Inverse Problem$5 (1999) R117—R144. Printed in the UK PII: S0266-5611(99)77336-3

TOPICAL REVIEW

Periodic and almost-periodic potentials in inverse problems

| Krichevert8 an S P Novikovi§

T Columbia University, 2990 Broadway, New York, NY 10027, USA
T LLP.S.T., University of Maryland, College Park, MD, USA
§ Landau Institute for Theoretical Physics, Kosygina Str. 2, 117940 Moscow, Russia

E-mail: krichev@math.columbia.edu andnovikov@ipst.umd.edu
Received 12 February 1999

Abstract. An updated and detailed survey of basic ideas of the finite-gap theory is presented.
That theory, developed to construct periodic and quasi-periodic solutions of the soliton equations,
combines the Bloch—Floquet spectral theory of linear periodic operators, the theory of completely
integrable Hamiltonian systems, the classical theory of Riemann surfaces, and theta-functions.

1. Introduction

To begin with we are going to consider the inverse spectral problem for a one-dimensional
Schibdinger operator with periodic potential. In the late 1960s the famous discovery of the
inverse scattering transform for the Korteweg—de Vries (KdV) equation was made. A periodic
analogue of this transform was found in 1974. It is based on the solution of the following

inverse spectral problem:

to describe effectively the ‘isospectral manifold’ of all the potentials with a given
spectrum on the line (i.e. the spectrum of a 8dimger operator acting in the Hilbert
space of square integrable complex-valued functions on the”ljne

As everybody working in quantum solid-state physics knows, this spectrum is generically
a union of an infinite number of intervals (allowed bands) on the energyelineThe
complementary part on the energy line is also a union of an infinite number of intervals (gaps
or forbidden bands) whose lengths tend to zerafes +oo.

The periodic problem was solved in 1974-5 for the so-cdilgite-gap potentials Any
periodic potential can be approximated by the finite-gap ones. This solution involves a
combination of the theory of Riemann surfaces and théimctions, Hamiltonian dynamics of
special completely integrable systems and the spectral theory of th@d8wer operator. The
mathematical technique used was (and still is) unusual for the community of physicists. Later,
the necessity to use this kind of mathematics also appeared in other branches of mathematical
and theoretical physics (for example, in string theory, matrix models, and supersymmetric
Yang—Mills theory [1-15]). The authors believe this technique will be needed in future by the
broad community of theoretical physicists.

Integrability of the famous KdV equation, = 6uu, + u,.,, was discovered in 1965-8
(see [16-18]) for rapidly decreasing initial data on the lineExact solutions for the KdV
equation expressing(x, ¢) through theinverse scattering dataf the Schodinger operator
L = —d%+u(x, 0) were found. This procedure has been called the inverse scattering transform
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(IST). It was extended later for some other highly nontriyiak 1)-systems including such
famous systems as the nonlinear Sctinger,NSy: i, = —v,, %+ [¥|%y¥ and sine(sinh)—
Gordon equations§G: u,, = sinu or u,, = sinhu. Note that for the SG equation a large
family of exact solutions had already been constructed in the 19th century by Bianchi, Lie
and Backlund (see [19-21]). Since 1974, sevetat 1)-dimensional physically interesting
systems have been discovered as integrable by the IST procedure. The most famous of them
is the Kadomtsev—Petviashvilii (KP) system (see [22, 23]).

It is necessary to emphasize that the IST procedure in its original form cannot be applied
to the solution of the periodic problem (i:&(x, ¢) is periodic in the variable). This problem
was solved on the basis of the new approach proposed in [24] and in [25-31] (see also the
surveys [32, 35, 37]). An extension of this method 2ot 1)-systems was found in [33-35].

A new development of this approach associated with two-dimensionab&icger operators
began in 1976 (see [36—39,41-43])).

A complete detailed description of the solution of the periodic problem can be found in the
surveys [35, 37, 45], encyclopedia articles [40], and in the book [44]. We are going to present
here the basic ideas of this theory in the simplest form possible. Let us point out that the KdV
system, as well as other nontriviedmpletely integrable by ISpartial differential equation
(PDE) systems, are indeed completely integrable in any reasonable sense for rapidly decreasing
or periodic (quasi-periodic) boundary conditions only. In fact, even that is well established
for few of them. For example, for the KdV any periodic solution can be approximated by the
finite-gap solutions. This statement easily follows from the theory of finite-gap potentials if
we do not try to preserve the period, i.e. in the class of all quasi-periodic finite-gap potentials.
The approximation of any periodic potential by the finite-gap potentials with exactly the same
period, was constructed on the basis of another approach developed in [46]. The extension of
the theory of Riemann surfaces aidunctions to the specific class of surfaces of the infinite
genus associated with the periodic Sutinger operator was done in [47]. This theory is a
beautiful description of the infinite limit. However, it seems that all fundamental properties of
o-functions associated with the complex continuation of variables are lost in this limit. It is
interesting to point out that an analogous (but more complicated) theory of Riemann surfaces
of the infinite genus was developed later in [41] for the periodic two-dimensionab&iciger
operators.

Outside these functional classes almost no effective information is known. Beautiful
methods have also been developed for the studies of the special self-similar and ‘string-type’
solutions, but in most cases they lead to the very hard analytical problems associated with the
famous Painle¥ equations and their generalizations [48-55].

2. Rapidly decreasing potentials and the Gardner—Green—Kruskal-Miura (GGKM)
procedure. Backlund transformations

Let us recall the basic information about the IST method for KdV. We start from the so-called
Lax representatiorior KdV (see [18]). The Heisenberg-type equation for the 8dhmger
operatorL

L, =[L,A]=LA— AL, (2.1)
L=—3+u, A = —403+ 3(ud, +0,u), (2.2)

is equivalent to the identity (KdV equation)

U = Oulty + Uyyy. (2.3)
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For this reason, any KdV-type equations admitting some analogue of the Lax representation are
calledisospectral deformationsThe existence of such deformations indicates the possibility
of an effective solution of the inverse scattering problem for the opefator
For the rapidly enough decreasing functiais, 1) — 0, x — +oo we define two bases
of solutions { is fixed):

b (x, 15 k) ~ exp™, X —> —00, Lo =2ps, (2.4)
Valx, t; k) ~ expiks, x — +00, Ly =iy, k%= (2.5)

By definition, monodromy matri¥ connects these two bas&s) = v for the column vectors

b= (e 60, = (W, ¥):
T=<a 2) Ve =agetbpo, Y =cho+do. 26)

Cc

A conservation of the Wronskian implies that det= ad — bc = 1. For the real values a@f
orx > 0we haven = d, ¢ = b. Therefore)a|? — |b|2 = 1. The whole set of the so-called
inverse scattering data can be extracted from the monodromy rifaifrikis well-defined for
all complex values ok. The so-calledcattering matrixis constructed fronT for the realk.
Its entries are thiransmissiorcoefficient Za and thereflectioncoefficientb /a. The property
b = 0 for all real values ok characterizes reflectionless or multisoliton potentials. For all
rapidly decreasing potentials the matrix elemegtt) is well-defined for complex such that
Imk > 0anda — 1fork — oo, Imk > 0. There is only a finite number of purely imaginary
zerosa(k,) = 0 in this domain. They correspond to the discrete speciiye k2 < 0.

The famous result of [17] (the GGKM procedure) easily follows from the Lax
representation, which implies the equation:

—4ik 0
T, = [T, A, A= ( 0 4ik> . (2.7)
This result was formulated as a set of the following GGKM formulae:
a;, =0, b, = —8(ik)% = —¢,, d, =0. (2.8)

The latter equations give a full description of the KdV dynamics in these variables because any
rapidly decreasing potential can be reconstructed from the inverse scattering data. A special
family of the reflectionless potentials where= 0 for real values ok, leads to the so-called
multisoliton solutions for the KdV equation (see [44]).

The multisoliton solutions can also be directly obtained with the help of the elementary
substitutions (Bcklund transformations) transforming any solution of the KdV into another
solution: letu be a solution of the KdV equation andbe a solution of the Ricatti equation
o +u = v, +v? with the initial value independent of time. The new functiba= —v, + v?
satisfies the KdV equation. Starting from the trivial solution= uo = 0 we construct a
sequence of potentials,_; = u,, n > 0, given by the Bicklund transformation. We choose
parametersy,, a1 > a2 > --- > «a, > ---, and take the real nonzero functiofis — oo,

X — £00, — fuex T un_1fn = &, f,, Which definev, = (log f,,),. Every such sequence leads
to the multisoliton reflectionless potential:

B 2
ch?(Ja(x —xo) +B1)"

In terms of the Sclidinger operator this transformation (invented by Euler in 1742) is called
the Darboux transformation. The operafocan be factorized

L=—0%+u=—(d+v)(d —v).

