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Abstract

We develop a Hamiltonian theory for 2D soliton equations. In particular, we
identify the spaces of doubly periodic operators on which a full hierarchy of
commuting flows can be introduced, and show that these flows are Hamiltonian
with respect to a universal symplectic form w = Resqo (UFSLAST,)dk. We also
construct other higher order symplectic forms and compare our formalism with
the case of 1D solitons. Restricted to spaces of finite-gap solitons, the universal
symplectic form agrees with the symplectic forms which have recently appeared
in non-linear WKB theory, topological field theory, and Seiberg-Witten theories.
We take the opportunity to survey some developments in these areas where
symplectic forms have played a major role.
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I. Introduction

There is increasing evidence that symplectic structures for solitons may pro-
vide a unifying thread to many seemingly unrelated developments in geom-
etry and physics. In soliton theory, the space of finite-gap solutions to the
equation [0, — L,0; — A] = 0 is a space My(n, m) of punctured Riemann sur-
faces I' and pair of Abelian integrals E and @ with poles of order less than
n and m at the punctures. The fibration over My(n, m) with I' as fiber car-
ries a natural meromorphic one-form, namely d\ = QdE. It is a remarkable
and still mysterious fact that the form dA is actually central to several theo-
ries with very distinct goals and origins. These include the non-linear WKB
(or Whitham) theory [22][23][26][36][38], two-dimensional topological models
[11][12][13], and Seiberg-Witten exact solutions of N=2 supersymmetric gauge
theories [18][40][52][53]. The form dA can be viewed as a precursor of a sym-
plectic structure. Indeed, it can be extended as a 1-form Zle dA(z;) on the
fibration over My(n, m) with fiber a symmetric gth-power of I'. Its differential
w becomes single-valued when restricted to a suitable g-dimensional leaf of a
canonical foliation on My (n,m), and defines a symplectic form [39]. Earlier spe-
cial cases of this type of construction were pioneered by Novikov and Veselov
[50] in the context of hyperelliptic surfaces and 1D solitons, and by Seiberg,
Witten, and Donagi [18][53] in the context of N=2 SUSY gauge theories.

The goal of this paper is twofold. Qur first and primary objective is to
construct the foundations of a Hamiltonian theory of 2D solitons.

e For this, we provide an improved formulation of 2D hierarchies, since
the classical formulations (e.g. Sato [54]) are less pliable than in the 1D case,
and inadequate for our purposes. In particular, the new formulation allows us
to identify suitable spaces L(b) of doubly periodic operators on which a full
hierarchy of commuting flows 8,,L = 8, A, + [Am, L] can be introduced;

e We can then define a universal symplectic form w on these spaces L(b) by
w = Reseo (YL A 6Tg)dk, (1.1)

where ¥g and ¥§ are the formal Bloch and dual Bloch functions for L. This
form had been shown in [39] to restrict to the geometric symplectic form
637 | dA(2;) when finite-gap solitons are imbedded in the space of doubly
periodic operators. Here we show that it is a symplectic form in its own right
on L(b), and that with respect to this form, the hierarchy of 2D flows is Hamil-
tonian. Their Hamiltonians are shown to be 2nH,+,,, where H are the coef-
ficients of the expansion of the quasi-momentum in terms of the quasi-energy.

¢ Our formalism is powerful enough to encompass many diverse symplectic
structures for 1D solitons. For example, w reduces to the Gardner-Faddeev-
Zakharov symplectic structure for KdV, while its natural modifications for y-
independent equations (see (2.71) and (2.73) below), reproduce the infinite set
of Gelfand-Dickey as well as Adler-Magri symplectic structures.
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e The symplectic form (1.1) is algebraic in nature. However, it suggests new
higher symplectic forms,

Wino = Resoo (TG(AR) 6L — L6 A,0) A 8To)o dk (1.2)

which are well-defined only on certain spaces of operators with suitable growth
or ergodicity conditions. For Lax equations 0;, L = [An,, L], these higher sym-
plectic forms have a remarkable interpretation: they are forms with respect to
which the eigenvalues of A4,,,, suitably averaged, can serve as Hamiltonians,
just as the eigenvalues of L are Hamiltonians with respect to the basic symplec-
tic structure (1.1). It would be very interesting to understand these new forms
in an analytic theory of solitons.

Our second objective is to take this opportunity to provide a unified survey
of some developments where the form dA (or its associated symplectic form
w) played a central role. Thus d\ emerges as the generating function for
the Whitham hierarchy, and its coefficients and periods are Whitham times
(Section IV). The same coeflicients are deformation parameters of topologi-
cal Landau-Ginzburg models in two dimensions (Section V), while for N=2
SUSY four-dimensional gauge theories, the periods of dA generate the lattice of
Bogomolny-Prasad-Sommerfeld states (Section VI). Together with dA, another
notion, that of a prepotential F, emerges repeatedly, albeit under different
guises. In non-linear WKB methods, F is the exponential of the r-function of
the Whitham hierarchy. In topological Landau-Ginzburg models, it is the free
energy. In N=2 supersymmetric gauge theories, it is the prepotential of the
Wilson effective action. It is an unsolved, but clearly very important problem,
to determine whether these coincidences can be explained from first principles.

II. Hamiltonian Theory of 2D Soliton Equations

Solitons arose originally in the study of shallow water waves. Since then, the
notion of soliton equations has widened considerably. It embraces now a wide
class of non-linear partial differential equations, which all share the character-
istic feature of being expressible as a compatibility condition for an auxiliary
pair of linear differential equations. This is the viewpoint we also adopt in this
paper. Thus the equations of interest to us are of the form

[0, — L,d; — A] =0, (2.1)

where the unknown functions {u;(z,y,t)}iq, {vj(z,y,t)}]L, are the N x N
matrix coeflicients of the ordinary differential operators

L= Zui(xy y>t)6;s A= Uj (:177 Y, t)ai . (22)
=0 j=0

A preliminary classification of equations of the form (2.1) is by the orders n,m
of the operators L and A, and by the dimension N of the square matrices
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ui(z,y,t), vj(z,y,t). In what follows, we assume that the leading coefficients
of L and A are constant diagonal matrices u2® = u%d,g, v2? = v%5,5. Under
this assumption, the equation (2.1) is invariant under the gauge transformations
L,A— L' =g(x) 'Lg(z), A' = g(z)Ag(z)~! where g(z) is a diagonal matrix.
We fix the gauge by the condition u3® = §*Fu,, u2®; = 0. We shall refer
to (2.1) as a zero curvature or 2D soliton equation. The 1D soliton equation
corresponds to the special case of y-independent operators L and A. In this
case the equation (2.1) reduces to a Laz equation L; = [A, L].

A. Difficulties in a Hamiltonian Theory of 2D Solitons

The Hamiltonian theory of 1D solitons is a rich subject which has been devel-
oped extensively over the years [10][25]. However, much less is known about
the 2D case. We illustrate the differences between 1D and 2D equations in the
basic example of the hierarchies for the Korteweg-deVries (KdV)

3 1
Uy — §U (9zu - Z@;’u =0 (23)
and the Kadomtsev-Petviashvili (KP) equations
3 3 1
Zuyy =0, (ut — §u Ozu — 132u> . (2.4)

The KP equation arises from the choice N =1,n =2, m =3, and L = 62 + u,
A =083+ 2ud; +vo in (2.1). We obtain in this way the system

Ozt = %Bgu + %uy, Vo,y = Ut — iagu + Zazuy - gu Ozt (2.5)
which is equivalent to (2.4) (up to an (z,y)-independent additive term in vy,
which does not affect the commutator [0, — L,d; — A]). Taking L and A inde-
pendent of y gives the KdV equation.

The basic mechanism behind this construction is that the zero curvature
equation actually determines A in terms of L. This remains the case for the 1D
Lax equation L; = [A, L] even when A is taken to be of arbitrarily high order
m, but not for the 2D zero curvature equation L; — Ay = [A, L]. The point is
that [A, L] is a differential operator of order m + 1. The Lax equation requires
that it be in fact of order 0, while the 2D zero curvature equation requires
only that it be of order < m — 1. The order 0 constraint is quite powerful.
Expressed as differential constraints on the coefficients of A, it implies readily
that the space of such A’s for fixed L is of dimension m. An explicit basis can
be obtained by the Gelfand-Dickey construction [10][27], which we present for
a general operator L of order n. Let a pseudo-differential operator of order n
be a formal Laurent series > .. wiafg in 0;, with d; and 97 ! satisfying the

. i=—00
identities
oo

Bpu=udy +u', 07 u = (=) uMo; .

=0
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Then there exists a unique pseudo-differential operator L'/™ of order 1 satisfying
(L'/™)» = L. Evidently, the coefficients of L'/” are differential polynomials in
the coefficients of L. For example, for L = 82 +u, we find L'/2 = 8, + %u a7l —
w077+ Weset

L/m=rY" + LY,

where the first term on the right hand side is the differential part of the pseudo-
differential operator Li/_ ", and the second term on the right hand side is of
order < —1. Then [L, LY™] = [L, Li/"] — [L, L™ = —[L, L"/™]. Since the com-
mutator [L,L’_/"] is of order at most n — 2, this shows that the differential

operators L:L/” provide the desired basis.

Associated to L are then an infinite hierarchy of flows, obtained by introduc-
ing  “times”  t1,...,tm,..., and considering the evolutions of
L=%7"  u(z;ty,... tn)0% defined by

OmL = [L,LT™). (2.6)

where we have denoted by 0, the partial derivative with respect to the time
tm- A key property of these flows is their commutativity, i.e.

[6; — LY, 8; — L¥/™ = 0. (2.7)

To see this, we note first that if L evolves according to a flow 8;L = [L, A], then
L* evolves according to 9;L* = [L*, A]. Thus we have 0;,L/" = [L:L/”,Lj/"},
9;Li/m = [Li,/",Li/"], and the left hand side of (2.7) can be rewritten as
(L7 LI+ (L2, D+ (LY, L™ 1 we veplace L™, LY/ by L¥/m— L™
and L#/™ — L3/™  all terms cancel, except for [L*/™, LY/ "]. This term is however
pseudo-differential, of order < —3, and cannot occur in the left hand side of
(2.7), which is manifestly a differential operator.

The flows (2.6) are known to be Hamiltonian with respect to an infinite
number of symplectic structures with different Hamiltonians. For example, the
KdV equation itself can be rewritten in two Hamiltonian forms

¢H'
ou

up = az—(%—, ug = (02 + 2(u 0y + Ozu))
where the skew-symmetric operators K = 8,, K' = 82 + 2(ud, + 8,u) corre-
spond to two different symplectic structures (called respectively the Gardner-
Faddeev-Zakharov [10][25] and Adler-Magri structures [1][41]), and H = {u® —
fuZ, H' = tu? are the corresponding Hamiltonians.

The situation for the 2D zero curvature equation is much less simple, since
the arguments narrowing A to an m-dimensional space of operators break down.
Although formally, we may still introduce the KP hierarchy as 0, L = Oy Am +
[Am, L], with A, an operator of order m which should also be viewed as an
unknown, this is not a closed system of equations for the coefficients of L, as
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it was in the case of the Lax equation. Another way, due to Sato [54], is to
introduce the KP hierarchy as a system of commuting flows

dmL = [L7, 1] (2.8)

on the coefficients (v;(z,1))i=%° of a pseudo-differential operator L
i=1

L=0+)Y vz, t)d"

i=1

In this form, the KP hierarchy can be viewed as a completely integrable Hamil-
tonian system. However, it now involves an infinite number of functions v;,
and its relation to the original KP equation (which is an equation for a single
function of two variables (z,y)) requires additional assumptions.

A. Quasi-Energy and Quasi-Momentum

Our first main task is then to identify the space of differential operators with pe-
riodic coefficients on which the KP equation and its higher order analogues can
be considered as completely integrable Hamiltonian systems. Our approach
actually applies systematically to general 2D soliton equations. We present
these results at the end of this section, and concentrate for the moment on the
simplest case of a differential operator L of order n. We begin with the con-
struction of the formal Bloch eigenfunction for two-dimensional linear operators
with periodic coefficients.

Theorem 4. Let L be an arbitrary linear differential operator of order n with
doubly periodic coefficients

n—2
L=28] + ui(z,y)0L,
ui(z + 1ay) = ui(x>y + 1) = ui(z,y)
Then there exists a unique formal solution Wo(x,y; k) of the equation

which satisfies the following properties

(i) Wo(z,y; k) has the form
Yo(z,y; k) = (1 + Z{s(x,y)k_s) (ke k" y+ 727 Bi(y)k*)
s=1

(i) ¥o(0,0;k) =1
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(iif) Uo(z,y; k) is a Bloch function with respect to the variable z, i.e.,
\IIO(:E+1aya k) :wl(k)lIIO(zay7k)a 'LU](k) :ek . (211)

The formal solution ¥o(z,y, k) is then also a Bloch function with respect
to the variable y with a Bloch multiplier wa (k)

lIIO(zvy +1; k) = w2(k)‘1’0(x,yak)7

e n n—2 i 212
wa(k) = (1+ Z Jok=)e(F"+ I BiK) (2.12)
s=1

Proof. To simplify the notation, we begin with the proof in the case of n = 2,
with L = 82 + u(z,y). The formal solution has then the form

Bo(z,y; k) = (1 + Zﬁs(w,y)k_s> ket y+Bo(v)
s=1

Substituting this formal expansion in the equation (8, — L)¥o(z,y; k) = O gives
the following equations for the coefficients &;

Oy€s + OyBoks = 26L 41 + £ + us. (2.13)

(Here and henceforth, we also denote derivatives in = by primes.) These equa-
tions are solved recursively by the formula:

Eor1(2,y) = cop1(y) + €241 (2, ),

z 2.14
o) =3 [ G&E) @) + @B - w6 )ds (2.14)

2

where cs(y) are arbitrary functions of the variable y with the only requirement
that ¢s(0) = 0, which is dictated by (ii).

Our next step is to show by induction that the Bloch property (ii), which is
equivalent to the periodicity condition

65(33 + 17y) = £S(I7y)a (215)

uniquely defines the functions ¢;(y). Assume then that &—;1(y) is known and
satisfies the condition that the corresponding function £(z,y) is periodic. The
first step of the induction, namely the periodicity in z of & (x, ), requires Bo(y)
to be

By(y) = AyA u(z',y') ds' dy' . (2.16)

The choice of the function ¢,(y) does not affect the periodicity property of
&s(z,y), but it does affect the periodicity in z of the function €2, (z,y). In
order to make &2, (z, y) periodic, the function ¢,(y) should satisfy the equation

1
Oyes = —/0 (8y€3 (2, y) = (62)"(z,y) + (8yBo — u(z, )& (w,y))dz . (2.17)
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Together with the initial condition ¢;(0) = 0, this defines ¢; uniquely

Yy 1
- / dy,/ (ayfg(z,yl) - (52)”(33’1/') + (8yBO - 'U,(IIJ, yl))ég(l‘,y,))dﬂl,
0 0
(2.18)
and completes the induction step.
We can now establish (2.12), also by induction. Assume that &;_; satisfies
the relation

53—1(93,y+ 1) fs 1 .’E y) Zst —i— 1 z 1/ (219)

where J1,...,Js_1 are constants. Then (2.14) implies that

£z y+1) = &(a,y) = Zst iz, y) + Js —EJES ie,y),  (2.20)

with
.] (y+1 ‘—Cs chsz

We claim that J; is actually constant. In fa.ct, it follows from (2.14) and (2.19)
that

s—1
fg(z,y + 1 60 IL‘ y Z J és 1 .’E y Z Ji(&s—i("c’y) - Cs—i(y))'
i=1

Thus (2.18) implies that

1
B,ca(y +1) — 8,0,y Z i [ @8 = (€ + (0, Bo - w)ed)de
s—~1 s—1
= Z Ji(Oycs—i — §2+1(1,y) - §g+1 0,9)) = Z JiOycs—i.
i=1 i=1

In particular the derivative of J; vanishes. This proves Theorem 1 when n = 2.
The proof can be easily adapted to the case of general n. Let ¢9(z,y) be
the coefficients of the formal series

\I’(O)(Il?,y,k) \I}(Jil' ya:; 1+Z£s z y, -5 ek:z:'

Then (8, — L)¥o = 0 is equivalent to the system of equations

n—2

ZC’ (B71e2,,) +Zuizcl (0571€0,) = 0,80+ > by, s> -n+2,
=0 j=-—s

(2.21)
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where we have assumed that £ = 0 for s < 0, and set b; = b;(y) to be the
coeflicients of the series

ay‘IJO(Oy Y, k) e ]
22Tl = kT b; J. .
XN + 2 bily)k (2.22)
j=—o0
These equations are of the form
n0zE%, 1 = b_s+ Fs(€%,bs) . (2.23)

Here F' is a linear combination of the 2,, s’ < s+ n — 2 and their derivatives,
with coeflicients which are themselves linear in u; and by, s" < s (c.f. (2.13)).
The equations define recursively b_,(y) and £2,,,_;. The coefficient b_, follows

from the periodicity in z of (2.23)

1
b_s(y) = — /0 Fy (€% bgn)dz, (2.24)

and the coefficient €2, ,_; follows in turn

Ny = boa)o+ [ B0 bor)de' (2.25)
0

We can now integrate (2.22) and find that ¥g has the form (i) with

&@):Aauw,i:muwn—z (2.26)

We obtain at the same time the Bloch property for ¥y with respect to y with
the Bloch multiplier

wo (k) = /01 (k” + “Z‘:z bi(y)ki) dy. (2.27)

1=—00
The proof of Theorem 1 is complete. O

In Theorem 1, we have chosen the simple form w; (k) = eF for the Bloch
multiplier in z. If we view = as a “space” variable, this identifies the spectral
parameter k with the “quasi-momentum” (up to a factor of i = v/—1). The
variable y can then be interpreted as a time variable in the Schrédinger-like
equation (8, — L)¥o = 0. This identifies (again up to a factor of 7) the logarithm
of the second Bloch multiplier wy (k) with the quasi-energy E(k). Alternatively,
we may change spectral parameters, and introduce the spectral parameter K
as well as the coefficients (€;)72_, ,, of the expansion in k of the quasi-energy
by

K™ = E(k) = logws(k) = k™ + Y &k,

i=—n+2

(2.28)
K=k+O0(k™").
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We observe that a change of spectral parameter of the form k — K = k+O(k™1)
transforms a formal series in & of the form (i) in Theorem 1 into another formal
series of the same form in K. With K as spectral parameter, the second Bloch
multiplier wy(K) reduces to ws(K) = exp(K™), but the first Bloch multiplier
wy (K') becomes non-trivial. The coefficients (H,)32,; of the expansion in K of
its logarithm

wy(K) = ek k(K)=K+ Y HK® (2.29)

s=1

will play an important role in the sequel.

