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Abstract. An updated and detailed survey of basic ideas of the finite-gap theory is presented.
That theory, developed to construct periodic and quasi-periodic solutions of the soliton equations,
combines the Bloch–Floquet spectral theory of linear periodic operators, the theory of completely
integrable Hamiltonian systems, the classical theory of Riemann surfaces, and theta-functions.

1. Introduction

To begin with we are going to consider the inverse spectral problem for a one-dimensional
Schr̈odinger operator with periodic potential. In the late 1960s the famous discovery of the
inverse scattering transform for the Korteweg–de Vries (KdV) equation was made. A periodic
analogue of this transform was found in 1974. It is based on the solution of the following
inverse spectral problem:

to describe effectively the ‘isospectral manifold’ of all the potentials with a given
spectrum on the line (i.e. the spectrum of a Schrödinger operator acting in the Hilbert
space of square integrable complex-valued functions on the lineR).

As everybody working in quantum solid-state physics knows, this spectrum is generically
a union of an infinite number of intervals (allowed bands) on the energy lineε. The
complementary part on the energy line is also a union of an infinite number of intervals (gaps
or forbidden bands) whose lengths tend to zero forε → +∞.

The periodic problem was solved in 1974–5 for the so-calledfinite-gap potentials. Any
periodic potential can be approximated by the finite-gap ones. This solution involves a
combination of the theory of Riemann surfaces and theirθ -functions, Hamiltonian dynamics of
special completely integrable systems and the spectral theory of the Schrödinger operator. The
mathematical technique used was (and still is) unusual for the community of physicists. Later,
the necessity to use this kind of mathematics also appeared in other branches of mathematical
and theoretical physics (for example, in string theory, matrix models, and supersymmetric
Yang–Mills theory [1–15]). The authors believe this technique will be needed in future by the
broad community of theoretical physicists.

Integrability of the famous KdV equation,ut = 6uux + uxxx , was discovered in 1965–8
(see [16–18]) for rapidly decreasing initial data on the linex. Exact solutions for the KdV
equation expressingu(x, t) through theinverse scattering dataof the Schr̈odinger operator
L = −∂2

x +u(x, 0)were found. This procedure has been called the inverse scattering transform
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(IST). It was extended later for some other highly nontrivial(1 + 1)-systems including such
famous systems as the nonlinear Schrödinger,NS±: iψt = −ψxx ± |ψ |2ψ and sine(sinh)–
Gordon equations,SG: uxt = sinu or uxt = sinhu. Note that for the SG equation a large
family of exact solutions had already been constructed in the 19th century by Bianchi, Lie
and B̈acklund (see [19–21]). Since 1974, several(2 + 1)-dimensional physically interesting
systems have been discovered as integrable by the IST procedure. The most famous of them
is the Kadomtsev–Petviashvilii (KP) system (see [22,23]).

It is necessary to emphasize that the IST procedure in its original form cannot be applied
to the solution of the periodic problem (i.e.u(x, t) is periodic in the variablex). This problem
was solved on the basis of the new approach proposed in [24] and in [25–31] (see also the
surveys [32, 35, 37]). An extension of this method to(2 + 1)-systems was found in [33–35].
A new development of this approach associated with two-dimensional Schrödinger operators
began in 1976 (see [36–39,41–43]).

A complete detailed description of the solution of the periodic problem can be found in the
surveys [35, 37, 45], encyclopedia articles [40], and in the book [44]. We are going to present
here the basic ideas of this theory in the simplest form possible. Let us point out that the KdV
system, as well as other nontrivialcompletely integrable by ISTpartial differential equation
(PDE) systems, are indeed completely integrable in any reasonable sense for rapidly decreasing
or periodic (quasi-periodic) boundary conditions only. In fact, even that is well established
for few of them. For example, for the KdV any periodic solution can be approximated by the
finite-gap solutions. This statement easily follows from the theory of finite-gap potentials if
we do not try to preserve the period, i.e. in the class of all quasi-periodic finite-gap potentials.
The approximation of any periodic potential by the finite-gap potentials with exactly the same
period, was constructed on the basis of another approach developed in [46]. The extension of
the theory of Riemann surfaces andθ -functions to the specific class of surfaces of the infinite
genus associated with the periodic Schrödinger operator was done in [47]. This theory is a
beautiful description of the infinite limit. However, it seems that all fundamental properties of
θ -functions associated with the complex continuation of variables are lost in this limit. It is
interesting to point out that an analogous (but more complicated) theory of Riemann surfaces
of the infinite genus was developed later in [41] for the periodic two-dimensional Schrödinger
operators.

Outside these functional classes almost no effective information is known. Beautiful
methods have also been developed for the studies of the special self-similar and ‘string-type’
solutions, but in most cases they lead to the very hard analytical problems associated with the
famous Painlev́e equations and their generalizations [48–55].

2. Rapidly decreasing potentials and the Gardner–Green–Kruskal–Miura (GGKM)
procedure. Bäcklund transformations

Let us recall the basic information about the IST method for KdV. We start from the so-called
Lax representationfor KdV (see [18]). The Heisenberg-type equation for the Schrödinger
operatorL

Lt = [L,A] = LA− AL, (2.1)

L = −∂2
x + u, A = −4∂3

x + 3(u∂x + ∂xu), (2.2)

is equivalent to the identity (KdV equation)

ut = 6uux + uxxx. (2.3)
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For this reason, any KdV-type equations admitting some analogue of the Lax representation are
calledisospectral deformations. The existence of such deformations indicates the possibility
of an effective solution of the inverse scattering problem for the operatorL.

For the rapidly enough decreasing functionsu(x, t)→ 0, x →±∞ we define two bases
of solutions (t is fixed):

φ±(x, t; k) ∼ exp±ikx, x →−∞, Lφ± = λφ±, (2.4)

ψ±(x, t; k) ∼ exp±ikx, x → +∞, Lψ± = λψ±, k2 = λ. (2.5)

By definition, monodromy matrixT connects these two bases,T φ = ψ for the column vectors
φ = (φ+, φ−), ψ = (ψ+, ψ−):

T =
(
a b

c d

)
, ψ+ = aφ+ + bφ−, ψ− = cφ+ + dφ−. (2.6)

A conservation of the Wronskian implies that detT = ad − bc = 1. For the real values ofk
or λ > 0 we havea = d̄, c = b̄. Therefore,|a|2 − |b|2 = 1. The whole set of the so-called
inverse scattering data can be extracted from the monodromy matrixT if it is well-defined for
all complex values ofk. The so-calledscattering matrixis constructed fromT for the realk.
Its entries are thetransmissioncoefficient 1/a and thereflectioncoefficientb̄/a. The property
b = 0 for all real values ofk characterizes reflectionless or multisoliton potentials. For all
rapidly decreasing potentials the matrix elementa(k) is well-defined for complexk such that
Im k > 0 anda→ 1 for k→∞, Im k > 0. There is only a finite number of purely imaginary
zerosa(kn) = 0 in this domain. They correspond to the discrete spectrumλn = k2

n < 0.
The famous result of [17] (the GGKM procedure) easily follows from the Lax

representation, which implies the equation:

Tt = [T ,3], 3 =
(−4ik 0

0 4ik

)
. (2.7)

This result was formulated as a set of the following GGKM formulae:

at = 0, bt = −8(ik)3 = −ct , dt = 0. (2.8)

The latter equations give a full description of the KdV dynamics in these variables because any
rapidly decreasing potential can be reconstructed from the inverse scattering data. A special
family of the reflectionless potentials whereb = 0 for real values ofk, leads to the so-called
multisoliton solutions for the KdV equation (see [44]).

The multisoliton solutions can also be directly obtained with the help of the elementary
substitutions (B̈acklund transformations) transforming any solution of the KdV into another
solution: letu be a solution of the KdV equation andv be a solution of the Ricatti equation
α + u = vx + v2 with the initial value independent of time. The new functionũ = −vx + v2

satisfies the KdV equation. Starting from the trivial solutionu = u0 = 0 we construct a
sequence of potentials̃un−1 = un, n > 0, given by the B̈acklund transformation. We choose
parametersαn, α1 > α2 > · · · > αn > · · ·, and take the real nonzero functionsfn → ∞,
x →±∞,−fnxx + un−1fn = αnfn, which definevn = (logfn)x . Every such sequence leads
to the multisoliton reflectionless potential:

u0 = 0, u1 = − 2α

ch2(
√
α(x − x0) + βt)

, . . . . (2.9)

In terms of the Schr̈odinger operator this transformation (invented by Euler in 1742) is called
the Darboux transformation. The operatorL can be factorized

L = −∂2 + u = −(∂ + v)(∂ − v).
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Using the noncommutativity of these factors, we define the Darboux transformation for the
operator and its eigenfunction in the following way:

L̃ = −∂2 + ũ = −(∂ − v)(∂ + v), ψ̃ = (∂ + v)ψ. (2.10)

These transformations can be considered as some kind ofdiscrete spectral symmetriesfor
Schr̈odinger operators. They preserve a spectrum of the operatorL (except maybe for one
eigenfunction).