(2.9)

uo=0, uy =
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Using the noncommutativity of these factors, we define the Darboux transformation for the
operator and its eigenfunction in the following way:

L=—0%+i=—(0—v)d+v), U= (3 +v)y. (2.10)
These transformations can be considered as some kidisofete spectral symmetridsr
Schiddinger operators. They preserve a spectrum of the opetafexcept maybe for one
eigenfunction).

3. KdV hierarchy. Integrals of motion. Hamiltonian formalism

The local integrals for the KdV equation can be constructed with the help of thé@aber
operator. Consider the associated Riccati equationv? = u — k? and find the solution for
it as a formal series in the variable

o0
v, k) =ik + Y 0,0, (3.1)
n=1
where allv, are polynomials in the variables u,, .... The integral along the line is a
k-dependent constant of motion for the KdV equation
8,(/ v(x, k) dx) =0, U, = Oty + Uyyy. (3.2)

For the real potentialg(x, t) and reak we can see that the imaginary partudk, k) — ik is a
total derivative. The remaining quantities in the expansion,

/(v(x,k) —ik)dx = Z/vn(x)(ik)*" dx, (3.3)

n>1

define local integrals of motion

I, =c, / vo,+3(x) dx, n=-1012..., (3.4)
wherec, are constants. After a proper choice of the constgnige have

Ll=/udx, Iozfuzdx, 11=/(u§/2 +ud)dx, ..., (3.5)

I, =0, Uy = Ouity + Uyyy. (3.6)

Let us introduce a Gardner—Zakharov—Faddeev (GZF) Poisson bracket [56,57] on the space
of functions

{u(x), u(y)} =8 —y)). (3.7
Then any functionaH (Hamiltonian) defines the corresponding Hamiltonian system
H
=9, ——]. 3.8
ke =9 (5u(x)> 38)

For the casd! = I_; we get a trivial flow (i.e. this integral is a Casimir for the GZF bracket).
For H = Ip we arrive at thex-translationsu, = u,. Let us call this equatioK d V. For
the case = I, we have the ordinarKdV = KdV;. Higher integrals give us the equations
K dV, ofthe order 2 +1 admitting the Lax representations with the same &tihger operator

L but with the differential operators, = (consja?** +.. ..

51, \
U, = 0y ((Su(x)) - [L’ An]~ (39)
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In particular,Ag = 9., A1 = A. Anice formulafor all operatord, can be extracted from [58].

Let L = —£2, wherel = 9, + D ks1 @k, ty, )3k, Here alla; are polynomials in
the variables:, u,, . .. andB;la = ZDO(—l)”a(”)a;”*l for the composition of the operator
8~1 and multiplication operator by. By definition,

A, = (L2Y, = (L2Y?,, (3.10)

where the sign + means omitting all strictly negative powerg; of

All higher KdV, systems can be integrated by the same IST procedure for the class
of rapidly decreasing functions. In particular, GGKM equations for the scattering data (or
monodromy matrix) have the form

_ _ (ik)2n+1 0
T, =T, Ayl An—(conSD< 0 (_ik)Znﬂ). (3.11)

The latter result also implies that all these flows commute with each other. Hence, we get the

following conclusion without any calculation:
integralsI, have zero Poisson brackets

{I,,,Im}zf O, dy Ll dx = 0. (3.12)
Su(x) " Su(x)

A generalization of the GZF Poisson bracket for the isospectral deformations of the higher-
order (scalar) Lax operatofswas found in [59].

It should be emphasized that there exists a family of local field-theoretical Poisson brackets
(Lenhart—-Magri (LM) brackets [60]) describing the KdV theory:

B = By = Ady + (=32 + 4ud, +2u,) = ABg + By, (3.13)
{ux), u(y)h,u = Bé(x —y), (3.14)
{In» Im})\,u =0. (315)

These brackets were generalized for the higher-order opetaiarfs1].
The recurrence operat@rlBo‘l = C generates all the right-hand sides of all higher KdV
systems:

81,
C(0) = u,, C2(0) = Butty — trrrs .- - C"(0) = 8, (—1> : (3.16)
Su(x)
It gives also a simple proof of a very useful identity [62]:
81,
/ dx = (consy/,_;. (3.17)
Su(x)

Allthese identities are local and can be used for the class of periodic functions as well. However,
we shall see in the next section that the direct analogue of the GGKM procedure does not lead
to the integration procedure. We are going to use a different approach.

4. Spectral theory of periodic Schibdinger operators. Finite-gap potentials

The spectral theory for the periodic potentials on the wholedireebased on the monodromy
matrix as in case of the scattering theory. However, in the periodic case with a perasb,
we have nothing like the selected point= oo for the definition of the monodromy matrix
(as it was for the rapidly decreasing cd8e= oco)—see section 2 above). Any poing can
be used. Let us fix an initial poing and choose a special basis of the solutions, xg, €),
S(x, xg, €) for the spectral equatiohC = ¢C, LS = €S such that forx = xo we have

(& 3)-69) =
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The shift operatof” : x — x + T in the basi<, S defines the monodromy matrix

T (x0,€) = (j z), (4.2)
Cx+T)=aC(x)+bS(x), S(x+T)=cC(x)+dS(x). (4.3)

The key element of the periodic spectral theory is a notion of the so-called Bloch waves or
Bloch—Floquet eigenfunctions. We present here some essential properties of these functions
without any proofs. An exposition of this theory may be found in the encyclopedia article [40],
where the main ideas of the proofs are clearly presented for the differenda8afer operator
(it is much simpler).

By definition, the Bloch—Floquet functions are solutions of the 8dimger equation that
are at the same time eigenfunctions of the shift operator, i.e.

Ly = ey, TYy(x)=yx+T,e) =expxipe)T)y(x). (4.4)
We uniquely normalizey by the conditiony|,—,, = 1.
For any complex numberthe eigenvaluesy..(¢) = exp(+p(e)T), of the shift operator

are defined by the characteristic equation for the monodromy matrix. From the Wronskian
property it follows that def’ = 1. Therefore, the characteristic equation has the form

w? — trHw+1=0. (4.5)

The multivalued functiomp(e) is called quasi-momentum.

The spectrum of the Scihdinger operator on the whole line is a union of spectral zones
which are segments of the real line of the variahleshere the quasi-momentum is real. The
latter condition is equivalent to the inequality:

|TrT| =2cogpT) < 2 (4.6)

The typical graph ofthe functiofi(e) = cog pT) isshowninfigure 1. In particular, its extreme
points f'(¢) = 0 are‘generically’ located inside the gaps (i.e. for the open and everywhere
dense set of periodic potentials we hayé > 1 at the extreme points, and there is only one
extremal point in each gap). For some special cases we mayjhavetl at the extreme
point. Such a point lies inside the spectral zone. However, generic perturbations create a new
small gap near this point—see figure 2. This pointis a double point of periodic or anti-periodic
spectrum with the boundary conditiofigx) = £y (x + T).

The Riemann surface of the Bloch—Floquet functions is defined by the equation

2? = cosp(e)T), (4.7)
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but this surface is nonsingular only for the generic case (when there are no double points of
the periodic or anti-periodic problem for the Sétlinger operator). For large — +oo the
following asymptotics are valid for the gaps (see figure 3):

(1) The length of gaps tends to zero with its rate depending on the smoothness of the potential
(this rate is exponential for the analytic potentials).

(2) All gaps are located near the poies= 472m?T 2, and the distance of gaps from these
point tends to zero.

A nonsingular Riemann surface of the Bloch—Floquet solutions is defined with the help
of the equation

P=(e—e)e—€1)...(e—€)..., (4.8)

wheree¢y < €1 < ---, are simple eigenvalues of the periodic and anti-periodic spectral
problems.

As follows from the Lax representation for all highie V,, systems (3.9), these boundary
spectral points for the periodic operatoin the Hilbert spacd.?(R) of the square integrable
complex-valued functions on theline are integrals of motion for the KdV hierarchy.

We can say that the Riemann surface of the Bloch—Floquet solutions as a whole is an
integral of motion for the KdV hierarchy. How many potentials correspond to the same
Riemann surface (i.e. have the same spectruftiR))?
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The original idea to introduce a special class of potentials for which this problem can be
solved effectively was proposed in [24] and is based on the KdV hierarchy. This idea naturally
combines two different ways to describe the corresponding isospectral manifold of potentials.
Both are in fact closely related to each other.