B. Basic Constraints

The coeflicients €; and H; of the expansions (2.28) and (2.29) of the spectral
parameters are uniquely defined by the coefficients (u;)?= of the operator L,
and hence can be considered as functionals on the space of periodic operators.
We now restrict ourselves to the subspace L(b) of operators L satisfying the

constraints
bi(y) =b;, 0<i<n-2, (2.30)

where b;(y) = dB;(y)/dy, with the functions B;(y) defined by (i) in Theorem 1,
and b = (bo, ... ,bn—2) are (n—1) fixed constants. On the space L(b), the essen-
tial singularity in the second Bloch multiplier w (k) simplifies to k™ + 2::02 b;k?
(c.f. (2.12)). Comparing with (2.28), we see that the constraints (2.30) fix the
values of the first (n — 1) functionals €_; = b;. This is in turn clearly equivalent
to fixing the values of the first (n — 1) functionals Hy, ..., H,_; in (2.29). We
claim that these constraints can also be expressed under the form

1 ,
/ hi(uj)de = Hy =const, ¢=1,...,n—1, (2.31)
0

where hs(uj), j > (n—i— 1), are universal differential polynomials depending
only on n. In fact, the constraints (2.30) imply that the essential singularity in
the Bloch function ¥o(z,y; k) is of the form

n—2
kz + (k" + Z b,-k")y =Kz+K'y+O(K™).
=0

Since the expression exp (O(K ‘1)) contains no essential singularity and can
be expanded as a formal series in K~!, we have shown that the formal Bloch
solution ¥q(z,y; k) can be rewritten in terms of the spectral parameter K under
the form

s=1

Uo(z,y,K) = (1 + ch(z,y)K*S> efe+ Ky (2.32)
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Substituting (2.32) in (3, — L)¥o(x,y; K) = 0 gives for the first (n — 1) coeffi-
cients (1,...,(,—1 a system of ordinary differential equations

ZC’ (87740 )) + ZuZZC” (8:7'¢%,) =0, s=-n+2...,0, (2.33)

which just coincides with the first equations defining formal eigenfunctions for
ordinary differential operators (see [33]). Let (;(z,y;z0), be the solution of
(2.33) with the normalization (o = 1 and {;(z¢, y; o) = 0. Then the equations
(2.33) define recursively differential polynomials h;(u;(z,y)) such that

aw(i(z)y;$0)|zzzo = hi(uj(mvy))]wzwm (234)

The above left hand side is equal to the first coeflicients of the logarithmic
derivative of ¥q at z = g, i.e.

n—1
-5 0, ¥ z,y, K
oS o G

s=1

+O(K™).  (2.35)

Integrating gives the first (constant) coefficients of (2.29) and establishes our
claim.

Henceforth we will always assume that L is in the space L(b) of operators
with periodic coefficients (u;)}=y satisfying either one of the equivalent con-
straints (2.30) or (2.31).

C. Commuting Flows

On the space L(b) we can now define an infinite set of mutually commuting
flows as follows. First, we observe that for any formal series of the form (i) in
Theorem 1, there exists for each integer m > 1 a unique differential operator
A,, of the form

m—2

m =00+ Y im(z,y)d, (2.36)
=0
which satisfies the condition

(Am — K™(k))Wo(z,y; k) = O(k™") o(z, y; k), (2.37)

where K (k) is defined by (2.28). Indeed, this condition is equivalent to the
following finite system of equations for the coefficients (u; ) of A,

> tim Y CHO o) = Corm, 5 =-m+2,...,0.

This system is triangular, and identifies uniquely the coefficients u; ,, as differ-
ential polynomials in the first m — 1 coefficients £; of ¥o(z,y; k). For example,
we find

Um—-2,m = —mCL Um—3,m = _m<é - C?n {I :
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Let L be now an operator in L(b), ¥o(z,y; k) its Bloch function, and A,, be
the operators obtained by the preceding construction. Then

[0y — L, Am]%o(z,y,k) = 8y — L)O(k™")Wo(z,y, k) = O(k"~2)eK=+K"y,
(2.38)
which implies that the operator [§, — L, A,;] has order less or equal to n — 2.
We set

n—2
By — L, Am] = 0yAm — [L, Am] = D _ Fim(z,9)0% . (2.39)
=0
The functions F; n,(z,y) are uniquely defined by u;(z,y) and can by expressed
in terms of multiple integrals of differential polynomials in u;. Thus they can
also be expressed as

Fim(z,y) = Fi,m(u(x,y)), u = (ug,... ,Un_2). (2.40)
where Fzm() is a nonlocal but exact functional of u;(z,y).
Theorem 5. The system of equations
Omti = Fin(u) <= 0L = 8, Am + [Am, L] (2.41)

defines an infinite set of commuting flows on the subspace L(b) of doubly periodic
operators.

Since Fi,m and A,, are well-defined functions of L, we need only check the
commutativity of the flows. For this, we need the following version of the
uniqueness of Bloch solutions, namely, that if ¥(z,y;k) is a Bloch solution
(¥(x + Ly; k) = wi(k)¥(z,y; k)) of the equation (8, — L)¥ = 0 having the
form

Uo(z,y; k) = ( 3 gs(x,y)k—s> Fe (" H TRy (9.49)
s=—N

then ¥(z,y; k) must be given by
U (z,y; k) = a(k)To(z,y; k), (2.43)

where a(k) is a constant Laurent series a(k) = Yooy ask~°. This is because the
leading coefficient &y in any formal solution ¥ is a constant. As a consequence,
if U(z,y;k) is a Bloch solution, then the ratio ¥(z,y; k)¥~1(0,0;k) is also a
solution. This expression has all the properties of, and can be identified with
Uy. Since ¥(0,0; k) is a Laurent series, our assertion follows.

Returning to the proof of Theorem 2, we observe that if ¥, is the Bloch so-
lution to (2.22) then (0, — Am) ¥y is also a Bloch solution to the same equation.
The preceding uniqueness property implies

(O — Ap)¥o = =0 (k)To, (k) = K™ +O0(k™1) (2.44)
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for a suitable (z,y) independent Laurent series Q,,(k). In particular,
[Om — Am,0n — An]¥o = O(k7!)¥e. The last equality implies that
[Om — A, On — Ay] is an ordinary differential operator in z of order less than
zero. Therefore, it must vanish identically

[Om — Am, O — An] =0 . (2.45)

This establishes the commutativity of the flows. The proof of Theorem 2 is
complete.

Conversely, let u(z,y,t,k), t = (t1,t2,...) be a solution to the hierarchy
(2.41). Then there exists a unique formal Bloch solution ¥(z,y,t; K) of the
equations

Oy —L)¥ =0, (O —An)¥ =0 (2.46)
having the form
U(z,y,t,K) = (1 +3 Co(z,y, t)K’s) Kot K Y+ K™ (2.47)
s=1

The above expression identifies the original variables x and y with the first and
the n-th times of the hierarchy,

T=t;, y=tn, (2.48)

respectively. More generally, the preceding results show that for periodic op-
eratos L, an equation of the zero curvature form [0y — L,0; — A] = 0 must be
equivalent to a pencil of equations for the coeflicients of L only. In other words,
there must exist constants ¢; such that

A=) "ciA; (2.49)
i=1

and the flow is along the basic times ¢; = ¢;t, of the hierarchy.

Finally, we point out that for all n, the equations of the corresponding
hierarchy for L = L,, have the same form [0,, — Ly, 0 — L] = 0, and can be
considered as reductions of this system. Our approach to these reductions is to
select two particular times which we treat as spatial variables, and to impose
periodicity conditions in these variables.

D. Dual Formal Bloch Solutions

A key ingredient in our construction of symplectic structures on spaces of pe-
riodic operators L is the notion of dual Bloch functions ¥g(z,y; k). In the
one-dimensional case, dual Bloch functions were introduced in [7]. In our set-
up, its main properties are as follows:
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e Let Uy(z,y, k) be a formal series of the form (i) in Theorem 1. Then there
exists a unique formal series ¥§(z,y; k) of the form

. (o]
Uiz, y; k) = emhom (V" F T kD (1 +3 e, y)k‘s> : (2.50)
s=1

such that for all non-negative integers m the equalities
Reseo (U5(z,y; k)07 Po(z,y; k)dk) =0, m =0,1,... (2.51)

are fulfilled;

o If ¥ is a Bloch function with Bloch multipliers w;(k), then ¥j(z,y; k) is
a Bloch function as well with inverse Bloch multipliers

Uiz + 1L,y k) = wi ' (K) U5 (2,53 k), U5z, y + LK) = wy ' (k) U5 (x,y; k),
(2.52)
o If ¥y(z,y; k) is a solution to the equation (9, — L)¥o = 0, then the series
Ui (z,y; k) is a solution to the adjoint equation

¥3(8, — L) =0, (2.53)

where the action on the left of a differential operator is defined as a formal
adjoint action, i.e. for any function f*

(£70L) = (=0.)'f". (2.54)

To see this, we begin by noting that, although each of the factors in (2.51)
has an essential singularity, their product is a meromorphic differential and the
residue is well-defined. It has the form

R’eSOO (\1163;"\110 dk) = é’m + g:n +gm(£la .. aém—l;f;: .. 761:1—1),

where gy, is linear in &2, in £; and their derivatives, s < m. The condition (2.51)
defines then &, recursively as differential polynomials in &;, s =1,... ,m. For
example, we have

§=-&, &=-6L+&-¢.
This shows the existence and uniqueness of ¥j. Since the second statement
is a direct corollary of the uniqueness of ¥f, we turn to the proof of the last
statement. First, we show that if ¥*(z,y; k) is a formal series

U (o, g k) = e ke (SIS b*’“‘”( 3 Eé‘(x,y)k‘s>, (2.55)
s=—N

satisfying the equations (2.51), then there exists a unique degree N ordinary
linear differential operator D such that

U*(z,y;k) = Y5(z,y; k)D.
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Since 9: ¥} satisfies the equations (2.51), we can find D satisfying the condition
U (z,y; k) — g (z,y;k)D = O(k™")¥5 (2, y; k).

The above right hand side has the form (2.55) with N < 0 and satisfies (2.51).
Evaluating the leading term, we find that it must vanish identically.
Let ¥y be a solution of (8, — L)¥g = 0. Then

Reso (0y 50, Yo dk) = Oy Reseo (U0, ¥o dk) — Reseo (Y50, LYo dk) =0
In particular, there exists a differential operator L such that
0,05 =W3L .
Let f(z) be an arbitrary periodic function on one variable. We have
8y (f(2)¥5¥0)s = (f(2)T5(L + L)¥o))a,

where we have denoted as usual the average value in = of any periodic function
g{z) by (g)z. The above left hand side is of order —1in k. On the other hand, if
L+ L is not equal to zero and g;(z,y), 0 < i < n—2 are its leading coefficients,
then the right hand side is of the form (f(x)g;(z,y))-k*+ O(k*~1). This implies
that (fg;). = 0. Since f was arbitrary, we conclude that g; = 0, establishing
the last desired property of dual Bloch functions.

We conclude our discussion of dual Bloch functions with several useful re-
marks. The first is that the identity

(To(z,y; k) Wo(z, y; k))z = 1. (2.56)

holds for any formal series Wo(z,y; k) of the form (i) in Theorem 1 and its
dual Bloch series ¥§(z,y; k). Indeed, just as in Section II.C, we can show the
existence of a unique pseudo-differential operator ® =1+ o0 ; we(z,y)d;° so
that v

Wo(z,y; k) = Bebs+ B+ Lizob:k)y (2.57)

As in [10], this implies
S e L (2.58)

More precisely, let @ = > o \ ¢s(z)d; * be a pseudo-differential operator. Then
we may define its residue ress @ by

ress @ = Reseo (e7%2(Qe*®))dk = —q;.

The point is that, while the ring of pseudo-differential operators is not commu-
tative, the residue is, after averaging

(ress(Q1Q2))z = (ress(Q2Q1)):-
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This shows that the series defined by the right hand side of (2.58) satisfies
(2.51), and hence must coincide with ¥§. The desired identity (2.56) is now
a direct consequence of the two preceding identities and of the associativity of
the left and right actions under averaging.

Secondly, we would like to stress that, although ¥g is a Bloch solution of
the adjoint equation ¥§(8, — L) = 0, its normalization is different from that
used for ¥4. This symmetry may be restored if we introduce

Ui(z,y; k
Ui (z,y;k) = ——wz((o g k;' (2.59)

The inverse relation is then

U (z,y; k)

Wilouik) = s
0 z

Finally, the definition of the action on the left of a differential operator adopted
earlier implies that for any degree N differential operator

N
D= Z w;(z)0;
1=0

there exist degree (N — 1) differential operators D) such that for any pair of
functions f* and g the equality

(f'D)g = £*(Dg) + 3_0:(f*(DYg))

holds. The set of operators D) was introduced in [36]. Of particular interest
is of course D(® = D, and the “first descendant” of D, namely

p® —Zzwl )oit. (2.60)

E. The Basic Symplectic Structure

We are now in position to introduce a symplectic structure on the space £(b)

of periodic operators L subject to the constraints (2.30), and to show that the

infinite set of commuting flows constructed in Theorem 2 are Hamiltonian.
The main ingredients are the one-forms 6L and 6¥. The one-form 6L is

given by
n—2
L = Z Su; 0%,

and can be v1ewed as an operator-valued one-form on the space of operators
L =07+ Zl —o ui0%. Similarly, the coefficients of the series ¥ are explicit
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integro-differential polynomials in u;. Thus ¥4 can be viewed as a one-form on
the space of operators with values in the space of formal series. More concretely,
we can write

0¥, = (Z 5§sk—8> ekm+(k"+z.'-'-_-—02 bik')y _ (Z 6C3K_s) KetK™y
s=1 s=1

The coefficients d¢; (or §(s) can be found from the variations of the formulae
(2.24), (2.25) for &;, or recursively from the equation

(8, — L)W, = (5L)Ty. (2.61)

Let f(z,y) be a function of the variables z and y. We denote its mean value by

(f) = /0 1 / ' flay)dzdy.

Theorem 6. (a) The formula
w = Reseo (TFOL A 6T)dk (2.62)

defines a symplectic form, i.e., a closed non-degenerate two-form on the space
L(b) of operators L with doubly periodic coefficients. (b) The form w is actually
independent of the normalization point (zg = 0,y0 = 0) for the formal Bloch
solution Uo(z,y; k). (c) The flows (2.41) are Hamiltonian with respect to this
form, with the Hamiltonians 2nH 1, (u) defined by (2.29).

Proof. We require the following formula, which is a generalization of the well-
known expression for the variation of energy for one-dimensional operators.
Let E(k) be the quasi-energy which is defined by (2.28). Its coeflicients are
nonlocal functionals on the space L(b) of periodic functions u;(z,y) subject to
the constraints (2.30). Then we have

SE(k) = (PgdLTy) . (2.63)
Indeed, from the equation (8, — L)¥o = 0 and (2.53), it follows that
8y (T36T0), = (¥36LTo),.
Taking the integral over y and using the following monodromy property of %,
6o (z,y + 1;k) = wa(k)(0%o(z,y; k) + SE(k)¥o).

we obtain (2.63).
We begin by checking that the form (¥36L A §¥g)), is periodic in y. The
shift of the argument y — y + 1 gives

(E36L A 8T0)y — (U56L A 6Wo)y + (U36LTo), ASE .
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The second term on the right hand side can be rewritten as § £ AE and hence
vanishes, due to the skew-symmetry of the wedge product.

Next, we show that (b) is a consequence of the basic constraints defining
the space L(b). Let ¥; be the formal Bloch solution with the normalization
\Ill(xl,yl,k) = 1. Then

U1 (z,y; k) = olz, y; k) ¥5 (21,915 k)

and

Resoo (U161 A 601)dk = w — Reseo <6E A ‘S‘I"’(z"y“k)) dk.

Yo(z1,v1; k)

In view of the constraints (2.30), we have E = O(k~!). On the other hand,

the second factor in the last term of the above right hand side also has order

O(k™1). The product has therefore order O(k~2) and its residue equals zero.
To see that w is a closed form, we express the operator L as

n—2
L=3D3'+0(5;'), D=0r + ) bidL, (2.64)

=0
which can be done in view of (2.57) and (2.58). Therefore
w = (resg(D® 168D A §®)) = —(ress(DP16®)) (2.65)

and w is closed.

We turn now to the non-degeneracy of w on L(b). Let V be a vector field such
that w(Vy, V) = 0 for all vector fields V;. Let ¥; = §¥(V) be the evaluation of
the one-form §¥ on V. Then the equality

w(Vi,V) = ReSoo (¥3L, U1 )dk = 0, (2.66)

holds for all degree n—2 operators Ly = §L(V1). Since L, is arbitrary, it follows
that ¥; = O(k™")¥y. In view of (2.61) we have then

SL(V)¥o = (8, — L)¥; = O(k™)¥o.

Hence §L(V) = 0. This means that V = 0, and the non-degeneracy of w is
established.

It remains to exhibit the flows (2.41) as Hamiltonian flows. We recall the
classical definition of the Hamiltonian vector field 8; corresponding to a Hamil-
tonian H and a two-form w. The contraction i(0;)w of w with the vector field
0O; should be the one-form given by the differential of the Hamiltonian, i.e. the
equality

i1(0p)w(X) = w(X, 8;) = dH(X), (2.67)

should be fulfilled for all vector-fields X.
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The contraction of the form w defined by (2.62) with the vector-field 9,,
(2.41) is equal to

i(Om)w = Resoo (U30LOmUo)dk — Resoo (U (OmL)0T0)dk. (2.68)

Here we use the fact that the evaluations of the forms d L and 6¥q on the vector
field 8,, are equal by definition to

8L(0pm) = OmL, 6¥o(Om) = Om¥o.
From (2.44) it follows that
Resoo (¥50 L0, ¥o)dk = Rese ((‘I’SJLAm\IJO) + Qm(k)(\IJSJL\IJO» dk.

