it defines a point of an odd part of the Jacobian

JPr(Γ) ∈ J(Γ), which is defined as a fiber of the projection
{
γ1 , . . . , γN+1

} ∈ J(Γ) 	−→ 2ωφ+ =
∑
s=1

z(γs) ∈ Γ0 , (5.5)

corresponding to φ+ = 0. All the fibers are equivalent and can be identified with the

Prym variety of Γ . Note that a shift of φ+ corresponds to the shift x → x + a for the

solution (1.8) of a 2-dimensional Toda lattice.

The correspondence

(pn, xn) ∈ M 	−→ {
Γ,D ∈ JPr(Γ)} (5.6)

is an isomorphism. The coefficients (ui, Λ) of (1.6) are integrals of the Hamiltonian sys-

tem (1.1). Equations (1.1) on a fiber over Γ of the map (5.6) are linearized by the Abel

transform (2.6).
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404 I. Krichever

The main goal of this section is to construct the action variables that are canon-

ically conjugated to the coordinates φ1 , . . . , φN−1 , φ−:

φk =

N+1∑
s=1

Ak(γs), φ− = φN − φN+1 , (5.7)

on the Prymmian JPr(Γ). Note that φ+ = φN + φN+1 .

Theorem 5.1. The transformation

(xn, pn) 	−→ (
φ1 , . . . , φN−1 , φ−; I1 , . . . IN

)
, (5.8)

where Ik are a-periods of the differential dS = ln(Λ−Nw)dz:

Ik =

∮
ak

ln
(
Λ−Nw

)
dz, (5.9)

is a canonical transformation, that is,

N∑
n=1

dpn ∧ dxn =

N−1∑
k=1

(δIk ∧ δφk) + δIN ∧ δφ−. (5.10)
�

Proof. First of all, following the approach proposed in [28],we define a symplectic struc-

ture onM in terms of the Lax operator and its eigenfunctions. After that, we calculate it

in two different ways, which immediately imply (5.10).

The external differential δLn(z) can be seen as an operator-valued 1-form on M.

Canonically normalized eigenfunction Cn(Q) of Ln(z) is the vector-valued function on

M. Hence, its differential is a vector-valued 1-form. Let us define a 2-formω onM by the

formula

ω =
1

2

(
res
P+

Ω+ res
P−

Ω
)
, (5.11)

where

Ω =
〈
C∗

n+1(Q)δLn(z)∧ δCn(Q)
〉
dz. (5.12)

Here and below, 〈 · 〉 stands for the sum over a period of a periodic in n function, that is,

〈fn〉 =
N−1∑
n=0

fn;
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C∗
n(Q) is the dual Baker-Akhiezer function, which is defined as a covector (row-vector)

solution of the equation

C∗
n+1(Q)Ln(z) = C

∗
n(Q), C∗

N(Q) = w
−1C∗

0(Q), (5.13)

normalized by the condition

C∗
0(Q)C0(Q) = 1. (5.14)

The form ω can be rewritten as

ω =
1

2
res
0
Tr
〈(

C−1
n+1(z)δLn(z)∧ δCn(z)

)〉
dz, (5.15)

where Cn(z) is a matrix with the columns Cn(Qj(z)), Qj(z) = (z,wj) corresponding to

different sheets of Γ .

Note that C∗
n(Q) are rows of the matrix C−1

n (z). This implies that C
∗
n(Q) as a

function on the spectral curve is meromorphic outside the punctures, has poles at the

branching points of the spectral curve, and has zeros at the poles γs of Cn(Q). These

analytical properties are used in the proof of the following lemma.

Lemma 5.1. The 2-form ω equals

ω =

N+1∑
s=1

δz(γs)∧ δ lnw(γs). (5.16)
�

The meaning of the right-hand side of this formula is as follows. The spectral

curve by definition arises with the meromorphic function w(Q) and the multi-valued

holomorphic function z(Q). Their evaluations w(γs), z(γs) at the points γs define func-

tions on M, and the wedge product of their external differentials is a 2-form on M.

Proof. The differentialΩ, defined by (5.12), is a meromorphic differential on the spectral

curve. (The essential singularities of the factors cancel each other at the punctures.)