The first approach—use of the KdV hierarchy and Hamiltonian dynamiocst us consider a
stationary equation for some linear combination of higkigv,, flows (3.9). It is an ordinary
differential equation (ODE) that can be written in the form:

SUyteuly 1+ - +eudlotcpaal 1) =0. (49)

This is a finite-dimensional Hamiltonian system witdegrees of freedom depending:of 1
parameterss, ..., c,+1. It is a completely integrable Hamiltonian system because there is
a family of the commuting flows. This family coincides with the restriction of all higher
K dV,, on this stationary subset of functions given by the equation (4.9). Therefore, its generic
nonsingular solution is expected to be a periodic or quasiperiodic function of

In the next section we shall construct for (4.9) some kind of Lax representation

n+l
Ay =[0x, 2), Ax, V)], A=A+ Ay, (4.10)
k=1
using 2x 2 traceless matrices depending on the paranieterd (u, u,, ...) polynomially.
In the terminology used today some people call tHeop groups Note that in all soliton
systems these-loops have very specifiz-dependence (polynomial, rational and in some
exotic examples—elliptic functions).
Lax representation (4.10) implies that an algebraic Riemann surface defined by the
characteristic equation

detA(A) — zI) = P(,z) =0, (4.11)

does not depend onand is, therefore, an integral of (4.9). The same Riemann surface can be
extracted from theommutativity equatiofl., A] = 0, which according to (3.9) is equivalent
to (4.9).

It should be emphasized that the latter form of (4.9), i.e. the commutativity condition for
two ODEs

[L. A+ cAni] =[L.A] =0, L=—0%+u, (4.12)

was considered formally (i.e. locally in the variabdevithout any periodicity assumptions)
as a pure algebraic problem in the 1920s (see [63, 64]). Even the formal algebraic Riemann
surface (4.11) appeared as a relati(l, A) = 0.

According to our logic however, the corresponding system of equations in the variable
x is Hamiltonian and completely integrable. Therefore, its generic solution is quasiperiodic
in x, containing a dense family of periodic solutions. We may ask about the spectrum of the
corresponding operatofsin L?(R) and boundaries of gaps. Remarkably, they exactly coincide
with the branching points of the Riemann surface defined by equation (4.11). Therefore, for
the periodic potential which satisfies equation (4.9), the nonsingular spectral Riemann surface
of the Bloch—Floquet solutions is an algebraic Riemann surface of geaus. The spectrum
of such an operator contains only a finite number of gaps {, 3,1, j =1, ..., n.

This key step unifies the first approach with the second one (below). So the solution of
the inverse spectral problem can be identified with the process of a solution of some special
families of completely integrable systems using Riemann surfaces.
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The second approach—periodic spectral theory in the Hilbert siad¢®). For any periodic
Schibdinger operatak = —3+u(x = 1o, 11, . . .) we have already defined the Riemann surface
I" of Bloch—Floquet solutions with the help of the monodromy malfixFor the finite-gap
potentials a graph of the functigh= coS(p(¢e)T) = %tr T is highly degenerate (see figure 2
and compare with figure 1). For all real and large enougle have| f| < 1.

Once again, we ask how to describe all the potentials with the same finite-gap spectrum
and what are the additional variables which uniquely define a finite-gap potential? It turns
out that these additional spectral data are the poles of the Bloch—Floquet functions. It can
by shown that the Bloch—Floquet solutions defined by (4.4) and normalized by the condition
Vl:=x, = 1 have exactly one simple pol& (xo) inside each gap or on its boundary. A
point of the hyperelliptic surfac€ (4.8) can be represented as the complex nunatemd
a sign (or a branch) of the radical= /(¢ — €p)(¢ — €1) .... The branches of the radical
coincide at the boundaries of gaps. Therefore, each gap should be considered as a closed
cyclea;, j =1,2,...n (see figure 4). Any pole of should be considered as a pojnton
the cyclea;. The above-mentioned statement that there is only one pole in a gap means, in
particular, thaty has no pole at the poirty/;, +) if it already has a pole aty;, —) and vice
versa. Geometrically, the total set of poles, ..., y,) represents a point on the real torus
TS = a1 x --- x a,. As we shall see later, this set of poles completely determines the original
potential. Different points of the real torus lead to the different potentials (if normalization
point xg is fixed).

5. Periodic analogue of the GGKM. Zero-curvature representation for the KdV
hierarchy and corollaries

As was emphasized above, the definition of the monodromy matrix in the periodic case depends
on the choice of initial poinky. For different choices of the initial point the corresponding
monodromy matrices are conjugated (because they represent the same linear transformation
in different bases). Therefore, the dependence of the monodromy matrix with respect to the
choice of the initial pointo can be described by the equation:

Txo = [Q(eaxO)v T]’ Q = (6 _ S(XO) (]).> . (51)

In the same way, for the isospectral deformations corresponding to the KdV hierarchy (i.e.,
all higherK dV, systems) we can establish the following equations (the periodic analogues of
GGKM):

T, =[A;,T], Ao= 0, to = Xo. (5.2)

A compatibility condition of equations (5.2) for any pair of variables; implies the following
zero-curvature representatidor the KdV hierarchy (where periodic boundary conditions are
already inessential)

[az,- — A, at,- - Aj] =0. (5-3)

Using the Lax representations (3.9) for all higliaf V,,, we can express all the matricas as
polynomials in the variable and variables (xg), u,,(xo), . . .. For example, for the ordinary
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KdV we have (replacingg by x):

—U, 2u +4e
A= <—4€2 + 2cu +2u? — u,, Uy ) ’ (54)

The matrices\; can be completely reconstructed from equations (5.3) and from the following
properties of matrix elements:

Ay = (cons) <Z’Z Zﬁ) , (5.5)
dy +ap =TrAy =0, by = € +u/2e- 1+ ... (5.6)
detAy = —(a® + bc) = (CONSYRys1(€) = (consh(e*L +...), (5.7)
2a; = —by, (Ro+1)x = —by. (5.8)

Fori = 0, equations (5.3), wherg = x, give the zero-curvature representation for KV,
system:
8xAn - 8t,, Q = [Qs An] (59)
From this representation and from the periodic analogue of GGKM we arrive at the following
results for the stationary high&fdV, system (4.10):
(1) The monodromy matri commutes withA
[T, A] =0. (5.10)

Therefore, they have common eigenvectors. It implies, in particular, that the Bloch—Floquet
functioni is single-valued on the algebraic Riemann surface associated with the matrix
(2) The stationary higher KdV admits anparametric Lax-type representation in the
variablex (4.10):
(M) =10, Al A=A+ il (5.11)
Therefore, we have a full set of conservation laws organized in the form of the Riemann surface
(i.e. all coefficients of the polynomiat arex-independent):
det(A(e) —zI) = P(e,2) = 0, (5.12)
P(€,z) = 22 — Rop1(€) = (cONSh(e — €p) . .. (€ — €2,). (5.13)
These points; are exactly the boundaries of gaps for periodic potentials because the Riemann
surfaces of the matricdsandA coincide. The matrix elemehi., for the matrixA determines
another set of points
b12(€) = (consh(e — y1) ... (e — V). (5.14)
These points coincide with projections of the zeros of Bloch wgayeas functions of the
variablex or poles as functions ofy (see the next section).
An original approach to the solution of the inverse spectral problem was based on the use
of the following trace-type formula for the potential:
—u(x)/2 + const= y1(x) +...y,(x). (5.15)
From (5.11) and (5.14), ‘Dubrovin equations’ defining dynamics of the pointsy; can be
derived. They have the form
Y Rou+1(y})
Hk;éj (Vj — Vi)
These equations (see [27, 32]) can be linearized by the so-called Abel transformation.

. (5.16)

yj,\:
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Figure 5.

Consider the first-kind differentials on the Riemann surface (i.e. holomorphic one-forms
without poles anywhere—even at infinity). The basic first-kind forms are
e/~de
W= ——, j=1...,n. (5.17)
' VRani(©)

Itis convenient to choose a normalized basis taking linear combinam'paszi vgjw; such

that
f Qs = (S.Yja

for all the gaps;.
Fix a set of paths; from the pointPy = oo to the pointsP; on the Riemann surface. The
Abel transformation is defined by the formula

Ay(Pi,..., P) = Zf Q,. (5.18)
JoYK
Equations (5.16) after the Abel transform become linear:
1
A, =U,=— ¢ dp. 5.19
p=ty= g (5.19)

Here the closed patldg are ‘canonically conjugated’ to the pathg(see figure 5). It means that

the intersection numbers argo b, = §;,. The differential ¢ is equal top. de wherep(e) is

a multi-valued quasi-momentum. Itis a second-kind differential (i.e. a meromorphic one-form
on the surfacé& with a pole of order two at the poirt with negative part il = —(dw)w 2

in the local coordinatey = k~* nearoo), and therefore has the form

(@4 L g vy ) de

dp = (5.20)
hY% R2n+l(6)
All the coefficientsy; can be found from the normalization condition:
fdp:O, j=1,...,n (5.22)

Following the classical 19th century theory of Riemann surfaces, formulae (5.15)—(5.21) lead
to some expression of the potential through #hfeinctions avoiding the calculation of the
eigenfunctionyy (see [25, 27, 29, 31]). The most beautififfunctional formula for the
potential was obtained in [29].