The first term in the right hand side is zero due to the definition of ¥§. The
usual formula for the implicit derivative

SE(k) dk = —6k(K) dE, (2.69)

implies that the second term is equal to

~ Resco (U (K)0k(K) dE = ~ Reso (K™ + O(K™1)) (Z 5H31c-5> dK™

=n 5Hn+m‘
(2.70)

(Recall that 6H; = 0, s < n due to the constraints.) Consider now the second
term in the right hand side of (2.68). The equation (2.41) for 8,,L and the
defining equations for ¥y and ¥§ imply
ReSoo (U5 (0mL)0%0) dk = Reseo Oy ((¥5Am¥o),) dk.
Therefore,
/01 Oy (¥ AmO¥o)zdy = SE(k)(¥5AmYo)z|y=o0-
The equality (2.37) implies
(U854, T0), = K™+ O(K™H).
Hence, the second term in (2.68) is equal to

Resoo (V5(OmL)0%¥)dk = —néHpmin

and Theorem 3 is proved. O
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Ezxzample 1. For n = 2, the operator L is the second order differential operator
of the form L = 82 + u(z,y). The space L(bp) is the space of periodic functions
with fixed mean value in z

(uye = Hy — (bu), = 0.

and the symplectic form w becomes

w:—<5u/\/ (5udm> .
To

This symplectic form reduces to the Gardner-Faddeev-Zakharov symplectic
form when u(z,y) = u(z) is a function of a single variable z. In this case
the KP equation reduces to the KdV equation.

Ezample 2. For n = 3, the operator L is the third order differential operator
L = 83 +ud; +v. The space L(bo, by) is the space of doubly periodic functions
u=u(z,y), v=uv(z,y) satisfying the constraints

(u)y = const, (v), = const.

The symplectic form w works out to be

wz—g (6u/\/ 6vdz+6v/\/ (Suda:).
zo Zo

In the case where u and v are functions of a single variable z, this form gives a
symplectic structure for the Boussinesq equation hierarchy
2 2
Uy = 20z — Uz, Vt = Vgr — guzxz - guuz-
Note that the usual form of the Boussinesq equation, us+ (5uus + %uz”)z =0,
as an equation in one unknown function u, is the result of eliminating v from
the above system.

F. Lax Equations

In this section, we compare the results obtained in our formalism with the
one-dimensional case, where the zero curvature equation reduces to the Lax
equation, and where there is a rich theory of Hamiltonian structures. It turns
out that the symplectic structure constructed above reduces then to the so-
called first (or generalized) Gardner-Faddeev-Zakharov symplectic structure.
Thus our approach gives a new representation for this structure, as well as a
new proof of its well-known properties (c.f. [10][25]). As we shall see below, the
second (Adler-Magri) symplectic structure requires a slight modification, which
explains why it is special to the one dimensional case and has no analogue in
the proposed Hamiltonian theory of two-dimensional systems.

Our construction of the basic symplectic form w easily extends to the con-
struction of an infinite sequence of symplectic structures:
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Theorem 7. Let ! be any integer > 0. Then the formula
wl®) = Reso, E'(k)(U36L A 6%,),dk, (2.71)

defines a closed two-form on the space L(Hy,... ,Hn—1) of doubly periodic
operators L, subject to the constraints H; = const, s = 1,... ,nl — 1. The
equations (2.8) are Hamiltonian with respect to this form, with the Hamiltonians
2nHp pnqy1)(u) defined by (2.29).

The proof of the theorem is identical to the proof for the basic structure w.
Specializing to the subspace of periodic L with coefficients depending only on
z, we can easily verify that the symplectic forms w = w(® coincide with the
generalized Gardner-Faddeev-Zakharov forms.

The construction of the Adler-Magri symplectic structure is less obvious,
although formally it has the form (2.71) with [ = —1 and the residue at infinity
is replaced by the residue at £ = 0. Let L be an ordinary linear differential
operator of order n with periodic coefficients. Then for generic values of the
complex number E, there exist n linearly independent Bloch solutions ¥;(z, E)

of the equation
(L-E)¥U,; =0, (2.72)

with different Bloch multipliers w;(E),

The value p;(E) = logw;(E) is called the quasi-momentum. Its differential
dp;(E) is well-defined. (In our previous formal theory of Bloch solutions, there
are also n different solutions corresponding to the same E, due to the relation
E = k™ + O(k"?) = K™ which defines k and K only up to a root of unity.)
We fix the Bloch solutions ¥} of the adjoint equation

U (L-E)=0
by the condition
(Vi(z, E)¥;(z,E))s =045 .
Theorem 8. The formula
W =3 RN (W (2,0)L A 6T4(z,0)), (2.73)
i=1
where the constants R; are given by

R; = (O;LVE,),

defines a closed two-form on the space of operators L with coefficients depending
only on the variable x, and obeying the constraints Hy; = const, s=1,... ,n—1.
The equations (2.8) are Hamiltonian with respect to this symplectic form, with
the Hamiltonians nHy,(u) defined by (2.29).
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We observe that for n = 2, the operator L(1) reduces to L) = 28,. The
expression (¥}L(VW¥,), is then just the Wronskian of two solutions of the
Schridinger equation.

The proof of Theorem 5 is analogous to the proof of Theorem 3. The formula
(2.73) can be rewritten in the form

dE <~ (¥ (z, E)SL A §4(z, E)
E & (¥;(z,E)LM¥(z, E))

=1

w1 = — Resy

(2.74)

Due to the summation over i, this expression is independent of the labeling
of the Bloch functions. Thus on the right hand side, we have the residue of
a well-defined function of E. The formula we need for the differential of the
branch of the quasi-momentum corresponding to the Bloch solution ¥(z, E) of
(2.72) is the following

i dp(¥:(z, B)LWU;(z, E)) = dE. (2.75)

Its proof is identical to the proof in the finite gap theory (see [36]). Consider
the differential d¥ in the variable E of the Bloch function. Then

(L - E)d¥ = -V dE.
Integrating from zo to zo + 1 the identity
0= (¥*(L - E))d¥ = —(¥*V)dE + iag(\lf*(y' dv)).
i=1
we obtain
dE = idp(¥} (20, E)LW,(x0, E) + En: 1 (¥*(z0, E) (LT ¥(z0, E))).
j=2

The desired formula follows after averaging in zo this last identity.

With the formula (2.75) for dE and the analyticity in E for E # 0 of
all relevant expressions, we can, in the computation of the contracted form
i(Om)w(=1), reduce the residues at E = 0 to the residue at E = co and get the
desired result. For example, we have

dp;(E)

—Reso Y _(¥;6L0,T;)

=1

= Resoo(\Il*(z,K)éLam\IJ(x,K))% =néHn,.

G. Higher Symplectic Structures in the Two-Dimensional
Case

In this section, we introduce higher Hamiltonian structures which exist in both
one and two dimensions. We would like to emphasize that, in contrast with the
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previous results which have basically an algebraic nature, the following results
require in general some additional assumptions on the long-time behavior of
the solutions to the hierarchy of flows 8,,L = 0; A, + [Am, L]. In these higher
Hamiltonian structures, the role of the quasi-momentum k(K') for the basic
structure is assumed by the quasi-momentums Q (K) corresponding to the
higher times of the hierarchy.

Our first step is to study in greater detail the quasi-momentums §,,(K),
corresponding to higher times of the hierarchy. Their “densities” Q,,(K) made
their first appearance in (2.44). They can be re-expressed as

(e}
O (K) = Am¥o(2, 4 K)lemy=0 = K™ + > _ Qs mK™° . (2.76)

s=1

The coefficients Qg of O, (k) are integro-differential polynomials in the co-
efficients of the operator L. As stated above, they do not depend on (z,y),
but they do depend on the times ¢ if the operator L evolves according to the
equation (2.41), i.e. Q = Q(K,t). From (2.44) and (2.45) it follows that

il = Ol (2.77)

Since the coefficients f)s,m are independent of the choice of normalization
point, they can be considered as functionals on the space of periodic operators
L.

The subsequent arguments are based on the variational formulas for these
functionals, which were found originally in the case of finite-gap solutions in
(36]. Following [36], we use the identity

S o 1( LO§Ty) — 8 (\1:5(,45325\1/0))

>1

Yo 1( S(LU) ($Ap + 00,)00) — (T(ADSLE))  (37g)
j>1

N Z pitk- 1( B3 (AR LG) _ (k)Ag))wo),
k,j>1

where L(¥) and AY) are the descendants of the operators L and A defined by
(2.60). Note that if L and A, satisfy (2.44), then the equality

L) = 8,49 + S[LH), 4GH] = 0 (2.79)
k

holds. We now average (2.78) first in z and y, and then in the normalization
point zg (the last averaging eliminates all terms with j > 1). The outcome is
the equality

6Qm (K, W TELD W) = (U3 (LW A, — ADSL)To) + 8, (T L 5T0). (2.80)
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Let Dy, , be the space of all periodic operators L which are stationary under
the first mgy-th flow, i.e. which satisfy the condition

By Amo = L, Amo]. (2.81)

It should be emphasized that due to (2.77) onto this space the correspond-
ing density of the corresponding quasi-momentum is a constant, i.e. does not
depend on the times 5

Qo (K) = Qg (K).

The space carrying a higher symplectic structure is a subspace 93%2, of Dy s
consisting of the stationary operators L satisfying in addition the following
higher constraints

o]
Qo = K™ + 3 QemoK™ Qomo =1, (2.82)
s=1
foraset I = (Iy,...,In—1) of (n—1) fixed constants. These constraints replace

the constraints (2.30) of our previous considerations. The subspace Q)S,Iu)) is
invariant with respect to all the other flows corresponding to times ¢;.

Theorem 9. The formula
Wmo = Resoo (T (AL SL — LW A,,,) A 6F0)dk, (2.83)

defines a closed two-form on Dﬁ,{g The restrictions of the equations (2.41)
to this space are Hamiltonian with respect to this form, with Hamiltonians
2ano,n+m-

Remark 1. This statement has an obvious generalization if we replace the sta-
tionary condition (2.81) by the condition that L be stationary with respect to
a linear combination of the first mg flows, i.e.

Mo
0,A=[L, 4], A=) cA;
=0

Remark 2. For mg = 1, we have A; = 0, Agl) = 1, and the formula (2.83)
becomes identical to (2.62), i.e. w1 = w.

The proof of Theorem 6 is identical to that of Theorem 3, after replacing of
(2.63) by the formula
6Qmo (K)dE = (BH(LMAm, — AL SL)T0)dk, (2.84)
which is valid on Dy,,. This formula is itself a direct corollary of (2.80) and
(2.75).

As an example, we consider the case n = 2,my = 3. For n = 2, the equations
(2.41) define the KP hierarchy on the space of periodic functions u(x,y) of two
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variables. For A = L3, the condition (2.81) describes the stationary solutions of
the original KP equation, i.e. the space of functions described by the equation

3“‘?!1/ + (GUUI + uzzz)z =0. (285)

Theorem 6 asserts that, besides of the basic Hamiltonian structure, the restric-
tion of any flow of the KP-hierarchy to the space of functions u(z,y) subject
to (2.85) is Hamiltonian with respect to the structure given by (2.83).

In the one-dimensional case, the constraint (2.81) is equivalent to the re-
striction of the Lax hierarchy on the space of finite-gap solutions. This space is
described by the following commutativity condition for the ordinary differential
operators L and A of respective degrees n and myg

(L, Am,] = 0. (2.86)

This condition is equivalent to a system of ordinary differential equations for
the coefficients u;(z) of L. Theorem 6 asserts that the restriction of the Lax
hierarchy to the space of solutions to (2.86) is Hamiltonian with respect to the
symplectic form (2.83). In particular, the first flow (which is just a shift in
z) is Hamiltonian. For the KdV case the corresponding symplectic structure
coincides with the stationary Hamiltonian structure found in [5].

FEzample 8. We return to the case n = 3 of Example 2, and consider this time
operators A of order m = 2. Thus the operators L and A are given by L =
8% +ud, +v, A= 82+ 2u. The space D, is the space of two quasi-periodic
functions u(z,y) and v(z,y) satisfying the constraints

(u); = const, (v), = const, (u?), = const.
The operators L(!) and A() are given by
LW =382 +u, AW =29,

and the symplectic form w, of (2.83) becomes

w=2<%u5u/\/ 6uda:+26v/\/ 6vdz+26u/\5v—g(5u$/\6u>.
o T

0

H. Symplectic Structures under Ergodicity Assumptions

It may be worthwhile to point out that the existence of the higher Hamiltonian
structures obtained in the previous section requires less that the stationary
condition (2.81). The only item which was necessary to the argument was the
possibility of dropping the last term (which was a full derivative in ¢,,) in the
formula (2.80).

This suggests considering the space Dg9 of all operators L with smooth
periodic coefficients, for which the corresponding solution L(tm,), L(0) = L
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of the equation (2.41) for m = mg exists for all ¢,,, with uniformly bounded
coefficients. In this case we may introduce the quasi-momentum

T—o0

1 (T,
Uy (K) = Jim / o (K, )ty
0

Although in this definition, only the dependence on t,,, is eliminated through
averaging, the quasi-momentum 2, is actually also independent of all the
other times ¢;, in view of (2.77).

For L € D79 the formula

8Qumo (K)dE = (B5(LM Ay — AL L) W0)o dk, (2.87)

where (f(z,y,t))o stands for

T
(f(.’l,‘, yvt))O = ’Ill—l;réo % /O (f(x,y,t))dt,

holds. Here we make use of the fact that if L is variation of the initial Cauchy
data L(0) for (1.47) then the variation 6L(t,,,) is defined by the linearized

equation
OmoOL — 0y6Am, + (0L, Ay + [L, 0 Am, ]

With (2.87), it is now easy to establish the following theorem
Theorem 10. The formula
Wiy = Reseo (U5 (AL L — LW Am,) A 6%0)o dk, (2.88)

defines a closed two-form on subspaces of D59 subject to the constraints (2.82).
The restrictions of the equations (2.41) to this space are Hamiltonian with re-

spect to this form, with the Hamiltonians 2nQn, nym-

The space D579 appears to be a complicated space, and we do not have at
this moment an easier description for it. As noticed in [36], it contains (for an
arbitrary mg) all the finite-gap solutions. There exist a few other cases where we
can justify the ergodicity assumption. For example, for the KdV hierarchy, the
ergodicity assumption is fulfilled for smooth periodic functions with sufficiently
rapidly decreasing Fourier coeflicients. Indeed, if u(z) can be extended as an
analytic function in a complex neighborhood of real values for z and y,

lu(z)] < U, |Imz|<gq (2.89)

then u(z,t) is bounded by the same constant for all ¢ due to trace formulae.
Using the approximation theorem [37] for all periodic solutions to (2.5) (also
called the KP-2 equation, by contrast with the KP-1 equation given by (3.19)
below) by finite-gap solutions, we can prove the ergodicity assumption in the
case when the Fourier coefficients u;; of u satisfy the condition |u;;| < Ugli+lil.
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Important Remark. In order to clarify the meaning of the higher symplectic
forms and the higher Hamiltonians, it is instructive to explain its analogue
for the usual Lax equations. The Lax equations 0, L = [M,, L] obviously
imply that the eigenvalues of L are integrals of motion, and usually they serve
as Hamiltonians for the basic symplectic structure. The higher Hamiltonians
correspond to the eigenvalues of the operator M,,, instead of L. Of course, they
are time dependent, but after averaging with respect to one of the times, namely
tmo, they become nonlocal integrals of motion and can serve as Hamiltonians
for the corresponding symplectic structures.

I. The Matrix Case and the 2D Toda Lattice

Our formalism extends without difficulty to a variety of more general settings.
We shall discuss briefly the specific cases of matrix equations and of the Toda
lattice, which correspond respectively to the cases where L is matrix-valued,
and where the differential operator 8, is replaced by a difference operator.

Let L = Y ui(z,y)0: be then an operator with matrix coefficients u; =
(u?ﬁ ) which are smooth and periodic functions of £ and y, whose leading term
u%P = u%d,p is diagonal with distinct diagonal elements u& # uf for a # 3,
and which satisfies u%%; = 0. Then, arguing as in Section II.B, we can show
that there exists a unique matrix formal solution ¥y = (\Ilgﬁ (z,y; k)) of the
equation (0y — L)¥o = 0, which has the form

n—2

Yo(z,y; k) = (I + Zfs(z, y)k“s> exp (ka: +unk™y + Z Bi(y)ki) (2.90)
s=1 =0

(where I is the identity matrix, £, = (£2#) are matrix functions, and B;(y) =
(B (y)) = (B¥(y)dap) are diagonal matrices), and which has the Bloch prop-
erty
Uo(z + 1,y; k) = Yo(z, y; k)w: (), wi (k) = €.
The formal solution ¥q(z,y; k) has the Bloch property with respect to y as well,
Uo(z,y + L;k) = Yo(z,y; k)wa (k)

with the Bloch multiplier ws (k) of the form

[e5] n—2
wy (k) = (1 +y Jsk‘s) exp (unk" +y Biki> ,
s=1 i=0
where J; and B; are diagonal matrices.

As noted at the end of Section I1.B, the second Bloch multiplier defines the
quasi-energy E(k). This defines in turn the functionals €; just as in (2.28),
with the only difference the fact that they are now diagonal matrices. If we
introduce the diagonal matrix K by the equality

un K™ = E(k) = logwsa (k) = usk™ + Z: 8ik~i (2.91)

i=—n+2
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then we may define diagonal matrices H, = (HZd4g) by

o0
kI=K+Y HK™*. (2.92)

=1

The definition of the commuting flows in the matrix case is then just the same
as in the scalar case. The only difference is that the number of these flows is
now N times larger. The corresponding times are denoted by ¢ = ({4,m), and
the flows are given by

[ay - Laaa,m - La,m] =0 ) (293)

where L, ,, is the unique operator of the form

m—1
La,m = UaacTcn + Z Ui, (a,m) (t)a;a vlah = 5aﬁ5ﬁ7 ’

=1
which satisfies the condition
Lam%o(z,y; k) = ¥o(z,y; k) (va K™ + O(K ™). (2.94)

As before, the dual Bloch formal series ¥§(z,y; k) is defined as being of the
form (2.58), and satisfying the equation

Resoo Tr(¥gvd) ¥o)dk =0, m >0 (2.95)
for arbitrary matrices v. We have then

Theorem 11. The formula
w = Reseo Tr(TGOL A 5T)dE (2.96)

defines a closed non-degenerate two-form on the space of periodic operators L
subject to the constraints H? = constant, 8 =1,...,l,s=1,...,n~1. The
equations (2.93) are Hamiltonian with respect to this form, with Hamiltonians
2nHS  ,, defined by (2.92).