3. KdV hierarchy. Integrals of motion. Hamiltonian formalism

The local integrals for the KdV equation can be constructed with the help of the Schrödinger
operator. Consider the associated Riccati equationvx + v2 = u− k2 and find the solution for
it as a formal series in the variablek:

v(x, k) = ik +
∞∑
n=1

vn(x)(ik)
−n, (3.1)

where allvn are polynomials in the variablesu, ux, . . . . The integral along the linex is a
k-dependent constant of motion for the KdV equation

∂t

(∫
v(x, k)dx

)
= 0, ut = 6uux + uxxx. (3.2)

For the real potentialsu(x, t) and realk we can see that the imaginary part ofv(x, k)− ik is a
total derivative. The remaining quantities in the expansion,∫

(v(x, k)− ik) dx =
∑
n>1

∫
vn(x)(ik)

−n dx, (3.3)

define local integrals of motion

In = cn
∫
v2n+3(x) dx, n = −1, 0, 1, 2, . . . , (3.4)

wherecn are constants. After a proper choice of the constantscn we have

I−1 =
∫
u dx, I0 =

∫
u2 dx, I1 =

∫
(u2
x/2 +u3) dx, . . . , (3.5)

Int = 0, ut = 6uux + uxxx. (3.6)

Let us introduce a Gardner–Zakharov–Faddeev (GZF) Poisson bracket [56, 57] on the space
of functions

{u(x), u(y)} = δ′(x − y)). (3.7)

Then any functionalH (Hamiltonian) defines the corresponding Hamiltonian system

ut = ∂x
(
δH

δu(x)

)
. (3.8)

For the caseH = I−1 we get a trivial flow (i.e. this integral is a Casimir for the GZF bracket).
ForH = I0 we arrive at thex-translations,ut = ux . Let us call this equationKdV0. For
the caseH = I1 we have the ordinaryKdV = KdV1. Higher integrals give us the equations
KdVn of the order 2n+1 admitting the Lax representations with the same Schrödinger operator
L but with the differential operatorsAn = (const)∂2n+1

x + · · ·:

utn = ∂x
(
δIn

δu(x)

)
= [L,An]. (3.9)
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In particular,A0 = ∂x ,A1 = A.A nice formula for all operatorsAn can be extracted from [58].
Let L = −L2, whereL = ∂x +

∑
k>1 ak(u, ux, . . .)∂

−k
x . Here allak are polynomials in

the variablesu, ux, . . . and∂−1
x a =∑n>0(−1)na(n)∂−n−1

x for the composition of the operator
∂−1 and multiplication operator bya. By definition,

An = (L2n+1)+ = (L2n+1/2)+, (3.10)

where the sign + means omitting all strictly negative powers of∂x .
All higher KdVn systems can be integrated by the same IST procedure for the class

of rapidly decreasing functions. In particular, GGKM equations for the scattering data (or
monodromy matrix) have the form

Ttn = [T ,3n], 3n = (const)

(
(ik)2n+1 0

0 (−ik)2n+1

)
. (3.11)

The latter result also implies that all these flows commute with each other. Hence, we get the
following conclusion without any calculation:

integralsIn have zero Poisson brackets,

{In, Im} =
∫

δIn

δu(x)
∂x

δIm

δu(x)
dx = 0. (3.12)

A generalization of the GZF Poisson bracket for the isospectral deformations of the higher-
order (scalar) Lax operatorsL was found in [59].

It should be emphasized that there exists a family of local field-theoretical Poisson brackets
(Lenhart–Magri (LM) brackets [60]) describing the KdV theory:

B = B(λ,µ) = λ∂x +µ(−∂3
x + 4u∂x + 2ux) = λB0 +µB1, (3.13)

{u(x), u(y)}λ,µ = Bδ(x − y), (3.14)

{In, Im}λ,µ = 0. (3.15)

These brackets were generalized for the higher-order operatorsL in [61].
The recurrence operatorB1B

−1
0 = C generates all the right-hand sides of all higher KdV

systems:

C(0) = ux, C2(0) = 6uux − uxxx, . . . , Cn(0) = ∂x
(
δIn−1

δu(x)

)
. (3.16)

It gives also a simple proof of a very useful identity [62]:∫
δIn

δu(x)
dx = (const)In−1. (3.17)

All these identities are local and can be used for the class of periodic functions as well. However,
we shall see in the next section that the direct analogue of the GGKM procedure does not lead
to the integration procedure. We are going to use a different approach.

4. Spectral theory of periodic Schr̈odinger operators. Finite-gap potentials

The spectral theory for the periodic potentials on the whole linex is based on the monodromy
matrix as in case of the scattering theory. However, in the periodic case with a periodT <∞,
we have nothing like the selected pointx = ∞ for the definition of the monodromy matrix
(as it was for the rapidly decreasing case(T = ∞)—see section 2 above). Any pointx0 can
be used. Let us fix an initial pointx0 and choose a special basis of the solutionsC(x, x0, ε),
S(x, x0, ε) for the spectral equationLC = εC, LS = εS such that forx = x0 we have(

C S

Cx Sx

)
=
(

1 0
0 1

)
. (4.1)
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Figure 1.

The shift operatorT : x → x + T in the basisC, S defines the monodromy matrix

T̂ (x0, ε) =
(
a b

c d

)
, (4.2)

C(x + T ) = aC(x) + bS(x), S(x + T ) = cC(x) + dS(x). (4.3)

The key element of the periodic spectral theory is a notion of the so-called Bloch waves or
Bloch–Floquet eigenfunctions. We present here some essential properties of these functions
without any proofs. An exposition of this theory may be found in the encyclopedia article [40],
where the main ideas of the proofs are clearly presented for the difference Schrödinger operator
(it is much simpler).

By definition, the Bloch–Floquet functions are solutions of the Schrödinger equation that
are at the same time eigenfunctions of the shift operator, i.e.

Lψ = εψ, T ψ(x) = ψ(x + T , ε) = exp(±ip(ε)T )ψ(x). (4.4)

We uniquely normalizeψ by the conditionψ |x=x0 = 1.
For any complex numberε the eigenvalues,w±(ε) = exp(±p(ε)T ), of the shift operator

are defined by the characteristic equation for the monodromy matrix. From the Wronskian
property it follows that det̂T = 1. Therefore, the characteristic equation has the form

w2 − (tr T̂ )w + 1= 0. (4.5)

The multivalued functionp(ε) is called quasi-momentum.
The spectrum of the Schrödinger operator on the whole line is a union of spectral zones

which are segments of the real line of the variableε, where the quasi-momentum is real. The
latter condition is equivalent to the inequality:

|Tr T | = 2 cos(pT ) 6 2. (4.6)

The typical graph of the functionf (ε) = cos(pT ) is shown in figure 1. In particular, its extreme
pointsf ′(ε) = 0 are‘generically’ located inside the gaps (i.e. for the open and everywhere
dense set of periodic potentials we have|f | > 1 at the extreme points, and there is only one
extremal point in each gap). For some special cases we may havef = ±1 at the extreme
point. Such a point lies inside the spectral zone. However, generic perturbations create a new
small gap near this point—see figure 2. This point is a double point of periodic or anti-periodic
spectrum with the boundary conditionsψ(x) = ±ψ(x + T ).

The Riemann surface of the Bloch–Floquet functions is defined by the equation

z2 = cos(p(ε)T ), (4.7)
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Figure 2.
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but this surface is nonsingular only for the generic case (when there are no double points of
the periodic or anti-periodic problem for the Schrödinger operator). For largeε → +∞ the
following asymptotics are valid for the gaps (see figure 3):

(1) The length of gaps tends to zero with its rate depending on the smoothness of the potential
(this rate is exponential for the analytic potentials).

(2) All gaps are located near the pointsεm = 4π2m2T −2, and the distance of gaps from these
point tends to zero.

A nonsingular Riemann surface of the Bloch–Floquet solutions is defined with the help
of the equation

z2 = (ε − ε0)(ε − ε1) . . . (ε − εn) . . . , (4.8)

where ε0 < ε1 < · · ·, are simple eigenvalues of the periodic and anti-periodic spectral
problems.

As follows from the Lax representation for all higherKdVn systems (3.9), these boundary
spectral points for the periodic operatorL in the Hilbert spaceL2(R) of the square integrable
complex-valued functions on thex-line are integrals of motion for the KdV hierarchy.

We can say that the Riemann surface of the Bloch–Floquet solutions as a whole is an
integral of motion for the KdV hierarchy. How many potentials correspond to the same
Riemann surface (i.e. have the same spectrum inL2(R))?
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The original idea to introduce a special class of potentials for which this problem can be
solved effectively was proposed in [24] and is based on the KdV hierarchy. This idea naturally
combines two different ways to describe the corresponding isospectral manifold of potentials.
Both are in fact closely related to each other.

The first approach—use of the KdV hierarchy and Hamiltonian dynamics.Let us consider a
stationary equation for some linear combination of higherKdVn flows (3.9). It is an ordinary
differential equation (ODE) that can be written in the form:

δ(In + c1In−1 + · · · + cnI0 + cn+1I−1) = 0. (4.9)

This is a finite-dimensional Hamiltonian system withn degrees of freedom depending onn+1
parametersc1, . . . , cn+1. It is a completely integrable Hamiltonian system because there is
a family of the commuting flows. This family coincides with the restriction of all higher
KdVm on this stationary subset of functions given by the equation (4.9). Therefore, its generic
nonsingular solution is expected to be a periodic or quasiperiodic function ofx.

In the next section we shall construct for (4.9) some kind of Lax representation

3x = [Q(x, λ),3(x, λ)], 3 = 3n +
n+1∑
k=1

ck3k, (4.10)

using 2× 2 traceless matrices depending on the parameterλ and(u, ux, . . .) polynomially.
In the terminology used today some people call themloop groups. Note that in all soliton
systems theseλ-loops have very specificλ-dependence (polynomial, rational and in some
exotic examples—elliptic functions).