However, in the next section we shall not follow the approach for solving the inverse
problem which has been outlined above, but use another approach proposed for the first time
in [32] (see the appendix, based on the idea of Its): it is possible to calculate all the family
of the Bloch—Floquet functions. The original approach has been used later in the problems,
where the effective calculation of the eigenfunction is impossible (as in the cab@ghef
rank commuting ordinary differential (OD) linear operators (see for example [37]).



R128 Topical Review

6. Solution of the periodic and quasiperiodic inverse spectral problems.
Baker—Akhiezer functions

We are going to solve the inverse spectral problem for the finite-gap potentials following the
scheme proposed in [33—35] and based on the concept of the Baker—Akhiezer functions. These
functions are uniquely defined by their analytical properties on the spectral Riemann surface.
As we shall see later, this scheme is evenly applicable to the solution of inverse problems in
the two-dimensional case where the corresponding analytical properties naturally generalize
the analytical properties of the Bloch—Floquet solutions for finite-gapdsiahger operators.

Let us start with the following real inverse spectral data:

(1) Riemann surfacE given in the form

2=(e—€)...(€ —€z),

where all numbers; are real,
(2) a set ofs real pointsy; € I" such that there is exactly one poirton the cyclez;.

Below we shall, for brevity, identify the point; as a point o™ with its projection on
the complexe-plane. The condition that there is only one point on each cycle means that
projection of the points satisfies the restriction:

€j-1 < yj < €, j=1...n, (6.1)

By definition, the complex inverse spectral data are the same data where the Riemann surface
(i.e. its branching points,) and the pointy; € I" are arbitrary complex points.

As we shall see below, a generic set of algebraic—geometric spectral data leads to the
explicit solution of the inverse spectral problem in terms of the Rientafunction. The
corresponding potentials are complex meromorpgfiasi-periodicfunctions of the variable
x. Forthe real data described above, we are coming to the smooth (even analytic) quasiperiodic
potentials with their periods expressed through the hyperelliptic integrals (see below). It is
necessary to mention that there is no way to find simple and effective criteria for the potential
to be periodic in terms of these data. The periods depend on the Riemann surface only.
Of course, we may write the condition that all the corresponding hyperelliptic integrals are
commensurable; however, this condition is transcendental. Recently, based on the results
of [7,65], the effective numerical approach has been developed for the solution of this problem.
It is based on the discovery of some specific dynamic systems on the set of potentials which
preserve all the periods but change the spectrum. Following [65], we start from one periodic
potential and create all others using these dynamic systems.

In the last section we shall present some examples of finite-gap potentials written in terms
of elliptic functions. They are periodic in the variablgeven double-periodic as functions
of the complex variable). The first nontrivial examples different from the classical leam
potentialsu(x) = n(n + 1) (x) were found in [25]. This subject was developed in [66—70].

We define the Baker—Akhiezer functiah = v (x, t1, . . . t,; P) for the parameters, ¢;
and the pointP = (¢, +) € I, by its analytical properties o with respect to the variablg.

For the case, = r, = --- = 0 these analytical properties are just the same as the analytical
properties of the Bloch—Floquet solutions of the periodic finite-gap operator.

From pure algebraic—geometric arguments it follows that there exists a unique fugction
such that

(1) it is meromorphic o outside infinity and has at most simple poles at the pojts
j=1 ..., n
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(2) in the neighbourhood of infinity the functiah has the form
Y= explek + k% + -+ K2 (LHE(x, Dk ),
wherek? = € and, therefores—* is a local coordinate on the Riemann surface near infinity.

A proof of this statement is identical to the proof of the existence and uniqueness of general
Baker—Akhiezer functions that were introduced in [33] for construction of exact solutions of
the two-dimensional KP equation and all associated Zakharov—Shabat hierarchies.

The general Baker—Akhiezer function is defined with the help of an arbitrary Riemann
surface of finite genua instead of special hyperelliptic (i.e. two-sheeted) surfaces. We
fix an arbitrary ‘infinity’ point Py on it; a local coordinaté—! = w wherew(Py) = 0; a
generic set of point§yy, ..., y,), and numbergx = 11, 72, ..., %, ...). The corresponding
Baker—Akhiezer function has the same analytical properties as above but (2) is replaced by the
following:

¥ = explk + Tk + kS + - (A +E(x, DL+ ). (6.2)

For the KdV hierarchy we have a hyperelliptic Riemann surfdae= ¢, andry = O,
T2j+1 = Ij.

The use of such functions (dependent only on a single paramgtgas proposed by
Baker [71] for the common eigenfunctions of two commuting OD linear operators. He
expected that this construction would improve the results of [63, 64]. He also made the
very interesting conjecture that this approach might seriously improve the classical theory of
o-functions. Unfortunately, this proposal was not realized and was forgotten. The soliton
theory appeared many decades later absolutely independently. The 1970s saw the start of the
use of such functions on Riemann surfaces in the process of solution of a periodic problem for
the KdV-type systems and inverse spectral periodic problems. In the classical spectral theory,
Akhiezer [72] was the first to use some special cases of this function type for the construction
of some examples of operators on the half-ling 0 with interesting spectral properties. No
author before the 1970s had associated anything like that with periodic problems. Indeed, this
type of functional construction on the Riemann surface was extracted in 1974 from [72].

We shall prove the existence and uniqueness of the Baker—Akhiezer function and present
its exact expression through the€unctions later. At this moment we would like to show how
the uniqueness of this function leads to the proof thi an eigenfunction for the Sabalinger
operator for our special case. We apply the operatet 9, twice to this function and use
analytical properties. After elementary calculation, we arrive at the formulae:

0y = kyy + explex +- - J(Erck -0,

0%y = kP + 2519 + Ok ™) explkx +- - 1.
From the latter equations, we get the equality

(0% — k* — 2&1,)¢ = O(k ™) explx +- - ].

The left-hand side is a globally well-defined function on the same Riemann surface because
k? = €. It has the same poles independent of parameters. Up to the same exponential factor,
it is of the order @k 1) at the infinity. Therefore, it is equal to zero due to the uniqueness of
the Baker—Akhiezer function.
So we come to the conclusion that
Ly = ey, L=—-0%+u, u = —2%&1,. (6.4)
We can apply the operatoss = d;, to the functiony:

3y = k¥ Ny + expllex + - - ] (kT + E2k7). (6.5)

(6.3)
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As in the previous case, we can easily construct a linear opetatet 32 4+ ... with the
coefficients independent @fsuch that(d; — A,)y = O(k~1) exp(kx + - --). Using global
analytical properties on the Riemann surface, we deduce from this that the left-hand side is
equal to zero, as before. The compatibility condition of these pairs of equations is exactly a
K dV, system for the potentiad(x, 1, . .., t,,).

Following [33—-35], we can prove in the same way that for the general Baker—Akhiezer
functiony (x, t, P) associated with an arbitrary Riemann surface with fixed local coordinate
near a puncture, the following equations are valid:

(8, — L)y =0, k=2,3,.... (6.6)

HereL, = 38+ .. arelinear OD operators acting on the variabieith coefficients depending
on parameters. These coefficients are differential polynomials in the coefficients of the
expansion of the regular factor of the Baker—Akhiezer function at the puncture (infinity). They
are uniquely defined by the condition that the expansion of the left-hand side of (6.6) at the
puncture has the form @ 1)y.

The compatibility conditions

[0, — Lj, s — L] =0. (6.7)

are equivalent to nonlinear PDEs for the coefficients of the operdiprs For the case
j=2,k=3,12 =y, 13 = z, the operatorg., and L3 have the form

L2=85—u(x,y,t), L3=Bf— :—;uax+w(x,y,t), (6.8)

where we consider the dependence of the coefficients with respect to the first three variables
71 =x, T2 =y, 13 = t, only. The coefficient(x, y, t) is equal tau = 2&1, (x, y, t), where&;
is the first coefficient of the expansion (6.2).

From (6.7) we get a system of two equations for two coefficients y, 1) andw(x, y, t)
which can be reduced for an equation fdx, y, r). The reduced equation is the famous KP
equation

Buyy = (4uy — 6utty + tyyy)y- (6.9)

It appeared in the physics literature for the investigation of the transversal stability of the KdV
solitons (see [73]) and is one of the most natural physical two-dimensional analogues of KdV.
The Lax representation for it was found in [22, 23]. We call the whole set of higher systems
(6.7) the KP hierarchy. We shall discuss the periodic problem for this equation at greater length
in the next section.

For the special choice of the hyperelliptic Riemann surface lard +./¢ we have
k% = ¢*, where the functiore is well-defined globally as a meromorphic function on the
Riemann surfac€. Therefore, we may represent globally the corresponding Baker—Akhiezer
function in the form

Y = exp(rok? + 4kt + ), (6.10)

wherey, does not depend on the parameters So in this case all the KP hierarchy reduces
to the KdV hierarchy.