Example 4. Consider the case n = 1, where the operator L is of the form
L = Ab; + u(z,y), with A the N x N matrix A%P = a8, and u(z,y) is an
N x N matrix with zero diagonal entries u®* = 0. In this case the symplectic
form (2.96) becomes

SuP A §u®P.

Finally, as a basic example of a system corresponding to an auxiliary linear
equation where the differential operator 8, is replaced by a difference operator
acting on spaces of infinite sequences, we consider the 2D Toda lattice.
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The 2D Toda lattice is the system of equations for the unknown functions
n = Pn(ts,t-)
52
Ot . ot_
It is equivalent to the compatibility conditions for the following auxiliary linear
problem

(Pn — eWn—‘Pn—-l — ewn-H—qJn_

O4thn = Yny1 + Vntn, Un = 049n, O_tYn = Ca¥fn_1, Cp = ¥~ %1,

We consider solutions of this system which are periodic in the variables n
and y = (t4 +t_). The relevant linear operator is the difference operator

LY, = \I’n+1 + UnlI'n + Cn\]?n—l
with periodic coefficients v, (y) = vn+n(Y) = vn(y + 1) and cp(y) = cnen(y) =

¢n(y+1). Then, arguing as in Section I1.B we can show that there exist unique

formal solutions ¥ = ¥ (y; k) of the equation

(8, - L)TH =y,

which have the form

T (y; k) = k7 (Z fé*’(n,y)k—5> evtBW) gl =1 (2.97)
s=0

the Bloch property
+ + +
k) = 0 (P k), wi® (k) = k=N,
and which are normalized by the condition
v (0,k) = 1.

The coefficients gﬁ*) can be found recursively. The initial value §é+) =1 and
the condition that §§+) is periodic in n define the function B(y) in (2.97)

N
B(y)=N7! /Oy (Z Un) dy.
n=1

The only difference with the previous differential case is the definition of the
leading term {é_)(n, y). Let us introduce ¢, (y) = log 53—)(71, y). Then we have

en(y) = e (W) —en-1(y)

The periodicity condition for §§_) requires the equality

N-1
Z Oyon =0,
n=0
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which allows us to define ¢, uniquely through c,:
n—1 y N-1

o Zlogcn —/ (N_1 Z logcn)dy .
n=1 0 n=0

The formal solutions \Ilgft) (y, k) have the Bloch property with respect to y as
well,

TE) (y + L&) = U (y; k)wsE (k)

with the Bloch multipliers w{* (k) of the form

00
wg:l:)(k) — ktB (Z Jgi)k_s> )

s=0

As noted at the end of Section II.B, the second Bloch multiplier defines the
quasi-energy E(#) (k) and the functionals £§i> just as in (2.28). If we introduce
the variable

K =E® (k) =logwi® (k) =k + > eHg~
=0
then we may define the functionals H _o(,i) by
logk=logK + ) HFK™*. (2.98)

s=0

The definition of the commuting flows in the discrete case is then the same
as in the scalar case. The basic constraints that specify the space of periodic
functions v, and ¢, have the form

n N

Iy = Z logen(y) = const, I = ZUn(y) = const. (2.99)
n=1 n=1

The corresponding times are denoted by ¢t = (t4+ ;) and the flows are given by

Oy — L,0+,m — Li.m] =0, (2.100)

where Ly ., is the unique operator of the form

m

Li,m\I’n = Zut(iym)(n,t)lllnii, U (+,m) = 1, ui,(—,m)(n,t) = e¥n—Pn—i
=0

which satisfies the condition

Ly ¥&®) = 0&E (K™ 4+ O(K™1)).
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The dual formal series \IIZ’(:E) are defined as the formal series of the form

T (y, k) = k7 (Z 5;’<i>(n,y)k—5) e

s=0

which satisfy the equations
Resoo (xp:;<+>\1/£,j>) - \1:;’<—>\115;->) ‘—ikf =0, m€ Z,
for all integers m.

Theorem 12. The formula

w = Reseo (T HEL A §TH) — ¥ ()L A aqﬂ—))iikf = (6(2un — Bypn) A 60n)

(2.101)
defines a closed non-degenerate two-form on the space of periodic operators L
subject to the constraints (2.99). The equations (2.100) are Hamiltonian with
respect to this form, with Hamiltonians HE defined by (2.98).

Finally, we would like to conclude this section by calling the reader’s atten-
tion to [59][60], where symplectic structures are discussed from a group theoretic
viewpoint, and where applications of soliton theory to harmonic maps are given.

III. Geometric Theory of 2D Solitons

In Section I, we had developed a general Hamiltonian theory of 2D solitons.
The central notion was the symplectic form (1.1), which was defined on the
infinite-dimensional space L(b) of doubly periodic operators obeying suitable
constraints. Our main goal in this section is to present and extend the results of
[39]. In this work, as described in the Introduction, a natural symplectic form
wpnt was constructed on Jacobian fibrations over the leaves of moduli spaces
M, (n, m) of finite-gap solutions to soliton equations. Imbedded in the space of
doubly periodic functions, the form wy¢ was shown to coincide with w (this was
in fact our motivation for constructing a general Hamiltonian theory based on
w in this paper). Although the infinite-dimensional symplectic form w and its
variants in Section II can be expected to play an important role in an analytic
theory of solitons, it is the geometric and finite-dimensional form wp; which has
provided a unifying theme with topological and supersymmetric field theories.

In Section II, we have seen how a differential operator L determined a Bloch
function ¥y, which was a formal series in a spectral parameter k or K. The
key to the construction of finite-gap solutions of soliton equations is the reverse
process, namely the association of an operator L to a series of the form of
¥y. To allow for evolutions in an arbirary time t,,, it is convenient for us to
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incorporate a factor et=*" in ¥ for each t,,, and consider series o (t; k) of the

form - -
Uy (t; k) = (1 + ng(t)k‘3> exp (Z t,-ki) . (3.1)
s=1 i=1

As usual, all the times ¢; except for a finite number have been set to 0. Then
the operators L,, are uniquely defined by the requirement that

(Om = L) %o(t; k) = O(k_l) exp (i tikl)
i=1

(this is equivalent to the earlier requirement that (L,, — k™)¥g = O(k™1)Tq
in the case of £ (t) independent of ¢,,). In particular, we have the following
identity between formal power series

[On — L, Om — Lin]¥o = O(k™1) exp (i w‘) : (3.2)

This identity assumes its full value when the formal series ¥o(t; k) is a gen-
uine convergent function of k and has an analytic continuation as a meromor-
phic function with g poles on a Riemann surface of genus g. In this case, the
equation (3.2) with zero right hand side becomes exact. The null space of
[Bn — Ly, Om — L] is parametrized then by k and is infinite-dimensional. Since
[0n — Ln,0m — Ly,] is an ordinary differential operator, it must vanish. Thus
a convergent Ug(t; k) gives rise to a solution of the zero curvature equation
[On — Ly,0m — L] = 0. The algebraic-geometric theory of solitons provides
precisely the geometric data which leads to convergent Bloch functions. These
functions are now known as Baker-Akhiezer functions.

A. Geometric Data and Baker-Akhiezer Functions

In a Baker-Akhiezer function, the spectral parameter k is interpreted as the
inverse k = z7! of a local coordinate z on a Riemann surface. Thus let a
“geometric data” (I', P, z) consist of a Riemann surface I' of some fixed genus
g, a puncture P on I, and a local coordinate k! near P. Let v1,...,7, be g
points of I' in general position. Then for any ¢t = (¢;)$2,, only a finite number
of which are non-zero, there exists a unique function ¥(¢; z) satisfying

(i) ¥ is a meromorphic on I' \ P, with at most simple poles at vi,...,7g;

(ii) in a neighborhood of P, ¥ can be expressed as a convergent series in k of
the form appearing on the right hand side of (3.1).

The exponential factor in (3.1) describes the essential singularity of ¥(t; z) near
P. Alternatively, we can view it as a transition function (on the overlap between
I'\ P and a neighborhood of P) for a line bundle L(t) on I'. The Baker-Akhiezer
function ¥ is then a section of L(t), meromorphic on the whole of T'.
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The form of the essential singularity of ¥ implies that ¥ has as many zeroes
as it has poles (equivalently, the line bundle L(¢) has vanishing Chern class).
Indeed, d¥ /¥ = d(>°72, t;k~%) + regular, and thus has no residue at P. From
this, the uniqueness of the Baker-Akhiezer function follows, since the ratio
U /¥ of two Baker-Akhiezer functions would be a meromorphic function on the
whole of ', with at most g poles (corresponding to the zeroes of lil) By the
Riemann-Roch Theorem, it must be constant. Finally, the existence of ¥ can

be deduced most readily from an explicit formula. Let A;,... ,A4y B1,...,B,
be a canonical homology basis for '

AjﬁAk = B;N B =0, AjﬂBkzéjk, (3.3)
and let

(a) dwj, Tjx be respectively the dual basis of holomorphic abelian differentials
and the period matrix

f dwy = djk, f dwg = Tj ;
A; B

(b) 8(z|r) the Riemann 6-function;

(c) dQ? the Abelian differential of the second kind with unique pole of the
form

d00 = (14 O(k~"1))dk* (3.4)

normalized to have vanishing A-periods

}{ A0 =0, 1<I<g; (3.5)
Ar

(d) P, a fixed reference point, with which we can define the Abel map 4 :
z €' = A(z) € CY and Abelian integrals Q2 by
z z
A(2) = | dwy, 02z)= [ dn? (3.6)
Py Py
Here the Abel map as well as the Abelian integrals are path dependent,
and we need to keep track of the path, which is taken to be the same in
both cases.

() Z = K — Y9_, A(ys), where K is the vector of Riemann constants
(c.f. [48]).

Using the transformation laws for the #-function, it is then easily verified
that the following expression is well defined, and must coincide with ¥(t; 2)

CB(A(2) + 55 2 ti $5 A2 + Z|T)0(A(P) + Z) =
N Q(A(Z) + E)Q(A(P) -1-1_31_ Zfil t; fB dQ? + ZIT) eXp(; tzﬂi (Z)) .

2w

U(t; 2)
(3.7)
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In this formalism, the role of the quasi-momentum p is now assumed by
the Abelian integral ; with unique pole at P of the first order normalized to
have pure imaginary periods on I'. With the Baker-Akhiezer function assuming
now the former role of formal Bloch functions, we can construct a hierarchy of
operators Ly, as in (2.37). The requirement that (0, — L) ¥ (¢; 2) = O(2)¥(¢; 2)
determines recursively the coefficients of L, as differential polynomials in the
&. The crucial improvement over formal Bloch functions is that here, this
requirement actually implies that

(On — Ln)¥(t;2) =0 (3-8)

identically. In fact, (8, — Ln)¥(t; 2) satisfies all the conditions for a Baker-
Akhiezer function, except for the fact that the Taylor expansion of its coefficient
in front of the essential singularity exp(}_ s, t:k*) starts with k~*. If this func-
tion is not identically zero, it can be used to generate distinct Baker-Akhiezer
functions from any given one, contradicting the uniqueness of Baker-Akhiezer
functions. As noted earlier, (3.8) implies that [0, — Ln,Om — Ln]¥(t;2) = 0,
and hence that the zero curvature equation [0, — Ly, 0m — L] = 0 holds. In
summary, we have defined in this way a “geometric map’ G which sends the
geometric data (T, P, z;71, ... ,7,) to an infinite hierarchy of operators [33][34]

§: (L, Pzim,y .5 %g) = (Ln)ile (3.9)

The expression (3.7) for ¥(¢; z) leads immediately to explicit solutions for a
whole hierarchy of soliton equations. Let t1 =z, t2 =y, t3 =t, and n = 2. We
find then solutions u(z,y,t) of the KP equation (2.4) expressed as [34]

u(z,y,t) = 202 logh (z?{ dQ9 + y% dQo) +t7{ dQy + Z|T> + const. (3.10)
B B B

This formula is at the origin of a remarkable application of the theory of
non-linear integrable models, namely to a solution of the famous Riemann-
Schottky problem. According to the Torelli theorem, the period matrix defines
uniquely the algebraic curve. The Riemann-Schottky problem is to describe
the symmetric matrices with positive imaginary part which are period ma-
trices of algebraic curves. Novikov conjectured that the function u(z,y,t) =
2020g8(Uz + Vy + Wi|7) is a solution of the KP equation if and only if the
matrix 7 is the period matrix of an algebraic curve, and U,V, W are the B-
periods of the corresponding normalized meromorphic differentials with poles
only at a fixed point of the curve. This conjecture was proved in [55].

The dual Baker-Akhiezer function

For later use, we also recall here the main properties of the dual Baker-Akhiezer
function ¥*(¢;z) which coincides with the formal dual series defined in Sec-
tion I1.D. To define ¥ (¢; z), we note that, given g points 71, ... ,7, in general
position, the unique meromorphic differential dQ = d(z™! + Y} oo, a,2°) with
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double pole at P and zeroes at i, ... ,7,, must also have g other zeroes, by the
Riemann-Roch theorem. Let these additional zeroes be denoted by ;" ... ,'yj.
Then the dual Baker-Akhiezer function ¥*(%; z) is the unique function ¥ (¢; 2)
which is meromorphic everywhere except at P, has at most simple poles at
Y7,... 77 and admits the following expansion near P

Tt (t;2) = exp (— i tnz_"> (1 + iéj(t)zs>
n=1 s=1

To compare the dual Baker-Akhiezer function with the formal dual Bloch func-
tion ¥} of Section ILE, it suffices to observe that

Resp Ut (t;2) (0¥ (t;2))d2 = 0,

since the differential on the left hand side is meromorphic everywhere, and
holomorphic away from P. Together with the normalization ¥7(0;z) = 1, this
implies that ¥ indeed coincides with the formal dual function ¥g. An exact
formula for ¥*(¢; 2) can be obtained from (3.7) by changing signs for ¢ and by
replacing the vector Z by Z*. From the definition of the dual set of zeroes
fyf, . ,'y;f, this vector satisfies the equation Z + Z+ = 2P+ K, where K is the
canonical class. Recalling that the quasi-momentum p was defined to be p = 0,
we also obtain the following formula for the differential dQ? we introduced earlier

dp

dQl = T

(3.11)

The Multi-Puncture Case

The above formalism extends easily to the case of N punctures P, (with one
marked puncture P;). The Baker-Akhiezer function ¥ is required then to have
the essential singularity

U(t;2) = (i gm(t)k;5> exp (i tiak;;> : (3.12)
s=0 i=1

where k7! are local coordinates near each puncture P,, t;, are given “times”,
only a finite number of which are non-zero, and the coefficient &;; at P; is
normalized to be 1 for s = 0. We can introduce as before d2?, associated now
to each puncture P, and their Abelian integrals Q9,. Then the Baker-Akhiezer
function ¥(t; z) becomes

Wit ) = AR T 35 Yooy T4 tia fp 0% + ZINOAP) + 2)
T 0(AGR) + 2)(AP) + 5 SN T2 tia §,d00, + Z|7)

X exp( i i th?a(z)> . (3.13)

a=1 i=1
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For each pair (a,n) there is now a unique operator Lo, of the form (2.36) so
that (Oan — Lan)¥(t, z) = 0, with Oupn = 8/0tsn. The operators Ly, satisfy the
compatibility condition [8an — Lan,pm — Lgm] = 0.

Periodic Solutions

In general, the finite-gap solutions of soliton equations obtained by the above
construction are meromorphic, quasi-periodic functions in each of the variables
tai (a quasi-periodic function of one variable is the restriction to a line of a
periodic function of several variables). We would like to single out the geometric
data which leads to periodic solutions. For this we need the following slightly
different formula for the Baker-Akhiezer function.

Let dQ;, be the unique differential with pole of the form (3.4) near P,, but
normalized so that all its periods be purely imaginary, and define the function
®(C1, ..., C2q; 2) by the formula

B(Cie) = 0(A(2) + Crer + ChagTr + Z|T)0(A(PL) + 2Z) exp (2m' Xg:Ak(z)CHg)

0(A(2) + 2)0(A(P1) + Crex + CrtgTh + Z|T) Py
(3.14)

where e;, = (0,...,0,1,0,...,0) are the basis vectors in C9, and 7 are the
vectors with components 7;;. We observe that @ is periodic of period 1 in each
of the variables (i, ..., (2. Then the Baker-Akhiezer function can be expressed

as
U(t;z) =@ <Z tiaUm;z> exp (Z tian) , (3.15)
io e
where we have denoted by U, the real, 2g-vector of periods of dQ;,

& 1

ia

A, Uk = - L }f dQ,a.
By

T 2mi [y, 2mi

In particular, for geometric data {T", P,, 2o} satisfying the condition

57% S tialia € 7, (3.16)
(103

the Baker-Akhiezer function is a Bloch function with respect to the variable
t if we set tja = aiat, with Bloch multiplier w = exp(},, ¢iaQia(2)). The
coeflicients of the operators L, are then periodic functions of t. As an example,
we consider the one-puncture case. If we express the data under the form U} =
2rmy /1y, UF = 2nny /la, with my,ng € Z, then the corresponding solution of
the KP hierarchy is periodic in the variables ¢ = ¢;, y = t5, with periods /; and
l> respectively.
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Real and Smooth Solutions

There are two types of conditions which guarantee that the solutions obtained
by the above geometric construction are real and smooth for real values of ;.
We present them in the case of the KP hierarchy.

Assume that the geometric data defining the Baker-Akhiezer function is
real, in the sense that

(a) the algebraic curve I' admits an anti-holomorphic involution ¢ : I' = T
(b) the puncture P, is a fixed point of ;

(c) the local coordinate k! in a neighborhood of P; satisfies the condition

k(u(2)) = k(2);

(d) the divisor (v1,...,7y) is invariant under ¢, i.e., t(ys) = V,(s), Where o is
a permutation.

Then the Baker-Akhiezer function satisfies the reality condition
U(t;(z)) = (¢ 2). (3.17)

This is an immediate consequence of the uniqueness of the Baker-Akhiezer
function and the fact that both sides of the equation have the same analytic
properties. In particular, the coefficients of L,, and the corresponding solutions
of the KP hierarchy are real.