Lax representation (4.10) implies that an algebraic Riemann surface defined by the
characteristic equation

det(3(λ)− zI) = P(λ, z) = 0, (4.11)

does not depend onx and is, therefore, an integral of (4.9). The same Riemann surface can be
extracted from thecommutativity equation[L,A] = 0, which according to (3.9) is equivalent
to (4.9).

It should be emphasized that the latter form of (4.9), i.e. the commutativity condition for
two ODEs

[L,An +
∑

ckAn−k] = [L,A] = 0, L = −∂2
x + u, (4.12)

was considered formally (i.e. locally in the variablex without any periodicity assumptions)
as a pure algebraic problem in the 1920s (see [63, 64]). Even the formal algebraic Riemann
surface (4.11) appeared as a relationP(L,A) = 0.

According to our logic however, the corresponding system of equations in the variable
x is Hamiltonian and completely integrable. Therefore, its generic solution is quasiperiodic
in x, containing a dense family of periodic solutions. We may ask about the spectrum of the
corresponding operatorsL inL2(R)and boundaries of gaps. Remarkably, they exactly coincide
with the branching points of the Riemann surface defined by equation (4.11). Therefore, for
the periodic potential which satisfies equation (4.9), the nonsingular spectral Riemann surface
of the Bloch–Floquet solutions is an algebraic Riemann surface of genusg = n. The spectrum
of such an operator contains only a finite number of gaps [ε2j−1, ε2j ], j = 1, . . . , n.

This key step unifies the first approach with the second one (below). So the solution of
the inverse spectral problem can be identified with the process of a solution of some special
families of completely integrable systems using Riemann surfaces.
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Figure 4.

The second approach—periodic spectral theory in the Hilbert spaceL2(R). For any periodic
Schr̈odinger operatorL = −∂2+u(x = t0, t1, . . .)we have already defined the Riemann surface
0 of Bloch–Floquet solutions with the help of the monodromy matrixT̂ . For the finite-gap
potentials a graph of the functionf = cos(p(ε)T ) = 1

2 tr T̂ is highly degenerate (see figure 2
and compare with figure 1). For all real and large enoughε we have|f | 6 1.

Once again, we ask how to describe all the potentials with the same finite-gap spectrum
and what are the additional variables which uniquely define a finite-gap potential? It turns
out that these additional spectral data are the poles of the Bloch–Floquet functions. It can
by shown that the Bloch–Floquet solutions defined by (4.4) and normalized by the condition
ψ |x=x0 = 1 have exactly one simple poleγj (x0) inside each gap or on its boundary. A
point of the hyperelliptic surface0 (4.8) can be represented as the complex numberε and
a sign (or a branch) of the radicalz = √(ε − ε0)(ε − ε1) . . .. The branches of the radical
coincide at the boundaries of gaps. Therefore, each gap should be considered as a closed
cycleaj , j = 1, 2, . . . n (see figure 4). Any pole ofψ should be considered as a pointγj on
the cycleaj . The above-mentioned statement that there is only one pole in a gap means, in
particular, thatψ has no pole at the point(γj ,+) if it already has a pole at(γj ,−) and vice
versa. Geometrically, the total set of poles(γ1, . . . , γn) represents a point on the real torus
T g = a1× · · · × an. As we shall see later, this set of poles completely determines the original
potential. Different points of the real torus lead to the different potentials (if normalization
pointx0 is fixed).

5. Periodic analogue of the GGKM. Zero-curvature representation for the KdV
hierarchy and corollaries

As was emphasized above, the definition of the monodromy matrix in the periodic case depends
on the choice of initial pointx0. For different choices of the initial point the corresponding
monodromy matrices are conjugated (because they represent the same linear transformation
in different bases). Therefore, the dependence of the monodromy matrix with respect to the
choice of the initial pointx0 can be described by the equation:

Tx0 = [Q(ε, x0), T ], Q =
(

0 1
ε − u(x0) 0

)
. (5.1)

In the same way, for the isospectral deformations corresponding to the KdV hierarchy (i.e.,
all higherKdVn systems) we can establish the following equations (the periodic analogues of
GGKM):

Ttj = [3j, T ], 30 = Q, t0 = x0. (5.2)

A compatibility condition of equations (5.2) for any pair of variablesti , tj implies the following
zero-curvature representationfor the KdV hierarchy (where periodic boundary conditions are
already inessential)

[∂ti −3i, ∂tj −3j ] = 0. (5.3)

Using the Lax representations (3.9) for all higherKdVn, we can express all the matrices3j as
polynomials in the variableε and variablesu(x0), ux0(x0), . . . . For example, for the ordinary
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KdV we have (replacingx0 by x):

31 =
( −ux 2u + 4ε
−4ε2 + 2εu + 2u2 − uxx ux

)
. (5.4)

The matrices3k can be completely reconstructed from equations (5.3) and from the following
properties of matrix elements:

3k = (const)

(
ak bk
ck dk

)
, (5.5)

dk + ak = Tr3k = 0, bk = εk + u/2εk−1 + · · · , (5.6)

det3k = −(a2 + bc) = (const)R2k+1(ε) = (const)(ε2k+1 + · · ·), (5.7)

2ak = −bkx, (R2k+1)x = −bk. (5.8)

For i = 0, equations (5.3), wheret0 = x, give the zero-curvature representation for theKdVn
system:

∂x3n − ∂tnQ = [Q,3n]. (5.9)

From this representation and from the periodic analogue of GGKM we arrive at the following
results for the stationary higherKdVn system (4.10):

(1) The monodromy matrixT commutes with3

[T ,3] = 0. (5.10)

Therefore, they have common eigenvectors. It implies, in particular, that the Bloch–Floquet
functionψ± is single-valued on the algebraic Riemann surface associated with the matrix3.

(2) The stationary higher KdV admits anε-parametric Lax-type representation in the
variablex (4.10):

(3)x = [Q,3], 3 = 3n +
∑

ck3k. (5.11)

Therefore, we have a full set of conservation laws organized in the form of the Riemann surface
(i.e. all coefficients of the polynomialP arex-independent):

det(3(ε)− zI) = P(ε, z) = 0, (5.12)

P(ε, z) = z2 − R2n+1(ε) = (const)(ε − ε0) . . . (ε − ε2n). (5.13)

These pointsεj are exactly the boundaries of gaps for periodic potentials because the Riemann
surfaces of the matricesT and3 coincide. The matrix elementb12 for the matrix3 determines
another set of points

b12(ε) = (const)(ε − γ1) . . . (ε − γn). (5.14)

These points coincide with projections of the zeros of Bloch waveψ± as functions of the
variablex or poles as functions ofx0 (see the next section).

An original approach to the solution of the inverse spectral problem was based on the use
of the following trace-type formula for the potential:

−u(x)/2 + const= γ1(x) + . . . γn(x). (5.15)

From (5.11) and (5.14), ‘Dubrovin equations’ defining dynamics inx of the pointsγj can be
derived. They have the form

γjx =
√
R2n+1(γj )∏

k 6=j (γj − γk)
. (5.16)

These equations (see [27,32]) can be linearized by the so-called Abel transformation.
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Figure 5.

Consider the first-kind differentials on the Riemann surface (i.e. holomorphic one-forms
without poles anywhere—even at infinity). The basic first-kind forms are

ωj = εj−1 dε√
R2n+1(ε)

, j = 1, . . . , n. (5.17)

It is convenient to choose a normalized basis taking linear combinations�s =
∑

j vsjωj such
that ∮

aj

�s = δsj ,

for all the gapsaj .
Fix a set of pathsκj from the pointP0 = ∞ to the pointsPj on the Riemann surface. The

Abel transformation is defined by the formula

Ap(P1, . . . , Pn) =
∑
j

∫
κj

�p. (5.18)

Equations (5.16) after the Abel transform become linear:

Apx = Uq = 1

2π

∮
bq

dp. (5.19)

Here the closed pathsbq are ‘canonically conjugated’ to the pathsaj (see figure 5). It means that
the intersection numbers areaj ◦ bq = δjq . The differential dp is equal topε dε wherep(ε) is
a multi-valued quasi-momentum. It is a second-kind differential (i.e. a meromorphic one-form
on the surface0 with a pole of order two at the point∞ with negative part dk = −(dw)w−2

in the local coordinatew = k−1 near∞), and therefore has the form

dp = (εn+1 +
∑

j>0 vj ε
n−1−j ) dε√

R2n+1(ε)
. (5.20)

All the coefficientsvj can be found from the normalization condition:∮
aj

dp = 0, j = 1, . . . , n. (5.21)

Following the classical 19th century theory of Riemann surfaces, formulae (5.15)–(5.21) lead
to some expression of the potential through theθ -functions avoiding the calculation of the
eigenfunctionψ± (see [25, 27, 29, 31]). The most beautifulθ -functional formula for the
potential was obtained in [29].