Therefore, the sum of its residues at the punctures is equal to the sum of other residues

with negative sign. There are poles of two types.

First of all,Ω has poles at the poles γs of Cn. Note that δCn has the pole of the

second order at γs. Taking into account that C∗
n has zero at γs, we obtain

res
γs

Ω =
〈
C∗

n+1δLnCn

〉
∧ δz(γs). (5.17)
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From (5.3) and (5.13), it follows that

〈
C∗

n+1δLnCn

〉
=

〈
C∗

N

(
N−1∏

m=n+1

Lm

)
δLn

(
n−1∏
m=0

Lm

)
C0

〉
=
(
C∗

NδTC0

)
, (5.18)

where T is the monodromy matrix. Using the standard formula for the variation of the

eigenvalue of an operator δw = C∗
0δTC0 , we obtain that

res
γs

Ω = δ lnw(γs)∧ δz(γs). (5.19)

The second set of poles of Ω is a set of branching points qi of the cover. The pole of C∗
n

at qi cancels with the zero of the differential dz, dz(qi) = 0, considered as differential

on Γ . The vector-function Cn is holomorphic at qi. If we take an expansion of Cn in the

local coordinate (z − z(qi))
1/2 (in general position when the branching point is simple)

and consider its variation, we get

δCn = −
dCn

dz
δz(qi) +O(1). (5.20)

Therefore, δCn has a simple pole at qi. In a similar way, we obtain

δw = −
dw

dz
δz(qi). (5.21)

Equalities (5.20) and (5.21) imply that

res
qi

Ω = res
qi

[〈
C∗

n+1δLndCn

〉
∧
δwdz

dw

]
. (5.22)

At qi, we have dLn(qi) = 0. Therefore, in a way similar to (5.18), we get

res
qi

Ω = res
qi

[(
C∗

NδTdC0

)
∧
δwdz

dw

]
. (5.23)

Due to skew-symmetry of the wedge product, we may replace δT in (5.23) by (δT − δw).

Then using identities C∗
N(δT−δw) = δC

∗
N(w−T) and (w−T)dC0 = (dT−dw)C0 ,we obtain

res
qi

Ω = − res
qi

(
δC∗

NC0

)
∧ δwdz = res

qi

(
C∗

NδC0

)
∧ δwdz. (5.24)

Note that the dT does not contribute to the residue, because dT(qi) = 0.
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Expansions (4.19), (4.20) near the punctures imply that

res
P±

(
C∗

NδC0

)
∧ δwdz = 0. (5.25)

Therefore,

∑
qi

res
qi
(C∗

NδC0)∧ δwdz = −

N+1∑
s=1

res
γs

(
C∗

NδC0

)
∧ δwdz

=

N+1∑
s=1

δ lnw(γs)∧ δz(γs). (5.26)

The sum of (5.19) and (5.26) gives (5.16), because

2ω = −

N+1∑
s=1

res
γs

Ω−
∑
qi

res
qi

Ω. (5.27)
�

Our next goal is to prove the following statement.

Lemma 5.2. The symplectic form given by (5.11) coincideswith the canonical symplectic

structure

ω =

N+1∑
n=0

δpn ∧ δxn. (5.28)
�

Proof. Using the gauge transformation (4.7)

Ln = gn+1 L̃ng
−1
n , Cn = gnC̃, gn =

(
exnζ(z) 0

0 e−xnζ(z)

)
,

we obtain

ω =
1

2
res
0
Tr
〈
C̃−1
n+1(z)δL̃n(z)∧ δC̃n(z) + C̃−1

n+1δL̃n ∧ δfnC̃n

− C̃−1
n+1

(
δfn+1 ∧ δL̃n + δfn+1 ∧ L̃nδfn

)
C̃n

〉
dz,

(5.29)

where δfn = δgng−1
n . From (4.32), using the equality

(
ζ(xn+1 + xn) − ζ(xn+1 − xn)

)
δsn + δ

(
χ1,1n,− + χ

1,2
n,−

)
= snδ

(
ζ(xn+1 − xn) − ζ(xn+1 + xn)

)
,
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which follows from (4.28), we obtain that the first term in (5.29)

J1 = res
0

〈
Tr
(
C̃−1
n+1(z)δL̃n(z)∧ δC̃n(z)

)〉
dz

is equal to

J1 =

〈
sn

2sn+1
δhn+1 ∧ δ

(
ζ(xn − xn+1) + ζ(xn+1 + xn)

)〉
.