In order to have real and smooth solutions, it is necessary to restrict further
the geometric data. In general, the set of fixed points of any anti-holomorphic
involution on a smooth Riemann surface is a union of disjoint cycles. The
number of these cycles is less or equal to g + 1. The algebraic curves which
admit an anti-involution with exactly g+ 1 fixed cycles are called M-curves. We
claim that the coefficients of L,, are real and smooth functions of all variables
t; when T is an M-curve with fixed cycles Ag, A1,... , Ay, and P € Ag, v, € A,
s =1,...,g. To see this, we note that, from the explicit expression for the
Baker-Akhiezer function, the coefficients of L,, have poles at some value of ¢; if
and only if

6 <A(P1) + Z Uit; + Z) =0. (3.18)

The monodromy properties of the 8-function imply that the zeros of the function
0(A(z) + 3, Uiti + Z) are well-defined on I, even though the function itself is
multi-valued. The number of these zeroes is g. They coincide with the zeroes of
U(t, z). In view of (3.17), the Baker-Akhiezer function is real on the cycles A;.
On each of the cycles A;,..., Ay, there is one pole of ¥. There must then be
at least one zero on the same cycle. Hence all zeroes of §(A(z) + >, Uit; + Z)
are located on cycles A,. Since P, € Ag, the equation (3.18) cannot be fulfilled
for real values of ¢;.

We observe that the real and smooth solutions of the KP hierarchy corre-
sponding to M-curves with a fixed puncture, are parametrized by the points of
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a real g-dimensional torus which is the product of the g cycles A,. If we choose
these cycles (as our notation suggests) as half of a canonical basis of cycles,
then this torus is the real part of the Jacobian.

In the theory of real and smooth solutions the equation (2.4) is called the
KP-2 equation. The other, so-called, KP-1 equation is the other real form of
the same equation. It can be obtained from (2.4) by changing y to ¢y. Thus
the KP-1 equation is given explicitly by

3 ( 3 1 )
——Uyy = | U — ZUUL — —U . (3.19)
4 vy 5tz 4 zzT .

As complex equations (2.4) and (3.19) are equivalent. But the conditions which
single out real and smooth solutions are different. These conditions for the KP-1
equation may be found in [37]. Briefly they are :

Assume that the geometric data defining the Baker-Akhiezer function is
real, in the sense that

(a) the algebraic curve I' admits an anti-holomorphic involution ¢ : I' — T;
(b) the puncture P, is a fixed point of ¢;

(c) the local coordinate k™! in a neighborhood of Py satisfies the condition

k(u(2)) = —k(2);

(d) the divisor (v1,...,7,) under ¢ becomes the dual divisor AN ,'y;' ie.,
t(vs) = 7;'( 5)» Where ¢ is a permutation.

Then the Baker-Akhiezer function satisfies the reality condition
TH(t50(2)) = U(t'; 2), (3.20)

where the new variables ¢ = (t{,...) are equal to t5,,,; = tom+41, tam = itom.
As before, this is an immediate consequence of the uniqueness of the Baker-
Akhiezer function and the fact that both sides of the equation have the same
analytic properties. In particular, the coefficients of L, and the corresponding
solutions of the KP-1 hierarchy are real for real values of ¢'.

The further restriction of geometric data corresponding to real and smooth
solutions of the KP-1 hierarchy is as follows. The fixed cycles ai,... ,a; of ¢
should divide T into two disconnected domaines I'*. The complex domain I'*
defines the orientation on the cycles considered as its boundary. The differential
dQ) of (3.11) should be positive on as with respect to this orientation.

B. Moduli Spaces of Surfaces and Abelian Integrals

The space {I', P,z,7,... ,74} provides geometric data for solutions of a com-
plete hierarchy of soliton equations, and is infinite-dimensional. In the re-
maining part of this paper, we concentrate rather on a single equation of zero
curvature form [0y — L,0; — A] = 0. The geometric data associated with the



Symplectic Forms in the Theory of Solitons 277

pair (L, A) corresponds to the Jacobian bundle over a finite-dimensional moduli
space M, (n,m) of Riemann surfaces with a pair of Abelian integrals (E, Q) with
poles of order n and m respectively at the puncture P. The associated opera-
tors (L, A) are then operators of order n and m, and are obtained by the basic
construction (3.9), after imbedding M, (n,m) in the space (T, P, z) of geometric
data. Alternatively, we may choose to represent the equation [0, —L,0;—A] = 0
as a dynamical system on a space of operators L, with ¢ as time variable. In
this case, a finite-dimensional and geometric space of operators L is obtained by
the same construction as just outlined, starting instead from the Jacobian bun-
dle over the moduli space My(n) of Riemann surfaces I' with just one Abelian
integral with pole of order n at the puncture.

More precisely, given (I', ), a geometric data (T, P, z) is obtained by setting
the local coordinate z = K~ near the puncture P to be

E=2""+Rflogz, (3.21)

where n > 1 and RZ are respectively the order of the pole of E and its residue
at P. When n = 0, we set instead

E = RFlog 2. (3.22)
This gives immediately a map

(T,E) = (T, P, 2),

3.23
(T, E vy -oo0yg) = (T, Pozyma, .o yyg) = Ly ( )

where the operator L is characterized by the condition (8, — L)¥ = 0, with
U(z,y; k) the Baker-Akhiezer function having the essential singularity exp(kz +
k™y), k = z71. In presence of a second Abelian integral Q, we can select a
second time ¢, by writing the singular part @ (k) of @ as a polynomial in &
and setting

Q) =ark+ ... +ank™,

. (3.24)
t; =ait, 1 <i<m.

This means that we consider the Baker-Akhiezer function ¥(z,y, t; k) with the
essential singularity exp(kz + k"y+ @+ (k)t), and construct the operators L and
A by requiring that (8, — L)¥ = (8; — A)¥ = 0. The pair (L, A) provides then
a solution of the zero-curvature equation. By rescaling t, we can assume that
A is monic. Altogether, we have restricted the geometric map G of (3.9) to a
map on finite-dimensional spaces, which we still denote by G

§: (T, Eim,---79) = (T, P 2) = (L),

9 : (raEaQ;’Yl, . ’Yg) — (F,P’z’t) — (L,A) (325)

Here we have indicated explicitly the choice of time in the geometric data.
The proper interpretation of the full geometric data (T, E, Q;v1,...7,) is as a
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point in the bundle N§(n, m) over My(n,m), whose fiber is the g-th symmetric
power S9(I) of the curve. The g-th symmetric power can be identified with the
Jacobian of T' via the Abel map

9 Vi

SR A YT i dw;. (3.26)
i=1 1

More generally, we can construct the bundles N’g“ (n,m) and N¥(n) with fiber
Sk(T') over the bases M, (n, m) and M, (n) respectively

SHT) — N’;(n,m) SKI) — NE(n)
\) 1 (3.27)
My(n, m) Mg(n)

Thus the bundles N¥=!(n,m) = Ny(n,m), and N¥=!(n) = Ny(n) are the ana-
logues in the our context of the universal curve. Returning to soliton equations,
the geometric map G of (3.25) can now be succinctly described as a map from
the fibrations N9(n) and N§(n,m) into the spaces respectively of operators L
and pairs (L, A) of operators

- NI
§: N (n) = (1), (3.28)
§: Nj(n,m) — (L, A).

We emphasize that, although the operators in its image are not all periodic
operators, the ones arising later upon restriction of G to suitable subvarieties of

N¢(n,m) and Nj(n) with integral periods (c.f. Section III.C) will be.

We conclude this section by observing that, in the preceding construction,
L and A depend only the singular part of @, and hence are unaffected if d@
is shifted by a holomorphic differential. As we shall see below, the appropriate
normalization in soliton theory is the real normalization by which we require
that

Re f{ dQ = 0. (3.29)
C

In the study of N=2 supersymmetric gauge theories, holomorphicity is a prime
consideration, and we shall rather adopt in this context the complex normal-
1zation '

$ d0=015j<y (3.30)

A;j

We note that each normalization provides an imbedding of My (n) into My (n, 1),
by making the choice Q+(K) = K, with periods satisfying either (3.29) or
(3.30), so that the operator A is just A = 9§, in either case. The image of
M, (n) in My(n, 1) does depend on the normalization, however.
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C. Geometric Symplectic Structures

We begin by discussing the basic local geometry of the moduli spaces My(n)
and M, (n,m). They are complex manifolds with only orbifold singularities, of
dimensions

N
dimMy(n) =49 -3+ 2N + Y na,
a=1
= (3.31)
dimMgy(n,m) =59 — 3+ 3N + Z(na + My ).
a=1

Indeed, the number of degrees of freedom of an Abelian integral E with poles
of order n = (ny) is 1+ Zgzl(na +1)-14+49g=N+g+ Zgzl N, Where the
first 1 corresponds to the additive constant, and the remaining integer on the
left is the dimension of meromorphic differentials with poles of order < ny, + 1
at each P,. For g > 1, the dimension of the moduli space of Riemann surfaces
with NV punctures is 3¢ — 3+ N, which leads immediately to (3.31). For g < 1, it
is easily verified that the same formula (3.31) holds, although the counting has
to incorporate holomorphic vector fields and is slightly different in intermediate
stages.

We can introduce explicit local coordinates on M,(n,m). To obtain well-
defined branches of Abelian integrals, we cut apart the Riemann surface I' along
a canonical homology basis A;, B;, 4,7 = 1,...,g, and along cuts from P; to
P, for each 2 < a < N. Locally on M,(n,m), this construction can be carried
out continuously, with paths homotopic by deformations not crossing any of the
poles. Denote the resulting surface by I'cye. On oy, the Abelian integrals E
and @ become single-valued holomorphic functions, and we can introduce the
one-form d\ by

d\=QdE. (3.32)

We observe that d\ has a singularity of order ny +m, + 1 at each puncture F,.
Now the Abelian integral E defines a coordinate system z, near each P, by

E =z + RZlog za, (3.33)
when n, is strictly positive. When n, = 0, we write instead
E = Rllog z4. (3.34)

The coordinate z, can be used to fix the additive normalization of the Abelian
integral A, and to describe its Laurent expansion near each puncture. Thus we
fix the additive constant in A by demanding that its expansion in z; near P,
have no constant term. The parameters Ty, 1 <4 < ng +maq, Ré, 2<a<N,
can then be defined by

1 .
Ta,i =—'TReSP,,(Z;d)\), 1<a<N,1<i<ng+mq
)

R) = Resp, (d)).

(3.35)
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The parameters T, ; (1 < a < N) and R} (2 < a < N) account for Zf,v=1 (na+
mg) + N — 1 parameters. The remaining parameters needed to parametrize
M,y (n, m) consist of the 2V — 2 residues of dE and d@Q

RE = Resp, dE, RS = Resp, dQ, a=2,...,N, (3.36)

and the following 5¢ parameters which account for the presence of non-trivial
topology

TA:E =j$ dE, 7B,.E =}{ dE, (3.37)
A )

TA:,Q =?§ dQ, 7B;,Q =7{ dq, (3.38)
Ai B;

ai=-74 QdE, i=1,....g. (3.39)

i

Theorem 13. Let D be the open set in My(m,n) where the zero divisors of dE
and dQ, namely the sets {z;dE(z) = 0} and {z;dQ(z) = 0}, do not intersect.
Then

(a) Near each point in D, the 59 — 3+ 3N + Zle(na +mgy) parameters RE,
RS, R}, Tak, TALE, TBi.E, TAiQ, TB:,Q, G; have linearly independent
differentials, and thus define a local holomorphic coordinate system for
My (n,m);

(b) The joint level sets of the set of all parameters except a; deﬁné a smooth
g-dimensional foliation of D, independent of the choices we made to define
the coordinates themselves.

Theorem 10 is proved in [39]. Since My(n) can be imbedded in Mgy(n,m)
by choosing @ to have Laurent expansion @+(K) = K and fixing its Ay pe-
riods, Theorem 1 also provides local coordinates for M,(n). Specifically, the
coordinates of My (n) which arise this way are

o Ty withl < i <ng fora>2 Ty, withl <i < ny —1 (since the
normalization @ = K~! + O(K) fixes the coefficients of the two leading
terms 11,41 and T3 ,, in the singularity expansion of A near P; to be
T4 = 75347, Tiny = 0);

e the 2N — 2 residues of dE and dX at P, for a > 2;

e the By periods of d@Q, the Ay and By periods of dE, and the A; periods
of d,

for a total of 49 — 3+ 2N + YN n,.

The intrinsic foliation obtained in Theorem 10 is central to our considera-
tions, and we shall refer to it as the canonical foliation. Our goal is to con-
struct now a symplectic form w on the complex 2g-dimensional space obtained
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by restricting the fibration N§(n, m) to a g-dimensional leaf M of the canonical
foliation of Mg (n,m). For this, we need to extend the differentials dE and dQ
to one-forms on the whole fibration, and distinguish between the two ways this
can be done.

One way is to consider the Abelian integrals £ and @ as multi-valued func-
tions on the fibration. Despite their multivaluedness, their differentials along
any leaf of the canonical fibration are well-defined. In fact, E and Q are well-
defined in a small neighborhood of the puncture P;. The ambiguities in their
values anywhere on each Riemann surface consist only of integer combinations
of their residues or periods along closed cycles. Thus they are constant along
any leaf of the canonical foliation, and disappear upon differentiation. The
differentials along the fibrations obtained this way will be denoted by dE and
Q. Restricted to vectors tangent to the fiber, they reduce of course to the
differentials dE and dQ.

The other way is to trivialize the fibration by using an Abelian integral, say
E, as local coordinate in I’ (c.f. (3.21) and (3.22)). Equivalently, we note that
at any point of N, the varieties E = constant are intrinsic and transversal to
the fiber. Thus any one-form d@ on the fiber can be extended to a one-form
on the total space of the fibration, by making it zero on vectors tangent to
these varieties. We still denote this one-form by d@. In the case of the Abelian
integral E, we have d E = dE, but this is not true in general. To compare d@Q
with 6Q, let ay,... ,a, be local coordinates for the leaf. Then ai,...,a4, E
are local coordinates for the whole fibration, da;, ... ,day, dE are a basis of
one-forms, and dQ) = ‘—;%dE. On the other hand,

9
Q=dQ+ ggdai =dQ + 6%Q. (3.40)
i=1 "

Similarly, the full differential §(@ dE) on the total space of the fibration is well-
defined, despite the multivaluedness of Q. The partial derivatives 9,,(Q dE)
along the base are all holomorphic, since both the singularities and the am-
biguities in the differential are constant, and disappear upon differentiation.
Recalling that dw; denotes the basis of holomorphic differentials dual to the
homology basis A, By, we can then write

g
8ai

(QdE) = duw;. (3.41)

By extending this construction to the fibration of Jacobians over a leaf M of the
canonical foliation, we obtain the desired geometric symplectic form. Further-
more, this symplectic form coincides with the symplectic form constructed in
Section II.E, upon imbedding the fibration of Jacobians in the space of soliton
solutions of the equation [0y — L, 8; — A] = 0 by the geometric map § of (3.28)
[39]:

Theorem 14. (a) The following two-form on the fibration N9(n,m) restricted
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to a leaf M of the canonical foliation of Mgy(n,m)

9 g g
wy =0 (Z Q(%’)dE(%')> => 0Q(w) NdE(y) =) dai Adw;  (342)
=1

=1 i=1

defines a symplectic form; (b) Under the geometric correspondence G, we have
wi = G (wm) (3.43)
where w,, is the symplectic form constructed in Theorem 7.

It is instructive enough to present a proof of Theorem 11 for the basic
symplectic structure defined by (2.62) on a space of linear operators L with
scalar coefficients. In this case Q = p.

Let ¥, ¥+ be the Baker-Akhiezer and the dual Baker-Akhiezer functions cor-
responding to the algebraic-geometric data (3.25) (c.f. Sections III.A and ITI.B).
Then

G*(w) = Resp(¥*SL A 6T)dp, U* = ¥H((TH¥))~L.

The differential
dQ* = (P*6L A ST)dp

is meromorphic. Thus its residue at P is the opposite of the sum of its other
residues. The residues of dQ2* at the poles v, of ¥ are given by

Res,, dQ™ = (¥*6LY) A bp(7s) = 0E(vs) A 6p(7s)-

In general, poles of d* may also arise from the zeroes ¢; of dp, dp(g;) = 0,
which are singular points of the connection on N defined by dp. However,

Resg, dQ* = Res,, (¥*0L d¥) A dp(g;) =0,

in view of the relations ¥*§L = §¥*(0y — L) and (0y — L)d¥ = 0. Theorem 11
is proved.

Remark. In general, when the Lax operator L explicitly depends on a spectral
parameter (as in the example of the Calogero-Moser system below), a special
gauge should be chosen in order for d2* to be regular at the branching points
of the connection.

D. Generalizations and Extensions

The above set-up can be easily adapted to a variety of important equations.
For the 2D Toda lattice, the differential operator d, is replaced by a dif-
ference operator. Thus for the geometric data, we consider the moduli space
of Riemann surfaces I' with two punctures P., and Abelian differentials E, Q
which are real-normalized, with F having a pole of order 1 at P, while d@ has
simple poles at Py. This is a leaf in the foliation of M,4(1,0;0,0). The discrete
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analogue of the Baker-Akhiezer function ¥(z;t) is now given by a sequence
U, (ts+,t_; z) of Baker-Akhiezer functions characterized by

U, (ty,t_;2) = 25" (Z@(n,t)zi) exp(tyzyt +t_271) (3.44)

s=0

As in Section II.I, we define the operators L and A as difference operators acting
on sequences ¥, which satisfy (0;, — L)¥ = (9;_ — A)¥ = 0. Their coefficients
Cn, Un, ¢n are now functions of the geometric data. In analogy with (3.43), we
have then

wp =G (wn) == Y Resp, (UH0L AU )dp =D (6¢n A bun),
o=k n (3.45)
dz
dp =F —z-, z— Py

Note that the difference between this formula and the one in Section II.J is due
to the choice ¢4 instead of ¢4 + t_ as the second variable.