However, in the next section we shall not follow the approach for solving the inverse
problem which has been outlined above, but use another approach proposed for the first time
in [32] (see the appendix, based on the idea of Its): it is possible to calculate all the family
of the Bloch–Floquet functions. The original approach has been used later in the problems,
where the effective calculation of the eigenfunction is impossible (as in the cases ofhigher
rank commuting ordinary differential (OD) linear operators (see for example [37]).
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6. Solution of the periodic and quasiperiodic inverse spectral problems.
Baker–Akhiezer functions

We are going to solve the inverse spectral problem for the finite-gap potentials following the
scheme proposed in [33–35] and based on the concept of the Baker–Akhiezer functions. These
functions are uniquely defined by their analytical properties on the spectral Riemann surface.
As we shall see later, this scheme is evenly applicable to the solution of inverse problems in
the two-dimensional case where the corresponding analytical properties naturally generalize
the analytical properties of the Bloch–Floquet solutions for finite-gap Schrödinger operators.

Let us start with the following real inverse spectral data:

(1) Riemann surface0 given in the form

z2 = (ε − ε0) . . . (ε − ε2n),

where all numbersεj are real;
(2) a set ofn real pointsγj ∈ 0 such that there is exactly one pointγj on the cycleaj .

Below we shall, for brevity, identify the pointγj as a point on0 with its projection on
the complexε-plane. The condition that there is only one point on each cycle means that
projection of the points satisfies the restriction:

ε2j−1 6 γj 6 ε2j , j = 1, . . . n, (6.1)

By definition, the complex inverse spectral data are the same data where the Riemann surface
(i.e. its branching pointsεk) and the pointsγj ∈ 0 are arbitrary complex points.

As we shall see below, a generic set of algebraic–geometric spectral data leads to the
explicit solution of the inverse spectral problem in terms of the Riemannθ -function. The
corresponding potentials are complex meromorphicquasi-periodicfunctions of the variable
x. For the real data described above, we are coming to the smooth (even analytic) quasiperiodic
potentials with their periods expressed through the hyperelliptic integrals (see below). It is
necessary to mention that there is no way to find simple and effective criteria for the potential
to be periodic in terms of these data. The periods depend on the Riemann surface only.
Of course, we may write the condition that all the corresponding hyperelliptic integrals are
commensurable; however, this condition is transcendental. Recently, based on the results
of [7,65], the effective numerical approach has been developed for the solution of this problem.
It is based on the discovery of some specific dynamic systems on the set of potentials which
preserve all the periods but change the spectrum. Following [65], we start from one periodic
potential and create all others using these dynamic systems.

In the last section we shall present some examples of finite-gap potentials written in terms
of elliptic functions. They are periodic in the variablex (even double-periodic as functions
of the complex variablex). The first nontrivial examples different from the classical Lamé
potentialsu(x) = n(n + 1)℘ (x) were found in [25]. This subject was developed in [66–70].

We define the Baker–Akhiezer functionψ = ψ(x, t1, . . . tn;P) for the parametersx, tj
and the pointP = (ε,±) ∈ 0, by its analytical properties on0 with respect to the variableP .
For the caset1 = t2 = · · · = 0 these analytical properties are just the same as the analytical
properties of the Bloch–Floquet solutions of the periodic finite-gap operator.

From pure algebraic–geometric arguments it follows that there exists a unique functionψ

such that

(1) it is meromorphic on0 outside infinity and has at most simple poles at the pointsγj ,
j = 1, . . . , n;
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(2) in the neighbourhood of infinity the functionψ has the form

ψ = exp[xk + t1k
3 + · · · + k2n+1tn](1 + ξ1(x, t)k

−1 + · · ·),
wherek2 = ε and, therefore,k−1 is a local coordinate on the Riemann surface near infinity.

A proof of this statement is identical to the proof of the existence and uniqueness of general
Baker–Akhiezer functions that were introduced in [33] for construction of exact solutions of
the two-dimensional KP equation and all associated Zakharov–Shabat hierarchies.

The general Baker–Akhiezer function is defined with the help of an arbitrary Riemann
surface of finite genusn instead of special hyperelliptic (i.e. two-sheeted) surfaces. We
fix an arbitrary ‘infinity’ pointP0 on it; a local coordinatek−1 = w wherew(P0) = 0; a
generic set of points(γ1, . . . , γn), and numbers(x = τ1, τ2, . . . , τk, . . .). The corresponding
Baker–Akhiezer function has the same analytical properties as above but (2) is replaced by the
following:

ψ = exp[xk + τ1k
2 + τ2k

3 + · · ·](1 + ξ1(x, τ )k
−1 + · · ·). (6.2)

For the KdV hierarchy we have a hyperelliptic Riemann surface,k2 = ε, and τ2k = 0,
τ2j+1 = tj .

The use of such functions (dependent only on a single parameterx) was proposed by
Baker [71] for the common eigenfunctions of two commuting OD linear operators. He
expected that this construction would improve the results of [63, 64]. He also made the
very interesting conjecture that this approach might seriously improve the classical theory of
θ -functions. Unfortunately, this proposal was not realized and was forgotten. The soliton
theory appeared many decades later absolutely independently. The 1970s saw the start of the
use of such functions on Riemann surfaces in the process of solution of a periodic problem for
the KdV-type systems and inverse spectral periodic problems. In the classical spectral theory,
Akhiezer [72] was the first to use some special cases of this function type for the construction
of some examples of operators on the half-linex > 0 with interesting spectral properties. No
author before the 1970s had associated anything like that with periodic problems. Indeed, this
type of functional construction on the Riemann surface was extracted in 1974 from [72].

We shall prove the existence and uniqueness of the Baker–Akhiezer function and present
its exact expression through theθ -functions later. At this moment we would like to show how
the uniqueness of this function leads to the proof thatψ is an eigenfunction for the Schrödinger
operator for our special case. We apply the operator∂ = ∂x twice to this function and use
analytical properties. After elementary calculation, we arrive at the formulae:

∂ψ = kψ + exp[kx + · · ·](ξ1xk
−1 + · · ·),

∂2ψ = k2ψ + 2ξ1xψ + O(k−1) exp[kx + · · ·]. (6.3)

From the latter equations, we get the equality

(∂2 − k2 − 2ξ1x)ψ = O(k−1) exp[kx + · · ·].
The left-hand side is a globally well-defined function on the same Riemann surface because
k2 = ε. It has the same poles independent of parameters. Up to the same exponential factor,
it is of the order O(k−1) at the infinity. Therefore, it is equal to zero due to the uniqueness of
the Baker–Akhiezer function.

So we come to the conclusion that

Lψ = εψ, L = −∂2 + u, u = −2ξ1x. (6.4)

We can apply the operators∂j = ∂tj to the functionψ :

∂jψ = k2j+1ψ + exp[kx + · · ·](ξ1j k
−1 + ξ2j k

−2). (6.5)
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As in the previous case, we can easily construct a linear operatorAj = ∂2j+1
x + · · · with the

coefficients independent ofk such that(∂j − An)ψ = O(k−1) exp(kx + · · ·). Using global
analytical properties on the Riemann surface, we deduce from this that the left-hand side is
equal to zero, as before. The compatibility condition of these pairs of equations is exactly a
KdVn system for the potentialu(x, t1, . . . , tm).

Following [33–35], we can prove in the same way that for the general Baker–Akhiezer
functionψ(x, τ, P ) associated with an arbitrary Riemann surface with fixed local coordinate
near a puncture, the following equations are valid:

(∂τk − Lk)ψ = 0, k = 2, 3, . . . . (6.6)

HereLk = ∂kx +· · · are linear OD operators acting on the variablex with coefficients depending
on parametersτ . These coefficients are differential polynomials in the coefficients of the
expansion of the regular factor of the Baker–Akhiezer function at the puncture (infinity). They
are uniquely defined by the condition that the expansion of the left-hand side of (6.6) at the
puncture has the form O(k−1)ψ .

The compatibility conditions

[∂τj − Lj , ∂τk − Lk] = 0. (6.7)

are equivalent to nonlinear PDEs for the coefficients of the operatorsLk. For the case
j = 2, k = 3, τ2 = y, τ3 = z, the operatorsL2 andL3 have the form

L2 = ∂2
x − u(x, y, t), L3 = ∂3

x − 3
2u∂x +w(x, y, t), (6.8)

where we consider the dependence of the coefficients with respect to the first three variables
τ1 = x, τ2 = y, τ3 = t , only. The coefficientu(x, y, t) is equal tou = 2ξ1x(x, y, t), whereξ1

is the first coefficient of the expansion (6.2).
From (6.7) we get a system of two equations for two coefficientsu(x, y, t) andw(x, y, t)

which can be reduced for an equation foru(x, y, t). The reduced equation is the famous KP
equation

3uyy = (4ut − 6uux + uxxx)x. (6.9)

It appeared in the physics literature for the investigation of the transversal stability of the KdV
solitons (see [73]) and is one of the most natural physical two-dimensional analogues of KdV.
The Lax representation for it was found in [22, 23]. We call the whole set of higher systems
(6.7) the KP hierarchy. We shall discuss the periodic problem for this equation at greater length
in the next section.

For the special choice of the hyperelliptic Riemann surface andk = ±√ε we have
k2s = εs , where the functionε is well-defined globally as a meromorphic function on the
Riemann surface0. Therefore, we may represent globally the corresponding Baker–Akhiezer
function in the form

ψ = ψ̃ exp(τ2k
2 + τ4k

4 + · · ·), (6.10)

whereψ̃ does not depend on the parametersτ2j . So in this case all the KP hierarchy reduces
to the KdV hierarchy.