The relationship of this construction with commuting OD linear operators is as follows.
Let f(P) be a meromorphic function on the Riemann surfBaeith one pole at the puncture
Po. Its negative part written in the parametés some polynomiaj (k) = g} +qok' 1+ - -+qk.
Apply the operato ; = g1L; + goL;—1 + - - - + q19, to the functiony. By the definition of
the operatord.;, we can see that

(Ap — /)y =0k Hy. (6.11)
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We conclude, as before, that the differeacey — f(P)y = 0.

For any pair of functiong andg on the Riemann surfade with poles at the poinso,
we get a pair of the commuting OD scalar linear operatofsA, such thatd ;A, = A Ay.
In a special case of the hyperelliptic Riemann surfece: (¢ — €) ... (¢ — €2,), we have a
pair of functionsf = ¢, g = z, leading to the Sclidinger operatof. = —3? +u commuting
with the second operator of ordet 2 1, because = k2'*1 + .. ..

Now we return to the problem of existence and uniqueness of the Baker—Akhiezer function.
The simplest way to prove this existence is to define this function by an exact formula in terms
of thed-function and meromorphic differentials. Let us first recall the necessary information.

As in the previously discussed case of hyperelliptic curves, we introduce a basis of cycles
aj,bj,j=1,..., g,onaRiemann surfadeof genug with canonical matrix of intersections,

a; - b; = §;;, and a basis; of holomorphic differentials normalized by the condition

f w; :8,'!'. (612)

The matrixB = (B;;) of b-periods of these differentials

Bi=® w;, (6.13)
J j
b

is symmetric and has a positively defined imaginary part. The Rie@dmnction is a function
defined with the help of this matrix by the formula

0(z|B) = Z g?ri@m+(Bm,m) (6.14)
meZs
wherez = (z1, ..., z,) is @a complexg-dimensional vectoryn, z) stands for a standard scalar
product and summation is taken over all integer vectors (my, ..., m,). Thed-function

is an entire periodic function qf variablesz; and has the following monodromy properties
with respect to the shifts defined by vect@swhich are columns of the matrix éfperiods:

0(z + By) = e ZaTBug (7). (6.15)

The basic vectorg, and the vectors, define a latticel in C¢ which determines thg-
dimensional complex torug(I") = C¢/L called the Jacobian of the curve. The Abel map
A:T — J(I') is defined by the formula

P
Po

Note that the vectad (P) with coordinatesi, (P) depends on the choice of path of integration

but its ambiguity just coincides with shifts by vectors of the latiice

From the monodromy properties of thdunction it follows that zeros of the multivalued

function6(A(P) + Z) considered as a function dhare well defined. For a generic vector

this function has exactly zeros(ys, . .., ¥,). The vectorZ can be expressed in terms of Abel

transforms of these points by the formula

8
Z=-Y Aly)+K, (6.17)
j=1

whereK is a vector of the Riemann constants.
Let us introduce a set of meromorphic differentiad®; dhat are holomorphic oR outside
the puncture where they have poles of the form

d2; = dk' (1 + Ok~ 1Y), (6.18)
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and are normalized in the usual way by the condition

f de; = 0. (6.19)
The Abelian intZgraIs

Qi(P) = /Pdsz,» (6.20)

are multivalued functions of.
Let U, be a vector with the coordinates

1
== Q.. 21
Uji o e d J (6.21)
Then, from the statements presented above, it follows directly that the formula
_ O((A(P)+ ), Uit + 2)0(Z)
¥ (r, P) = exp([ij r,sz,<P>) BCAP) * 2060, Ui+ 2) (6.22)

correctly defines a function ofi which satisfies all the properties of the Baker—Akhiezer
function.

Suppose now that there exists another Baker—Akhiezer fungtjofirrom the definition
of the Baker—Akhiezer functions it follows that the ratig/vs is a meromorphic function on
which is equal to one at the puncture and with the only possible poles at the zeros of the function
¥. According to (6.22) the zeros af are zeros of the functiofl (A(P) + ", Uit + Z).
Therefore,y hasg zeros. The simplest form of the Riemann—Roch theorem (which can be
considered as a generalization of the Liouville theorem for Riemann surfaces) implies that a
function onI" with at mostg poles at a generic set of points is a constant. Therefores
and the existence and uniqueness of the Baker—Akhiezer function is proved.

Now, according to the previously established formuka 20, &1, in order to get an exact
formula for a solution of the KP hierarchy it is enough to take the first coeffigignt of
the expansion of the pre-exponential factor in (6.2) at the puncture. Finally, we obtain the
expression

u(t) = 2021og6 ( YU+ Z) + const (6.23)

for the finite-gap solutions of the whole KP hierarchy.
If we consider only the KP equation, we get the formula
u(x,y, 1) =20%logd(Ux + Vy + Wt + Z) + const (6.24)
where we redenote =11, y = 15, t = rzandU = Uy, V = Uy, W = Us.

For the case of the hyperelliptic curve the vector= 0 and we get the lts—Matveev
formula for the finite-gap solutions of the KdV equation.

The formula (6.24) derived in [34, 35] has led to one of the most important pure
mathematical applications of the theory of nonlinear integrable systems. This is the solution
of the famous Riemann—Shottky problem.

According to the Torrelli theorem, the matrix dfperiods of normalized holomorphic
differentials uniquely defines the corresponding algebraic curve. The Riemann—Shottky
problem is: to describe symmetric matrices with the positive imaginary part which are the
matrices ob-periods of normalized holomorphic differentials on algebraic curves. One of the
authors conjected that the functioqx, y, ¢) given by (6.24) is a solution of the KP equation
if and only if the matrixB that defines thé-function is the matrix ob-periods of normalized
holomorphic differentials on an algebraic curve andV, W are vectors ob-periods of
corresponding normalized meromorphic differentials with the only pole at a point of this
curve. This conjecture was proved in [74].



Topical Review R133
7. Spectral theory of two-dimensional periodic operators. KP hierarchy

A general algebraic—geometric construction of the finite-gap potentials for théddoher
operators and for solutions of the KP hierarchy that was presented in the previous section
has been developed extensively over the years. It is applicable for all soliton systems which
are equivalent to various types of compatibility conditions for over-determined systems of
auxiliary linear problems. In its algebraic form itis in some sense local and is a sort of inverse
transform: from a set of algebraic—geometrical data to solutions of the integrable nonlinear
partial differential equations

{algebraic—geometrical dgta— {solutions of NLPDE. (7.2)
In a generic case the space of algebraic—geometrical data is a uniongarfalie spaces
Mgy = {Tg, Po, k2 (0), Vis - -+ Veks a=1...,N, (7.2)

wherel, is an algebraic curve of gengswith fixed local coordinatesgl(Q), k;l(Pa) =0,

in neighbourhoods a¥ punctures,, andy;, . .., y, are points of", in a general position. (It

is to be mentioned thalflg.N are ‘universal’ data. For the given nonlinear integrable equation
the corresponding subset of data has to be specified.)

A posteriori it can be shown that these solutions can be expressed in terms of the
corresponding Riemanifunctions and are quasi-periodic functions of all variables. Within
this approach it is absolutely impossible to give an answer to the basic question: ‘How many
algebraic—geometrical solutions are there? And what is their role in the solution of the periodic
Cauchy problem for two-dimensional equations of the KP type?’

The answer to the corresponding question in lower dimensions is as follows. For finite-
dimensional (0 + 1) systems a typical Lax representation has the form

U@, ) =[U, 1), V(t, M, (7.3)

where U (¢, ) and V (¢, A) are matrix functions that are rational (or sometimes elliptic)
functions of the spectral parameter In that caseaall the general solutions are algebraic—
geometrical and can be represented in terms of the Riemdumnctions.

For spatial one-dimensional evolution equations of the KdV type ((1 + 1)-systems) the
existence of a direct and inverse spectral transform allows one to prove (although it is not
always a rigorous mathematical statement) that algebraic—geometrical solutions are dense in
the space of all periodic (im) solutions.

It turns out that the situation for two-dimensional integrable equations is much more
complicated. For one of the real forms of the KP equation that is called the KP-2 equation
and coincides within (6.9), the algebraic—geometrical solutions are dense in the space of all
periodic (inx andy) solutions [41]. It seems that the same statement for the KP-1 equation
which can be obtained from (6.9) by replacing— iy is wrong. One of the most important
problems in the theory of two-dimensional integrable systems which are still unsolved is: ‘in
what sense’ is the KP-1 equation, which has the operator representation (6.7) and for which a
wide class of periodic solution was constructedpari-integrablésystem.