In the case of N x N matrix equations [0, — L,8; — A] = 0, we take the
geometric data to consist of surfaces I' with N punctures P,, and E, @ to
be real-normalized Abelian integrals with poles of order n and m at P,. Let
aq be given coefficients, with a; = 1. The leaf M corresponding to the above
specifications for F, (), combines with the space of parameters a, to a product
space M x CV~1 of dimension g + N — 1. On the fibration N9+~=1 above the
product M x CN¥~1  we can construct the symplectic form

g+N~-1

wim = Z Q(’Ys)dE(’Ys)- (346)

Now corresponding to the preceding geometric data are local coordinates z4
near each puncture P, given in analogy with (3.21) and (3.22) by E = a,2;",
polynomials Qa4 +(25!) which are the singular parts of Q near Py, and thus
a vector Baker-Akhiezer function ¥(z;z,y,t) = (¥a(2;x,y,t)) Y-, with the

following essential singularity near Py

o0
olz;2,y,t) = Bag + Y €2P(z,y,t)25)exp(z5 'z + agzz ™y + Qp 4 (25 1)1).
) s )

s=1

(3.47)
As in Section ILI, there exist then unique matrix operators L, A so that (9, —
L)¥ = (8, — A)¥ = 0. They have expressions of the form in (2.93) and sub-
sequent equations. We observe that the case where ) has only simple poles
(mi=1,0Qp+ =25 1) is the matrix generalization of the scalar case considered

earlier, where @ still has the interpretation of a quasi-momentum.
On the space of such operators, we had defined in Theorem 8 a symplectic
form w. Here again, the geometric and the formal symplectic forms (3.46) and
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(2.96) correspond to one another under the basic geometric correspondence G.
More precisely,

N
wv = Y Resp, (T (AWSL — LWsAL) A ¥)dp = § (wm), (3.48)
a=1
where
Wm = Reseo Tr(TG(ANSL — LVSA,,) A 6T4)dk. (3.49)

In the case m; = 1, we have A = J;, and this relation reduces to

N
Wit = — Z Resp, (U*0L A 8T)dp = §*(w).

a=1

with w given by (2.96).

Similarly, our formalism can easily identify the action coordinates for the
elliptic Calogero-Moser system, an issue which had been resolved only relatively
recently [29]. We recall that the elliptic Calogero-Moser system is a system of
N identical particles on a line, interacting with each other via the potential

V(z) = p(z) )

5= 1Y 0 -2y), (@)= D, (3.50)
J#i

Here p(z) = p(z|w,w') is the Weierstrass elliptic function with periods 2w, 2w/,
and w,w’ are fixed parameters. The complete solution of the elliptic Calogero-
Moser system was constructed by geometric methods in [35]. There an explicit
Lax pair (L, M) was found, depending on a spectral parameter z varying on
the torus C/(2wZ + 2w'Z). Thus the dynamical system (3.50) is equivalent to
the Lax equation L = [M, L], with L and M N x N matrices given by

L,'j(z) = pi(S,-j + 2(1 —_ 5,-j)‘1’(aci — Ty, Z), pi =Ty
Mij(2) = 265 plzi — 2;) + 2(1 - 6;)@' (2; — z5) (3.51)
k#i

and ®(z, z) is the function

z.2) = O'(Z—.'E) ¢(2)z
®(z, 2) ()o@ (3.52)

with o(z), {(z) the usual Weierstrass elliptic functions. In view of the Lax equa-
tion, the characteristic polynomial R(k, z) = det(2k+L(z)) is time-independent,
and defines a time-independent spectral curve I’

N
R(k,z) =Y ri(2)k' =0, (3.53)

i=0
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where the r;(z) are elliptic functions of z. The Jacobians of the spectral curves
I are levels of the involutive integrals of the system. In particular, we obtain
angle variables p; by choosing 27-periodic coordinates on them. However, as
noted earlier, the identification of the canonically conjugate action variables is
more difficult and has been carried out only recently [29]. In this work, it was
shown that the Calogero-Moser sytem can be obtained through a Hamiltonian
reduction of a Hitchin system, and as a result, the action-variables a; are the
periods of the differential k dz along the A-cycles of the spectral curve I

We can derive this result directly from our approach. From our viewpoint,
the leaf M corresponding to the elliptic Calogero-Moser system is given by
(T, k,z), where T' is a Riemann surface of genus ¢ = N, k is a function with
simple poles at g points Pi,...,P,, dz is a holomorphic Abelian differential

whose periods as well as integrals [ Ii" dz, 2 < a < g, are all on the lattice
spanned by 2w and 2w’, and the residues of kdz at P,, 2 < a < N are given by

Resp, (kdz) =1, 2<a < N. (3.54)
The analogues of the Baker-Akhiezer function and its dual are respectively the
column vector C(P) = (ci,... ,cn) and the row vector CT(P) = (cf,... ,c}),
satisfying

(2k+ L(2))C =0, C*(2k+ L(2)) =0,
Scd(-zi,2) =1, Y cte(zi,z) = 1. (3.55)
i =1
Here P = (k, z) is a point of the spectral curve I'. The vectors C(P) and C*(P)

are meromorphic functions on I" outside the points P, on I' corresponding to
z = 0, and have each N poles. We denote these poles by ~1,...,y~v and

Y, -.. .74, respectively. Near the points P,, these vectors have the form

ci(z) = 2(NL+0(2)e* ", ¢t (z) = 2(N" 4+ 0(2))e ™", fora=1,

ci(z) = (¢ + O(z))ez‘z_l, cf(2) = (¢t + O(z))e_l"z_l, for a > 1,
(3.56)

where the coefficients ¢ for o > 1 satisfy
Zcf‘ = ZC?’_F = 0. (357)
i i

Let us make the gauge transformation
L=ygLg™, C=g4C, C* =CTg7", gij = 4y

The geometric symplectic form wy; constructed in Theorem 11 becomes in this
1
case

i (6C+ ASLC)
wy =0 (; k('ys)dz) Z Resp, G e, (3.57)

1n [39] the operators L and C in equation (70) should be replaced by their gauge equivalent
counterparts L and C.
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where (f*g) denotes the usual pairing between column vectors and row vectors.
Substituting in the expansion (3.56), we obtain

N 1 N
) (Z k('ys)dz) =3 > bpi A bas. (3.59)

This identifies our geometric symplectic form with the canonical symplectic
form for the Calogero-Moser dynamical system. Since by construction (c.f.(3.42)),
the geometric symplectic form admits the periods a; of kdz around A; cycles
as action variables dual to the angle variables on the Jacobian, our argument
is complete.

IV. Whitham Equations
A. Non-linear WKB Methods in Soliton Theory

We have seen that soliton equations exhibit a unique wealth of exact solutions.
Nevertheless, it is desirable to enlarge the class of solutions further, to en-
compass broader data than just rapidly decreasing or quasi-periodic functions.
Typical situations arising in practice can involve Heaviside-like boundary con-
ditions in the space variable z, or slowly modulated waves which are not exact
solutions, but can appear as such over a small scale in both space and time.

The non-linear WKB method (or, as it is now also called, the Whitham
method of averaging) is a generalization to the case of partial differential equa-
tions of the classical Bogolyubov-Krylov method of averaging. This method is
applicable to nonlinear equations which have a moduli space of exact solutions
of the form uo(Uz + Wt + Z|I). Here uo(21,. .., 24|I) is a periodic function of
the variables z;; U = (Un,...,Uy), W = (Wh,...,W,) are vectors which like
u itself, depend on the parameters I = (I1,...,Iy), ie. U=U(), V=V ().
(A helpful example is provided by the solutions (3.10) of the KP equation,
where I is the moduli of a Riemann surface, and U, V, W are the By-periods of
its normalized differentials d);, df3, and d23.) These exact solutions can be
used as a leading term for the construction of asymptotic solutions

u(z,t) = up(e 1S(X,T)+ Z(X, T)|I(X,T)) +eur(z, t) + € ua(z,t) +... , (4.1)

where I depend on the slow variables X = ex,T = et and and € is a small
parameter. If the vector-valued function S(X,T) is defined by the equations

8xS = UI(X,T)) = U(X,T), 8rS=W(I(X,T))=W(X,T), (42)

then the leading term of (4.1) satisfies the original equation up to first order
one in e. All the other terms of the asymptotic series (4.1) are obtained from
the non-homogeneous linear equations with a homogeneous part which is just
the linearization of the original non-linear equation on the background of the
exact solution ug. In general, the asymptotic series becomes unreliable on
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scales of the original variables z and ¢ of order e~!. In order to have a reliable
approximation, one needs to require a special dependence of the parameters
I(X,T). Geometrically, we note that ¢ 1S(X,T) agrees to first order with Uz +
Vy+Wt, and z,y, t are the fast variables. Thus u(z,t) describes a motion which
is to first order the original fast periodic motion on the Jacobian, combined
with a slow drift on the moduli space of exact solutions. The equations which
describe this drift are in general called Whitham equations, although there is
no systematic scheme to obtain them.

One approach for obtaining these equations in the case when the original
equation is Hamiltonian is to consider the Whitham equations as also Hamilto-
nian, with the Hamiltonian function being defined by the average of the original
one. In the case when the phase dimension g is bigger than one, this approach
does not provide a complete set of equations. If the original equation has a
number of integrals one may try to get the complete set of equations by aver-
aging all of them. This approach was used in [62] where Whitham equations
were postulated for the finite-gap solutions of the KdV equation. The geometric
meaning of these equations was clarified in [26]. The Hamiltonian approach
for the Whitham equations of (1+1)-dimensional systems was developed in [23]
where the corresponding bibliography can also be found.

In [36] a general approach for the construction of Whitham equations for
finite-gap solutions of soliton equations was proposed. It is instructive enough
to present it in case of the zero curvature equation (2.1) with scalar operators.

Recall from Sections III.A and IIL.B that the coeflicients u;(z, y,t), vj(z,y,t)
of the finite-gap operators Lo and Ay satisfying (2.1) are of the form (c.f. (3.10))

ui = uio(Uz+Vt+Wt+ Z|I), vj =v;oUz+Vt+Wt+ Z|I), (4.3)

where u; o and vjo are differential polynomials in #-functions and I is any
coordinate system on the moduli space My(n, m).
We would like to construct operator solutions of (2.1) of the form

L=Lo+elLi+..., A=Ag+eA +..., (44)
where the coefficients of the leading terms have the form

u; = uio(e ' S(X, Y, T) + Z(X,Y,DI(X,Y,T)),

v; = v0(e1S(X,Y,T) + Z(X,Y, D|I(X,Y,T)) (4.5)
From Section II1.B, we also recall that N; (n,m) is the bundle over My (n,m)
with the corresponding curve I' as fiber. If I is a system of coordinates on
Mg (n,m), then we may introduce a system of coordinates (z, I) on TN; (n,m)
by choosing a coordinate along the fiber I'. The Abelian integrals p, E,Q are
multi-valued functions of (A, I), i.e. p=p\I), E=E\I), Q=Q\I). If
we describe a drift on the moduli space of exact solutions by a map (X,Y,7T) —
I =1(X,Y,T), then the Abelian integrals p, F, Q become functions of z, X, Y, T,
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p(z, XY, T) = p(z,I(X,Y,T)),
E(z, X,Y,T) = E(z,1(X,Y,T)),
Q(z, X,Y,T) = Q(z,I(X,Y,T)).

The following was established in [36]:

Theorem 15. A necessary condition for the existence of the asymptotic solu-
tion (4.4) with leading term (4.3) and bounded terms L; and A, is that the
equation

o (9F_0Q\_OE (op 09\ 09 (3 OB\ _; o
0z \0T 08Y 0z \oT 086X 8z \8Y 06X ) '

be satisfied.

The equation (4.6) is called the Whitham equation for (2.1). It can be
viewed as a generalized dynamical system on My (n,m), i.e., amap (X,Y,T) —
M4 (n,m). Some of its important features are:

e Even though the original two-dimensional system may depend on y, Whitham
solutions which are Y-independent are still useful. As we shall see later, this
particular case has deep connections with topological field theories. If we choose
the local coordinate z along the fiber as z = E, then the equation simplifies in
this case to

We note that it followed immediately from the consistency of (4.2) that we must

have
By ):

Thus (4.7) is a strengthening of this requirement which encodes also the solv-
ability term by term of the linearized equations for all the successive terms of
the asymptotic series (4.3).

¢ Naively, the Whitham equation seems to impose an infinite set of conditions,
since it is required to hold at every point of the fiber I'. However, the functions
involved are all Abelian integrals, and their equality over the whole of T can
actually be reduced to a finite set of conditions. To illustrate this point, we
consider the Y-independent Whitham equation on the moduli space of curves
of the form

3
y? = I[(E - E;) = R(E).
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Then the differentials dp and d@ are given by

FE

dE B
dp = E - E )

R(E) s 4B

2 VR

dE 1 3 (E-15? | E.)EdE
dQ = —p—s | B> = S(By + Bz + E5)E — E. v g

R(E) 5, VB

We view p and @ as functions of (E; E;), with E the coordinate in the fiber T,
and E; the coordinates on the moduli space of curves. Near each branch point
E;, vVE — E; is a local coordinate and we may expand

p=p(E;) +aVE - E; + O(E - Ey),
Q=Q(E)+pBVE—-E; +O(E - Ej).

Differentiating with respect to X and T, keeping F fixed, we find that the lead-
ing singularities of BTp and OxQ are respectively — -3 \/—8TE and

(4.8)

—=—0\F;. Slnce ‘fi?, we see that the equation (4.7) implies

_ (49
Orki = <d—p>

Conversely, if the equation (4.9) is satisfied, then drp — 0x @ is regular and nor-
malized, and hence must vanish. Thus the equation (4.7) is actually equivalent
to the set of differential equations (4.9).

2\/—

OxE;. (4.9)

E;

e The equation (4.7) can be represented in a manifestly invariant form,
without explicit reference to any local coordinate system 2. Given a map
(X,Y,T) = My(n,m), the pull back of the bundle N}(n,m) defines a bun-
dle over a space w1th coordinates X,Y,T. The total space N* of the last bundle
is 4-dimensional. Let us introduce on it the one-form

o =pdX + EdY + QdT, (4.10)

Then (4.7) is equivalent to the condition that the wedge product of do with
itself be zero (as a 4-form on M*)

daANda=0. (4.11)

e It is instructive to present the Whitham equation (4.7) in yet another form.
Because (4.7) is invariant with respect to a change of local coordinate we may
use p = p(z, I) by itself as a local coordinate. With this choice we may view F
and @ as functions of p, X,Y and T, i.e. E = E(p, X,Y,T),Q = Q{(p, X,Y,T).
With this choice of local coordinate (4.7) takes the form

OrE - 9y Q + {E,Q} =0, (4.12)
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where {-, -} stands for the usual Poisson bracket of two functions of the variables
pand X, i.e.

{f,g} = fpgx _gpfx-

e In Theorem 12 we had focused on constructing an asymptotic solution for
a single equation. This corresponds to a choice of A, and thus of an Abelian
differential @}, and the Whitham equation is an equation for maps from (X,Y,T)
to My(n,m). As in the case of the KP and other hierarchies, we can also
consider a whole hierarchy of Whitham equations. This means that the Abelian
integral @ is replaced by the really normalized Abelian integral Q; which has
the following form
QG =K'+0(K™), K"=E, (4.13)

in a neighborhood of the puncture P (compare with (2.48)). The result is a
hierarchy of equations on maps of the form

(X=T1,Y=T2,T:T3,T4,...)—)Mg(n). (413)
The whole hierarchy may be written in the form (4.11) where we set now

a=>) QdT; (4.14)

B. Exact Solutions of Whitham Equations

In [38] a construction of exact solutions to the Whitham equations (4.7) was
proposed. In the following section, we shall present the most important spe-
cial case of this construction, which is also of interest to topological field the-
ories and supersymmetric gauge theories. It should be emphasized that for
these applications, the definition of the hierarchy should be slightly changed.
Namely, the Whitham equations describing modulated waves in soliton theory
are equations for Abelian differentials with a real normalization (3.29). In what
follows we shall consider the same equations, but where the real-normalized dif-
ferentials are replaced by differentials with the complex normalization (3.30).
As discussed in Section III.A, the two types of normalization coincide on the
subspace corresponding to M-curves, which is essentially the space where all
solutions are regular and where the averaging procedure is easily implemented.
Thus the two forms of the Whitham hierarchy can be considered as different
extensions of the same hierarchy. The second one is an analytic theory, and we
shall henceforth concentrate on it.

In this subsection and in the rest of the paper, we shall restrict ourselves to
the hierarchy of “algebraic geometric solutions” of Whitham equations, that is,
solutions of the following stronger version of the equations (4.11)

0



Symplectic Forms in the Theory of Solitons 291

We note that the original Whitham equations can actually be interpreted as
consistency conditions for the existence of an F satisfying (4.15). Furthermore,
the solutions of (4.15) can be viewed in a sense as “Y -independent” solutions of
Whitham equations, since the equation (4.12) reduces to 0rE + {E,Q} = 0 for
Y-independent solutions. They play the same role as Lax equations in the the-
ory of (2+1)-dimensional soliton equations. As stressed earlier, Y-independent
solutions of the Whitham hierarchy can be considered even for two-dimensional
systems where the y-dependence is non-trivial in general.

Our first step is to show that (4.15) defines a system of commuting flows on
My(n). For the sake of simplicity, we assume that there is only one puncture.
Let us start with a more detailed description of this space which is a complex
manifold with only orbifold singularities. Its complex dimension is equal to
(cf. (3.31)) dimMy(n) = 49+ n — 1, and we had constructed a set of local
coordinates for it in Theorem 10 and subsequent discussion. Here we require
the following slightly different set of coordinates (details can be found in [38]).
The first 2g coordinates are still the periods of dE,

TALE =?{ dE, 78,5 =% dE. (4.16)
Ai B,‘

The differential dE has 2g + n — 1 zeros (counting multiplicities). When all
zeroes are simple, we can supplement (4.16) by the 2g + n — 1 critical values E,
of the Abelian differential E, i.e.

Es; = E(gs), dE(gs) =0, s=1,...,2g+n—1, (4.17)

In general, dE may have multiple zeroes, and we let D = 3 p,q, be the zero
divisor of dE. The degree of this divisor is equal to ), us = 29—1+4n. Consider
a small neighborhood of gs, viewed as a point of the fibration N; (n), above the
original data point mg in the moduli space My(n). Viewed as a function on
the fibration, E is a deformation of its value E(z,mg) above the original data
point, with multiple critical points g;. Therefore, on each of the corresponding
curve, there exists a local coordinate w, such that

pa—1
E =w**(z,m) + Z E, i (m)wi(z,m). (4.18)
i=0

The coefficients E; ;(m) of the polynomial (4.18) are well-defined functions on
My(n). Together with 74, g, 7B, E, they define a system of local coordinates
on M,y (n).If ps = 1, then E o clearly coincides with the critical value E(qgs)
from (4.17).