The relationship of this construction with commuting OD linear operators is as follows.
Let f (P ) be a meromorphic function on the Riemann surface0 with one pole at the puncture
P0. Its negative part written in the parameterk is some polynomialq(k) = ql1+q2k

l−1+· · ·+qlk.
Apply the operatorAf = q1Ll + q2Ll−1 + · · · + q1∂x to the functionψ . By the definition of
the operatorsLk, we can see that

(Af − f )ψ = O(k−1)ψ. (6.11)
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We conclude, as before, that the differenceAfψ − f (P )ψ = 0.
For any pair of functionsf andg on the Riemann surface0 with poles at the point∞,

we get a pair of the commuting OD scalar linear operatorsAf ,Ag such thatAfAg = AgAf .
In a special case of the hyperelliptic Riemann surfacez2 = (ε − ε0) . . . (ε − ε2n), we have a
pair of functionsf = ε, g = z, leading to the Schrödinger operatorL = −∂2

x + u commuting
with the second operator of order 2n + 1, becausez = k2n+1 + · · ·.

Now we return to the problem of existence and uniqueness of the Baker–Akhiezer function.
The simplest way to prove this existence is to define this function by an exact formula in terms
of theθ -function and meromorphic differentials. Let us first recall the necessary information.

As in the previously discussed case of hyperelliptic curves, we introduce a basis of cycles
aj , bj , j = 1, . . . , g, on a Riemann surface0 of genusgwith canonical matrix of intersections,
ai · bj = δij , and a basisωi of holomorphic differentials normalized by the condition∮

ai

ωj = δij . (6.12)

The matrixB = (Bij ) of b-periods of these differentials

Bij =
∮
bi

ωj , (6.13)

is symmetric and has a positively defined imaginary part. The Riemannθ -function is a function
defined with the help of this matrix by the formula

θ(z|B) =
∑
m∈Zg

e2π i(z,m)+(Bm,m) (6.14)

wherez = (z1, . . . , zg) is a complexg-dimensional vector,(m, z) stands for a standard scalar
product and summation is taken over all integer vectorsm = (m1, . . . , mg). Theθ -function
is an entire periodic function ofg variableszj and has the following monodromy properties
with respect to the shifts defined by vectorsBk which are columns of the matrix ofb-periods:

θ(z +Bk) = e−2π izk−π iBkk θ(z). (6.15)

The basic vectorsek and the vectorsBk define a latticeL in Cg which determines theg-
dimensional complex torusJ (0) = Cg/L called the Jacobian of the curve. The Abel map
A : 0→ J (0) is defined by the formula

Ak(P ) =
∫ P

P0

ωk. (6.16)

Note that the vectorA(P )with coordinatesAk(P ) depends on the choice of path of integration
but its ambiguity just coincides with shifts by vectors of the latticeL.

From the monodromy properties of theθ -function it follows that zeros of the multivalued
functionθ(A(P ) +Z) considered as a function on0 are well defined. For a generic vectorZ
this function has exactlyg zeros(γ1, . . . , γg). The vectorZ can be expressed in terms of Abel
transforms of these points by the formula

Z = −
g∑
j=1

A(γj ) +K, (6.17)

whereK is a vector of the Riemann constants.
Let us introduce a set of meromorphic differentials d�i that are holomorphic on0 outside

the puncture where they have poles of the form

d�i = dki(1 + O(k−i−1)), (6.18)
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and are normalized in the usual way by the condition∮
ai

d�j = 0. (6.19)

The Abelian integrals

�i(P ) =
∫ P

d�i (6.20)

are multivalued functions on0.
LetUj be a vector with the coordinates

Ujk = 1

2π i

∮
bk

d�j . (6.21)

Then, from the statements presented above, it follows directly that the formula

ψ(τ, P ) = exp

(∑
i

τi�i(P )

)
θ((A(P ) +

∑
i Uiτi +Z)θ(Z)

θ(A(P ) +Z)θ(
∑

i Uiτi +Z)
(6.22)

correctly defines a function on0 which satisfies all the properties of the Baker–Akhiezer
function.

Suppose now that there exists another Baker–Akhiezer functionψ1. From the definition
of the Baker–Akhiezer functions it follows that the ratioψ1/ψ is a meromorphic function on0
which is equal to one at the puncture and with the only possible poles at the zeros of the function
ψ . According to (6.22) the zeros ofψ are zeros of the functionθ

(
A(P ) +

∑
i Uiτi +Z

)
.

Therefore,ψ hasg zeros. The simplest form of the Riemann–Roch theorem (which can be
considered as a generalization of the Liouville theorem for Riemann surfaces) implies that a
function on0 with at mostg poles at a generic set of points is a constant. Therefore,ψ1 = ψ
and the existence and uniqueness of the Baker–Akhiezer function is proved.

Now, according to the previously established formulau = 2∂xξ1, in order to get an exact
formula for a solution of the KP hierarchy it is enough to take the first coefficientξ1(τ ) of
the expansion of the pre-exponential factor in (6.2) at the puncture. Finally, we obtain the
expression

u(τ) = 2∂2
x logθ

(∑
i

Uiτi +Z

)
+ const (6.23)

for the finite-gap solutions of the whole KP hierarchy.
If we consider only the KP equation, we get the formula

u(x, y, t) = 2∂2
x logθ(Ux + Vy +Wt +Z) + const, (6.24)

where we redenotex = τ1, y = τ2, t = τ3 andU = U1, V = U2,W = U3.
For the case of the hyperelliptic curve the vectorV = 0 and we get the Its–Matveev

formula for the finite-gap solutions of the KdV equation.
The formula (6.24) derived in [34, 35] has led to one of the most important pure

mathematical applications of the theory of nonlinear integrable systems. This is the solution
of the famous Riemann–Shottky problem.

According to the Torrelli theorem, the matrix ofb-periods of normalized holomorphic
differentials uniquely defines the corresponding algebraic curve. The Riemann–Shottky
problem is: to describe symmetric matrices with the positive imaginary part which are the
matrices ofb-periods of normalized holomorphic differentials on algebraic curves. One of the
authors conjected that the functionu(x, y, t) given by (6.24) is a solution of the KP equation
if and only if the matrixB that defines theθ -function is the matrix ofb-periods of normalized
holomorphic differentials on an algebraic curve andU , V , W are vectors ofb-periods of
corresponding normalized meromorphic differentials with the only pole at a point of this
curve. This conjecture was proved in [74].
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7. Spectral theory of two-dimensional periodic operators. KP hierarchy

A general algebraic–geometric construction of the finite-gap potentials for the Schrödinger
operators and for solutions of the KP hierarchy that was presented in the previous section
has been developed extensively over the years. It is applicable for all soliton systems which
are equivalent to various types of compatibility conditions for over-determined systems of
auxiliary linear problems. In its algebraic form it is in some sense local and is a sort of inverse
transform: from a set of algebraic–geometrical data to solutions of the integrable nonlinear
partial differential equations

{algebraic–geometrical data} 7−→ {solutions of NLPDE}. (7.1)

In a generic case the space of algebraic–geometrical data is a union for allg of the spaces

M̃g,N = {0g, Pα, k−1
α (Q), γ1, . . . , γg}, α = 1, . . . , N, (7.2)

where0g is an algebraic curve of genusg with fixed local coordinatesk−1
α (Q), k

−1
α (Pα) = 0,

in neighbourhoods ofN puncturesPα, andγ1, . . . , γg are points of0g in a general position. (It
is to be mentioned that̃Mg,N are ‘universal’ data. For the given nonlinear integrable equation
the corresponding subset of data has to be specified.)

A posteriori it can be shown that these solutions can be expressed in terms of the
corresponding Riemannθ -functions and are quasi-periodic functions of all variables. Within
this approach it is absolutely impossible to give an answer to the basic question: ‘How many
algebraic–geometrical solutions are there? And what is their role in the solution of the periodic
Cauchy problem for two-dimensional equations of the KP type?’

The answer to the corresponding question in lower dimensions is as follows. For finite-
dimensional (0 + 1) systems a typical Lax representation has the form

∂tU(t, λ) = [U(t, λ), V (t, λ)], (7.3)

whereU(t, λ) and V (t, λ) are matrix functions that are rational (or sometimes elliptic)
functions of the spectral parameterλ. In that caseall the general solutions are algebraic–
geometrical and can be represented in terms of the Riemannθ -functions.

For spatial one-dimensional evolution equations of the KdV type ((1 + 1)-systems) the
existence of a direct and inverse spectral transform allows one to prove (although it is not
always a rigorous mathematical statement) that algebraic–geometrical solutions are dense in
the space of all periodic (inx) solutions.

It turns out that the situation for two-dimensional integrable equations is much more
complicated. For one of the real forms of the KP equation that is called the KP-2 equation
and coincides within (6.9), the algebraic–geometrical solutions are dense in the space of all
periodic (inx andy) solutions [41]. It seems that the same statement for the KP-1 equation
which can be obtained from (6.9) by replacingy → iy is wrong. One of the most important
problems in the theory of two-dimensional integrable systems which are still unsolved is: ‘in
what sense’ is the KP-1 equation, which has the operator representation (6.7) and for which a
wide class of periodic solution was constructed, a ‘non-integrable’ system.

The proof of the integrability of the periodic problem for the KP-2 equation is based on
the spectral Floquet theory of the parabolic operator

M = ∂y − ∂2
x + u(x, y), (7.4)

with periodic potentialu(x + l1, y) = u(x, y + l2) = u(x, y). We are now going to present the
most essential points of this theory, which was developed in [41]. It is the natural generalization
of the spectral theory of the periodic Sturm–Liouville operator. We would like to mention that,
despite its application to the theory of nonlinear equations and related topics, the structure of
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the Riemann surface of Bloch solutions of the corresponding linear equation that was found
in [41] has been used as a starting point for an abstract definition of the Riemann surfaces of
the infinite genus [75].