The proof of the integrability of the periodic problem for the KP-2 equation is based on
the spectral Floquet theory of the parabolic operator

M =3, — 8% +u(x,y), (7.4)

with periodic potentiak (x +11, y) = u(x, y +1) = u(x, y). We are now going to present the
most essential points of this theory, which was developed in [41]. Itis the natural generalization
of the spectral theory of the periodic Sturm—Liouville operator. We would like to mention that,
despite its application to the theory of nonlinear equations and related topics, the structure of
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the Riemann surface of Bloch solutions of the corresponding linear equation that was found
in [41] has been used as a starting point for an abstract definition of the Riemann surfaces of
the infinite genus [75].

Solutionsyr (x, y, w1, wp) of the nonstationary Scbdinger equation

(08, — 32 +u(x, Y)Y (x,y, w, wp) =0 (7.5)

with a periodic potentiak(x, y) = u(x + a1, y) = u(x, y + ay) are called Bloch solutions if
they are eigenfunctions of the monodromy operators, i.e.

Y(x +ai, y, wi, wp) = wry(x, y, wi, wo), (7.6)
Y(x,y+az, wy, wa) = way (x, y, wi, wo). (7.7)

The Bloch functions will always be assumed to be normalized soytli@t0, wi, wy) = 1.
The set of pair® = (wy, wy), for which there exists such a solution, is called the Floquet set
and will be denoted by'. The multivalued functiong(Q) and E(Q) such that

w1 = e”’“l, W = eiE“Z

are called quasi-momentum and quasi-energy, respectively.

The gauge transformatiop — €'©)y, whered, h(y) is a periodic function, transfers the
solutions of (7.5) into solutions of the same equation but with another poténtial — o 9, .
Consequently, the spectral sets corresponding to the potentiated iz are isomorphic.
Therefore, in what follows we restrict ourselves to the case of periodic potentials such that

Oalu(x, y)dx = 0.

To begin with let us consider as a basic example the ‘free’ opebdor o9, — 32 with
zero potentiak (x, y) = 0. The Floquet set of this operator is parametrized by the points of the
complex plane of the variablew = €%, w3 = e ** and the Bloch solutions have the
form ¥ (x, y, k) = €<= The functionsy* (x, y, k) = e ****%*y are Bloch solutions
of the formal adjoint operataw 3, + 82)y* = 0.

An image of the mapg € C +— (w?, wg) is the Floquet set for the free operaidp. It
is the Riemann surface with self-intersections. The self-intersections correspond to the pairs
k # k' such thaw?(k) = w?(k’), i = 1, 2. The latter conditions imply the equations

27N 27iM
k—k =2 K2 — (k=2 (7.8)
ai az
whereN andM are integers. Hence, all the resonant points have the form
N iM
k= kyy = % A N #£0, K =k y . (7.9)
ay Nay

The basic idea of the construction of the Riemann surface of Bloch solutions of the equation
(7.5) that was proposed in [41] is to consider (7.5) as a perturbation of the free operator,
assuming that the potentia(x, y) is formally small.

For anyko # ky y it is easy to construct a formal Bloch solution. It turns out that the
corresponding formal series converges and defines a holomorphic functifoofkg| > M
big enough and lies outside small neighbourhoods of the resonant points. Moreover, it can be
shown that this function can be extended on the Riemann surface that can be thought of as a
surface obtained from the complex plane by some kind of surgery that cosgisis places
of the resonant points.

More precisely, ifu(x, y) is a smooth real potential that has analytical continuation in
some neighbourhood of the real values @ndy, then the corresponding Riemann surface of
Bloch—Floquet solutions can be described in the following way.
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Let us fix some finite or infinite subs8tof integer pair{N > 0, M) . The set of pairs of
complex numbers = {p; 1, ps.2} Wheres € S would be called ‘admissible’, if

Repi="".  Ipyi—kl=o(kl™,  i=12 (7.10)
1
and the intervalsy; 1, ps.2] do not intersect. (Herg,, s = (N, M) are resonant points.)

Let us define the Riemann surfaér) for any admissible set. It is obtained from the
complex plane of the variableby cutting it along the intervalg; 1, ps.2] and [~ ps.1, — ps.2]
and then by sewing the left side of the first cut with the right side of the second cut and vice
versa. (Afterthis surgery for each cyt[s, p; 2] corresponds to a nontrivial cyctg onT'(ir).)

For any real periodic potential(x, y) which can be analytically extended into some
neighbourhood of the real valuesy, the Bloch solutions of the equation (7.5) are parametrized
by points O of the Riemann surfacE (), corresponding to some admissible set The
function ¥ (x, y, Q) which is normalized by the conditiotr (0, 0, Q) = 1 is meromorphic
onT and has a simple polg on each cycle;. If the admissible set contains only a finite
number of pairs, theR (;r) has finite genus and is compactified by only one pBintk = o),
in the neighbourhood of which the Bloch functignhas the form (6.2).

The potentials for whichT"(;r) has finite genus are called finite gap. They coincide with
the algebraic—geometrical potentials. The direct spectral transform for periodic operators (7.4)
allows us to prove that as in the one-dimensional case the finite-gap potentials are dense in the
space of all periodic smooth functions in two variables [41].

8. Spectral theory of the two-dimensional Schvdinger operator for a fixed energy level
and two-dimensional Toda lattice

In this section we discuss a spectral theory of the two-dimensional periodiédcher
operator. Unlike the one-dimensional case, spectral data for the two-dimensional linear
operator are over-determined and therefore for generic operators there are no nontrivial
isospectral flows. As was noted in [77], deformations that preserve spectral dataefor
fixedenergy level do exist. An analogue of the Lax representation for such a system has the
form

H, = [A, H] + BH, (8.1)

where H, A, B are two-dimensional operators with coefficients dependingxom, 7.
Equation (8.1) is equivalent to the condition that operatdrand (3; — A) commute on
the space of solutions of the equatiéhy = 0. Therefore, (8.1) describes deformations
preserving all the spectral data associated with the zero energy level of the operator

It should be mentioned that until the moment when equations (8.1) were proposed in
the framework of the soliton theory the spectral problem associated with one energy level of
two-dimensional periodic operators had never been considered.

For the first time an inverse algebraic—geometric spectral problem for a two-dimensional
Schibdinger operator in the magnetic field

H = (i3, — Ac(x, )%+ (19, — Ay(x, V)2 +u(x, y) (8.2)

was formulated and solved in [36].
Consider the Bloch solutions of the equatiéty: = €1, which by definition are solutions
that at the same time are eigenfuctions for the shift operators:

Y (x +Ti,y) = €y (x, y), Y(x,y+T2) = P2y (x, y). (8.3)
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HereTy, T are periods of the operatéf, i.e. periods of the potential(x, y) and periods of
the magnetic fieldB(x, y), which is defined by the vector potentia,, A,) by the formula
B=0d,A, —dA,.

Multivalued quantitieg,, p, are components of the two-dimensional quasi-momentum.
For fixed values of,, p, a spectrum of the operat@f restricted on the space of functions
satisfying (8.3) is discrete and defines different branches of dispersion relafigns p,),
j=1,.... Level linese; (py, py) = € in the space of variables,, p, define the so-called
Fermi curves Of course, in solid-state physics all the considerations were restricted by real
values of quasi-momentum.

In [36] it was suggested to consider operators for whicbrmaplexermi curve does exist
and is the Riemann surface of finite genus for some energydgvbloreover, it was assumed
that this curve is compactified by twofinity points P.. in the neighbourhoods of which the
corresponding Bloch solutions have the form

v = eki(xﬂ:iy)(ig;t(x’ )’)kis>, (8.4)
s=0

wherek;! are local coordinates in the neighbourhoods of the punctiies It was also
assumed that outside the punctures the function, y, P) considered as a function of the
variableP (which is a point of the complex Fermi cur¥g is a meromorphic function wit
poles independent of the variableandy.

We present here a solution to this inverse spectral problem in a more general form which
is necessary for the construction of exact solutions to the two-dimensional Toda lattice which
has deep connections with the theory of two-dimensional&tthger operators. After that
we return to the spectral problems.