Equation (4.34) implies that

J1 =

〈
2δhn+1 ∧ δxn+1

h2
n+1 − 1

−
2δhn+1 ∧ δxn

h2
n+1 − 1

(
℘(xn − xn+1) + ℘(xn + xn+1)

℘(xn − xn+1) − ℘(xn + xn+1)

)〉
. (5.30)

The second term in (5.29) is equal to

J2 =
〈
res
0
Tr
(
C̃−1
n+1δL̃n ∧ δfnC̃n

)〉
dz =

〈
res
0
Tr
(
L̃−1
n δL̃n ∧ δfn

)〉
dz.

From definition (5.1) of Ln, by direct calculations, we obtain that

J2 =

〈
2δhn+1 ∧ δxn

h2
n+1 − 1

(
℘(xn − xn+1) + ℘(xn + xn+1)

℘(xn − xn+1) − ℘(xn + xn+1)

)〉
. (5.31)

At last, the third term in (5.29) is equal to

J3 = −
〈
res
0
Tr
(
C̃−1
n+1δfn+1 ∧ δL̃nC̃n

)〉
dz

=
〈
res
0
Tr
((
δL̃n

)
L̃−1
n ∧ δfn+1

)〉
dz, (5.32)

because

J4 =
〈
res
0
Tr
(
C̃−1
n+1δfn+1 ∧ L̃nδfn

)
C̃n

〉
dz = 0. (5.33)

In order to prove (5.33), let us note that at z = 0,

fn(z) = z
−1f0n +O(z

3), f0n =

(
xn 0

0 −xn

)
. (5.34)

Therefore,

J4 =
〈
res
0
Tr
(
C̃−1
n+1δf

0
n+1 ∧ L̃nδf

0
n

)
C̃n

〉
℘(z)dz

=
〈
res
0
Tr
(
C−1
n+1δf

0
n+1 ∧ Lnδf

0
n

)
Cn

〉
℘(z)dz.

(5.35)
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The last term in (5.35) is equal to the sum of residues at the punctures P± of the differ-

ential

〈
C∗
n+1δf

0
n+1 ∧ Lnδf

0
nCn

〉
℘(z)dz,

which is holomorphic on Γ outside the punctures. Hence, J4 = 0.

From (5.32), by direct calculations, we obtain that

J3 =

〈
2δhn+1 ∧ δxn+1

h2
n+1 − 1

〉
. (5.36)

Equations (5.30), (5.31), and (5.36) imply (5.28). Lemma 5.2 is proved. �

Now we are ready to complete the proof of Theorem 5.1. Equations (5.16) and

(2.14) imply that

ω = −δα, α =

N+1∑
s=1

∫γs

P+

δ ln
(
Λ−Nw

)
dz. (5.37)

Indeed, we have

δα =

N+1∑
s=1

δ lnw(γs)∧ δz(γs) −Nδ lnΛ∧ δ

N+1∑
s=1

z(γs). (5.38)

The last term in (5.38) equals zero on the fibers φ+ = const of the map (5.5).

The differential dS = ln(Λ−Nw)dz is multivalued on Γ, but following the argu-

ments of [28], we can show that its derivatives with respect to Ik, k = 1, . . . ,N (which

can be considered as coordinates on a space of curves given by (1.6)) are holomorphic

differentials. The differential dS is odd with respect to the permutation of sheets of Γ .

Therefore, IN+1 = −IN and the definition of Ik implies that

∂

∂Ik
dS = dΩh

k , k = 1, . . . ,N− 1,
∂

∂IN
dS = dΩh

N − dΩ
h
N+1. (5.39)

Equations (5.7) and (2.6) imply that

α =

N−1∑
k=1

(φkδIk) + φ−δIN, (5.40)

and using (5.37), we finally obtain (5.10). Theorem 5.1 is proved. �
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