Solutionsψ(x, y,w1, w2) of the nonstationary Schrödinger equation

(σ∂y − ∂2
x + u(x, y))ψ(x, y,w1, w2) = 0 (7.5)

with a periodic potentialu(x, y) = u(x + a1, y) = u(x, y + a2) are called Bloch solutions if
they are eigenfunctions of the monodromy operators, i.e.

ψ(x + a1, y, w1, w2) = w1ψ(x, y,w1, w2), (7.6)

ψ(x, y + a2, w1, w2) = w2ψ(x, y,w1, w2). (7.7)

The Bloch functions will always be assumed to be normalized so thatψ(0, 0, w1, w2) = 1.
The set of pairsQ = (w1, w2), for which there exists such a solution, is called the Floquet set
and will be denoted by0. The multivalued functionsp(Q) andE(Q) such that

w1 = eipa1, w2 = eiEa2

are called quasi-momentum and quasi-energy, respectively.
The gauge transformationψ → eh(y)ψ , where∂yh(y) is a periodic function, transfers the

solutions of (7.5) into solutions of the same equation but with another potentialũ = u−σ∂yh.
Consequently, the spectral sets corresponding to the potentialsu and ũ are isomorphic.
Therefore, in what follows we restrict ourselves to the case of periodic potentials such that∫ a1

0 u(x, y)dx = 0.
To begin with let us consider as a basic example the ‘free’ operatorM0 = σ∂y − ∂2

x with
zero potentialu(x, y) = 0. The Floquet set of this operator is parametrized by the points of the
complex plane of the variablek w0

1 = eika1, w0
2 = e−σ

−1k2a2, and the Bloch solutions have the
form ψ(x, y, k) = eikx−σ−1k2y. The functionsψ+(x, y, k) = e−ikx+σ−1k2y are Bloch solutions
of the formal adjoint operator(σ∂y + ∂2

x )ψ
+ = 0.

An image of the mapk ∈ C 7−→ (w0
1, w

0
2) is the Floquet set for the free operatorM0. It

is the Riemann surface with self-intersections. The self-intersections correspond to the pairs
k 6= k′ such thatw0

i (k) = w0
i (k
′), i = 1, 2. The latter conditions imply the equations

k − k′ = 2πN

a1
, k2 − (k′)2 = σ2π iM

a2
, (7.8)

whereN andM are integers. Hence, all the resonant points have the form

k = kN,M = πN

a1
− σ iMa1

Na2
, N 6= 0, k′ = k−N,−M. (7.9)

The basic idea of the construction of the Riemann surface of Bloch solutions of the equation
(7.5) that was proposed in [41] is to consider (7.5) as a perturbation of the free operator,
assuming that the potentialu(x, y) is formally small.

For anyk0 6= kN,M it is easy to construct a formal Bloch solution. It turns out that the
corresponding formal series converges and defines a holomorphic function ofk0 for |k0| > M

big enough and lies outside small neighbourhoods of the resonant points. Moreover, it can be
shown that this function can be extended on the Riemann surface that can be thought of as a
surface obtained from the complex plane by some kind of surgery that createsgapsin places
of the resonant points.

More precisely, ifu(x, y) is a smooth real potential that has analytical continuation in
some neighbourhood of the real values ofx andy, then the corresponding Riemann surface of
Bloch–Floquet solutions can be described in the following way.
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Let us fix some finite or infinite subsetS of integer pairs(N > 0,M) . The set of pairs of
complex numbersπ = {ps,1, ps,2} wheres ∈ S would be called ‘admissible’, if

Reps,i = πN

a1
, |ps,i − ks | = o(|ks |−1), i = 1, 2, (7.10)

and the intervals [ps,1, ps,2] do not intersect. (Hereks , s = (N,M) are resonant points.)
Let us define the Riemann surface0(π) for any admissible setπ . It is obtained from the

complex plane of the variablek by cutting it along the intervals [ps,1, ps,2] and [−p̄s,1,−p̄s,2]
and then by sewing the left side of the first cut with the right side of the second cut and vice
versa. (After this surgery for each cut [ps,1, ps,2] corresponds to a nontrivial cycleas on0(π).)

For any real periodic potentialu(x, y) which can be analytically extended into some
neighbourhood of the real valuesx, y, the Bloch solutions of the equation (7.5) are parametrized
by pointsQ of the Riemann surface0(π), corresponding to some admissible setπ . The
functionψ(x, y,Q) which is normalized by the conditionψ(0, 0,Q) = 1 is meromorphic
on0 and has a simple poleγs on each cycleas . If the admissible setπ contains only a finite
number of pairs, then0(π) has finite genus and is compactified by only one pointP1 (k = ∞),
in the neighbourhood of which the Bloch functionψ has the form (6.2).

The potentialsu for which0(π) has finite genus are called finite gap. They coincide with
the algebraic–geometrical potentials. The direct spectral transform for periodic operators (7.4)
allows us to prove that as in the one-dimensional case the finite-gap potentials are dense in the
space of all periodic smooth functions in two variables [41].

8. Spectral theory of the two-dimensional Schr̈odinger operator for a fixed energy level
and two-dimensional Toda lattice

In this section we discuss a spectral theory of the two-dimensional periodic Schrödinger
operator. Unlike the one-dimensional case, spectral data for the two-dimensional linear
operator are over-determined and therefore for generic operators there are no nontrivial
isospectral flows. As was noted in [77], deformations that preserve spectral data forone
fixedenergy level do exist. An analogue of the Lax representation for such a system has the
form

Ht = [A,H ] + BH, (8.1)

where H,A,B are two-dimensional operators with coefficients depending onx, y, t .
Equation (8.1) is equivalent to the condition that operatorsH and (∂t − A) commute on
the space of solutions of the equationHψ = 0. Therefore, (8.1) describes deformations
preserving all the spectral data associated with the zero energy level of the operatorH .

It should be mentioned that until the moment when equations (8.1) were proposed in
the framework of the soliton theory the spectral problem associated with one energy level of
two-dimensional periodic operators had never been considered.

For the first time an inverse algebraic–geometric spectral problem for a two-dimensional
Schr̈odinger operator in the magnetic field

H = (i∂x − Ax(x, y))2 + (i∂y − Ay(x, y)2 + u(x, y) (8.2)

was formulated and solved in [36].
Consider the Bloch solutions of the equationHψ = εψ , which by definition are solutions

that at the same time are eigenfuctions for the shift operators:

ψ(x + T1, y) = eipxT1ψ(x, y), ψ(x, y + T2) = eipyT2ψ(x, y). (8.3)
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HereT1, T2 are periods of the operatorH , i.e. periods of the potentialu(x, y) and periods of
the magnetic fieldB(x, y), which is defined by the vector potential(Ax,Ay) by the formula
B = ∂yAx − ∂xAy .

Multivalued quantitiespx, py are components of the two-dimensional quasi-momentum.
For fixed values ofpx, py a spectrum of the operatorH restricted on the space of functions
satisfying (8.3) is discrete and defines different branches of dispersion relationsεj (px, py),

j = 1, . . . . Level linesεj (px, py) = ε0 in the space of variablespx, py define the so-called
Fermi curves. Of course, in solid-state physics all the considerations were restricted by real
values of quasi-momentum.

In [36] it was suggested to consider operators for which acomplexFermi curve does exist
and is the Riemann surface of finite genus for some energy levelε0. Moreover, it was assumed
that this curve is compactified by twoinfinity pointsP± in the neighbourhoods of which the
corresponding Bloch solutions have the form

ψ = ek±(x±iy)

( ∞∑
s=0

ξ±s (x, y)k
−s
±

)
, (8.4)

wherek−1
± are local coordinates in the neighbourhoods of the puncturesP±. It was also

assumed that outside the punctures the functionψ(x, y, P ) considered as a function of the
variableP (which is a point of the complex Fermi curve0) is a meromorphic function withg
poles independent of the variablesx andy.

We present here a solution to this inverse spectral problem in a more general form which
is necessary for the construction of exact solutions to the two-dimensional Toda lattice which
has deep connections with the theory of two-dimensional Schrödinger operators. After that
we return to the spectral problems.

Let 0 be a smooth algebraic curve of genusg with fixed local coordinatesw±(P ) in the
neighbourhoods of the pointsP±, w±(P±) = 0. Then for each set ofg pointsγ1, . . . , γg in
general position there exists a unique functionψn(T , P ), T = {t±i , i = 1, . . . ,∞, } such that:

(10) The functionψn of the variableP ∈ 0 is meromorphic outside the punctures and has at
most simple poles at the pointsγs (if all of them are distinct);

(20) In a neighbourhood of the pointP± it has the form

ψn(T , P ) = w∓n±
( ∞∑
s=0

ξ±s (n, T )w
s
±

)
exp

( ∞∑
i=1

w−i± t
±
i

)
, w± = w±(P ), (8.5)

ξ+
0 (x, T ) ≡ δαj . (8.6)

The proof of this statement, as well as the explicit formula forψn in terms of Riemannθ -
functions, is almost identical to the method of solution of the inverse problem for finite-gap
Schr̈odinger operators discussed in the previous sections.