LetI" be a smooth algebraic curve of genuwith fixed local coordinates .. (P) in the
neighbourhoods of the poinf3*, w. (P*) = 0. Then for each set gf pointsy, ..., y, in
general position there exists a unique functigr?, P), T = {tii,i =1,...,00,}suchthat:

(1°) The functiony, of the variableP e I' is meromorphic outside the punctures and has at
most simple poles at the poings (if all of them are distinct);
(2% In a neighbourhood of the poit* it has the form

Yo (T, P) = wI"(Zéf(n, T)wi) exp(z w;itii>, wy = wi(P), (8.5)
s=0 i=1

E(x,T) =6,;. (8.6)
The proof of this statement, as well as the explicit formulagrin terms of Riemanm-
functions, is almost identical to the method of solution of the inverse problem for finite-gap
Schiddinger operators discussed in the previous sections.
Let dszj.*> be a unique meromorphic differential holomorphiclooutside the poinP*,
which has the form
dQ$ = d(wy’ + O(w)), (8.7)

near the point’*, and normalized by the conditionfs, d(™ = 0. It defines a vectot/
with coordinates
1
Uy == ¢ do'*. 8.8
Jk 2] bi J ( )

Further, let us define the normalized differenti&®, which is holomorphic outside the
points P* where it has simple poles with residugg, respectively. From Riemann'’s bilinear
relations it follows that the vector éf-periods of this differential equals2U ©, where

U@ = AP — A(PY). (8.9)



Topical Review R137

As inthe previous case, one can directly check that the fungtion, P) given by the formula:
O(A(P) + UOpn + Z U(i) + 4 Z2)8(A(PH + 2)) (nQ(O)(P)+ZriSZ‘i)(P))

8.10
O(A(P) + Z)0(A(P*) + U<°>n P U+ 2) (8.10)

Yu(T, P) =

Q®(p) = / do®, (8.11)

is well defined and has all the properties of the Baker—Akhiezer function.

Note, that forn = 0 andtf =x =iy, tl-i = 0,i > 1, the analytical properties of this
function coincide with the properties that were described above as analytical properties of the
Bloch solutions for finite-gap two-dimensional Sétmger operators.

From the uniqueness of the Baker—Akhiezer functigpd’, P) it follows that they satisfy
the linear equations

0
8+¢n - 1/fn+1 + Unwna aflml == Cnl”nflv 8:I: = F» (812)
1
where
vy = 040 (T), ¢, = e, e = &5 (T), (8.13)

and&; (T) is a leading term of the expansion ¥jf at the puncture®~. From (8.10) we get
the formula

Q(U(O)(n +1)+ Z U(:t) + 4 Z0)
OUOn+ Y UP 1+ Zg)

for algebraic—geometric solutlons of the two-dimensional Toda lattice which was obtained
in [76].
Note that (8.12) imply thai, satisfies the equation

0+0_o + vod_vo + (c1 + 0_vo) Yo, (8.15)

which is gauge equivalent to (8.2) and, therefore, we do get a solution of the inverse problem
that was introduced above.

The next important step was done in [38, 39] where algebraic—geometric spectral data
corresponding to potential two-dimensional Sidinger operators (i.e. operators with zero
magnetic field) were found.

Let I' be a smooth genug algebraic curve with fixed local coordinatés(Q),
k;l(Pi) = 0, in the neighbourhoods of two punctur@s. Let us assume that there exists
a holomorphic involution of the curve : I' — I such thatP.. are its only fixed points,

i.e. o(Py) = P.. The local parameters are to be ‘odd’, ke(o (Q)) = —k+(Q). The factor
curve will be denoted byo. The projection

7:T+—>To=T/o (8.16)
represent$’ as a two-sheet covering ©f, with the two branch point#®... In this realization
the involutiono is a permutation of the sheets. As there are only two branching poiat8go,
wheregg is the genus ofy. Let us consider a meromorphic differentidk dQ) of the third

kind on Ty with residuest1 at the pointsP.. The differential 2 hasg zeros that will be
denoted byy;,i = 1,...,2g9 = g. Let us choose for eadgha pointy; onT" such that

7 (yi) = Vi, i=1....8. (8.17)

In [38, 39] it was shown that the Baker—Akhiezer function corresponding to algebraic—
geometric data which have been just defined satisfies the equation

(0+0— +ux, yN)¥(x,y, Q) =0, (8.18)

+ const Zo=Z+A(PY). (8.14)

(,0,,:'
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where
u=—0_§& = —0.&, (8.19)

and&s = &5 (x,, x_) are the first coefficients in the expansion (8.4).

It should emphasized that although general formula (8.10) in terms of the Rie#nann
functions is valid for the Baker—Akhiezer functions corresponding to the potentiad&ickger
operatorH, in [38, 39] another more effective representation in terms of the so-called Prim
6-function was found.

A space of holomorphic differentials dn splits into two go-dimensional subspaces of
even and odd (with respect to the involutieh differentials. A matrix ofb-periods of odd
differentials defines the functidiy, (z) by the same formula (6.14). Then

'W _ ePr(AOd(Q) + U+X+ + U_X_ — Z)QPV(AOd(Z))
T 0p,(A%(Q) — Z2)0p,(Utxs +U—x_ — Z)

d(P (@Qxtp™(Q)x) (8.20)

Here p*(Q) are Abelian integrals of the second-kind normalized differentjal on I" that
have poles of the second order at poiRts, respectively; vectors;2U* are the vectors of
b-periods of these differentials.

As was mentioned above, the inverse algebraic—geometric spectral problem on one energy
level for a two-dimensional Scbdinger operator was posed and solved at the time when no
direct spectral theory was known. This theory was developed much later in [41], where it was
shown that the Bloch solutions for (8.18) with analytical periodic potential are parametrized
by points of an infinite-genus Riemann surface. It was proved that if this surface has finite
genus, then the Bloch functions have all the analytical properties suggested in the inverse
problem and are, therefore, just the Baker—Akhiezer functions. Moreover, it was proved that
algebraic—geometric (finite-gap) potentials are dense in the space of all periodic potentials.

9. Spectral theory of operators with elliptic coefficients

In this section we are going to discuss a specific spectral problem for operators with elliptic
coefficients, i.e. with coefficients that are meromorphic functions of a variahtel have two
periods 2, 2, Im (o' /w) > 0.

Since Hermite's time, it has been known that a one-dimensionab8utger operator with
potential of the formn(n + 1)gp (x) (Wherep (x) = p (x|w, o) is a Weierstrasg-function
corresponding to an elliptic curve with periods,2«’, andn is an integer) has only gaps in
the spectrum. These La@npotentials had been the only known examples with the finite-gap
property before the finite-gap theory was constructed in the framework of the soliton theory (see
above). As we have already shown, a generic algebraic—geometric potential can be expressed
in terms of a higher-genus Riema#¥ffunction. Sometimes, a higher-genus formula can be
reduced to an exact expression in terms of the elliptic function.

The first example of this type which is different from the Leapotentials was proposed
in [25]. Later, a theory of elliptic finite-gap potentials attracted particular interest due to the
remarkable observation made in [78] with regards to a connection with the elliptic Calogero—
Moser model. The most recent burst of interest is due to the unexpected connections of these
systems to the Seiberg—Witten solutiondf= 2 supersymmetric gauge theories [14, 15]. It
turns out that the low-energy effective theory for %€ (N) model with matter in the adjoint
representation (identified first in [1] with th&U (N) Hitchin system) is isomorphic to the
elliptic CM system. Using this connection, quantum order parameters were found in [79].

The elliptic CM system [80, 81] is a system Nfidentical particles on a line interacting
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with each other via the potenti&l(x) = g (x). Its equations of motion have the form

E=4) 9 —x)). (9.1)
J#i
The CM system is a completely integrable Hamiltonian system, i.e. itAhasdependent
integralsH, in involution [82,83]. The second integral, is the Hamiltonian of (9.1).
In [78] it was shown that the elliptic solutions of the KdV equations have the form

N
u(x, 1) =2y o —x(t) (9.2)
i=1

and the poles; (¢) of the solutions satisfy the constra@#i #'(x; —x;) = 0, which is the
locusof the stationary points of the CM system. Moreover, it turns out that the dependence
of the poles with respect tocoincides with the Hamiltonian flow corresponding to the third
integral H; of the system. In[84,85] it was found that this connection becomes an isomorphism
in the case of the elliptic solutions of the KP equation. Moreover, in [66] it was revealed that
the connection of the CM systems with the KP equation is in some sense secondary and is a
corollary of more fundamental connections with the spectral theolyner operators with
elliptic potentials. The corresponding approach has been developed extensively in [67—69].
Let £ be a linear differential or difference operator in two variableswith coefficients
which are scalar or matrix elliptic functions of the variableWe do not assume any special
dependence of the coefficients with respect to the second variable. Thenitis natural tointroduce
a notion ofdouble-Bloclsolutions of the equation

Ly = 0. (9.3)

We call ameromorphicvector-function f(x), which satisfies the following monodromy
properties:

J(x +2mq) = By f(x), a=12, (9.4)

a double-Bloch function The complex numbers,, are calledBloch multipliers (In other
words, f is a meromorphic section of a vector bundle over the elliptic curve.)

In the most general form a problem that we are going to addressdgsifyand to
constructall the operatorg€ such that equation (9.3) hasfficientdouble-Bloch solutions.