Let D' be the open set in My(n) where the zero divisors of dE and dp,
namely the sets {z;dE(z) = 0} and {z;dp(z) = 0}, do not intersect and let D°
be the open set in My (n) where all zeros of dF are simple.

Theorem 16. The Whitham equations (4.15) define a system of commuting
meromorphic vector fields (flows) on Mgy(n) which are holomorphic on
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D' C My(n). On the open set D' N DO, the equations (4.15) have the form

=0, 2 rp = 4.
aT, A 0, aT, B 0, (4.18)
dQd;
or,Es = d—pJ(qs)axEs. (4.19)

Indeed, the equations (4.15) are fulfilled at each point of I', and thus

a%ﬁdE - dtz" (2)0x (fc dE) - %(z)ax (?{c dﬂi) (4.20)

The functions dE/dp and dQ};/dp are linearly independent. It follows that the
periods of dE are constants. The equations (4.19) coincide with (4.15) at the
point g; (where dE equals zero).

In order to complete the proof of Theorem 13, it suffices to show that (4.18-
4.19) imply (4.15). The equation (4.19) implies that the difference between
the left and right hand sides of (4.15) is a meromorphic function f(z) on T
This function is holomorphic outside the puncture P and the zeros of dp. At
the puncture P, the function f(z) has a pole of order less or equal to (n — 2).
However, f(z) equals zero at zeros of dE. Hence, the function g(z) = f (z)gf%
is holomorphic on I' and equals zero at P. Therefore, f(z) = 0 identically.
Theorem 13 is proved.

An important consequence of Theorem 13 is that the space My(n) admits
a natural foliation, namely by the joint level sets of the functions 74, g, 75, E,
which are smooth (2g+n—1)-dimensional submanifolds, and which are invariant
under the flows of the Whitham hierarchy (4.15). We shall sometimes refer to
the leaves M of this foliation as large leaves, to stress their distinction from the
g-dimensional leaves M of the canonical foliation of My(n,m).

The special case of the construction of exact solutions to (4.15) in [38] may
now be described as follows: the moduli space M,y(n, m) provides the solutions
of the first n + m-flows of (4.15) parametrized by 3g constants, which are the
set of the last three coordinates (3.38-3.39) on M, (n,m).

Theorem 17. LetT;, i =1,... ,n+m, Ta, E, TB;,E,TA;,Q, TA:;,Q, Q; be the
coordinates on Mgy(n,m) defined in Theorem 10. Then the projection

Mg (n,m) = My(n)
(T, E,Q) - (T, E) 2D

defines (I', E) as a function of the coordinates on My(n,m). For each fized
set of parameters Ta, g, TB; E,TA:.Q» TA:;,Q> @i, the map (T;)=pt™ — My(n)

satisfies the Whitham equations (4.15).

Proof. Let us use E(2) as a local coordinate on I'. Then as we saw earlier,
the equations (4.15) are equivalent to the equations d7,p(E,T) = 0x%(E,T).
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These are the compatibility conditions for the existence of a generating function
for all the Abelian differentials d©?;. In fact, if we set

d\ = QdE, (4.22)
then it follows from the definition of the coordinates that
Or.d\ = dQ;, Oxd\ = dp, (4.23)

(For the proof of (4.23), it is enough to check that the right and the left hand
sides of it have the same analytical properties.) a

Theorem 18. We consider the same parametrization of My(n,m) as in The-
orem 14. Then as a function of the parameters T;, 1 < i < n + m, the second
Abelian integral Q(p,T) satisfies the same equations as E, i.e.

or.Q = {4, Q}. (4.24)
Furthermore
{E,Q}=1. (4.25)

We note that (4.25) can be viewed as a Whitham version of the so-called string
equation (or Virasoro constraints) in a non-perturbative theory of 2-d gravity

[19][66].

C. The 7-Function of the Whitham Hierarchy

The solution of the Whitham hierarchy can be succinctly summarized in a
single 7-function defined as follows. The key underlying idea is that suitable
submanifolds of M, (n,m) can be parametrized by 2g+ N —1+ Ele(na +mg)
Whitham times T4, to each of which is associated a “dual” time Tpa, and
an Abelian differential d?4. We begin by discussing the simpler case of one
puncture, N = 1. Recall that the coefficients of the pole of dA has provided
n +m Whitham times T; = —; Res(z7d)). Their “dual variables” are

Tp; = Res(277d}), (4.26)
and the associated Abelian differential are the familiar df2; of (3.4) (complex

normalized). When g > 0, the moduli space My(n,m) has in addition 5g
more parameters. We consider only the foliations for which the following 3g

parameters are fixed
7{ dE, '% dE, dqQ. (4.27)
Ag By A

Thus the case g > 0 leads to two more sets of ¢ Whitham times each

Qg :f dA, T,f = dQ (428)
Ak Bk
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Their dual variables are

1 5 1
apk = —57'[_-7: 5, d/\, TDk = 5‘7; oz Ed). (429)

The corresponding Abelian differentials are respectively the holomorphic differ-
entials dwy and the differentials d2f, defined to be holomorphic everywhere on
I' except along the A; cycles, where they have discontinuities

dQPT — dQf~ = §;,dE. (4.30)

We denote the collection of all 2g + n + m times by T4 = (T}, ax, TF). In the
case of N > 1 punctures, we have 29 + >°_(ny + mq) times (T, j, ak, TF) and
3N — 3 additional parameters for My(n,m), namely the residues of dQ, dE,
and d)\ at the punctures Py, 2 < a < N (cf. (3.35-3.36)). For simplicity, we
only consider the leaves of My(n,m) where

Resp, (dQ) =0, Resp, (dE) = fized, 2 < a < N, (4.31)

and incorporate among the T4 the residues of d\ at P,, 2 < a < N, R} =
Resp, (dA) (c.£.(3.35)). The dual parameters to these N —1 additional Whitham
times are then the regularized integrals

P,
Rp, = — d\, 2<a<N. (4.32)
P,

More precisely, recall that the Abelian integral A has been fixed by the condition
that its expansion near P;, in terms of the local coordinate z, defined by E,
have no constant term. Near each P,, 2 < a < N, in view of (4.31), it admits
an expansion of the form

Na+m
(=4 Ta 3
Mza) = ) ==L +Resp,(dN)10g z¢ + Aa + O(2a). (4.33)

=1 Za

For each a, 2 < @ < N, we define the right hand side of (4.32) to be A,. The

Abelian differential d)) associated with R2 is the Abelian differential of the
third kind, with simple poles at P; and P,, and residue 1 at P,. In summary,
we have the following table

Times Dual Times Differentials
—;Resp,(27dX)  Resp,(277d)) sy, ; 434
$,, dA — o5 5, dA dwy, (4.34)
Resp, dA — [ dX dald

ka dQ = fAk EdX Qg



Symplectic Forms in the Theory of Solitons 295

We can now define the 7-function of the Whitham hierarchy by

(T) = eg(T),

1 1 < . (4.35)
F(T) = 3 ;TATDA t o kz_:laka E(Ar N By),

where Ax N By, is the point of intersection of the Ay and By, cycles. In the case
Resp, dE = 0 we have then (see [38])

Theorem 19. The derivatives of I with respect to the 2g+)  (na+ma)+N—-1
Whitham times T4 are given by

1 g
OraF =Tpa+ 5~ § bar ATEE(Ax N By),

07. .1, ,F = Resp, (24d03 ;),

1
2 - —
0a;,4F = 5— (E(Ak N Bk)o(B,k), ]ik dQA) s (4.36)
1
2 —
Opkad = o A EdQa,
dQadQpdQc
3 —
OapoT =) Res,, (ng‘> '

qs

These formulae require some modifications when Resp, dE # 0, which is a
case of particular interest in supersymmetric QCD (see Section VI below). In
particular, the first derivatives with respect to R} become [17]

1
OpyF =Tpa+ 5m ) _capRy,
B

where ¢, g is an integer which is antisymmetric in o and 8. It is then easy
to see that the second derivatives are modified accordingly by constant shifts,
while the third derivatives remain unchanged.

We would like to point out that the 2g+3"  (ns +mq)+ N — 1 submanifolds
of My(n,m) defined by fixing (4.27) as well as the residues of dE and dQ are
yet another version of the 2g + n — 1 large leaf M of the foliation of Mg (n)
encountered earlier in the case of one puncture. Indeed, imbedding Mgy(n) in
Mgy (n, 1) by choosing Q4+ = k would fix two Whitham times T}, and Tph41, as
we saw after Theorem 10. This reduces the dimension 2g + n + 1 to the desired
dimension 2g +n — 1.

We observe that the first derivatives of F give the coefficients of the Laurent
expansions and the periods of the form A. The second derivatives give the
coefficients of the expansions and the periods of the differentials d{24. In that
sense the function F encodes all the information on the Whitham hierarchy. The
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formulae for the first and the second derivatives with respect to the variables
T; are the analogues in the case of the averaged equations of the corresponding
formulae for the 7-function of the KP hierarchy. The formulae for the third
derivatives are specific to the Whitham theory. As we shall see later, they are
reminiscent rather of marginal deformations of topological or conformal field
theories and of special geometry.

Finally, it may be worth noting that the expression (4.35) for F can be
elegantly summarized as

F = / dA A dA. (4.37)
r

V. Topological Landau-Ginzburg Models on a Ri-
amman Surface

In this section, we shall show that each 29 + n — 1 leaf of the foliation of
My(n) (or, equivalently, of the foliation of My(n,1) upon imbedding M, (n)
into M4(n, 1)) actually parametrizes the marginal deformations of a topological
field theory on a surface of genus g. Furthermore, the free energy of these
theories coincides with the restriction to the leaf of the exponential of the -
function for the Whitham hierarchy. We begin with a brief discussion of some
key features of topological field theories [63—65][11-13].

A. Topological Field Theories

In general, a two-dimensional quantum field theory is specified by the correla-
tion functions (@(z1)...¢(2n)), of its local physical observables ¢;(z) on any
surface T of genus g. Here ¢;(2) are operator-valued tensors on I". The opera-
tors act on a Hilbert space of states with a designated vacuum state |2). The
correlators (¢(z1) - .. ¢(zn)) usually depend on the background metric on I' and
on the location of the insertion points z;. In particular, they may develop sin-
gularities as z; approaches z;. Equivalently, the operator product ¢;(z;)¢;(2;)
may develop singularities. For example, in a conformal field theory, ¢;(2i)¢;(2;)
will have an operator product expansion of the form

#i(z:)dj(z;) = Z cfj(zi — zj)Mithi=he g, (2;) + descendants, (5.1)
k

where h; is the conformal dimension of ¢;. If we let ¢o(z) be the field cor-
responding to |Q), under the usual states <> fields correspondence, then we
obtain a metric by setting

Nij = c?j. (5.2)
Using 7; to raise and lower indices, and noting that (¢g(2))o = 1, we can easily
recognize C;jr = cfjnkz as the three-point function on the sphere

cijk = (9i(2:) 05 (25) ok (2k))o, (5.3)
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which is actually independent of the insertion points z;, zj, zx by SL(2,C)
invariance.

Topological field theories are theories where the correlation functions are
actually independent of the insertion points z;. Thus they depend only on the
labels of the fields ¢; and the genus g of . This independence implies that the
OPE of (5.1) contains no singularity, and that for all practical purposes, the
operator product ¢;(z;)¢;(z;) can be replaced by the formal operator algebra

Pid; = Z ckidr. (5.4)
k

The associativity of operator compositions translates into the associativity of
the operator algebra (5.4). Furthermore, the operator algebra is commutative,
since factorization of the 4-point function in the s and ¢ channels must give the
same answer. If we assume that in a topological field theory, physical correlation
functions can be factored through only physical states (as is the case, if the
Hilbert space of physical states arises as the cohomology of a nilpotent BRST
operator ) acting on a larger Hilbert space containing spurious states), then the
correlation functions of the theory on surfaces of all genera can all be expressed
explicitly, through factorization, in terms of the structure constants ¢;jy.

B. Deformations of a Topological Field Theory

We shall be particularly interested in the case where the topological field theory
arises as a deformation by parameters ¢; of a fixed theory. In a topological field
theory, the physical fields ¢; have clearly scaling dimension 0. In presence of
a BRST symmetry, they actually fit in a multiplet ®; = (qSEO) = ¢i,¢§1),¢§2)),
where the “descendants” qﬁgd) are tensors of scaling dimension d which satisfy
the descent equations d¢(® = {Q, pldt+1) }. In particular, ¢§2) can be integrated
on the surface I'. If we let I{0) be the Lagrangian of the original theory, we can
deform the theory to another theory with Lagrangian

10 =10)- 3t /F o2, (5.5)

The structure constants c;;x(t) of the new theory are then given by

cijp(t) = <¢>i¢j¢k exp (Z t; /r ¢§2))>

They define in turn a topological field theory. For deformations around a topo-
logical conformal field theory, i.e., a topological field theory whose stress tensor
is already traceless before restricting to physical states, the structure constants
cijr(t) are known to satisfy the key compatibility condition Ojcijx = Okciji

(5.6)

0
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[11-13]. This means that we can find a function J, called the free energy and

formally denoted by
F(t) = <exp (Z ti/q)i>> ; (5.7)
i 0

which satisfies the third derivative condition
3iajk5t(t) = Cijk- (5.8)

In terms of F, the commutativity and associativity conditions of the operator
algebra with structure constants c;jx(t) become a system of differential equa-
tions of third order, called the Witten-Dijkgraaf-Verlinde-Verlinde (WDVYV)
equation.

C. The Framework of Solitons

In their original work [11-12], Dijkgraaf, Verlinde, and Verlinde derived an
explicit expression for the free energy F(t) in the case of topological Landau-
Ginzburg theories. These are the topological theories arising from twisting
an N=2 superconformal field theory, which is itself obtained by following the
renormalization group flow to the fixed point of a Landau-Ginzburg model.
Although the renormalization group flow modifies the kinetic terms in the
Landau-Ginzburg action, the superpotential W(z) remains unchanged, and
thus characterizes both the associated superconformal and the topological mod-
els [30]{61][67]. Our goal in this section is to show how this theory can fit in the
framework of solitons, and to exhibit the natural emergence of the differential
Q) dFE and Whitham times.

We consider first the case of genus 0, with I' = {# € CUoo}. The role of the
superpotential W (z) is played in our context by the Abelian integral £ with a
unique pole of order n at co. We consider then a leaf in the space Mq(n,1),
characterized by the condition that ) = z, and E is of the form

n—2
E=2"+ Z uizt + 0(z7h). (5.9)
=0

This is of dimension n—1, and can be parametrized by the n —1 Whitham times
T4, A=1,...,n—1, with the other times fixed to T, = 0, Tp41 = o At
each point E on the leaf, the primary fields ¢; can be identified with df2;/dQ.
The structure constants are defined by

dQ;dQ; dQ ;) dQ;ydQ
(9165) = Res (%) . (9ix) = Resco (Jﬁfj’é—ﬂ) . (5.10)

We note that d@) corresponds to the field defined by the vacuum. The following
can be derived from Theorem 16:
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Theorem 20. Let F(T') be the T-function of the (complez normalized) Whitham
hierarchy, restricted to the (n — 1) dimensional leaf described above. Then

(i) the fields ¢; anti-diagonalize the pairing 1;j, i-e., (pid;) = biyjn;

(ii) F(T) is the free energy of the theory, i.e., 3%Tka F(T) = cijr. In partic-
ular, F(T') satisfies the system of WDVV equations.
More generally, the case of I' of genus g (with one puncture to simplify the

notation) has been treated in [22][38]. In this case, the relevant leaf within
My(n,1) is of dimension n — 1 + 2g and is given by the constraints

n
T, =0, Thy1 = ——,
T
dE =0, dE = fized, (5.11)
A)C Bk
dQ = 0.
Ak

Thus the leaf is parametrized by the (n—1) Whitham times T4, A =1,... ,n—1,
and by the periods a; and T} of (4.28). The fields ¢4 of the theory need to be
augmented accordingly. We take the 2g additional ones to be given by dw;/dQ
and d1¥ /dQ, where the differentials dw; and dQ2¥ are the ones associated to a;
and T, as described earlier in (4.30).

Theorem 21. Let nap and capc be defined as

dQ4dQY
N4,B = ZRequ 7215 B (5.12)
Qs
dQ2 4dQpdQ
CABC = ZResq, W, (513)
qs

with g, the zeroes of dE, and the indices A,B,C running this time through the
augmented set of n — 1+ 2g indices given by T4 = (T3,0;,Tk ;). Then

(1) M = divjn, N, (Ex) = 04,k All other pairings vanish;

(ii) Let F(T;,a;, Tk, ;) be the T-function of the Whitham hierarchy restricted
to the leaf (5.11). Then 035-F(T) = capc, where A runs through the
augmented set of n — 1+ 2g indices.

Note that in the genus 0 case when @ = z, the sum in (5.12-5.13) over the
residues at the zeros of dF reduces to the residue at infinity.

Remarkably, the larger spaces M, (n, m) can accommodate the gravitational
descendants of the fields ¢ 4. More precisely, consider for g = 0 the leaf of the
space Mg (n, mn + 1) given by the following evident modification of the earlier
normalization (5.11)

nm
nm+1

Tin=0,i=1,...,m, Tnums1 = (5.14)
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The space of Whitham times is automatically increased to the correct number
by taking all the coefficients of @ dE. The additional m(n — 1) fields may
be identified with the first mn gravitational descendants of the prlmary fields.
Namely, the p-th descendant o,{¢;) of the primary field ¢; is just _m_ This
statement is a direct corollary of the following theorem.

Theorem 22. The correlation functions given by (padpdc) = 0%5cF with
0p(¢:) = dQitpn/dQ satisfy the factorization properties for descendant fields

(0p(0:)PBOC) = (Tp—1(8:)b5 )0 (DB dC), (5.15)

where ¢;,i = 1,...,n — 1 are primary fields, and ¢4 are all fields (including
descendants).

Factorization properties for descendant fields were derived by Witten [63-
66]. We note that the completeness of the operator algebra requires a larger
set of fields that just g, which is the dimension of the small leaves of the canon-
ical foliation of My(n,m), and which will be shown in the next section to be
the dimension of the moduli space of vacua of certain supersymmetric gauge
theories. This is one of the difficulties in establishing direct contact between
topological field theories and supersymmetric gauge theories, although there
has been progress in this direction [6][44][45].