Let d�(±)j be a unique meromorphic differential holomorphic on0 outside the pointP±,
which has the form

d�(±)j = d(w−j± + O(w±)), (8.7)

near the pointP±, and normalized by the conditions
∮
ak

d�(±)i = 0. It defines a vectorU(±)
j

with coordinates

U
(±)
jk =

1

2π i

∮
bk

d�(±)j . (8.8)

Further, let us define the normalized differential d�(0), which is holomorphic outside the
pointsP± where it has simple poles with residues±1, respectively. From Riemann’s bilinear
relations it follows that the vector ofb-periods of this differential equals 2π iU(0), where

U(0) = A(P−)− A(P +). (8.9)
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As in the previous case, one can directly check that the functionψn(T , P ) given by the formula:

ψn(T , P ) = θ(A(P ) +U(0)n +
∑
U
(±)
i t±i +Z)θ(A(P +) +Z))

θ(A(P ) +Z)θ(A(P +) +U(0)n +
∑
U
(±)
i t±i +Z)

e(n�
(0)(P )+

∑
t±i �

(±)
i (P )), (8.10)

�
(±)
i (P ) =

∫ P

d�(±)i , (8.11)

is well defined and has all the properties of the Baker–Akhiezer function.
Note, that forn = 0 andt±1 = x ± iy, t±i = 0, i > 1, the analytical properties of this

function coincide with the properties that were described above as analytical properties of the
Bloch solutions for finite-gap two-dimensional Schrödinger operators.

From the uniqueness of the Baker–Akhiezer functionsψn(T , P ) it follows that they satisfy
the linear equations

∂+ψn = ψn+1 + vnψn, ∂−ψn = cnψn−1, ∂± = ∂

∂t±1
, (8.12)

where

vn = ∂+ϕn(T ), cn = eϕn(T )−ϕn−1(T ), eϕn = ξ−0 (T ), (8.13)

andξ−0 (T ) is a leading term of the expansion ofψn at the punctureP−. From (8.10) we get
the formula

ϕn = log
θ(U(0)(n + 1) +

∑
U
(±)
i t±i +Z0)

θ(U(0)n +
∑
U
(±)
i t±i +Z0)

+ const, Z0 = Z +A(P +). (8.14)

for algebraic–geometric solutions of the two-dimensional Toda lattice which was obtained
in [76].

Note that (8.12) imply thatψ0 satisfies the equation

∂+∂−ψ0 + v0∂−ψ0 + (c1 + ∂−v0)ψ0, (8.15)

which is gauge equivalent to (8.2) and, therefore, we do get a solution of the inverse problem
that was introduced above.

The next important step was done in [38, 39] where algebraic–geometric spectral data
corresponding to potential two-dimensional Schrödinger operators (i.e. operators with zero
magnetic field) were found.

Let 0 be a smooth genusg algebraic curve with fixed local coordinatesk−1
± (Q),

k−1
± (P±) = 0, in the neighbourhoods of two puncturesP±. Let us assume that there exists

a holomorphic involution of the curveσ : 0 7−→ 0 such thatP± are its only fixed points,
i.e. σ(P±) = P±. The local parameters are to be ‘odd’, i.e.k±(σ (Q)) = −k±(Q). The factor
curve will be denoted by00. The projection

π : 0 7−→ 00 = 0/σ (8.16)

represents0 as a two-sheet covering of00 with the two branch pointsP±. In this realization
the involutionσ is a permutation of the sheets. As there are only two branching pointsg = 2g0,
whereg0 is the genus of00. Let us consider a meromorphic differential d�(Q) of the third
kind on00 with residues∓1 at the pointsP±. The differential d� hasg zeros that will be
denoted byγ̂i , i = 1, . . . ,2g0 = g. Let us choose for eachi a pointγi on0 such that

π(γi) = γ̂i , i = 1, . . . , g. (8.17)

In [38, 39] it was shown that the Baker–Akhiezer function corresponding to algebraic–
geometric data which have been just defined satisfies the equation

(∂+∂− + u(x, y))ψ(x, y,Q) = 0, (8.18)
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where

u = −∂−ξ+
1 = −∂+ξ

−
1 , (8.19)

andξ±1 = ξ±1 (x+, x−) are the first coefficients in the expansion (8.4).
It should emphasized that although general formula (8.10) in terms of the Riemannθ -

functions is valid for the Baker–Akhiezer functions corresponding to the potential Schrödinger
operatorH , in [38, 39] another more effective representation in terms of the so-called Prim
θ -function was found.

A space of holomorphic differentials on0 splits into twog0-dimensional subspaces of
even and odd (with respect to the involutionσ ) differentials. A matrix ofb-periods of odd
differentials defines the functionθPr(z) by the same formula (6.14). Then

ψ = θPr(A
od(Q) +U+x+ +U−x− − Z)θPr(Aod(Z))

θPr(Aod(Q)− Z)θPr(U+x+ +U−x− − Z) ei(p+(Q)x++p−(Q)x−). (8.20)

Herep±(Q) are Abelian integrals of the second-kind normalized differential dp± on0 that
have poles of the second order at pointsP±, respectively; vectors 2πU± are the vectors of
b-periods of these differentials.

As was mentioned above, the inverse algebraic–geometric spectral problem on one energy
level for a two-dimensional Schrödinger operator was posed and solved at the time when no
direct spectral theory was known. This theory was developed much later in [41], where it was
shown that the Bloch solutions for (8.18) with analytical periodic potential are parametrized
by points of an infinite-genus Riemann surface. It was proved that if this surface has finite
genus, then the Bloch functions have all the analytical properties suggested in the inverse
problem and are, therefore, just the Baker–Akhiezer functions. Moreover, it was proved that
algebraic–geometric (finite-gap) potentials are dense in the space of all periodic potentials.

9. Spectral theory of operators with elliptic coefficients

In this section we are going to discuss a specific spectral problem for operators with elliptic
coefficients, i.e. with coefficients that are meromorphic functions of a variablex and have two
periods 2ω, 2ω′, Im (ω′/ω) > 0.

Since Hermite’s time, it has been known that a one-dimensional Schrödinger operator with
potential of the formn(n + 1)℘ (x) (where℘(x) = ℘(x|ω,ω′) is a Weierstrass℘-function
corresponding to an elliptic curve with periods 2ω, 2ω′, andn is an integer) has onlyn gaps in
the spectrum. These Lamé potentials had been the only known examples with the finite-gap
property before the finite-gap theory was constructed in the framework of the soliton theory (see
above). As we have already shown, a generic algebraic–geometric potential can be expressed
in terms of a higher-genus Riemannθ -function. Sometimes, a higher-genus formula can be
reduced to an exact expression in terms of the elliptic function.

The first example of this type which is different from the Lamé potentials was proposed
in [25]. Later, a theory of elliptic finite-gap potentials attracted particular interest due to the
remarkable observation made in [78] with regards to a connection with the elliptic Calogero–
Moser model. The most recent burst of interest is due to the unexpected connections of these
systems to the Seiberg–Witten solution ofN = 2 supersymmetric gauge theories [14, 15]. It
turns out that the low-energy effective theory for theSU(N) model with matter in the adjoint
representation (identified first in [1] with theSU(N) Hitchin system) is isomorphic to the
elliptic CM system. Using this connection, quantum order parameters were found in [79].

The elliptic CM system [80, 81] is a system ofN identical particles on a line interacting
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with each other via the potentialV (x) = ℘(x). Its equations of motion have the form

ẍi = 4
∑
j 6=i

℘ ′(xi − xj ). (9.1)

The CM system is a completely integrable Hamiltonian system, i.e. it hasN independent
integralsHk in involution [82,83]. The second integralH2 is the Hamiltonian of (9.1).

In [78] it was shown that the elliptic solutions of the KdV equations have the form

u(x, t) = 2
N∑
i=1

℘(x − xi(t)) (9.2)

and the polesxi(t) of the solutions satisfy the constraint
∑

j 6=i ℘
′(xi − xj ) = 0, which is the

locusof the stationary points of the CM system. Moreover, it turns out that the dependence
of the poles with respect tot coincides with the Hamiltonian flow corresponding to the third
integralH3 of the system. In [84,85] it was found that this connection becomes an isomorphism
in the case of the elliptic solutions of the KP equation. Moreover, in [66] it was revealed that
the connection of the CM systems with the KP equation is in some sense secondary and is a
corollary of more fundamental connections with the spectral theory oflinear operators with
elliptic potentials. The corresponding approach has been developed extensively in [67–69].

LetL be a linear differential or difference operator in two variablesx, t with coefficients
which are scalar or matrix elliptic functions of the variablex. We do not assume any special
dependence of the coefficients with respect to the second variable. Then it is natural to introduce
a notion ofdouble-Blochsolutions of the equation

Lψ = 0. (9.3)

We call a meromorphicvector-functionf (x), which satisfies the following monodromy
properties:

f (x + 2ωα) = Bαf (x), α = 1, 2, (9.4)

a double-Bloch function. The complex numbersBα are calledBloch multipliers. (In other
words,f is a meromorphic section of a vector bundle over the elliptic curve.)

In the most general form a problem that we are going to address is toclassifyand to
constructall the operatorsL such that equation (9.3) hassufficientdouble-Bloch solutions.

It turns out that the existence of the double-Bloch solutions is so restrictive that only in
exceptional cases do such solutions exist. A simple and general explanation of that is due to
the Riemann–Roch theorem. LetD be a set of pointsxi , i = 1, . . . , m, on the elliptic curve
00 with multiplicities di and letV = V (D;B1, B2) be a linear space of the double-Bloch
functions with the Bloch multipliersBα that have poles atxi of order less or equal todi and
holomorphic outsideD. Then the dimension ofD is equal to

dimD = degD =
∑
i

di .