It turns out that the existence of the double-Bloch solutions is so restrictive that only in
exceptional cases do such solutions exist. A simple and general explanation of that is due to
the Riemann—Roch theorem. LbBtbe a set of points;, i = 1, ..., m, on the elliptic curve
I'o with multiplicities d; and letV = V(D; By, B2) be a linear space of the double-Bloch
functions with the Bloch multipliers, that have poles at; of order less or equal té; and
holomorphic outsided. Then the dimension ab is equal to

dimD = degD = ) " d;.

Now let x; depend on the variable Then for f € D(¢) the function£f is a double-

Bloch function with the same Bloch multipliers but in general with higher orders of poles,
because taking derivatives and multiplication by the elliptic coefficients increase these orders.
Therefore, the operatdt defines a linear operator

Llp : V(D(t); B1, By) —> V(D'(¢); By, Bo), N’ =degD’ > N = degD,

and (9.3) isalwaysequivalent to arover-determinedinear system ofV’ equations forN
unknown variables which are the coefficiemts= c;(t) of expansion of € V() with
respect to a basis of functiorfs(r) € V(¢). With some exaggeration one may say that in the
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soliton theory the representation of a system in the form of the compatibility condition of an
over-determined system of the linear problems is considered equivalent to integrability.

In all of the basic exampled’ = 2N and the over-determined system of equations has
the form

LC =kC, 3,C = MC, (9.5)

whereL andM areN x N matrix functions depending on a poinbf the elliptic curve as on
a parameter. A compatibility condition of (9.5) has the standard Lax fpfm= [M, L], and
is equivalent to a finite-dimensional integrable system.
The basis in the space of the double-Bloch functions can be written in terms of the
fundamental functior (x, z) defined by the formula

o(z —Xx) :
CD — {(Z)/\. 96
(x,2) —U(Z)G(x)e (9.6)
Note, that® (x, z) is a solution of the Lam® equation:
d2
(@ — 250()5)) P(x,2) =p@)D(x, 2). (9.7)

From the monodromy properties it follows thét considered as a function afis double-
periodic:

b (x, 2+ 2w,) = O(x, 2),

although itis not elliptic in the classical sense due to an essential singulayity @tfor x # 0.
As a function ofx the function® (x, z) is a double-Bloch function, i.e.

D (x + 2wy, 2) = Ty ()P (x, 2), Ty (2) = eXp2wq ¢ (2) — 28 (wa)2).

In the fundamental domain of the lattice defined by, Zhe function® (x, z) has a unique pole
at the pointc = 0:

d(x,z) = x 1+ 0Ox). (9.8)

The gauge transformatiofi(x) — f (x) = f(x)e"*, wherea is an arbitrary constant does

not change poles of any function and transforms a double-Bloch function into another double-
Bloch function. If B, are Bloch multipliers forf then Bloch multipliers forf are equal

to

Bi = B1e%1, By = Bye®2, (9.9)

The two pairs of Bloch multipliers that are connected with each other through the relation (9.9)
for somea are called equivalent. Note that for all equivalent pairs of Bloch multipliers the
productB;” B, “* is a constant depending on the equivalence class, only.

From (9.8) it follows that a double-Bloch functiofi(x) with simple polesx; in the
fundamental domain and with Bloch multiplieBs (such that at least one of them is not equal
to one) may be represented in the form:

N
fx) = Z i ®(x — x;, 7)€, (9.10)
i=1
wherec; is a residue off atx; andz, k are parameters related By, = T, (z)e®**. (Any
pair of Bloch multipliers may be represented in this form with an appropriate choice of the
parameterg andk.)
Let us consider as an example the equation

LY =@ — 2 +u(x, 1))y =0, (9.11)
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whereu(x, r) is an elliptic function. Then, as shown in [66], equation (9.11) Naknear
independent double-Bloch solutions with equivalent Bloch multipliersirsimple poles at
pointsx; (¢) if and only if u(x, t) has the form

N
u@,. =2y o« —x50) (9.12)
i=1
andx; (¢) satisfy the equations of motion of the elliptic CM system (9.1).

The assumption that there exiat linear independent double-Bloch solutions with
equivalent Bloch multipliers implies that they can be written in the form

N
Y=l kDB — (), e, (9.13)
i=1

with the same but different values of the parameter

Let us substitute (9.13) into (9.11). Then (9.11) is satisfied if and only if we get a function
holomorphic in the fundamental domain. First of all, we concludeih@s poles at;, only.
The vanishing of the triple pole& — x;)~2 implies thatu(x, t) has the form (9.12). The
vanishing of the double polgs — x;)~2 gives the equalities that can be written as a matrix
equation for the vectaf = (¢;):

(L(t,z) —kI)C =0, (9.14)
wherel is the unit matrix and the Lax matrik(z, z) is defined as follows:

Lij(t,2) = —38;x — (1 — 8;)®(x; — x;, 2). (9.15)
Finally, the vanishing of the simple poles gives the equations

(0 —M(t,2))C =0, (9.16)

where

M;; = (50 (@) — 22 o (x — xj))&;,‘ —2(1 =6 (xi — xj, 2). (9.17)
J#i

The existence oN linear independent solutions for (9.11) with equivalent Bloch multipliers

implies that (9.14) and (9.16) havéindependent solutions corresponding to different values

of k. Hence, as a compatibility condition we get the Lax equafioa= [M, L] which is

equivalent to (9.1). Note that the last system does not depend ©herefore, if (9.14) and

(9.16) are compatible for somethen they are compatible for all As a result we conclude that

if (9.11) hasN linear independent double-Bloch solutions with equivalent Bloch multipliers

then it has infinitely many of them. All the double-Bloch solutions are parametrized by points

of an algebraic curv€ defined by the characteristic equation

N
R(k.z) = dettkl — L(z)) = k" +> " ri()k" 7 = 0. (9.18)
i=1
Equation (9.18) can be seen as a dispersion relation between two Bloch multipliers and defines
I asN-sheet cover of .
As was shown in [66] expansion of the characteristic equation (9.14)=at0 has the
form:

N
R(k,z) = [ [k +viz™* + i + O(2)), m=1-N, v=1 i>1L1 (9.19)
i=1
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We call the sheet df atz = 0 corresponding to the branéh= z=%(N — 1) + O(1), an upper
sheet and mark the poi; on this sheet among the pre-imagesof 0. From (9.19) it
follows that in the general position when the cuivés smooth, its genus equals

Further consideration of analytical properties of the functlogiven by (9.13) where;
are components of the eigenvector to the malrishows that this function is just the Baker—
Akhiezer function introduced in section 6. Combined with expression (6.22) fiorterms
of the#-function this result leads directly to the main statement of [66]:

the coordinates of the particles(r) are roots of the equation

OUx+Vi+Zg) =0, (9.20)

wheref (§) = 0(&£|B) is the Riemanm-function corresponding to the matrix bfperiods of
holomorphic differentials of'; the vectord/ andV are the vectors di-periods of normalized
meromorphic differentials oft, with poles of order two and three at the point

Among other examples of integrable systems that can be generated in a similar way is the
Ruijesenaars—Schneider system [86]
Bo= ) xiks (Vi —x) = Vxs — x0), V(x) = ¢(x) = ¢(x +m), (9.21)

SF#I

and the nested Bethe ansatz equations [87]

1_[ i xzill)a(x’ﬂ ikl x?: M =-1 (9.22)
j4i o =X )o (k' i —xo(x! — X7 — 1)
As shown in [68, 69], they are generated by spectral problems for equations
LYy =0 (x,t) —Y(x+n,t)—vx,HY(x,t) =0, (9.23)
and
Yx,m+1) =y (x+n) v, myx,m), (9.24)

respectively. (Here is a complex number andx, ¢) is an elliptic function.)

Strange as it seems, the inverse spectral problem which is discussed here is simpler for
two-dimensional operators than for one-dimensional stationary operators. For example, a
family of spectral curves corresponding to operators (9.11) that have double-Bloch solutions
can be described explicitly. A nice formula was found in [79]:

1 0
Rk = fh =@, flD)= o (Z " a—k) HE).  (9.25)

whereH (k) is a polynomial. Note that (9.25) may be written as

k 1§ 1 o Y H(k

fk,z) = (@) 2l "o (2) (ak) (k).

The coefficients of the polynomidf (k) are free parameters of the spectral curve of the CM
system.

The spectral curves corresponding to the 8dimger operator with the same property are
a special case of the curves (9.25) but their explicit description is unknown. In particular, the
exact formula for branching points for Lanpotentials is unknown. As was mentioned above,
the first example of elliptic finite-gap potentials different from the legmotentials was found
in [25]. A wide class of such potentials was found in [70].

In [88] it was noted that the problem of classification of Sxlinger operators with
elliptic potentials that have two double-Bloch solutions for almost all energy levels was posed
by Picard, although this had not been solved until very recently. In [88], using Floquet spectral
theory for the Schisdinger operator it was proved that all such potentials are finite gap. This
result is an essential step in the Picard problem although its complete and effective solution is
still an open problem.
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