VI. Seiberg-Witten Solutions of N=2 Supersym-
metric Gauge Theories

Moduli spaces of geometric structures are appearing increasingly frequently as
the key to the physics of certain supersymmetric gauge or string theories. One
recurrent feature is a moduli space of degenerate vacua in the physical theory.
The physics of the theory is then encoded in a K&hler geometry on the space of
vacua, or, in presence of powerful constraints such as N=2 supersymmetry, in
an even more restrictive special geometry, where the Kahler potential is dictated
by single holomorphic function F, called the prepotential. This was the case
for Type ITA and Type IIB strings, where the vacua corresponding to compact-
ifications on Calabi-Yau threefolds [31][68] produce effective N=2 four dimen-
sional supergravity theories. The massless scalars of such theories (in this case,
the moduli of the Calabi-Yau threefold) must parametrize a manifold equipped
with special geometry [9][561][57]. More recently, a similar phenomenon has been
brought to light by Seiberg-Witten [52][53] for N=2 supersymmetric gauge the-
ories. Remarkably, the space of vacua of these theories, which is classically just
a space of diagonalizable and traceless matrices, becomes upon quantization a
moduli space of Riemann surfaces. The prepotential F for the quantum effective
theory can then be derived from a meromorphic one-form dX on each surface. A
particularly striking feature of these effective theories, noticed by many authors
[24][28][42-43][49][56], is a strong but as yet ill-understood similarity with the
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Whitham theory of solitons. Indeed, the quantum spaces of vacua for many
N=2 SUSY theories actually coincide with certain leaves of the canonical fo-
liation of My(n,m) [39], the Seiberg-Witten form dX with the one-form Q dE
central to Whitham theory, and the effective prepotential of the gauge theories
with the exponential of the 7-function of the Whitham theory! The purpose of
this section is to review some of these developments.

A. N=2 Supersymmetric Gauge Theories

We begin with a brief account of N=2 SUSY Yang-Mills theories in four di-
mensions with gauge group G [2]. The Yang-Mills gauge field A = A,dz* is
imbedded in an N=2 gauge multiplet consisting of A, left and right Weyl spinors
AL and AR, and a complex scalar field ¢, with all fields valued in the adjoint
representation of G. The requirement of N=2 SUSY and renormalizability fixes
uniquely the action

I= /M‘1 d*z Tr [éF/\F*+§%F/\F+D¢T/\*D¢+[¢, ¢'1?] + fermions, (6.1)
where g is the coupling constant, 6 is the instanton angle, and we have written
explicitly only the bosonic part of the action. The classical vacua are given by
the critical points of the action. In this case, they work out to be A =0, ¢ is
constant (up to a gauge transformation), and

[¢,¢'] =0. (6.2)

Thus ¢ must lie in the Cartan subalgebra. For G=SU(N,) (N, is commonly
referred to as number of “colors”), we set

N
.. k=1

an,
Thus the classical space of vacua is parametrized by the ai, up to a Weyl
permutation.

For a generic configuration ax, we have a; # ax for any j # k, and the gauge
group SU(N,) is spontaneously broken down to U(1)N‘_1. At the quantum
level, we expect then the space of inequivalent vacua to be parametrized by
N, — 1 parameters a;, (thought of as renormalizations of the ay, EQIQ ar = 0),
with each vacuum corresponding to a theory of N, — 1 interacting U(1) gauge
fields A;, i.e., N, — 1 copies of electromagnetism. In the weak coupling regime,
we expect singularities at ar = a;, where the gauge symmetry is suddenly
enhanced. Since N=2 SUSY remains unbroken, each gauge field A; is part
of an N=2 SUSY U(1) gauge multiplet (A;, Az, Arj,¢;), all in the adjoint
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representation of U(1). Again, the action for a theory with such a field content is
fixed by N=2 supersymmetry. To leading order in the low momentum expansion
for these fields, it must be of the form

Ig = él? d4x[(1m TI%)Fj A xFy + (Re 79%) F; A Fy, + do' A dgl] + fermions
(6.4)

where 925 o5
ik = = (6.5)

- Bajaak’ % - a_aj(qb)

for a suitable complex and analytic function F(a,A), called the prepotential.
We note that the prepotential F is a function not just of the vacua parameters
ax, but also of a scale A introduced by renormalization.

Thus the physics of the quantum theory is encoded in a single function 3.
What is known about F7? To insure the positivity of the kinetic energy, we must
have

g
I . .
maa,-aak >0 (6.6)
Geometrically, F defines then a Kéhler metric on the quantum moduli space by
ds* = Im ( 5a; Bak) da;day. (6.7)

Furthermore, at weak-coupling A < 1, F can be evaluated in perturbation
theory. For pure SU(N,) Yang-Mills, one finds

N, (o]

2N, 1 a;)?

Fla,A) = o— i— 5 > (ak —a;) 2log(LA-2—i +Y FaAPN (6.8)
k=1 7,k=1 d=1

The first term on the right hand side is the classical prepotential. The second
term is the perturbative one-loop quantum correction. In view of N=2 non-
renormalization theorems, it is known that higher loops do not contribute. The
third term is the instanton contribution, consisting of d-instanton processes for
all d. We observe that the expansion (6.8) implies in particular that F has non-
trivial monodromy around a; = ax in the A « 1 regime. The exact solution
of N=2 Yang-Mills theories is reduced in this way to finding a holomorphic ¥
satisfying the constraints (6.6) and (6.8).

We have just described the main problem for N=2 SUSY pure SU(N) Yang-
Mills theories. However, the same problem should be addressed for general
N=2 SUSY gauge theories with gauge group G, with matter fields (“hyper-
multiplets”) in a representation R of G. As in the case of pure Yang-Mills,
the Wilson effective Lagrangian of these theories is dictated by a prepotential
Fc.r(a,A), and the problem is to determine Fg gr(a, A), subject to the con-
straints (6.6) and (6.8), where the right hand side of (6.8) has been modified to
incorporate the contributions of the hypermultiplets. For example, in presence
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of Ny hypermultiplets in the fundamental representation of bare masses m;,
1 <i < Ny, the one-loop correction to the prepotential for the SU(N,) theory
contains the additional term

N. Ny

a m; 2
> (ax+ mj)Qlog(—k—}z,;)-

k=1 i=1

B. The Seiberg-Witten Ansatz

The requirements that ¥ have monodromy and a Hessian with positive definite
imaginary part, suggest an underlying non-trivial geometry on the quantum
space of vacua. In [52][53], Seiberg and Witten made the fundamental Ansatz
that

e For each A, the quantum moduli space should parametrize a family of
Riemann surfaces I'(a, A) of genus ¢ = N, — 1, now known as the spectral
curves of the theory;

e on each I'(a, A), there is a meromorphic one-form dA;

e 7 is determined by the periods of d\ 2

1 1 oF
-4 = b, Zoap .
W= o A 4Dk = o ﬁk " Oag @D,k (6.9)

The gauge theories under consideration contain dyons, i.e., particles which
carry both electric and magnetic charges. Let (n,m) € ZNe=1 x ZN<~1 be their
charges, with (n;,m;) the charge with respect to the i-th U(1) factor. The
N=2 SUSY algebra implies the bound M? > 2|an + apm|? from below for their
masses. Thus the states saturating this bound, known as Bogomolny-Prasad-
Sommerfeld or BPS states, are described by the lattice spanned by the periods
of d\. The singular locus of the fibration I'(a, A), namely the points where the
curve degenerates and a period a; or ap ; vanishes, corresponds then to vacua
where one or several dyons become massless.

For pure SU(2) Yang-Mills, the monodromy prescription at oo is restrictive
enough to suggest the identification of the quantum moduli space of vacua with
H/T'(2) (H denotes the upper half space, and I'(2) the subgroup of SL(2,Z)
matrices congruent to 1 mod 2), assuming the minimal number two of singular-
ities in the interior, of the quantum moduli space. Since then, spectral curves
have been proposed for a variety of gauge theories with matter, based on phys-
ical considerations such as decoupling, or analogies with singularity theory or
soliton theory (see e.g. [40] and references therein). However, at the present

2In this section, we adopt the normalization (6.9) for the periods a; of dA rather than (3.39),
in keeping with the literature on Seiberg-Witten theory. Similarly, the present F differs from
the earlier 7-function Fwhitham of soliton theory (c.f. (4.35)) by F = —ﬁ?‘wmtham.
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time, we still do not have a complete correspondence between the group the-
oretic characterization of the gauge theory, consisting of the group G and the
representation R for the hypermultiplets, and the fibration of spectral curves
which characterizes its geometric and physical content.

C. The Framework of the Theory of Solitons

Nevertheless, an intriguing feature of most of the spectral curves for N=2 SUSY
gauge theories known so far, is that they, together with the one-form dJ, fit
exactly in the framework of the foliation on My(n,m) with dA = QdE. In
particular,

e The spectral curves for SU(NV,) theories with Ny < 2N, hypermultiplets
in the fundamental representation of bare masses m;, 1 <4 < Ny, are given by
the leaf (T', F, Q) with the following properties.

- dE has simple poles, at points P, P_, P;,with residues —N., N, — Ny,
and 1 (1 <14 < Ny) respectively. Its periods around homology cycles are
integer multiples of 2i;

- @ is a well-defined meromorphic function, with simple poles only at P,
and P_;

- The other parameters of the leaf are fixed by the following normalization
of the one-form d\ = QdFE
Resp, (d)\) = —my,
Resp, (zd)\) = =N,271/Ne Resp_(zd))
A2Ne—Ng\ 1/(Ne=Ny) (6.10)
v (2
Resp, (dA) = 0.

Here z = E~1/Ne or z = E1/(Ne=Ns) i5 as usual the holomorphic coordi-
nate system near P, or near P_ adapted to the Abelian integral E.

These conditions imply that I' is hyperelliptic, and admits an equation of
the form (see [39])

N, Ny
y? = [[(@—an)? - AN [](Q +m;) = AQ)* - B(Q). (6.11)
k=1 Jj=1

Strictly speaking, the parameters @, of (6.11) agree with the classical vacua in
(6.3) only when N, < Ny. For Ny > N,, there are O(A) corrections, which
can be absorbed in a reparametrization leaving the prepotential F invariant
[15]. Thus we may view the @ of (6.3) and (6.11) as identical. If we represent
the Riemann surface (6.11) by a two-sheeted covering of the complex plane,
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then the meromorphic function @ on I in d\ = Q dE is just the coordinate in
each sheet, while the Abelian integral FE is given by E = log(y + A(Q)). The
points Py correspond to the points at infinity, with the two possible choices of
signs + for y = £v/ A2 — B. To choose a canonical homology basis, we let zk ,
1 < k < N, be the branch points A(z¥)? — B(z¥), Ax be a simple contour
enclosing the slit from zj to z for 2 < k < N, and By, be the curve going
from z; to z; on each sheet. We can now give a preliminary and easy check
that the curve (6.11) is consistent with the expected behavior of the theory at
weak-coupling. Consider for simplicity the case of pure Yang-Mills, Ny = 0.
Then as A — 0, the discriminant of the curve behaves as A" [] j<k(@j — ar)?,
and the singularities are at the expected location. Furthermore, in this limit,

QMdQ +..., and the cycles A are just contours in the complex plane
around a sht Wthh shrinks to a single point @x. The residue formula gives at

once 1 AI(Q)
2mi £y, CAQ)

identifying as as a classical order parameter.

ax = dQ + O(AN<) = ay, + O(ANe), (6.12)

e The spectral curves for the other classical gauge groups with matter in
the fundamental representation are restrictions of the ones for SU(N.) [4][16];

e The SU(N,) theory with matter in the adjoint representation is of par-
ticular interest. For massless matter, the theory has actually an N=4 super-
symmetry, and is conformally invariant. As the hypermultiplet acquires mass,
the N=4 SUSY is broken down to an N=2 SUSY. In [18], Donagi and Witten
argued that the spectral curves for the theory are then given by Hitchin sys-
tems. Expressed in terms of elliptic Calogero-Moser systems, the curves they
proposed are given precisely by the leaf (T', k, z) in Section III.D. Here the hy-
permultiplet mass has been scaled to 1, and the moduli 7 = ws/w; of the torus
is the microscopic gauge coupling.

Although this suggests a deep relation between N=2 gauge theories and
integrable models, such a relation is still not fully understood at the present
time. Nevertheless, the parallelism between the two fields allows us to apply to
the study of the prepotential F of gauge theories the methods developed in the
theory of solitons. Thus Theorem 16 implies readily [17]

Theorem 23. The prepotential F for SU(N.) gauge theories with Ny < 2N,
hypermultiplets of masses m; in the fundamental representation, satisfies the
following differential equation

ZaJ +Zm]a =

- é%[Resm (2d)) Resp, (27'd)) + Resp_(z d)\) Resp_(27'd))]  (6.13)
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We observe that there is a slight abuse of language here, since in the case of
the effective prepotential of gauge theories, F is only fixed up to ax independent
terms by (6.9). This is consistent with the fact that only derivatives of  with
respect to a occur in the effective action. Thus the a; independent terms on
the right hand side of (6.13) can be ignored by adjusting F. The prepotential
(4.35) (restricted to the leaf corresponding to the SU(N,) theory) is one choice
of F. Another choice suggested by dimensional analysis (c.f. (6.8)) is the
prepotential F satisfying the homogeneity condition (% + D)F = 0. In this
case, we recognize (6.13) as a renormalization group equation, with the beta
function given by the right hand side of (6.13). Earlier versions of (6.13) appear
in [24][46][47][56].

To illustrate the power of Theorem 20, we shall show how it can generate
explicit expressions for the contributions of instanton processes to any order.
Thus we consider the regime where A is small and all the Ag-cycles degenerate
simultaneously. A fundamental observation is that in this regime, the quantum
order parameters aj are perturbations of their classical counterparts @, which
can be determined explicitly to any order. In fact, as noted in the arguments
leading to (6.12), the Ay cycles are simple contours shrinking to a point in one
sheet of the Riemann surface and residue formulae apply. The approximation
(6.12) can be improved to

el A(2N°_Nf)m 6

ar = ag + W -ﬁ)Qm_lgk(dk),
e 6.14
Suta) = e+ ) .
¢ Hl;&k(ﬂ? —-a)?

The evaluation of the dual periods apy is of course more difficult. We need
to show that the prepotential F, as defined by the By-periods, reproduces the
classical prepotential ¥ in (6.8) (with hypermultiplets) and satisfies the non-
renormalization theorem. This requires an analytic continuation in an auxiliary
parameter £, as explained in [15]. However, once this is established, the dif-
ficult instanton contributions can be derived from the renormalization group
equation. Setting F = F(© + FU 4 F@) 4 | we have, say up to 2-instanton
order and using Euler’s homogeneity relation,

N,
N L
E:% + E : Ja = (Ny — 2N.) (E > ai + 30 +2?(2>) . (6.15)
k=1

(We note the overall factor Ny — 2N,, which confirms the known conformal
invariance of the theory with Ny = 2N.. For the spectral curves of this theory,
we refer to [4]). On the other hand, dropping all ai-independent terms, the
right hand side of (6.13) is easily found

Z

N ) :
Zaj +Zm,a 25 = —(N; —2No) 1ak. (6.16)

ES
i
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We can now use (6.14) to reexpress the right hand side of (6.16) in terms of the
quantum order parameters ax. The instanton contributions can then be read
off after suitable rearrangements [15][17]

N,
1 .
FO = — APNN S " S (),

81 P

B (6.17)
@ _ 1 r2eN-Ny Sk(ax)Si(a 1

= A Z_‘— ZZ Sk(ar)0?, Sk(ax)

327i pavy (ar — a1)
Here the function Si(z) is defined in analogy with (6.14) by

Hj'vzfl(z‘*“mj)
Sp(z) = ==~ 7,
Ho) 1%, (@ — a)?

We turn next to a determination of the effective prepotential at strong
coupling. In general, when a single cycle Ay or By degenerates, we expect
the effective prepotential to be expressible in terms of functions on the resulting
surface of lower genus. A particularly interesting case is the behavior of J near a
point on the quantum moduli space of maximum degeneracy, where all By, cycles
degenerate simultaneously, and the spectral curve degenerates to two spheres
connected by thin tubes. Physically, this means that a maximum number of
mutually local dyons become simultaneously massless. As shown in [20], the
points of maximum degeneracy occur at the curves y% = 4¢(Q)? —4A%"<, where
Ao(Q) is given by the N-th Chebyshev polynomial

Ap = 2AN<C, (%) , Co(z) = cos(Narccos(z)). (6.18)

A neighborhood of the maximum degeneracy point on the quantum moduli
space 1s parametrized by polynomlals P(Q) of degree N — 2, with the spectral
curve y? = A(Q)?—4ANe, A(Q) = Ao(Q)+2AN: P(2A) Since it is the By, cycle
which degenerates this time, it is more convenient to express the prepotential
F(apk) and the beta function in terms of the dual variables apg, which can
then be evaluated to an arbitrary order of accuracy by residue methods. The
renormalization group equation remains the same under interchange of the dual
variables a; ¢ apk

2N,

N,

‘ oF
E apry— —2F = —
Pt dapk 2mi

(6.19)

where u is the coefficient of Q<2 in A(Q). Residue calculations show next
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apy is of first order in P and that

apg = i(-) —P )+ZaDk,

k k
skzsin<ﬁi),ck=cos(7€;>, k=1,...,N

where the a(g,? are of order O™(ap) and can be evaluated explicitly. To third

order in ap, we find for u

(6.20)

N.-1 N.-1 N.—-1 0,2 N.—1 0,2 an:s

DISI

u=2iA E skapk+ E aDk+32N2A E %-4 E (C_Dk___c_)z
k=1 k=1 °k k2l BT

(6.21)
Solving the renormalization group equation, we obtain [14]

Theorem 24. Near the point of mazimum degeneracy on the quantum moduli
space given by (6.19), the prepotential F is given by the following expression

N.-1

2N,
Flap) = A aDIc
1 et a3 a ap;s;
Dk Dk
_— —4 e .22
+327rNCA ; 53 kZ;él (ck — 1) (6.22)

up to third order in the order parameters apy. Here Ay is determined by
loglt = 2 + logsy.

We should mention that there is by now an extensive literature on Seiberg-
Witten theories, and we refer to [40] for a description of other recent advances
and for a more complete list of references.
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