Now let xi depend on the variablet . Then forf ∈ D(t) the functionLf is a double-
Bloch function with the same Bloch multipliers but in general with higher orders of poles,
because taking derivatives and multiplication by the elliptic coefficients increase these orders.
Therefore, the operatorL defines a linear operator

L|D : V (D(t);B1, B2) 7−→ V (D′(t);B1, B2), N ′ = degD′ > N = degD,

and (9.3) isalwaysequivalent to anover-determinedlinear system ofN ′ equations forN
unknown variables which are the coefficientsci = ci(t) of expansion of9 ∈ V (t) with
respect to a basis of functionsfi(t) ∈ V (t). With some exaggeration one may say that in the
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soliton theory the representation of a system in the form of the compatibility condition of an
over-determined system of the linear problems is considered equivalent to integrability.

In all of the basic examplesN ′ = 2N and the over-determined system of equations has
the form

LC = kC, ∂tC = MC, (9.5)

whereL andM areN ×N matrix functions depending on a pointz of the elliptic curve as on
a parameter. A compatibility condition of (9.5) has the standard Lax form∂tL = [M,L], and
is equivalent to a finite-dimensional integrable system.

The basis in the space of the double-Bloch functions can be written in terms of the
fundamental function8(x, z) defined by the formula

8(x, z) = σ(z− x)
σ (z)σ (x)

eζ(z)x . (9.6)

Note, that8(x, z) is a solution of the Laḿe equation:(
d2

dx2
− 2℘(x)

)
8(x, z) = ℘(z)8(x, z). (9.7)

From the monodromy properties it follows that8 considered as a function ofz is double-
periodic:

8(x, z + 2ωα) = 8(x, z),
although it is not elliptic in the classical sense due to an essential singularity atz = 0 forx 6= 0.

As a function ofx the function8(x, z) is a double-Bloch function, i.e.

8(x + 2ωα, z) = Tα(z)8(x, z), Tα(z) = exp(2ωαζ(z)− 2ζ(ωα)z).

In the fundamental domain of the lattice defined by 2ωα the function8(x, z) has a unique pole
at the pointx = 0:

8(x, z) = x−1 + O(x). (9.8)

The gauge transformationf (x) 7−→ f̃ (x) = f (x)eax , wherea is an arbitrary constant does
not change poles of any function and transforms a double-Bloch function into another double-
Bloch function. IfBα are Bloch multipliers forf then Bloch multipliers forf̃ are equal
to

B̃1 = B1e2aω1, B̃2 = B2e2aω2. (9.9)

The two pairs of Bloch multipliers that are connected with each other through the relation (9.9)
for somea are called equivalent. Note that for all equivalent pairs of Bloch multipliers the
productBω2

1 B
−ω1
2 is a constant depending on the equivalence class, only.

From (9.8) it follows that a double-Bloch functionf (x) with simple polesxi in the
fundamental domain and with Bloch multipliersBα (such that at least one of them is not equal
to one) may be represented in the form:

f (x) =
N∑
i=1

ci8(x − xi, z)ekx, (9.10)

whereci is a residue off at xi andz, k are parameters related byBα = Tα(z)e2ωαk. (Any
pair of Bloch multipliers may be represented in this form with an appropriate choice of the
parametersz andk.)

Let us consider as an example the equation

Lψ = (∂t − ∂2
x + u(x, t))ψ = 0, (9.11)
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whereu(x, t) is an elliptic function. Then, as shown in [66], equation (9.11) hasN linear
independent double-Bloch solutions with equivalent Bloch multipliers andN simple poles at
pointsxi(t) if and only if u(x, t) has the form

u(x, t) = 2
N∑
i=1

℘(x − xi(t)) (9.12)

andxi(t) satisfy the equations of motion of the elliptic CM system (9.1).
The assumption that there existN linear independent double-Bloch solutions with

equivalent Bloch multipliers implies that they can be written in the form

ψ =
N∑
i=1

ci(t, k, z)8(x − xi(t), z)ekx+k2t , (9.13)

with the samez but different values of the parameterk.
Let us substitute (9.13) into (9.11). Then (9.11) is satisfied if and only if we get a function

holomorphic in the fundamental domain. First of all, we conclude thatu has poles atxi , only.
The vanishing of the triple poles(x − xi)−3 implies thatu(x, t) has the form (9.12). The
vanishing of the double poles(x − xi)−2 gives the equalities that can be written as a matrix
equation for the vectorC = (ci):

(L(t, z)− kI)C = 0, (9.14)

whereI is the unit matrix and the Lax matrixL(t, z) is defined as follows:

Lij (t, z) = − 1
2δij ẋi − (1− δij )8(xi − xj , z). (9.15)

Finally, the vanishing of the simple poles gives the equations

(∂t −M(t, z))C = 0, (9.16)

where

Mij =
(
℘(z)− 2

∑
j 6=i

℘ (xi − xj )
)
δij − 2(1− δij )8′(xi − xj , z). (9.17)

The existence ofN linear independent solutions for (9.11) with equivalent Bloch multipliers
implies that (9.14) and (9.16) haveN independent solutions corresponding to different values
of k. Hence, as a compatibility condition we get the Lax equationL̇ = [M,L] which is
equivalent to (9.1). Note that the last system does not depend onz. Therefore, if (9.14) and
(9.16) are compatible for somez, then they are compatible for allz. As a result we conclude that
if (9.11) hasN linear independent double-Bloch solutions with equivalent Bloch multipliers
then it has infinitely many of them. All the double-Bloch solutions are parametrized by points
of an algebraic curve0 defined by the characteristic equation

R(k, z) ≡ det(kI − L(z)) = kN +
N∑
i=1

ri(z)k
N−i = 0. (9.18)

Equation (9.18) can be seen as a dispersion relation between two Bloch multipliers and defines
0 asN -sheet cover of00.

As was shown in [66] expansion of the characteristic equation (9.14) atz = 0 has the
form:

R(k, z) =
N∏
i=1

(k + νiz
−1 + hi + O(z)), ν1 = 1−N, νi = 1, i > 1. (9.19)
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We call the sheet of0 atz = 0 corresponding to the branchk = z−1(N − 1) + O(1), an upper
sheet and mark the pointP1 on this sheet among the pre-images ofz = 0. From (9.19) it
follows that in the general position when the curve0 is smooth, its genus equalsN .

Further consideration of analytical properties of the functionψ given by (9.13) whereci
are components of the eigenvector to the matrixL shows that this function is just the Baker–
Akhiezer function introduced in section 6. Combined with expression (6.22) forψ in terms
of theθ -function this result leads directly to the main statement of [66]:

the coordinates of the particlesxi(t) are roots of the equation

θ(Ux + V t +Z0) = 0, (9.20)

whereθ(ξ) = θ(ξ |B) is the Riemannθ -function corresponding to the matrix ofb-periods of
holomorphic differentials on0; the vectorsU andV are the vectors ofb-periods of normalized
meromorphic differentials on0, with poles of order two and three at the pointP1.

Among other examples of integrable systems that can be generated in a similar way is the
Ruijesenaars–Schneider system [86]

ẍi =
∑
s 6=i

ẋi ẋs(V (xi − xs)− V (xs − xi)), V (x) = ζ(x)− ζ(x + η), (9.21)

and the nested Bethe ansatz equations [87]∏
j 6=i

σ (xni − xn+1
j )σ (xni − η − xnj )σ (xni − xn−1

j + η)

σ (xni − xn−1
j )σ (xni + η − xnj )σ (xni − xn+1

j − η)
= −1. (9.22)

As shown in [68,69], they are generated by spectral problems for equations

Lψ = ∂tψ(x, t)− ψ(x + η, t)− v(x, t)ψ(x, t) = 0, (9.23)

and

ψ(x,m + 1) = ψ(x + η) + v(x,m)ψ(x,m), (9.24)

respectively. (Hereη is a complex number andv(x, t) is an elliptic function.)
Strange as it seems, the inverse spectral problem which is discussed here is simpler for

two-dimensional operators than for one-dimensional stationary operators. For example, a
family of spectral curves corresponding to operators (9.11) that have double-Bloch solutions
can be described explicitly. A nice formula was found in [79]:

R(k, z) = f (k − ζ(z), z), f (k, z) = 1

σ(z)
σ

(
z +

∂

∂k

)
H(k), (9.25)

whereH(k) is a polynomial. Note that (9.25) may be written as

f (k, z) = 1

σ(z)

N∑
n=1

1

n!
∂nz σ (z)

(
∂

∂k

)n
H(k).

The coefficients of the polynomialH(k) are free parameters of the spectral curve of the CM
system.

The spectral curves corresponding to the Schrödinger operator with the same property are
a special case of the curves (9.25) but their explicit description is unknown. In particular, the
exact formula for branching points for Lamé potentials is unknown. As was mentioned above,
the first example of elliptic finite-gap potentials different from the Lamé potentials was found
in [25]. A wide class of such potentials was found in [70].

In [88] it was noted that the problem of classification of Schrödinger operators with
elliptic potentials that have two double-Bloch solutions for almost all energy levels was posed
by Picard, although this had not been solved until very recently. In [88], using Floquet spectral
theory for the Schr̈odinger operator it was proved that all such potentials are finite gap. This
result is an essential step in the Picard problem although its complete and effective solution is
still an open problem.
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